new version 0_2_2 from stuttgart

This commit is contained in:
Jens Noack 2021-11-15 13:45:36 +01:00
parent 0514952897
commit c1b71e9829
32 changed files with 1049 additions and 501 deletions

2
.gitignore vendored
View File

@ -3,8 +3,6 @@
.pio/build
.vscode
*.ino.cpp
config.h
config.hftstuttgart.h
.project
.cproject
.settings

View File

@ -2,29 +2,11 @@ image: python:3.6
stages:
- build
- release
before_script:
- "pip install -U platformio"
- "cp ampel-firmware/config.public.h ampel-firmware/config.h"
esp8266:
job:
stage: build
script:
- "platformio run --environment esp8266"
- cp .pio/build/esp8266/firmware.bin esp8266.bin
artifacts:
paths:
- esp8266.bin
expire_in: 1 week
release:
image: inetprocess/gitlab-release
stage: release
only:
- tags
dependencies:
- esp8266
script:
- gitlab-release --message '' ./*.bin
script: "platformio run"

25
CHANGELOG.md Normal file
View File

@ -0,0 +1,25 @@
# Change Log
## [v0.2.2](https://transfer.hft-stuttgart.de/gitlab/co2ampel/ampel-firmware/-/releases/v0.2.2) 2021/10/01
* MAC address is now shown at startup and via HTTP
## [v0.2.1](https://transfer.hft-stuttgart.de/gitlab/co2ampel/ampel-firmware/-/releases/v0.2.1) 2021/06/06
* BUGFIX: Sensor would keep on calibrating after successful calibration.
## [v0.2.0](https://transfer.hft-stuttgart.de/gitlab/co2ampel/ampel-firmware/-/releases/v0.2.0) 2021/06/06
* BUGFIX: Calibration was not applied correctly (Thanks Michael Käppler for bug finding & fixing!)
* MQTT works again for ESP32 (board needs to be updated in Arduino IDE/PlaftormIO)
## [v0.1.0](https://transfer.hft-stuttgart.de/gitlab/co2ampel/ampel-firmware/-/releases/v0.1.0) 2021/05/19
* More stable calibration, with 10s timestep
* Allow commands from Serial/MQTT/Webserver
* Many bugfixes
## [v0.0.9](https://transfer.hft-stuttgart.de/gitlab/co2ampel/ampel-firmware/-/releases/v0.0.9) 2020/12/15
* First CO2 Ampel release.
* Basic functionality

View File

@ -1,6 +1,6 @@
# CO<sub>2</sub> Ampel
*CO<sub>2</sub> Ampel* is an open-source project, written in C++ for ESP8266 or ESP32.
*CO<sub>2</sub> Ampel* is an open-source project, written in C++ for [ESP8266](https://en.wikipedia.org/wiki/ESP8266) or [ESP32](https://en.wikipedia.org/wiki/ESP32).
It measures the current CO<sub>2</sub> concentration (in ppm), and displays it on an LED ring.
@ -12,20 +12,20 @@ The *CO<sub>2</sub> Ampel* can:
* Display CO2 concentration on LED ring.
* Allow calibration.
* Get current time over NTP
* Send data over MQTT.
* Send data over LoRaWAN.
* Get current time over [NTP](https://en.wikipedia.org/wiki/Network_Time_Protocol)
* Send data over [MQTT](https://en.wikipedia.org/wiki/MQTT).
* Send data over [LoRaWAN](https://en.wikipedia.org/wiki/LoRa#LoRaWAN).
* Display measurements and configuration on a small website.
* Log data to a CSV file, directly on the ESP flash memory.
* Log data to a [CSV](https://en.wikipedia.org/wiki/Comma-separated_values) file, directly on the ESP flash memory.
* Accept many interactive commands.
## Hardware Requirements
* [ESP8266](https://en.wikipedia.org/wiki/ESP8266) or [ESP32](https://en.wikipedia.org/wiki/ESP32) microcontroller (this project has been tested with *ESP8266 ESP-12 WIFI* and *TTGO ESP32 SX1276 LoRa*)
* [Sensirion SCD30](https://www.sensirion.com/en/environmental-sensors/carbon-dioxide-sensors/carbon-dioxide-sensors-co2/) "Sensor Module for HVAC and Indoor Air Quality Applications"
* [NeoPixel Ring - 12](https://www.adafruit.com/product/1643)
* [NeoPixel Ring - 12](https://www.adafruit.com/product/1643), or [NeoPixel Ring - 16](https://www.adafruit.com/product/1463) (experimental)
See the [original documentation](https://transfer.hft-stuttgart.de/gitlab/co2ampel/ampel-documentation) for more info.
Or our Wiki [MakerLab Wiki CO2 Ampel](https://wiki.makerlab-murnau.de/books/co2-ampel).
See the [documentation](https://transfer.hft-stuttgart.de/gitlab/co2ampel/ampel-documentation) for more info.
## Software Requirements
@ -68,27 +68,49 @@ make upload board=esp32 && make monitor # For ESP32
* *Upload*
* *Tools > Serial Monitor*
## Available commands
In Arduino IDE *Serial Monitor* or PlatformIO *Monitor*, type `help` + <kbd>Enter</kbd> in order to list the available commands:
* `auto_calibrate 0/1` (Disables/enables autocalibration).
* `calibrate` (Starts calibration process).
* `calibrate 600` (Starts calibration process, to given ppm).
* `calibrate! 600` (Calibrates right now, to given ppm).
* `co2 1500` (Sets co2 level, for debugging purposes).
* `color 0xFF0015` (Shows color, specified as RGB, for debugging).
* `csv 60` (Sets CSV writing interval, in s).
* `format_filesystem` (Deletes the whole filesystem).
* `free` (Displays available heap space).
* `local_ip` (Displays local IP and current SSID).
* `lora 300` (Sets LoRaWAN sending interval, in s).
* `mqtt 60` (Sets MQTT sending interval, in s).
* `night_mode` (Toggles night mode on/off).
* `reset` (Restarts the ESP).
* `reset_scd` (Resets SCD30).
* `send_local_ip` (Sends local IP and SSID via MQTT. Can be useful to find sensor).
* `set_time 1618829570` (Sets time to the given UNIX time).
* `show_csv` (Displays the complete CSV file on Serial).
* `timer 30` (Sets measurement interval, in s).
* `wifi_scan` (Scans available WiFi networks).
The commands can be sent via the Serial interface, from the webpage or via MQTT.
## Authors
* Eric Duminil
* Robert Otto
* Myriam Guedey
* Tobias Gabriel Erhart
* Jonas Stave
Hochschule für Technik Stuttgart
## Modifications by
* Jens Noack
MakerLab Murnau e.V.
* Eric Duminil (HfT Stuttgart)
* Robert Otto (HfT Stuttgart)
* Myriam Guedey (HfT Stuttgart)
* Tobias Gabriel Erhart (HfT Stuttgart)
* Jonas Stave (HfT Stuttgart)
* Michael Käppler
## Contributing
Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.
* Merge requests are welcome, and should be based on the `develop` branch.
* The `develop` branch gets merged into the `master` once it has been sufficiently tested.
* For major changes, please open an issue first to discuss what you would like to change.
## License
Copyright © 2020, [HfT Stuttgart](https://www.hft-stuttgart.de/)
Copyright © 2021, [HfT Stuttgart](https://www.hft-stuttgart.de/)
[GPLv3](https://choosealicense.com/licenses/gpl-3.0/)

View File

@ -20,6 +20,12 @@
# ifdef AMPEL_HTTP
# include "web_server.h"
# endif
# if defined(ESP8266)
//allows sensor to be seen as SENSOR_ID.local, from the local network. For example : espd03cc5.local
# include <ESP8266mDNS.h>
# elif defined(ESP32)
# include <ESPmDNS.h>
# endif
#endif
#ifdef AMPEL_LORAWAN
@ -27,17 +33,8 @@
#endif
#include "util.h"
#include "sensor_console.h"
#include "co2_sensor.h"
#include "led_effects.h"
#if defined(ESP8266)
//allows sensor to be seen as SENSOR_ID.local, from the local network. For example : espd03cc5.local
# include <ESP8266mDNS.h>
#elif defined(ESP32)
# include <ESPmDNS.h>
#endif
void keepServicesAlive();
void checkFlashButton();
#endif

View File

@ -43,6 +43,7 @@
* Myriam Guedey
* Tobias Gabriel Erhart
* Jonas Stave
* Michael Käppler
*/
/*****************************************************************
@ -64,19 +65,28 @@ void setup() {
Serial.begin(BAUDS);
pinMode(0, INPUT); // Flash button (used for forced calibration)
pinMode(buttonPin, INPUT); // Flash button (used for forced calibration)
Serial.println();
Serial.print(F("Sensor ID: "));
Serial.println(ampel.sensorId);
Serial.print(F("MAC : "));
Serial.println(ampel.macAddress);
Serial.print(F("Board : "));
Serial.println(ampel.board);
Serial.print(F("Firmware : "));
Serial.println(ampel.version);
led_effects::setupRing();
led_effects::showRainbowWheel(5000);
sensor::initialize();
Serial.print(F("Sensor ID: "));
Serial.println(SENSOR_ID);
Serial.print(F("Board : "));
Serial.println(BOARD);
#ifdef AMPEL_CSV
csv_writer::initialize(ampel.sensorId);
#endif
#ifdef AMPEL_WIFI
WiFiConnect(SENSOR_ID);
wifi::connect(ampel.sensorId);
Serial.print(F("WiFi - Status: "));
Serial.println(WiFi.status());
@ -88,7 +98,7 @@ void setup() {
ntp::initialize();
if (MDNS.begin(SENSOR_ID.c_str())) { // Start the mDNS responder for SENSOR_ID.local
if (MDNS.begin(ampel.sensorId)) { // Start the mDNS responder for SENSOR_ID.local
MDNS.addService("http", "tcp", 80);
Serial.println(F("mDNS responder started"));
} else {
@ -96,24 +106,26 @@ void setup() {
}
# ifdef AMPEL_MQTT
mqtt::initialize("CO2sensors/" + SENSOR_ID);
mqtt::initialize(ampel.sensorId);
# endif
}
#endif
#ifdef AMPEL_CSV
csv_writer::initialize();
#endif
#if defined(AMPEL_LORAWAN) && defined(ESP32)
lorawan::initialize();
#endif
}
/*****************************************************************
* Helper functions *
*****************************************************************/
void keepServicesAlive();
void checkFlashButton();
void checkSerialInput();
/*****************************************************************
* Main loop *
*****************************************************************/
void loop() {
#if defined(AMPEL_LORAWAN) && defined(ESP32)
//LMIC Library seems to be very sensitive to timing issues, so run it first.
@ -133,6 +145,8 @@ void loop() {
// Short press for night mode, Long press for calibration.
checkFlashButton();
checkSerialInput();
if (sensor::processData()) {
#ifdef AMPEL_CSV
csv_writer::logIfTimeHasCome(sensor::timestamp, sensor::co2, sensor::temperature, sensor::humidity);
@ -148,11 +162,17 @@ void loop() {
}
uint32_t duration = millis() - t0;
if (duration > max_loop_duration) {
max_loop_duration = duration;
if (duration > ampel.max_loop_duration) {
ampel.max_loop_duration = duration;
Serial.print(F("Debug - Max loop duration : "));
Serial.print(max_loop_duration);
Serial.println(" ms.");
Serial.print(ampel.max_loop_duration);
Serial.println(F(" ms."));
}
}
void checkSerialInput() {
while (Serial.available() > 0) {
sensor_console::processSerialInput(Serial.read());
}
}
@ -163,16 +183,18 @@ void loop() {
* If long press, start calibration process.
*/
void checkFlashButton() {
if (!digitalRead(buttonPin)) { // Button has been pressed
if (!digitalRead(0)) { // Button has been pressed
led_effects::onBoardLEDOn();
delay(300);
if (digitalRead(buttonPin)) {
if (digitalRead(0)) {
Serial.println(F("Flash has been pressed for a short time. Should toggle night mode."));
led_effects::toggleNightMode();
} else {
Serial.println(F("Flash has been pressed for a long time. Keep it pressed for calibration."));
if (led_effects::countdownToZero() < 0) {
if (led_effects::countdownToZero()) {
Serial.println(F("You can now release the button."));
sensor::startCalibrationProcess();
led_effects::showKITTWheel(color::red, 2);
}
}
led_effects::onBoardLEDOff();

