mirror of
https://github.com/CloverHackyColor/CloverBootloader.git
synced 2024-12-10 14:23:31 +01:00
1098 lines
31 KiB
C
1098 lines
31 KiB
C
|
/** @file
|
||
|
Main SEC phase code. Transitions to PEI.
|
||
|
|
||
|
Copyright (c) 2008 - 2015, Intel Corporation. All rights reserved.<BR>
|
||
|
(C) Copyright 2016 Hewlett Packard Enterprise Development LP<BR>
|
||
|
Copyright (c) 2020, Advanced Micro Devices, Inc. All rights reserved.<BR>
|
||
|
|
||
|
SPDX-License-Identifier: BSD-2-Clause-Patent
|
||
|
|
||
|
**/
|
||
|
|
||
|
#include "ProcessorBind.h"
|
||
|
#include <PiPei.h>
|
||
|
|
||
|
#include <Library/PeimEntryPoint.h>
|
||
|
#include <Library/BaseLib.h>
|
||
|
#include <Library/DebugLib.h>
|
||
|
#include <Library/BaseMemoryLib.h>
|
||
|
#include <Library/PeiServicesLib.h>
|
||
|
#include <Library/PcdLib.h>
|
||
|
#include <Library/CpuLib.h>
|
||
|
#include <Library/DebugAgentLib.h>
|
||
|
#include <Library/IoLib.h>
|
||
|
#include <Library/UefiImageLib.h>
|
||
|
|
||
|
#include <Library/UefiImageExtraActionLib.h>
|
||
|
#include <Library/ExtractGuidedSectionLib.h>
|
||
|
#include <Library/LocalApicLib.h>
|
||
|
#include <Library/CpuExceptionHandlerLib.h>
|
||
|
#include <Ppi/TemporaryRamSupport.h>
|
||
|
#include <Ppi/MpInitLibDep.h>
|
||
|
#include <Library/TdxHelperLib.h>
|
||
|
#include <Library/CcProbeLib.h>
|
||
|
#include "AmdSev.h"
|
||
|
|
||
|
#define SEC_IDT_ENTRY_COUNT 34
|
||
|
|
||
|
typedef struct _SEC_IDT_TABLE {
|
||
|
EFI_PEI_SERVICES *PeiService;
|
||
|
IA32_IDT_GATE_DESCRIPTOR IdtTable[SEC_IDT_ENTRY_COUNT];
|
||
|
} SEC_IDT_TABLE;
|
||
|
|
||
|
VOID
|
||
|
EFIAPI
|
||
|
SecStartupPhase2 (
|
||
|
IN VOID *Context
|
||
|
);
|
||
|
|
||
|
EFI_STATUS
|
||
|
EFIAPI
|
||
|
TemporaryRamMigration (
|
||
|
IN CONST EFI_PEI_SERVICES **PeiServices,
|
||
|
IN EFI_PHYSICAL_ADDRESS TemporaryMemoryBase,
|
||
|
IN EFI_PHYSICAL_ADDRESS PermanentMemoryBase,
|
||
|
IN UINTN CopySize
|
||
|
);
|
||
|
|
||
|
//
|
||
|
//
|
||
|
//
|
||
|
EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI mTemporaryRamSupportPpi = {
|
||
|
TemporaryRamMigration
|
||
|
};
|
||
|
|
||
|
EFI_PEI_PPI_DESCRIPTOR mPrivateDispatchTableMp[] = {
|
||
|
{
|
||
|
(EFI_PEI_PPI_DESCRIPTOR_PPI),
|
||
|
&gEfiTemporaryRamSupportPpiGuid,
|
||
|
&mTemporaryRamSupportPpi
|
||
|
},
|
||
|
{
|
||
|
(EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
|
||
|
&gEfiPeiMpInitLibMpDepPpiGuid,
|
||
|
NULL
|
||
|
},
|
||
|
};
|
||
|
|
||
|
EFI_PEI_PPI_DESCRIPTOR mPrivateDispatchTableUp[] = {
|
||
|
{
|
||
|
(EFI_PEI_PPI_DESCRIPTOR_PPI),
|
||
|
&gEfiTemporaryRamSupportPpiGuid,
|
||
|
&mTemporaryRamSupportPpi
|
||
|
},
|
||
|
{
|
||
|
(EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
|
||
|
&gEfiPeiMpInitLibUpDepPpiGuid,
|
||
|
NULL
|
||
|
},
|
||
|
};
|
||
|
|
||
|
//
|
||
|
// Template of an IDT entry pointing to 10:FFFFFFE4h.
|
||
|
//
|
||
|
IA32_IDT_GATE_DESCRIPTOR mIdtEntryTemplate = {
|
||
|
{ // Bits
|
||
|
0xffe4, // OffsetLow
|
||
|
0x10, // Selector
|
||
|
0x0, // Reserved_0
|
||
|
IA32_IDT_GATE_TYPE_INTERRUPT_32, // GateType
|
||
|
0xffff // OffsetHigh
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/**
|
||
|
Locates the main boot firmware volume.
|
||
|
|
||
|
@param[in,out] BootFv On input, the base of the BootFv
|
||
|
On output, the decompressed main firmware volume
|
||
|
|
||
|
@retval EFI_SUCCESS The main firmware volume was located and decompressed
|
||
|
@retval EFI_NOT_FOUND The main firmware volume was not found
|
||
|
|
||
|
**/
|
||
|
EFI_STATUS
|
||
|
FindMainFv (
|
||
|
IN OUT EFI_FIRMWARE_VOLUME_HEADER **BootFv
|
||
|
)
|
||
|
{
|
||
|
EFI_FIRMWARE_VOLUME_HEADER *Fv;
|
||
|
UINTN Distance;
|
||
|
|
||
|
ASSERT (((UINTN)*BootFv & EFI_PAGE_MASK) == 0);
|
||
|
|
||
|
Fv = *BootFv;
|
||
|
Distance = (UINTN)(*BootFv)->FvLength;
|
||
|
do {
|
||
|
Fv = (EFI_FIRMWARE_VOLUME_HEADER *)((UINT8 *)Fv - EFI_PAGE_SIZE);
|
||
|
Distance += EFI_PAGE_SIZE;
|
||
|
if (Distance > SIZE_32MB) {
|
||
|
return EFI_NOT_FOUND;
|
||
|
}
|