View File

@ -1,10 +1,17 @@
#include "co2_sensor.h"
namespace config {
// Values should be defined in config.h
uint16_t measurement_timestep = MEASUREMENT_TIMESTEP; // [s] Value between 2 and 1800 (range for SCD30 sensor)
// UPPERCASE values should be defined in config.h
uint16_t measurement_timestep = MEASUREMENT_TIMESTEP; // [s] Value between 2 and 1800 (range for SCD30 sensor).
const uint16_t altitude_above_sea_level = ALTITUDE_ABOVE_SEA_LEVEL; // [m]
uint16_t co2_calibration_level = ATMOSPHERIC_CO2_CONCENTRATION; // [ppm]
const uint16_t measurement_timestep_bootup = 5; // [s] Measurement timestep during acclimatization.
const uint8_t max_deviation_during_bootup = 20; // [%]
const int8_t max_deviation_during_calibration = 30; // [ppm]
const int16_t timestep_during_calibration = 10; // [s] WARNING: Measurements can be unreliable for timesteps shorter than 10s.
const int8_t stable_measurements_before_calibration = 120 / timestep_during_calibration; // [-] Stable measurements during at least 2 minutes.
const uint16_t co2_alert_threshold = 2000; // [ppm] Display a flashing led ring, if concentration exceeds this value
#ifdef TEMPERATURE_OFFSET
// Residual heat from CO2 sensor seems to be high enough to change the temperature reading. How much should it be offset?
// NOTE: Sign isn't relevant. The returned temperature will always be shifted down.
@ -12,23 +19,46 @@ namespace config {
#else
const float temperature_offset = -3.0; // [K] Temperature measured by sensor is usually at least 3K too high.
#endif
const bool auto_calibrate_sensor = AUTO_CALIBRATE_SENSOR; // [true / false]
bool auto_calibrate_sensor = AUTO_CALIBRATE_SENSOR; // [true / false]
const bool debug_sensor_states = false; // If true, log state transitions over serial console
}
namespace sensor {
SCD30 scd30;
int16_t co2 = 0;
uint16_t co2 = 0;
float temperature = 0;
float humidity = 0;
String timestamp = "";
char timestamp[23];
int16_t stable_measurements = 0;
uint32_t waiting_color = color::blue;
bool should_calibrate = false;
unsigned long time_calaibration_started = millis();
/**
* Define sensor states
* BOOTUP -> initial state, until first >0 ppm values are returned
* READY -> sensor does output valid information (> 0 ppm) and no other condition takes place
* NEEDS_CALIBRATION -> sensor measurements are too low (< 250 ppm)
* PREPARE_CALIBRATION_UNSTABLE -> forced calibration was initiated, last measurements were too far apart
* PREPARE_CALIBRATION_STABLE -> forced calibration was initiated, last measurements were close to each others
*/
enum state {
BOOTUP,
READY,
NEEDS_CALIBRATION,
PREPARE_CALIBRATION_UNSTABLE,
PREPARE_CALIBRATION_STABLE
};
const char *state_names[] = {
"BOOTUP",
"READY",
"NEEDS_CALIBRATION",
"PREPARE_CALIBRATION_UNSTABLE",
"PREPARE_CALIBRATION_STABLE" };
state current_state = BOOTUP;
void switchState(state);
void initialize() {
#if defined(ESP8266)
Wire.begin(12, 14); // ESP8266 - SDA: D6, SCL: D5;
Wire.begin(12, 14); // ESP8266 - D6, D5;
#endif
#if defined(ESP32)
Wire.begin(21, 22); // ESP32
@ -40,81 +70,103 @@ namespace sensor {
* SDA --- SDA (GPIO21) //NOTE: GPIO1 would be more convenient (right next to GPO3)
*/
#endif
// CO2
if (scd30.begin(config::auto_calibrate_sensor) == false) {
Serial.println("Air sensor not detected. Please check wiring. Freezing...");
while (1) {
led_effects::showWaitingLED(color::red);
}
}
// SCD30 has its own timer.
//NOTE: The timer seems to be inaccurate, though, possibly depending on voltage. Should it be offset?
Serial.println();
Serial.print(F("Setting SCD30 timestep to "));
Serial.print(config::measurement_timestep);
Serial.println(" s.");
scd30.setMeasurementInterval(config::measurement_timestep); // [s]
scd30.enableDebugging(); // Prints firmware version in the console.
if (!scd30.begin(config::auto_calibrate_sensor)) {
Serial.println(F("ERROR - CO2 sensor not detected. Please check wiring!"));
led_effects::showKITTWheel(color::red, 30);
ESP.restart();
}
// Changes of the SCD30's measurement timestep do not come into effect
// before the next measurement takes place. That means that after a hard reset
// of the ESP the SCD30 sometimes needs a long time until switching back to 2 s
// for acclimatization. Resetting it after startup seems to fix this behaviour.
scd30.reset();
Serial.print(F("Setting temperature offset to -"));
Serial.print(abs(config::temperature_offset));
Serial.println(" K.");
Serial.println(F(" K."));
scd30.setTemperatureOffset(abs(config::temperature_offset)); // setTemperatureOffset only accepts positive numbers, but shifts the temperature down.
delay(100);
Serial.print(F("Temperature offset is : -"));
Serial.print(scd30.getTemperatureOffset());
Serial.println(" K");
Serial.println(F(" K"));
Serial.print(F("Auto-calibration is "));
Serial.println(config::auto_calibrate_sensor ? "ON." : "OFF.");
// SCD30 has its own timer.
//NOTE: The timer seems to be inaccurate, though, possibly depending on voltage. Should it be offset?
Serial.println();
Serial.print(F("Setting SCD30 timestep to "));
Serial.print(config::measurement_timestep_bootup);
Serial.println(F(" s during acclimatization."));
scd30.setMeasurementInterval(config::measurement_timestep_bootup); // [s]
sensor_console::defineIntCommand("co2", setCO2forDebugging, F("1500 (Sets co2 level, for debugging purposes)"));
sensor_console::defineIntCommand("timer", setTimer, F("30 (Sets measurement interval, in s)"));
sensor_console::defineCommand("calibrate", startCalibrationProcess, F("(Starts calibration process)"));
sensor_console::defineIntCommand("calibrate", calibrateSensorToSpecificPPM,
F("600 (Starts calibration process, to given ppm)"));
sensor_console::defineIntCommand("calibrate!", calibrateSensorRightNow,
F("600 (Calibrates right now, to given ppm)"));
sensor_console::defineIntCommand("auto_calibrate", setAutoCalibration, F("0/1 (Disables/enables autocalibration)"));
sensor_console::defineCommand("reset_scd", resetSCD, F("(Resets SCD30)"));
}
//NOTE: should timer deviation be used to adjust measurement_timestep?
void checkTimerDeviation() {
static int32_t previous_measurement_at = 0;
int32_t now = millis();
Serial.print("Measurement time offset : ");
Serial.print(now - previous_measurement_at - config::measurement_timestep * 1000);
Serial.println(" ms.");
previous_measurement_at = now;
bool hasSensorSettled() {
static uint16_t last_co2 = 0;
uint16_t delta;
delta = abs(co2 - last_co2);
last_co2 = co2;
// We assume the sensor has acclimated to the environment if measurements
// change less than a specified percentage of the current value.
return (co2 > 0 && delta < ((uint32_t) co2 * config::max_deviation_during_bootup / 100));
}
void countStableMeasurements() {
bool enoughStableMeasurements() {
static int16_t previous_co2 = 0;
if (co2 > (previous_co2 - 30) && co2 < (previous_co2 + 30)) {
if (co2 > (previous_co2 - config::max_deviation_during_calibration)
&& co2 < (previous_co2 + config::max_deviation_during_calibration)) {
stable_measurements++;
Serial.print(F("Number of stable measurements : "));
Serial.println(stable_measurements);
waiting_color = color::green;
Serial.print(stable_measurements);
Serial.print(F(" / "));
Serial.println(config::stable_measurements_before_calibration);
switchState(PREPARE_CALIBRATION_STABLE);
} else {
stable_measurements = 0;
waiting_color = color::red;
switchState(PREPARE_CALIBRATION_UNSTABLE);
}
previous_co2 = co2;
return (stable_measurements == config::stable_measurements_before_calibration);
}
void startCalibrationProcess() {
/** From the sensor documentation:
* For best results, the sensor has to be run in a stable environment in continuous mode at
* a measurement rate of 2s for at least two minutes before applying the FRC command and sending the reference value.
* Before applying FRC, SCD30 needs to be operated for 2 minutes with the desired measurement period in continuous mode.
*/
Serial.println(F("Setting SCD30 timestep to 2s, prior to calibration."));
scd30.setMeasurementInterval(MEASUREMENT_TIMESTEP); // [s] The change will only take effect after next measurement.
Serial.print(F("Setting SCD30 timestep to "));
Serial.print(config::timestep_during_calibration);
Serial.println(F("s, prior to calibration."));
scd30.setMeasurementInterval(config::timestep_during_calibration); // [s] The change will only take effect after next measurement.
Serial.println(F("Waiting until the measurements are stable for at least 2 minutes."));
Serial.println(F("It could take a very long time."));
should_calibrate = true;
time_calaibration_started = millis();
switchState(PREPARE_CALIBRATION_UNSTABLE);
}
void calibrateAndRestart() {
void calibrate() {
Serial.print(F("Calibrating SCD30 now..."));
scd30.setAltitudeCompensation(config::altitude_above_sea_level);
scd30.setForcedRecalibrationFactor(config::co2_calibration_level);
Serial.println(F(" Done!"));
Serial.println(F("Sensor calibrated."));
ESP.restart(); // softer than ESP.reset
switchState(BOOTUP); // In order to stop the calibration and select the desired timestep.
//WARNING: Do not reset the ampel or the SCD30!
//At least one measurement needs to happen in order for the calibration to be correctly applied.
}
void logToSerial() {
@ -127,29 +179,86 @@ namespace sensor {
Serial.println(humidity, 1);
}
void displayCO2OnLedRing() {
int16_t co2_int = co2;
if (co2_int < CALIBRATE_LEVEL) {
// Sensor should be calibrated.
led_effects::showWaitingLED(color::magenta);
void switchState(state new_state) {
if (new_state == current_state) {
return;
}
if(co2_int < 400) {
co2_int = 400;
if (config::debug_sensor_states) {
Serial.print(F("Changing sensor state: "));
Serial.print(state_names[current_state]);
Serial.print(F(" -> "));
Serial.println(state_names[new_state]);
}
current_state = new_state;
}
void switchStateForCurrentPPM() {
if (current_state == BOOTUP) {
if (!hasSensorSettled()) {
return;
}
switchState(READY);
Serial.println(F("Sensor acclimatization finished."));
Serial.print(F("Setting SCD30 timestep to "));
Serial.print(config::measurement_timestep);
Serial.println(F(" s."));
if (config::measurement_timestep < 10) {
Serial.println(F("WARNING: Timesteps shorter than 10s can lead to unreliable measurements!"));
}
scd30.setMeasurementInterval(config::measurement_timestep); // [s]
}
// Check for pre-calibration states first, because we do not want to
// leave them before calibration is done.
if ((current_state == PREPARE_CALIBRATION_UNSTABLE) || (current_state == PREPARE_CALIBRATION_STABLE)) {
if (enoughStableMeasurements()) {
calibrate();
}
} else if (co2 < 250) {
// Sensor should be calibrated.
switchState(NEEDS_CALIBRATION);
} else {
switchState(READY);
}
}
void displayCO2OnLedRing() {
/**
* Display data, even if it's "old" (with breathing).
* Those effects include a short delay.
* A short delay is required in order to let background tasks run on the ESP8266.
* see https://github.com/esp8266/Arduino/issues/3241#issuecomment-301290392
*/
if (co2_int < 2000) {
led_effects::displayCO2color(co2_int);
led_effects::breathe(co2_int);
if (co2 < config::co2_alert_threshold) {
led_effects::displayCO2color(co2);
delay(100);
} else {
// >= 2000: entire ring blinks red
// Display a flashing led ring, if concentration exceeds a specific value
led_effects::redAlert();
}
}
void showState() {
switch (current_state) {
case BOOTUP:
led_effects::showWaitingLED(color::blue);
break;
case READY:
displayCO2OnLedRing();
break;
case NEEDS_CALIBRATION:
led_effects::showWaitingLED(color::magenta);
break;
case PREPARE_CALIBRATION_UNSTABLE:
led_effects::showWaitingLED(color::red);
break;
case PREPARE_CALIBRATION_STABLE:
led_effects::showWaitingLED(color::green);
break;
default:
Serial.println(F("Encountered unknown sensor state")); // This should not happen.
}
}
/** Gets fresh data if available, checks calibration status, displays CO2 levels.
* Returns true if fresh data is available, for further processing (e.g. MQTT, CSV or LoRa)
*/
@ -157,42 +266,75 @@ namespace sensor {
bool freshData = scd30.dataAvailable();
if (freshData) {
// checkTimerDeviation();
timestamp = ntp::getLocalTime();
ntp::getLocalTime(timestamp);
co2 = scd30.getCO2();
temperature = scd30.getTemperature();
humidity = scd30.getHumidity();
}
//NOTE: Data is available, but it's sometimes erroneous: the sensor outputs zero ppm but non-zero temperature and non-zero humidity.
if (co2 <= 0) {
// No measurement yet. Waiting.
led_effects::showWaitingLED(color::blue);
return false;
}
switchStateForCurrentPPM();
/**
* Fresh data. Log it and send it if needed.
*/
if (freshData) {
if (should_calibrate) {
if(millis() - time_calaibration_started > 60000)
{
countStableMeasurements();
}
}
// Log every time fresh data is available.
logToSerial();
}
if (should_calibrate) {
if (stable_measurements == 60) {
calibrateAndRestart();
}
led_effects::showWaitingLED(waiting_color);
return false;
showState();
// Report data for further processing only if the data is reliable
// (state 'READY') or manual calibration is necessary (state 'NEEDS_CALIBRATION').
return freshData && (current_state == READY || current_state == NEEDS_CALIBRATION);
}
displayCO2OnLedRing();
return freshData;
/*****************************************************************
* Callbacks for sensor commands *
*****************************************************************/
void setCO2forDebugging(int32_t fakeCo2) {
Serial.print(F("DEBUG. Setting CO2 to "));
co2 = fakeCo2;
Serial.println(co2);
switchStateForCurrentPPM();
}
void setAutoCalibration(int32_t autoCalibration) {
config::auto_calibrate_sensor = autoCalibration;
scd30.setAutoSelfCalibration(autoCalibration);
Serial.print(F("Setting auto-calibration to : "));
Serial.println(autoCalibration ? F("On.") : F("Off."));
}
void setTimer(int32_t timestep) {
if (timestep >= 2 && timestep <= 1800) {
Serial.print(F("Setting Measurement Interval to : "));
Serial.print(timestep);
Serial.println(F("s (change will only be applied after next measurement)."));
scd30.setMeasurementInterval(timestep);
config::measurement_timestep = timestep;
led_effects::showKITTWheel(color::green, 1);
}
}
void calibrateSensorToSpecificPPM(int32_t calibrationLevel) {
if (calibrationLevel >= 400 && calibrationLevel <= 2000) {
Serial.print(F("Force calibration, at "));
config::co2_calibration_level = calibrationLevel;
Serial.print(config::co2_calibration_level);
Serial.println(F(" ppm."));
startCalibrationProcess();
}
}
void calibrateSensorRightNow(int32_t calibrationLevel) {
if (calibrationLevel >= 400 && calibrationLevel <= 2000) {
Serial.print(F("Force calibration, right now, at "));
config::co2_calibration_level = calibrationLevel;
Serial.print(config::co2_calibration_level);
Serial.println(F(" ppm."));
calibrate();
}
}
void resetSCD() {
Serial.print(F("Resetting SCD30..."));
scd30.reset();
Serial.println(F("done."));
}
}

View File

@ -7,24 +7,32 @@
#include "config.h"
#include "led_effects.h"
#include "util.h"
#include "sensor_console.h"
#include <Wire.h>
namespace config {
extern uint16_t measurement_timestep; // [s] Value between 2 and 1800 (range for SCD30 sensor)
extern const bool auto_calibrate_sensor; // [true / false]
extern bool auto_calibrate_sensor; // [true / false]
extern uint16_t co2_calibration_level; // [ppm]
extern const float temperature_offset; // [K] Sign isn't relevant.
}
namespace sensor {
extern SCD30 scd30;
extern int16_t co2;
extern uint16_t co2;
extern float temperature;
extern float humidity;
extern String timestamp;
extern char timestamp[];
void initialize();
bool processData();
void startCalibrationProcess();
void setCO2forDebugging(int32_t fakeCo2);
void setTimer(int32_t timestep);
void calibrateSensorToSpecificPPM(int32_t calibrationLevel);
void calibrateSensorRightNow(int32_t calibrationLevel);
void setAutoCalibration(int32_t autoCalibration);
void resetSCD();
}
#endif

View File

@ -1,6 +1,5 @@
#ifndef CONFIG_H_INCLUDED
# define CONFIG_H_INCLUDED
#define CONFIG_H_INCLUDED
#define buttonPin 0
// This file is a config template, and can be copied to config.h. Please don't save any important password in this template.
@ -14,18 +13,18 @@
*/
// Comment or remove those lines if you want to disable the corresponding services
// # define AMPEL_WIFI // Should ESP connect to WiFi? It allows the Ampel to get time from an NTP server.
// # define AMPEL_HTTP // Should HTTP web server be started? (AMPEL_WIFI should be enabled too)
//# define AMPEL_WIFI // Should ESP connect to WiFi? It allows the Ampel to get time from an NTP server.
//# define AMPEL_HTTP // Should HTTP web server be started? (AMPEL_WIFI should be enabled too)
//# define AMPEL_MQTT // Should data be sent over MQTT? (AMPEL_WIFI should be enabled too)
// # define AMPEL_CSV // Should data be logged as CSV, on the ESP flash memory?
//# define AMPEL_CSV // Should data be logged as CSV, on the ESP flash memory?
// # define AMPEL_LORAWAN // Should data be sent over LoRaWAN? (Requires ESP32 + LoRa modem, and "MCCI LoRaWAN LMIC library")
/**
* WIFI
*/
# define WIFI_SSID ""
# define WIFI_PASSWORD ""
# define WIFI_SSID "MY_SSID"
# define WIFI_PASSWORD "P4SSW0RD"
# define WIFI_TIMEOUT 30 // [s]
/**
@ -33,8 +32,10 @@
*/
// How often should measurement be performed, and displayed?
//NOTE: SCD30 timer does not seem to be very precise. Variations may occur.
# define MEASUREMENT_TIMESTEP 2 // [s] Value between 2 and 1800 (range for SCD30 sensor)
//WARNING: On some sensors, measurements become very unreliable when timestep is set to 2s.
//NOTE: 10s or longer should be fine in order to get reliable results.
//NOTE: SCD30 timer does not seem to be very precise. Time variations may occur.
# define MEASUREMENT_TIMESTEP 5 // [s] Value between 2 and 1800 (range for SCD30 sensor)
// How often should measurements be appended to CSV ?
// Probably a good idea to use a multiple of MEASUREMENT_TIMESTEP, so that averages can be calculated
@ -44,31 +45,34 @@
// Residual heat from CO2 sensor seems to be high enough to change the temperature reading. How much should it be offset?
// NOTE: Sign isn't relevant. The returned temperature will always be shifted down.
# define TEMPERATURE_OFFSET 0 // [K]
# define TEMPERATURE_OFFSET -3 // [K]
// Altitude above sea level
// Used for CO2 calibration
// here: Stuttgart, Schellingstr. 24. (Source: Google Earth)
# define ALTITUDE_ABOVE_SEA_LEVEL 660 // [m]
# define ALTITUDE_ABOVE_SEA_LEVEL 600 // [m]
// The reference CO2 concentration has to be within the range 400 ppm ≤ cref(CO2) ≤ 2000 ppm.
// Used for CO2 calibration
// here : measured concentration in Stuttgart
# define ATMOSPHERIC_CO2_CONCENTRATION 430 // [ppm]
# define ATMOSPHERIC_CO2_CONCENTRATION 425 // [ppm]
// Should the sensor try to calibrate itself?
// Sensirion recommends 7 days of continuous readings with at least 1 hour a day of 'fresh air' for self-calibration to complete.
# define AUTO_CALIBRATE_SENSOR false // [true / false]
# define AUTO_CALIBRATE_SENSOR true // [true / false]
/**
* LEDs
*/
// LED brightness, which can vary between min and max brightness ("LED breathing")
// max_brightness should be between 0 and 255.
// min_brightness should be between 0 and max_brightness
// MAX_BRIGHTNESS must be defined, and should be between 0 and 255.
# define MAX_BRIGHTNESS 128
// MIN_BRIGHTNESS, if defined, should be between 0 and MAX_BRIGHTNESS - 1
// If MIN_BRIGHTNESS is not set, or if it is set to MAX_BRIGHTNESS, breathing is disabled.
# define MIN_BRIGHTNESS 60
// How many LEDs in the ring? 12 and 16 are currently supported. If undefined, 12 is used as default.
# define LED_COUNT 12
/**
* WEB SERVER
@ -76,8 +80,8 @@
*/
// Define empty strings in order to disable authentication, or remove the constants altogether.
# define HTTP_USER ""
# define HTTP_PASSWORD ""
# define HTTP_USER "co2ampel"
# define HTTP_PASSWORD "my_password"
/**
* MQTT
@ -106,11 +110,11 @@
*/
# define ALLOW_MQTT_COMMANDS false
// How often measurements should be sent to MQTT server?
// How often should measurements be sent to MQTT server?
// Probably a good idea to use a multiple of MEASUREMENT_TIMESTEP, so that averages can be calculated
// Set to 0 if you want to send values after each measurement
// # define MQTT_SENDING_INTERVAL MEASUREMENT_TIMESTEP * 5 // [s]
# define MQTT_SENDING_INTERVAL 60 // [s]
# define MQTT_SENDING_INTERVAL MEASUREMENT_TIMESTEP * 5 // [s]
//# define MQTT_SENDING_INTERVAL 60 // [s]
# define MQTT_SERVER "test.mosquitto.org" // MQTT server URL or IP address
# define MQTT_PORT 8883
# define MQTT_USER ""
@ -149,7 +153,7 @@
*/
# define NTP_SERVER "pool.ntp.org"
# define UTC_OFFSET_IN_SECONDS 3600 // [s] 3600 for UTC+1
# define UTC_OFFSET_IN_SECONDS 7200 // [s] 3600 for UTC+1, 7200 for UTC+1 and daylight saving time
/**
* Others

View File

@ -1,14 +1,12 @@
#include "csv_writer.h"
//TODO: Allow CSV download via USB Serial, when requested (e.g. via a Python script)
namespace config {
// Values should be defined in config.h
uint16_t csv_interval = CSV_INTERVAL; // [s]
}
namespace csv_writer {
unsigned long last_written_at = 0;
String last_successful_write = "";
char last_successful_write[23];
#if defined(ESP8266)
/**
@ -80,13 +78,16 @@ namespace csv_writer {
}
#endif
const String filename = "/" + SENSOR_ID + ".csv";
char filename[15]; // "/ESPxxxxxx.csv\0"
int getAvailableSpace() {
return getTotalSpace() - getUsedSpace();
}
void initialize() {
void initialize(const char *sensorId) {
snprintf(filename, sizeof(filename), "/%s.csv", sensorId);
Serial.println();
Serial.print(F("Initializing FS..."));
if (mountFS()) {
Serial.println(F("done."));
@ -113,9 +114,13 @@ namespace csv_writer {
Serial.println();
// Open dir folder
Serial.println("Filesystem content:");
Serial.println(F("Filesystem content:"));
showFilesystemContent();
Serial.println();
sensor_console::defineIntCommand("csv", setCSVinterval, F("60 (Sets CSV writing interval, in s)"));
sensor_console::defineCommand("format_filesystem", formatFilesystem, F("(Deletes the whole filesystem)"));
sensor_console::defineCommand("show_csv", showCSVContent, F("(Displays the complete CSV file on Serial)"));
}
File openOrCreate() {
@ -130,11 +135,11 @@ namespace csv_writer {
return csv_file;
}
void log(const String &timeStamp, const int16_t &co2, const float &temperature, const float &humidity) {
void log(const char *timestamp, const int16_t &co2, const float &temperature, const float &humidity) {
led_effects::onBoardLEDOn();
File csv_file = openOrCreate();
char csv_line[42];
snprintf(csv_line, sizeof(csv_line), "%s;%d;%.1f;%.1f\r\n", timeStamp.c_str(), co2, temperature, humidity);
snprintf(csv_line, sizeof(csv_line), "%s;%d;%.1f;%.1f\r\n", timestamp, co2, temperature, humidity);
if (csv_file) {
size_t written_bytes = csv_file.print(csv_line);
csv_file.close();
@ -143,7 +148,7 @@ namespace csv_writer {
} else {
Serial.print(F("CSV - Wrote : "));
Serial.print(csv_line);
last_successful_write = ntp::getLocalTime();
ntp::getLocalTime(last_successful_write);
}
updateFsInfo();
delay(50);
@ -154,11 +159,42 @@ namespace csv_writer {
led_effects::onBoardLEDOff();
}
void logIfTimeHasCome(const String &timeStamp, const int16_t &co2, const float &temperature, const float &humidity) {
void logIfTimeHasCome(const char *timeStamp, const int16_t &co2, const float &temperature, const float &humidity) {
unsigned long now = seconds();
if (now - last_written_at > config::csv_interval) {
last_written_at = now;
log(timeStamp, co2, temperature, humidity);
}
}
/*****************************************************************
* Callbacks for sensor commands *
*****************************************************************/
void setCSVinterval(int32_t csv_interval) {
config::csv_interval = csv_interval;
Serial.print(F("Setting CSV Interval to : "));
Serial.print(config::csv_interval);
Serial.println("s.");
led_effects::showKITTWheel(color::green, 1);
}
void showCSVContent() {
Serial.print(F("### "));
Serial.print(filename);
Serial.println(F(" ###"));
File csv_file;
if (FS_LIB.exists(filename)) {
csv_file = FS_LIB.open(filename, "r");
while (csv_file.available()) {
Serial.write(csv_file.read());
}
csv_file.close();
}
Serial.println(F("######################"));
}
void formatFilesystem() {
FS_LIB.format();
led_effects::showKITTWheel(color::blue, 2);
}
}

View File

@ -14,16 +14,21 @@
#include "config.h"
#include "util.h"
#include "led_effects.h"
#include "sensor_console.h"
namespace config {
extern uint16_t csv_interval; // [s]
}
namespace csv_writer {
extern String last_successful_write;
void initialize();
void logIfTimeHasCome(const String &timeStamp, const int16_t &co2, const float &temperature, const float &humidity);
extern char last_successful_write[];
void initialize(const char *sensorId);
void logIfTimeHasCome(const char *timestamp, const int16_t &co2, const float &temperature, const float &humidity);
int getAvailableSpace();
extern const String filename;
extern char filename[];
void setCSVinterval(int32_t csv_interval);
void showCSVContent();
void formatFilesystem();
}
#endif

View File

@ -4,17 +4,36 @@
*****************************************************************/
namespace config {
const uint8_t max_brightness = MAX_BRIGHTNESS;
#if defined(MIN_BRIGHTNESS)
const uint8_t min_brightness = MIN_BRIGHTNESS;
const int kitt_tail = 3; // How many dimmer LEDs follow in K.I.T.T. wheel
}
/*****************************************************************
* Configuration (calculated from above values) *
*****************************************************************/
namespace config //NOTE: Use a class instead? NightMode could then be another state.
{
#else
const uint8_t min_brightness = MAX_BRIGHTNESS;
#endif
const uint8_t brightness_amplitude = config::max_brightness - config::min_brightness;
bool night_mode = false;
const int kitt_tail = 3; // How many dimmer LEDs follow in K.I.T.T. wheel
const uint16_t poor_air_quality_ppm = 1600; // Above this threshold, LED breathing effect is faster.
bool night_mode = false; //NOTE: Use a class instead? NightMode could then be another state.
#if !defined(LED_COUNT)
# define LED_COUNT 12
#endif
const uint16_t led_count = LED_COUNT;
#if LED_COUNT == 12
//NOTE: One value has been prepended, to make calculations easier and avoid out of bounds index.
const uint16_t co2_ticks[led_count + 1] = { 0, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2200 }; // [ppm]
// For a given LED, which color should be displayed? First LED will be pure green (hue angle 120°),
// LEDs >= 1600ppm will be pure red (hue angle 0°), LEDs in-between will be yellowish.
const uint16_t led_hues[led_count] = { 21845U, 19114U, 16383U, 13653U, 10922U, 8191U, 5461U, 2730U, 0, 0, 0, 0 }; // [hue angle]
#elif LED_COUNT == 16
const uint16_t co2_ticks[led_count + 1] = { 0, 500, 600, 700, 800, 900, 1000, 1100, 1200,
1300, 1400, 1500, 1600, 1700, 1800, 2000, 2200 }; // [ppm]
const uint16_t led_hues[led_count] = {21845U, 19859U, 17873U, 15887U, 13901U, 11915U, 9929U, 7943U,
5957U, 3971U, 1985U, 0, 0, 0, 0, 0}; // [hue angle]
#else
# error "Only 12 and 16 LEDs rings are currently supported."
#endif
}
#if defined(ESP8266)
@ -25,20 +44,7 @@ const int NEOPIXELS_PIN = 5;
const int NEOPIXELS_PIN = 23;
#endif
const int NUMPIXELS = 12;
//NOTE: One value has been prepended, to make calculations easier and avoid out of bounds index.
const uint16_t CO2_TICKS[NUMPIXELS + 1] = { 0, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2200 }; // [ppm]
// const uint16_t CO2_TICKS[NUMPIXELS + 1] = { 0, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1800, 2000, 2200 }; // [ppm]
// For a given LED, which color should be displayed? First LED will be pure green (hue angle 120°),
// last 4 LEDs will be pure red (hue angle 0°), LEDs in-between will be yellowish.
// For reference, this python code can be used to generate the array
// NUMPIXELS = 12
// RED_LEDS = 4
// hues = [ (2**16-1) // 3 * max(NUMPIXELS - RED_LEDS - i, 0) // (NUMPIXELS - RED_LEDS) for i in range(NUMPIXELS) ]
// '{' + ', '.join([str(hue) + ('U' if hue else '') for hue in hues]) + '}; // [hue angle]'
const uint16_t LED_HUES[NUMPIXELS] = { 21845U, 19114U, 16383U, 13653U, 10922U, 8191U, 5461U, 2730U, 0, 0, 0, 0 }; // [hue angle]
// const uint16_t LED_HUES[NUMPIXELS] = { 21845U, 20024U, 18204U, 16383U, 14563U, 12742U, 10922U, 9102U, 7281U, 5461U, 3640U, 1820U, 0, 0, 0, 0 }; // [hue angle]
Adafruit_NeoPixel pixels(NUMPIXELS, NEOPIXELS_PIN, NEO_GRB + NEO_KHZ800);
Adafruit_NeoPixel pixels(config::led_count, NEOPIXELS_PIN, NEO_GRB + NEO_KHZ800);
namespace led_effects {
//On-board LED on D4, aka GPIO02
@ -71,10 +77,19 @@ namespace led_effects {
onBoardLEDOff();
}
void showColor(int32_t color) {
config::night_mode = true; // In order to avoid overwriting the desired color next time CO2 is displayed
pixels.setBrightness(255);
pixels.fill(color);
pixels.show();
}
void setupRing() {
pixels.begin();
pixels.setBrightness(config::max_brightness);
LEDsOff();
sensor_console::defineCommand("night_mode", toggleNightMode, F("(Toggles night mode on/off)"));
sensor_console::defineIntCommand("color", showColor, F("0xFF0015 (Shows color, specified as RGB, for debugging)"));
}
void toggleNightMode() {
@ -89,14 +104,15 @@ namespace led_effects {
//NOTE: basically one iteration of KITT wheel
void showWaitingLED(uint32_t color) {
using namespace config;
delay(80);
if (config::night_mode) {
if (night_mode) {
return;
}
static uint16_t kitt_offset = 0;
pixels.clear();
for (int j = config::kitt_tail; j >= 0; j--) {
int ledNumber = abs((kitt_offset - j + NUMPIXELS) % (2 * NUMPIXELS) - NUMPIXELS) % NUMPIXELS; // Triangular function
for (int j = kitt_tail; j >= 0; j--) {
int ledNumber = abs((kitt_offset - j + led_count) % (2 * led_count) - led_count) % led_count; // Triangular function
pixels.setPixelColor(ledNumber, color * pixels.gamma8(255 - j * 76) / 255);
}
pixels.show();
@ -108,7 +124,7 @@ namespace led_effects {
// Takes approximately 1s for each direction.
void showKITTWheel(uint32_t color, uint16_t duration_s) {
pixels.setBrightness(config::max_brightness);
for (int i = 0; i < duration_s * NUMPIXELS; ++i) {
for (int i = 0; i < duration_s * config::led_count; ++i) {
showWaitingLED(color);
}
}
@ -118,10 +134,10 @@ namespace led_effects {
* For example, for 1500ppm, every LED between 0 and 7 (500 -> 1400ppm) should be on, LED at 8 (1600ppm) should be half-on.
*/
uint8_t getLedBrightness(uint16_t co2, int ledId) {
if (co2 >= CO2_TICKS[ledId + 1]) {
if (co2 >= config::co2_ticks[ledId + 1]) {
return 255;
} else {
if (2 * co2 >= CO2_TICKS[ledId] + CO2_TICKS[ledId + 1]) {
if (2 * co2 >= config::co2_ticks[ledId] + config::co2_ticks[ledId + 1]) {
// Show partial LED if co2 more than halfway between ticks.
return 27; // Brightness isn't linear, so 27 / 255 looks much brighter than 10%
} else {
@ -131,6 +147,17 @@ namespace led_effects {
}
}
/**
* If enabled, slowly varies the brightness between MAX_BRIGHTNESS & MIN_BRIGHTNESS.
*/
void breathe(int16_t co2) {
static uint8_t breathing_offset = 0;
uint16_t brightness = config::min_brightness + pixels.sine8(breathing_offset) * config::brightness_amplitude / 255;
pixels.setBrightness(brightness);
pixels.show();
breathing_offset += co2 > config::poor_air_quality_ppm ? 6 : 3; // breathing speed. +3 looks like slow human breathing.
}
/**
* Fills the whole ring with green, yellow, orange or black, depending on co2 input and CO2_TICKS.
*/
@ -139,24 +166,28 @@ namespace led_effects {
return;
}
pixels.setBrightness(config::max_brightness);
for (int ledId = 0; ledId < NUMPIXELS; ++ledId) {
for (int ledId = 0; ledId < config::led_count; ++ledId) {
uint8_t brightness = getLedBrightness(co2, ledId);
pixels.setPixelColor(ledId, pixels.ColorHSV(LED_HUES[ledId], 255, brightness));
pixels.setPixelColor(ledId, pixels.ColorHSV(config::led_hues[ledId], 255, brightness));
}
pixels.show();
if (config::brightness_amplitude > 0) {
breathe(co2);
}
}
void showRainbowWheel(uint16_t duration_ms, uint16_t hue_increment) {
void showRainbowWheel(uint16_t duration_ms) {
if (config::night_mode) {
return;
}
static uint16_t wheel_offset = 0;
static uint16_t sine_offset = 0;
unsigned long t0 = millis();
pixels.setBrightness(config::max_brightness);
while (millis() - t0 < duration_ms) {
for (int i = 0; i < NUMPIXELS; i++) {
pixels.setPixelColor(i, pixels.ColorHSV(i * 65535 / NUMPIXELS + wheel_offset));
wheel_offset += hue_increment;
for (int i = 0; i < config::led_count; i++) {
pixels.setPixelColor(i, pixels.ColorHSV(i * 65535 / config::led_count + wheel_offset));
wheel_offset += (pixels.sine8(sine_offset++ / 50) - 127) / 2;
}
pixels.show();
delay(10);
@ -179,37 +210,28 @@ namespace led_effects {
}
}
void breathe(int16_t co2) {
if (!config::night_mode) {
static uint16_t breathing_offset = 0;
uint16_t brightness = config::min_brightness
+ pixels.sine8(breathing_offset) * config::brightness_amplitude / 255;
pixels.setBrightness(brightness);
pixels.show();
breathing_offset += 3; // breathing speed. +3 looks like slow human breathing.
}
delay(co2 > 1600 ? 50 : 100); // faster breathing for higher CO2 values
}
/**
* Displays a complete blue circle, and starts removing LEDs one by one. Returns the number of remaining LEDs.
* Can be used for calibration, e.g. when countdown is 0. Does not work in night mode.
* Displays a complete blue circle, and starts removing LEDs one by one.
* Does nothing in night mode and returns false then. Returns true if
* the countdown has finished. Can be used for calibration, e.g. when countdown is 0.
* NOTE: This function is blocking and returns only after the button has
* been released or after every LED has been turned off.
*/
int countdownToZero() {
bool countdownToZero() {
if (config::night_mode) {
Serial.println(F("Night mode. Not doing anything."));
delay(1000); // Wait for a while, to avoid coming back to this function too many times when button is pressed.
return 1;
return false;
}
pixels.fill(color::blue);
pixels.show();
int countdown;
for (countdown = NUMPIXELS; countdown >= 0 && !digitalRead(0); countdown--) {
for (countdown = config::led_count; countdown >= 0 && !digitalRead(0); countdown--) {
pixels.setPixelColor(countdown, color::black);
pixels.show();
Serial.println(countdown);
delay(500);
}
return countdown;
return countdown < 0;
}
}

View File

@ -2,6 +2,7 @@
#define LED_EFFECTS_H_INCLUDED
#include <Arduino.h>
#include "config.h"
#include "sensor_console.h"
// Adafruit NeoPixel (Arduino library for controlling single-wire-based LED pixels and strip)
// https://github.com/adafruit/Adafruit_NeoPixel
@ -25,11 +26,10 @@ namespace led_effects {
void setupRing();
void redAlert();
void breathe(int16_t co2);
int countdownToZero();
bool countdownToZero();
void showWaitingLED(uint32_t color);
void showKITTWheel(uint32_t color, uint16_t duration_s = 2);
void showRainbowWheel(uint16_t duration_ms = 1000, uint16_t hue_increment = 50);
void showRainbowWheel(uint16_t duration_ms = 1000);
void displayCO2color(uint16_t co2);
}
#endif

View File

@ -33,7 +33,7 @@ void os_getDevKey(u1_t *buf) {
namespace lorawan {
bool waiting_for_confirmation = false;
bool connected = false;
String last_transmission = "";
char last_transmission[23] = "";
void initialize() {
Serial.println(F("Starting LoRaWAN. Frequency plan : " LMIC_FREQUENCY_PLAN " MHz."));
@ -47,11 +47,12 @@ namespace lorawan {
LMIC_reset();
// Join, but don't send anything yet.
LMIC_startJoining();
sensor_console::defineIntCommand("lora", setLoRaInterval, F("300 (Sets LoRaWAN sending interval, in s)"));
}
// Checks if OTAA is connected, or if payload should be sent.
// NOTE: while a transaction is in process (i.e. until the TXcomplete event has been received, no blocking code (e.g. delay loops etc.) are allowed, otherwise the LMIC/OS code might miss the event.
// If this rule is not followed, a typical symptom is that the first send is ok and all following ones end with the TX not complete failure.
// If this rule is not followed, a typical symptom is that the first send is ok and all following ones end with the 'TX not complete' failure.
void process() {
os_runloop_once();
}
@ -64,8 +65,10 @@ namespace lorawan {
}
void onEvent(ev_t ev) {
char current_time[23];
ntp::getLocalTime(current_time);
Serial.print("LoRa - ");
Serial.print(ntp::getLocalTime());
Serial.print(current_time);
Serial.print(" - ");
switch (ev) {
case EV_JOINING:
@ -93,7 +96,7 @@ namespace lorawan {
printHex2(artKey[i]);
}
Serial.println();
Serial.print(" NwkSKey: ");
Serial.print(F(" NwkSKey: "));
for (size_t i = 0; i < sizeof(nwkKey); ++i) {
if (i != 0)
Serial.print("-");
@ -112,7 +115,7 @@ namespace lorawan {
Serial.println(F("EV_REJOIN_FAILED"));
break;
case EV_TXCOMPLETE:
last_transmission = ntp::getLocalTime();
ntp::getLocalTime(last_transmission);
Serial.println(F("EV_TXCOMPLETE"));
break;
case EV_TXSTART:
@ -189,6 +192,17 @@ namespace lorawan {
preparePayload(co2, temperature, humidity);
}
}
/*****************************************************************
* Callbacks for sensor commands *
*****************************************************************/
void setLoRaInterval(int32_t sending_interval) {
config::lorawan_sending_interval = sending_interval;
Serial.print(F("Setting LoRa sending interval to : "));
Serial.print(config::lorawan_sending_interval);
Serial.println("s.");
led_effects::showKITTWheel(color::green, 1);
}
}
void onEvent(ev_t ev) {

View File

@ -13,7 +13,7 @@
#include <SPI.h>
#include "led_effects.h"
#include "sensor_console.h"
#include "util.h"
namespace config {
@ -39,10 +39,12 @@ namespace config {
namespace lorawan {
extern bool waiting_for_confirmation;
extern bool connected;
extern String last_transmission;
extern char last_transmission[];
void initialize();
void process();
void preparePayloadIfTimeHasCome(const int16_t &co2, const float &temp, const float &hum);
void setLoRaInterval(int32_t sending_interval);
}
#endif

View File

@ -2,7 +2,7 @@
namespace config {
// Values should be defined in config.h
uint16_t sending_interval = MQTT_SENDING_INTERVAL; // [s]
uint16_t mqtt_sending_interval = MQTT_SENDING_INTERVAL; // [s]
//INFO: Listen to every CO2 sensor which is connected to the server:
// mosquitto_sub -h MQTT_SERVER -t 'CO2sensors/#' -p 443 --capath /etc/ssl/certs/ -u "MQTT_USER" -P "MQTT_PASSWORD" -v
const char *mqtt_server = MQTT_SERVER;
@ -23,31 +23,34 @@ namespace mqtt {
unsigned long last_failed_at = 0;
bool connected = false;
String publish_topic;
char publish_topic[21]; // e.g. "CO2sensors/ESPxxxxxx\0"
const char *json_sensor_format;
String last_successful_publish = "";
char last_successful_publish[23] = "";
void initialize(String &topic) {
void initialize(const char *sensorId) {
json_sensor_format = PSTR("{\"time\":\"%s\", \"co2\":%d, \"temp\":%.1f, \"rh\":%.1f}");
publish_topic = topic;
#if defined(ESP8266)
espClient.setInsecure(); // Sorry, we don't want to flash the sensors every 3 months.
#endif
// mqttClient.setSocketTimeout(config::mqtt_timeout); //NOTE: somehow doesn't seem to have any effect on connect()
snprintf(publish_topic, sizeof(publish_topic), "CO2sensors/%s", sensorId);
// The sensor doesn't check the fingerprint of the MQTT broker, because otherwise this fingerprint should be updated
// on the sensor every 3 months. The connection can still be encrypted, though:
espClient.setInsecure(); // If not available for ESP32, please update Arduino IDE / PlatformIO
mqttClient.setServer(config::mqtt_server, config::mqtt_port);
sensor_console::defineIntCommand("mqtt", setMQTTinterval, F("60 (Sets MQTT sending interval, in s)"));
sensor_console::defineCommand("send_local_ip", sendInfoAboutLocalNetwork,
F("(Sends local IP and SSID via MQTT. Can be useful to find sensor)"));
}
void publish(const String &timestamp, int16_t co2, float temperature, float humidity) {
void publish(const char *timestamp, int16_t co2, float temperature, float humidity) {
if (WiFi.status() == WL_CONNECTED && mqttClient.connected()) {
led_effects::onBoardLEDOn();
Serial.print(F("MQTT - Publishing message ... "));
char payload[75]; // Should be enough for json...
snprintf(payload, sizeof(payload), json_sensor_format, timestamp.c_str(), co2, temperature, humidity);
snprintf(payload, sizeof(payload), json_sensor_format, timestamp, co2, temperature, humidity);
// Topic is the same as clientID. e.g. 'CO2sensors/ESP3d03da'
if (mqttClient.publish(publish_topic.c_str(), payload)) {
if (mqttClient.publish(publish_topic, payload)) {
Serial.println(F("OK"));
last_successful_publish = ntp::getLocalTime();
ntp::getLocalTime(last_successful_publish);
} else {
Serial.println(F("Failed."));
}
@ -55,69 +58,6 @@ namespace mqtt {
}
}
void setTimer(String messageString) {
messageString.replace("timer ", "");
int timestep = messageString.toInt();
if (timestep >= 2 && timestep <= 1800) {
Serial.print(F("Setting Measurement Interval to : "));
Serial.print(timestep);
Serial.println("s.");
sensor::scd30.setMeasurementInterval(messageString.toInt());
config::measurement_timestep = messageString.toInt();
led_effects::showKITTWheel(color::green, 1);
}
}
void setMQTTinterval(String messageString) {
messageString.replace("mqtt ", "");
config::sending_interval = messageString.toInt();
Serial.print(F("Setting Sending Interval to : "));
Serial.print(config::sending_interval);
Serial.println("s.");
led_effects::showKITTWheel(color::green, 1);
}
#ifdef AMPEL_CSV
void setCSVinterval(String messageString) {
messageString.replace("csv ", "");
config::csv_interval = messageString.toInt();
Serial.print(F("Setting CSV Interval to : "));
Serial.print(config::csv_interval);
Serial.println("s.");
led_effects::showKITTWheel(color::green, 1);
}
#endif
void calibrateSensorToSpecificPPM(String messageString) {
messageString.replace("calibrate ", "");
long int calibrationLevel = messageString.toInt();
if (calibrationLevel >= 400 && calibrationLevel <= 2000) {
Serial.print(F("Force calibration, at "));
config::co2_calibration_level = messageString.toInt();
Serial.print(config::co2_calibration_level);
Serial.println(" ppm.");
sensor::startCalibrationProcess();
}
}
void setCO2forDebugging(String messageString) {
Serial.print(F("DEBUG. Setting CO2 to "));
messageString.replace("co2 ", "");
sensor::co2 = messageString.toInt();
Serial.println(sensor::co2);
}
void sendInfoAboutLocalNetwork() {
char info_topic[60]; // Should be enough for "CO2sensors/ESPd03cc5/info"
snprintf(info_topic, sizeof(info_topic), "%s/info", publish_topic.c_str());
char payload[75]; // Should be enough for info json...
const char *json_info_format = PSTR("{\"local_ip\":\"%s\", \"ssid\":\"%s\"}");
snprintf(payload, sizeof(payload), json_info_format, WiFi.localIP().toString().c_str(), WiFi.SSID().c_str());
mqttClient.publish(info_topic, payload);
}
/**
* Allows sensor to be controlled by commands over MQTT
*
@ -132,46 +72,13 @@ namespace mqtt {
}
led_effects::onBoardLEDOn();
Serial.print(F("Message arrived on topic: "));
Serial.print(sub_topic);
Serial.print(F(". Message: '"));
String messageString;
Serial.println(sub_topic);
char command[length + 1];
for (unsigned int i = 0; i < length; i++) {
Serial.print((char) message[i]);
messageString += (char) message[i];
command[i] = message[i];
}
Serial.println("'.");
if (messageString.startsWith("co2 ")) {
setCO2forDebugging(messageString);
} else if (messageString.startsWith("timer ")) {
setTimer(messageString);
} else if (messageString == "calibrate") {
sensor::startCalibrationProcess();
} else if (messageString.startsWith("calibrate ")) {
calibrateSensorToSpecificPPM(messageString);
} else if (messageString.startsWith("mqtt ")) {
setMQTTinterval(messageString);
} else if (messageString == "publish") {
Serial.println(F("Forcing MQTT publish now."));
publish(sensor::timestamp, sensor::co2, sensor::temperature, sensor::humidity);
#ifdef AMPEL_CSV
} else if (messageString.startsWith("csv ")) {
setCSVinterval(messageString);
} else if (messageString == "format_filesystem") {
FS_LIB.format();
led_effects::showKITTWheel(color::blue, 2);
#endif
} else if (messageString == "night_mode") {
led_effects::toggleNightMode();
} else if (messageString == "local_ip") {
sendInfoAboutLocalNetwork();
} else if (messageString == "reset") {
ESP.restart(); // softer than ESP.reset()
} else {
led_effects::showKITTWheel(color::red, 1);
Serial.println(F("Message not supported. Doing nothing."));
}
delay(50);
command[length] = 0;
sensor_console::execute(command);
led_effects::onBoardLEDOff();
}
@ -188,7 +95,7 @@ namespace mqtt {
led_effects::onBoardLEDOn();
// Wait for connection, at most 15s (default)
mqttClient.connect(publish_topic.c_str(), config::mqtt_user, config::mqtt_password);
mqttClient.connect(publish_topic, config::mqtt_user, config::mqtt_password);
led_effects::onBoardLEDOff();
connected = mqttClient.connected();
@ -196,7 +103,7 @@ namespace mqtt {
if (connected) {
if (config::allow_mqtt_commands) {
char control_topic[60]; // Should be enough for "CO2sensors/ESPd03cc5/control"
snprintf(control_topic, sizeof(control_topic), "%s/control", publish_topic.c_str());
snprintf(control_topic, sizeof(control_topic), "%s/control", publish_topic);
mqttClient.subscribe(control_topic);
mqttClient.setCallback(controlSensorCallback);
}
@ -212,12 +119,12 @@ namespace mqtt {
}
}
void publishIfTimeHasCome(const String &timeStamp, const int16_t &co2, const float &temp, const float &hum) {
void publishIfTimeHasCome(const char *timestamp, const int16_t &co2, const float &temp, const float &hum) {
// Send message via MQTT according to sending interval
unsigned long now = seconds();
if (now - last_sent_at > config::sending_interval) {
if (now - last_sent_at > config::mqtt_sending_interval) {
last_sent_at = now;
publish(timeStamp, co2, temp, hum);
publish(timestamp, co2, temp, hum);
}
}
@ -229,4 +136,28 @@ namespace mqtt {
mqttClient.loop();
}
/*****************************************************************
* Callbacks for sensor commands *
*****************************************************************/
void setMQTTinterval(int32_t sending_interval) {
config::mqtt_sending_interval = sending_interval;
Serial.print(F("Setting MQTT sending interval to : "));
Serial.print(config::mqtt_sending_interval);
Serial.println("s.");
led_effects::showKITTWheel(color::green, 1);
}
// It can be hard to find the local IP of a sensor if it isn't connected to Serial port, and if mDNS is disabled.
// If the sensor can be reach by MQTT, it can answer with info about local_ip and ssid.
// The sensor will send the info to "CO2sensors/ESP123456/info".
void sendInfoAboutLocalNetwork() {
char info_topic[60]; // Should be enough for "CO2sensors/ESP123456/info"
snprintf(info_topic, sizeof(info_topic), "%s/info", publish_topic);
char payload[75]; // Should be enough for info json...
const char *json_info_format = PSTR("{\"local_ip\":\"%s\", \"ssid\":\"%s\"}");
snprintf(payload, sizeof(payload), json_info_format, wifi::local_ip, WIFI_SSID);
mqttClient.publish(info_topic, payload);
}
}

View File

@ -4,20 +4,22 @@
#include <Arduino.h>
#include "config.h"
#include "led_effects.h"
#ifdef AMPEL_CSV
# include "csv_writer.h"
#endif
#include "co2_sensor.h"
#include "sensor_console.h"
#include "src/lib/PubSubClient/src/PubSubClient.h"
#include "wifi_util.h"
namespace config {
extern uint16_t sending_interval; // [s]
extern uint16_t mqtt_sending_interval; // [s]
}
namespace mqtt {
extern String last_successful_publish;
extern char last_successful_publish[];
extern bool connected;
void initialize(String &topic);
void initialize(const char *sensorId);
void keepConnection();
void publishIfTimeHasCome(const String &timeStamp, const int16_t &co2, const float &temp, const float &hum);
void publishIfTimeHasCome(const char *timestamp, const int16_t &co2, const float &temp, const float &hum);
void setMQTTinterval(int32_t sending_interval);
void sendInfoAboutLocalNetwork();
}
#endif

View File

@ -0,0 +1,188 @@
#include "sensor_console.h"
namespace sensor_console {
const uint8_t MAX_COMMANDS = 20;
const uint8_t MAX_COMMAND_SIZE = 30;
uint8_t commands_count = 0;
enum input_type {
NONE,
INT32,
STRING
};
struct Command {
const char *name;
union {
void (*voidFunction)();
void (*intFunction)(int32_t);
void (*strFunction)(char*);
};
const char *doc;
input_type parameter_type;
};
struct CommandLine {
char function_name[MAX_COMMAND_SIZE];
input_type argument_type;
int32_t int_argument;
char str_argument[MAX_COMMAND_SIZE];
};
Command commands[MAX_COMMANDS];
bool addCommand(const char *name, const __FlashStringHelper *doc_fstring) {
if (commands_count < MAX_COMMANDS) {
commands[commands_count].name = name;
commands[commands_count].doc = (const char*) doc_fstring;
return true;
} else {
Serial.println(F("Too many commands have been defined."));
return false;
}
}
void defineCommand(const char *name, void (*function)(), const __FlashStringHelper *doc_fstring) {
if (addCommand(name, doc_fstring)) {
commands[commands_count].voidFunction = function;
commands[commands_count++].parameter_type = NONE;
}
}
void defineIntCommand(const char *name, void (*function)(int32_t), const __FlashStringHelper *doc_fstring) {
if (addCommand(name, doc_fstring)) {
commands[commands_count].intFunction = function;
commands[commands_count++].parameter_type = INT32;
}
}
void defineStringCommand(const char *name, void (*function)(char*), const __FlashStringHelper *doc_fstring) {
if (addCommand(name, doc_fstring)) {
commands[commands_count].strFunction = function;
commands[commands_count++].parameter_type = STRING;
}
}
/*
* Tries to split a string command (e.g. 'mqtt 60' or 'show_csv') into
* a CommandLine struct (function_name, argument_type and argument)
*/
void parseCommand(const char *command, CommandLine &command_line) {
if (strlen(command) == 0) {
Serial.println(F("Received empty command"));
command_line.argument_type = NONE;
return;
}
char *first_space;
first_space = strchr(command, ' ');
if (first_space == NULL) {
command_line.argument_type = NONE;
strlcpy(command_line.function_name, command, MAX_COMMAND_SIZE);
return;
}
strlcpy(command_line.function_name, command, first_space - command + 1);
strlcpy(command_line.str_argument, first_space + 1, MAX_COMMAND_SIZE - (first_space - command) - 1);
char *end;
command_line.int_argument = strtol(command_line.str_argument, &end, 0); // Accepts 123 or 0xFF00FF
if (*end) {
command_line.argument_type = STRING;
} else {
command_line.argument_type = INT32;
}
}
int compareCommandNames(const void *s1, const void *s2) {
struct Command *c1 = (struct Command*) s1;
struct Command *c2 = (struct Command*) s2;
return strcmp(c1->name, c2->name);
}
void listAvailableCommands() {
qsort(commands, commands_count, sizeof(commands[0]), compareCommandNames);
for (uint8_t i = 0; i < commands_count; i++) {
Serial.print(F(" "));
Serial.print(commands[i].name);
Serial.print(F(" "));
Serial.print(commands[i].doc);
Serial.println(F("."));
}
}
/*
* Saves bytes from Serial.read() until enter is pressed, and tries to run the corresponding command.
* http://www.gammon.com.au/serial
*/
void processSerialInput(const byte input_byte) {
static char input_line[MAX_COMMAND_SIZE];
static unsigned int input_pos = 0;
switch (input_byte) {
case '\n': // end of text
Serial.println();
input_line[input_pos] = 0;
execute(input_line);
input_pos = 0;
break;
case '\r': // discard carriage return
break;
case '\b': // backspace
if (input_pos > 0) {
input_pos--;
Serial.print(F("\b \b"));
}
break;
default:
if (input_pos == 0) {
Serial.print(F("> "));
}
// keep adding if not full ... allow for terminating null byte
if (input_pos < (MAX_COMMAND_SIZE - 1)) {
input_line[input_pos++] = input_byte;
Serial.print((char) input_byte);
}
break;
}
}
/*
* Tries to find the corresponding callback for a given command. Name and parameter type should fit.
*/
void execute(const char *command_str) {
CommandLine input;
parseCommand(command_str, input);
for (uint8_t i = 0; i < commands_count; i++) {
if (!strcmp(input.function_name, commands[i].name) && input.argument_type == commands[i].parameter_type) {
Serial.print(F("Calling : "));
Serial.print(input.function_name);
switch (input.argument_type) {
case NONE:
Serial.println(F("()"));
commands[i].voidFunction();
return;
case INT32:
Serial.print(F("("));
Serial.print(input.int_argument);
Serial.println(F(")"));
commands[i].intFunction(input.int_argument);
return;
case STRING:
Serial.print(F("('"));
Serial.print(input.str_argument);
Serial.println(F("')"));
commands[i].strFunction(input.str_argument);
return;
}
}
}
Serial.print(F("'"));
Serial.print(command_str);
Serial.println(F("' not supported. Available commands :"));
listAvailableCommands();
}
}

View File

@ -0,0 +1,20 @@
#ifndef SENSOR_CONSOLE_H_INCLUDED
#define SENSOR_CONSOLE_H_INCLUDED
#include <Arduino.h>
/** Other scripts can use this namespace, in order to define commands, via callbacks.
* Those callbacks can then be used to send commands to the sensor (reset, calibrate, night mode, ...)
* The callbacks can either have no parameter, or one int32_t parameter.
*/
namespace sensor_console {
void defineCommand(const char *name, void (*function)(), const __FlashStringHelper *doc_fstring);
void defineIntCommand(const char *name, void (*function)(int32_t), const __FlashStringHelper *doc_fstring);
void defineStringCommand(const char *name, void (*function)(char*), const __FlashStringHelper *doc_fstring);
void processSerialInput(const byte in_byte);
void execute(const char *command_line);
}
#endif

View File

@ -152,19 +152,17 @@ int NTPClient::getSeconds() {
return (this->getEpochTime() % 60);
}
String NTPClient::getFormattedTime(unsigned long secs) {
void NTPClient::getFormattedTime(char *formatted_time, unsigned long secs) {
unsigned long rawTime = secs ? secs : this->getEpochTime();
unsigned int hours = (rawTime % 86400L) / 3600;
unsigned int minutes = (rawTime % 3600) / 60;
unsigned int seconds = rawTime % 60;
char formatted_time[9];
snprintf(formatted_time, sizeof(formatted_time), "%02d:%02d:%02d", hours, minutes, seconds);
return String(formatted_time);
snprintf(formatted_time, 9, "%02d:%02d:%02d", hours, minutes, seconds);
}
// Based on https://github.com/PaulStoffregen/Time/blob/master/Time.cpp
String NTPClient::getFormattedDate(unsigned long secs) {
void NTPClient::getFormattedDate(char *formatted_date, unsigned long secs) {
unsigned long rawTime = (secs ? secs : this->getEpochTime()) / 86400L; // in days
unsigned long days = 0, year = 1970;
uint8_t month;
@ -187,11 +185,9 @@ String NTPClient::getFormattedDate(unsigned long secs) {
month++; // jan is month 1
rawTime++; // first day is day 1
char formatted_date[23];
snprintf(formatted_date, sizeof(formatted_date), "%4lu-%02d-%02lu %s%+03d",
year, month, rawTime, this->getFormattedTime(secs).c_str(), this->_timeOffset / 3600);
return String(formatted_date);
char formatted_time[9];
this->getFormattedTime(formatted_time, secs);
snprintf(formatted_date, 23, "%4lu-%02d-%02lu %s%+03d", year, month, rawTime, formatted_time, this->_timeOffset / 3600);
}
void NTPClient::end() {

View File

@ -80,7 +80,7 @@ class NTPClient {
/**
* @return secs argument (or 0 for current time) formatted like `hh:mm:ss`
*/
String getFormattedTime(unsigned long secs = 0);
void getFormattedTime(char *formatted_time, unsigned long secs = 0);
/**
* @return time in seconds since Jan. 1, 1970
@ -91,7 +91,7 @@ class NTPClient {
* @return secs argument (or 0 for current date) formatted to ISO 8601
* like `2004-02-12T15:19:21+00:00`
*/
String getFormattedDate(unsigned long secs = 0);
void getFormattedDate(char *formatted_date, unsigned long secs = 0);
/**
* Stops the underlying UDP client

View File

@ -34,7 +34,7 @@ Code
The MIT License (MIT)
Copyright (c) 2016 SparkFun Electronics
Copyright (c) 2020 SparkFun Electronics
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

View File

@ -24,6 +24,7 @@ Thanks to!
* [awatterott](https://github.com/awatterott) for adding [getAltitudeCompensation()](https://github.com/sparkfun/SparkFun_SCD30_Arduino_Library/pull/18)
* [jogi-k](https://github.com/jogi-k) for adding [teensy i2clib](https://github.com/sparkfun/SparkFun_SCD30_Arduino_Library/pull/19) support
* [paulvha](https://github.com/paulvha) for the suggestions and corrections in [his version of the library](https://github.com/paulvha/scd30)
* [yamamaya](https://github.com/yamamaya) for the [3ms delay](https://github.com/sparkfun/SparkFun_SCD30_Arduino_Library/pull/24)
Repository Contents
-------------------
@ -43,8 +44,6 @@ License Information
This product is _**open source**_!
Various bits of the code have different licenses applied. Anything SparkFun wrote is beerware; if you see me (or any other SparkFun employee) at the local, and you've found our code helpful, please buy us a round!
Please use, reuse, and modify these files as you see fit. Please maintain attribution to SparkFun Electronics and release anything derivative under the same license.
Distributed as-is; no warranty is given.

View File

@ -1,5 +1,5 @@
name=SparkFun SCD30 Arduino Library
version=1.0.11
version=1.0.13
author=SparkFun Electronics
maintainer=SparkFun Electronics <sparkfun.com>
sentence=Library for the Sensirion SCD30 CO2 Sensor

View File

@ -266,6 +266,8 @@ bool SCD30::readMeasurement()
if (_i2cPort->endTransmission() != 0)
return (0); //Sensor did not ACK
delay(3);
const uint8_t receivedBytes = _i2cPort->requestFrom((uint8_t)SCD30_ADDRESS, (uint8_t)18);
bool error = false;
if (_i2cPort->available())
@ -358,6 +360,8 @@ bool SCD30::getSettingValue(uint16_t registerAddress, uint16_t *val)
if (_i2cPort->endTransmission() != 0)
return (false); //Sensor did not ACK
delay(3);
_i2cPort->requestFrom((uint8_t)SCD30_ADDRESS, (uint8_t)3); // Request data and CRC
if (_i2cPort->available())
{
@ -389,6 +393,8 @@ uint16_t SCD30::readRegister(uint16_t registerAddress)
if (_i2cPort->endTransmission() != 0)
return (0); //Sensor did not ACK
delay(3);
_i2cPort->requestFrom((uint8_t)SCD30_ADDRESS, (uint8_t)2);
if (_i2cPort->available())
{

View File

@ -57,7 +57,8 @@
#define COMMAND_STOP_MEAS 0x0104
#define COMMAND_READ_FW_VER 0xD100
typedef union {
typedef union
{
byte array[4];
float value;
} ByteToFl; // paulvha
@ -69,9 +70,9 @@ public:
bool begin(bool autoCalibrate) { return begin(Wire, autoCalibrate); }
#ifdef USE_TEENSY3_I2C_LIB
bool begin(i2c_t3 &wirePort = Wire, bool autoCalibrate=true, bool measBegin=true); //By default use Wire port
bool begin(i2c_t3 &wirePort = Wire, bool autoCalibrate = false, bool measBegin = true); //By default use Wire port
#else
bool begin(TwoWire &wirePort = Wire, bool autoCalibrate=true, bool measBegin=true); //By default use Wire port
bool begin(TwoWire &wirePort = Wire, bool autoCalibrate = false, bool measBegin = true); //By default use Wire port
#endif
void enableDebugging(Stream &debugPort = Serial); //Turn on debug printing. If user doesn't specify then Serial will be used.
@ -82,11 +83,11 @@ public:
// based on paulvha
bool getSettingValue(uint16_t registerAddress, uint16_t *val);
bool getForcedRecalibration(uint16_t *val) {return(getSettingValue(COMMAND_SET_FORCED_RECALIBRATION_FACTOR, val));}
bool getMeasurementInterval(uint16_t *val) {return(getSettingValue(COMMAND_SET_MEASUREMENT_INTERVAL, val));}
bool getTemperatureOffset(uint16_t *val) {return(getSettingValue(COMMAND_SET_TEMPERATURE_OFFSET, val));}
bool getAltitudeCompensation(uint16_t *val) {return(getSettingValue(COMMAND_SET_ALTITUDE_COMPENSATION, val));}
bool getFirmwareVersion(uint16_t *val) {return(getSettingValue(COMMAND_READ_FW_VER, val));}
bool getForcedRecalibration(uint16_t *val) { return (getSettingValue(COMMAND_SET_FORCED_RECALIBRATION_FACTOR, val)); }
bool getMeasurementInterval(uint16_t *val) { return (getSettingValue(COMMAND_SET_MEASUREMENT_INTERVAL, val)); }
bool getTemperatureOffset(uint16_t *val) { return (getSettingValue(COMMAND_SET_TEMPERATURE_OFFSET, val)); }
bool getAltitudeCompensation(uint16_t *val) { return (getSettingValue(COMMAND_SET_ALTITUDE_COMPENSATION, val)); }
bool getFirmwareVersion(uint16_t *val) { return (getSettingValue(COMMAND_READ_FW_VER, val)); }
uint16_t getCO2(void);
float getHumidity(void);
@ -115,7 +116,6 @@ public:
uint8_t computeCRC8(uint8_t data[], uint8_t len);
private:
//Variables
#ifdef USE_TEENSY3_I2C_LIB
i2c_t3 *_i2cPort; //The generic connection to user's chosen I2C hardware
@ -136,6 +136,5 @@ private:
//Debug
Stream *_debugPort; //The stream to send debug messages to if enabled. Usually Serial.
boolean _printDebug = false; //Flag to print debugging variables
};
#endif

View File

@ -5,41 +5,96 @@ namespace config {
const long utc_offset_in_seconds = UTC_OFFSET_IN_SECONDS; // UTC+1
}
// Get last 3 bytes of ESP MAC (worldwide unique)
String macToID() {
uint8_t mac[6];
WiFi.macAddress(mac);
String result;
for (int i = 3; i < 6; i++) {
if (mac[i] < 16)
result += '0';
result += String(mac[i], HEX);
}
result.toLowerCase();
return result;
#if defined(ESP8266)
const char *current_board = "ESP8266";
# if !defined(AMPEL_WIFI)
void preinit() {
// WiFi would be initialized otherwise (on ESP8266), even if unused.
// see https://github.com/esp8266/Arduino/issues/2111#issuecomment-224251391
ESP8266WiFiClass::preinitWiFiOff();
}
# endif
#elif defined(ESP32)
const char *current_board = "ESP32";
#else
const char *current_board = "UNKNOWN";
#endif
//NOTE: ESP32 sometimes couldn't access the NTP server, and every loop would take +1000ms
// ifdefs could be used to define functions specific to ESP32, e.g. with configTime
namespace ntp {
WiFiUDP ntpUDP;
NTPClient timeClient(ntpUDP, config::ntp_server, config::utc_offset_in_seconds, 60000UL);
bool connected_at_least_once = false;
void initialize() {
timeClient.begin();
}
void update() {
timeClient.update();
connected_at_least_once |= timeClient.update();
}
String getLocalTime() {
return timeClient.getFormattedDate();
void getLocalTime(char *timestamp) {
timeClient.getFormattedDate(timestamp);
}
void setLocalTime(int32_t unix_seconds) {
char time[23];
timeClient.getFormattedDate(time);
Serial.print(F("Current time : "));
Serial.println(time);
if (connected_at_least_once) {
Serial.println(F("NTP update already happened. Not changing anything."));
return;
}
Serial.print(F("Setting UNIX time to : "));
Serial.println(unix_seconds);
timeClient.setEpochTime(unix_seconds - seconds());
timeClient.getFormattedDate(time);
Serial.print(F("Current time : "));
Serial.println(time);
}
}
uint32_t max_loop_duration = 0;
void Ampel::showFreeSpace() {
Serial.print(F("Free heap space : "));
Serial.print(ESP.getFreeHeap());
Serial.println(F(" bytes."));
Serial.print(F("Max free block size : "));
Serial.print(esp_get_max_free_block_size());
Serial.println(F(" bytes."));
Serial.print(F("Heap fragmentation : "));
Serial.print(esp_get_heap_fragmentation());
Serial.println(F(" %"));
}
//FIXME: Remove every instance of Strings, to avoid heap fragmentation problems. (Start: "Free heap space : 17104 bytes")
// See more https://cpp4arduino.com/2020/02/07/how-to-format-strings-without-the-string-class.html
const String SENSOR_ID = "ESP" + macToID();
char sensorId[10]; // e.g "ESPxxxxxx\0"
char macAddress[18]; // e.g "XX:XX:XX:XX:XX:XX\0"
uint8_t mac[6];
char* getMacString() {
WiFi.macAddress(mac);
// Get all 6 bytes of ESP MAC
snprintf(macAddress, sizeof(macAddress), "%02X:%02X:%02X:%02X:%02X:%02X", mac[0], mac[1], mac[2], mac[3], mac[4],
mac[5]);
return macAddress;
}
char* getSensorId() {
WiFi.macAddress(mac);
// Get last 3 bytes of ESP MAC (worldwide unique)
snprintf(sensorId, sizeof(sensorId), "ESP%02x%02x%02x", mac[3], mac[4], mac[5]);
return sensorId;
}
Ampel::Ampel() :
board(current_board), sensorId(getSensorId()), macAddress(getMacString()), max_loop_duration(0) {
sensor_console::defineIntCommand("set_time", ntp::setLocalTime, F("1618829570 (Sets time to the given UNIX time)"));
sensor_console::defineCommand("free", Ampel::showFreeSpace, F("(Displays available heap space)"));
sensor_console::defineCommand("reset", []() {
ESP.restart();
}, F("(Restarts the ESP)"));
}
Ampel ampel;

View File

@ -2,26 +2,25 @@
#define AMPEL_UTIL_H_INCLUDED
#include <Arduino.h>
#include "config.h"
#include "sensor_console.h"
#include <WiFiUdp.h> // required for NTP
#include "src/lib/NTPClient-master/NTPClient.h" // NTP
#if defined(ESP8266)
# define BOARD "ESP8266"
# include <ESP8266WiFi.h> // required to get MAC address
# define get_free_heap_size() system_get_free_heap_size()
# define esp_get_max_free_block_size() ESP.getMaxFreeBlockSize()
# define esp_get_heap_fragmentation() ESP.getHeapFragmentation()
#elif defined(ESP32)
# define BOARD "ESP32"
# include <WiFi.h> // required to get MAC address
# define get_free_heap_size() esp_get_free_heap_size()
#else
# define BOARD "Unknown"
# define esp_get_max_free_block_size() ESP.getMaxAllocHeap() //largest block of heap that can be allocated.
# define esp_get_heap_fragmentation() "?" // apparently not available for ESP32
#endif
namespace ntp {
void initialize();
void update();
String getLocalTime();
void getLocalTime(char *timestamp);
}
namespace util {
@ -35,10 +34,21 @@ namespace util {
return b > a ? b : a;
}
}
class Ampel {
private:
static void showFreeSpace();
public:
const char *version = "v0.2.3-DEV"; // Update manually after significant changes.
const char *board;
const char *sensorId;
const char *macAddress;
uint32_t max_loop_duration;
Ampel();
};
extern Ampel ampel;
//NOTE: Only use seconds() for duration comparison, not timestamps comparison. Otherwise, problems happen when millis roll over.
#define seconds() (millis() / 1000UL)
extern uint32_t max_loop_duration;
const extern String SENSOR_ID;
#endif

View File

@ -22,6 +22,7 @@ namespace web_server {
const char *script_template;
void handleWebServerRoot();
void handlePageNotFound();
void handleWebServerCommand();
#ifdef AMPEL_CSV
void handleDeleteCSV();
@ -58,13 +59,13 @@ namespace web_server {
"</head>\n"
"<body>\n"
"<div class='pure-g'><div class='pure-u-1'><div class='pure-menu'><p class='pure-menu-heading'>MakerLab Murnau e.V. CO<sub>2</sub> Ampel</p></div></div>\n"
"<div class='pure-g'><div class='pure-u-1'><div class='pure-menu'><p class='pure-menu-heading'>HfT-Stuttgart CO<sub>2</sub> Ampel</p></div></div>\n"
"<div class='pure-u-1'><ul class='pure-menu pure-menu-horizontal pure-menu-list'>\n"
"<li class='pure-menu-item'><a href='#table' class='pure-menu-link'>Info</a></li>\n"
#ifdef AMPEL_CSV
"<li class='pure-menu-item'><a href='#graph' class='pure-menu-link'>Graph</a></li>\n"
"<li class='pure-menu-item'><a href='#log' class='pure-menu-link'>Log</a></li>\n"
"<li class='pure-menu-item'><a href='./%s' class='pure-menu-link'>Download CSV</a></li>\n"
"<li class='pure-menu-item'><a href='%s' class='pure-menu-link'>Download CSV</a></li>\n"
#endif
"<li class='pure-menu-item' id='led'>&#11044;</li>\n" // LED
"</ul></div></div>\n"
@ -72,16 +73,15 @@ namespace web_server {
// Show a colored dot on the webpage, with a similar color than on LED Ring.
"hue=(1-(Math.min(Math.max(parseInt(document.title),500),1600)-500)/1100)*120;\n"
"document.getElementById('led').style.color=['hsl(',hue,',100%%,50%%)'].join('');\n"
"</script>\n");
body_template =
PSTR("<div class='pure-g'>\n"
"<div class='pure-u-1' id='graph'></div>\n" // Graph placeholder
"</script>\n"
"<div class='pure-g'>\n"
"<div class='pure-u-1' id='graph'></div>\n"// Graph placeholder
"</div>\n"
"<div class='pure-g'>\n"
//Sensor table
"<table id='table' class='pure-table-striped pure-u-1 pure-u-md-1-2'>\n"
"<tr><th colspan='2'>%s</th></tr>\n"
"<table id='table' class='pure-table-striped pure-u-1 pure-u-md-1-2'>\n");
body_template =
PSTR("<tr><th colspan='2'>%s</th></tr>\n"
"<tr><td>CO<sub>2</sub> concentration</td><td>%5d ppm</td></tr>\n"
"<tr><td>Temperature</td><td>%.1f&#8451;</td></tr>\n"
"<tr><td>Humidity</td><td>%.1f%%</td></tr>\n"
@ -108,14 +108,19 @@ namespace web_server {
#endif
"<tr><th colspan='2'>Sensor</th></tr>\n"
"<tr><td>Temperature offset</td><td>%.1fK</td></tr>\n" //TODO: Read it from sensor?
"<tr><td>Auto-calibration?</td><td>%s</td></tr>\n"
"<tr><td>Local address</td><td><a href='http://%s.local/'>%s.local</a></td></tr>\n"
"<tr><td>Local IP</td><td><a href='http://%s'>%s</a></td></tr>\n"
"<tr><td>MAC</td><td>%s</td></tr>\n"
"<tr><td>Free heap space</td><td>%6d bytes</td></tr>\n"
"<tr><td>Largest heap block</td><td>%6d bytes</td></tr>\n"
"<tr><td>Max loop duration</td><td>%5d ms</td></tr>\n"
"<tr><td>Board</td><td>%s</td></tr>\n"
"<tr><td>Ampel firmware</td><td>%s</td></tr>\n"
"<tr><td>Uptime</td><td>%2d d %4d h %02d min %02d s</td></tr>\n"
"</table>\n"
"<div id='log' class='pure-u-1 pure-u-md-1-2'></div>\n"
"<form action='/command'><input type='text' id='send' name='send'><input type='submit' value='Send'></form>\n"
#ifdef AMPEL_CSV
"<form action='/delete_csv' method='POST' onsubmit=\"return confirm('Are you really sure you want to delete all data?') && (document.body.style.cursor = 'wait');\">"
"<input type='submit' value='Delete CSV'/>"
@ -130,7 +135,7 @@ namespace web_server {
#ifdef AMPEL_CSV
"<script>\n"
"document.body.style.cursor = 'default';\n"
"fetch('./%s',{credentials:'include'})\n"
"fetch('%s',{credentials:'include'})\n"
".then(response=>response.text())\n"
".then(csvText=>csvToTable(csvText))\n"
".then(htmlTable=>addLogTableToPage(htmlTable))\n"
@ -173,15 +178,16 @@ namespace web_server {
// Web-server
http.on("/", handleWebServerRoot);
http.on("/command", handleWebServerCommand);
#ifdef AMPEL_CSV
http.on("/" + csv_writer::filename, handleWebServerCSV);
http.on(csv_writer::filename, handleWebServerCSV); //NOTE: csv_writer should have been initialized first.
http.on("/delete_csv", HTTP_POST, handleDeleteCSV);
#endif
http.onNotFound(handlePageNotFound);
http.begin();
Serial.print(F("You can access this sensor via http://"));
Serial.print(SENSOR_ID);
Serial.print(ampel.sensorId);
Serial.print(F(".local (might be unstable) or http://"));
Serial.println(WiFi.localIP());
}
@ -207,44 +213,49 @@ namespace web_server {
//NOTE: Splitting in multiple parts in order to use less RAM
char content[2000]; // Update if needed
// Header size : 1611 - Body size : 1800 - Script size : 1920
// INFO - Header size : 1767 - Body size : 1991 - Script size : 1909
// Header
snprintf_P(content, sizeof(content), header_template, sensor::co2, SENSOR_ID.c_str(),
WiFi.localIP().toString().c_str()
snprintf_P(content, sizeof(content), header_template, sensor::co2, ampel.sensorId, wifi::local_ip
#ifdef AMPEL_CSV
, csv_writer::filename.c_str()
, csv_writer::filename
#endif
);
// Serial.print(F("INFO - Header size : "));
// Serial.print(strlen(content));
http.setContentLength(CONTENT_LENGTH_UNKNOWN);
http.send_P(200, PSTR("text/html"), content);
// Body
snprintf_P(content, sizeof(content), body_template, SENSOR_ID.c_str(), sensor::co2, sensor::temperature,
sensor::humidity, sensor::timestamp.c_str(), config::measurement_timestep,
snprintf_P(content, sizeof(content), body_template, ampel.sensorId, sensor::co2, sensor::temperature,
sensor::humidity, sensor::timestamp, config::measurement_timestep,
#ifdef AMPEL_CSV
csv_writer::last_successful_write.c_str(), config::csv_interval, csv_writer::getAvailableSpace() / 1024,
csv_writer::last_successful_write, config::csv_interval, csv_writer::getAvailableSpace() / 1024,
#endif
#ifdef AMPEL_MQTT
mqtt::connected ? "Yes" : "No", mqtt::last_successful_publish.c_str(), config::sending_interval,
mqtt::connected ? "Yes" : "No", mqtt::last_successful_publish, config::mqtt_sending_interval,
#endif
#if defined(AMPEL_LORAWAN) && defined(ESP32)
lorawan::connected ? "Yes" : "No", LMIC_FREQUENCY_PLAN, lorawan::last_transmission.c_str(),
lorawan::connected ? "Yes" : "No", LMIC_FREQUENCY_PLAN, lorawan::last_transmission,
config::lorawan_sending_interval,
#endif
config::temperature_offset, SENSOR_ID.c_str(), SENSOR_ID.c_str(), WiFi.localIP().toString().c_str(),
WiFi.localIP().toString().c_str(), get_free_heap_size(), max_loop_duration, BOARD, dd, hh, mm, ss);
config::temperature_offset, config::auto_calibrate_sensor ? "Yes" : "No", ampel.sensorId, ampel.sensorId,
wifi::local_ip, wifi::local_ip, ampel.macAddress, ESP.getFreeHeap(), esp_get_max_free_block_size(),
ampel.max_loop_duration, ampel.board, ampel.version, dd, hh, mm, ss);
// Serial.print(F(" - Body size : "));
// Serial.print(strlen(content));
http.sendContent(content);
// Script
snprintf_P(content, sizeof(content), script_template
#ifdef AMPEL_CSV
, csv_writer::filename.c_str(), SENSOR_ID.c_str()
, csv_writer::filename, ampel.sensorId
#endif
);
// Serial.print(F(" - Script size : "));
// Serial.println(strlen(content));
http.sendContent(content);
}
@ -255,7 +266,9 @@ namespace web_server {
}
if (FS_LIB.exists(csv_writer::filename)) {
fs::File csv_file = FS_LIB.open(csv_writer::filename, "r");
http.sendHeader("Content-Length", String(csv_file.size()));
char csv_size[10];
snprintf(csv_size, sizeof(csv_size), "%d", csv_file.size());
http.sendHeader("Content-Length", csv_size);
http.streamFile(csv_file, F("text/csv"));
csv_file.close();
} else {
@ -267,14 +280,23 @@ namespace web_server {
if (!shouldBeAllowed()) {
return http.requestAuthentication(DIGEST_AUTH);
}
Serial.print("Removing CSV file...");
Serial.print(F("Removing CSV file..."));
FS_LIB.remove(csv_writer::filename);
Serial.println(" Done!");
Serial.println(F(" Done!"));
http.sendHeader("Location", "/");
http.send(303);
}
#endif
void handleWebServerCommand() {
if (!shouldBeAllowed()) {
return http.requestAuthentication(DIGEST_AUTH);
}
http.sendHeader("Location", "/");
http.send(303);
sensor_console::execute(http.arg("send").c_str());
}
void handlePageNotFound() {
http.send(404, F("text/plain"), F("404: Not found"));
}

View File

@ -1,5 +1,6 @@
#ifndef WEB_SERVER_H_
#define WEB_SERVER_H_
#if defined(ESP8266)
# include <ESP8266WebServer.h>
#elif defined(ESP32)
@ -8,7 +9,9 @@
#include "config.h"
#include "util.h"
#include "wifi_util.h"
#include "co2_sensor.h"
#include "sensor_console.h"
#ifdef AMPEL_CSV
# include "csv_writer.h"
#endif

View File

@ -12,15 +12,47 @@ namespace config {
#endif
}
// Initialize Wi-Fi
void WiFiConnect(const String &hostname) {
namespace wifi {
char local_ip[16]; // "255.255.255.255\0"
void scanNetworks() {
Serial.println();
Serial.println(F("WiFi - Scanning..."));
bool async = false;
bool showHidden = true;
int n = WiFi.scanNetworks(async, showHidden);
for (int i = 0; i < n; ++i) {
Serial.print(F(" * '"));
Serial.print(WiFi.SSID(i));
Serial.print(F("' ("));
int16_t quality = 2 * (100 + WiFi.RSSI(i));
Serial.print(util::min(util::max(quality, 0), 100));
Serial.println(F(" %)"));
}
Serial.println(F("Done!"));
Serial.println();
}
void showLocalIp() {
Serial.print(F("WiFi - Local IP : "));
Serial.println(wifi::local_ip);
Serial.print(F("WiFi - SSID : "));
Serial.println(WIFI_SSID);
}
// Initialize Wi-Fi
void connect(const char *hostname) {
sensor_console::defineCommand("wifi_scan", scanNetworks, F("(Scans available WiFi networks)"));
sensor_console::defineCommand("local_ip", showLocalIp, F("(Displays local IP and current SSID)"));
//NOTE: WiFi Multi could allow multiple SSID and passwords.
WiFi.persistent(false); // Don't write user & password to Flash.
WiFi.mode(WIFI_STA); // Set ESP to be a WiFi-client only
#if defined(ESP8266)
WiFi.hostname(hostname);
#elif defined(ESP32)
WiFi.setHostname(hostname.c_str());
WiFi.setHostname(hostname);
#endif
Serial.print(F("WiFi - Connecting to "));
@ -36,10 +68,13 @@ void WiFiConnect(const String &hostname) {
led_effects::showKITTWheel(color::green);
Serial.println();
Serial.print(F("WiFi - Connected! IP address: "));
Serial.println(WiFi.localIP());
IPAddress address = WiFi.localIP();
snprintf(local_ip, sizeof(local_ip), "%d.%d.%d.%d", address[0], address[1], address[2], address[3]);
Serial.println(local_ip);
} else {
//TODO: Allow sensor to work as an Access Point, in order to define SSID & password?
led_effects::showKITTWheel(color::red);
Serial.println(F("Connection to WiFi failed"));
}
}
}

View File

@ -5,6 +5,9 @@
#include "util.h"
#include "led_effects.h"
void WiFiConnect(const String &hostname);
namespace wifi {
extern char local_ip[];
void connect(const char *hostname);
}
#endif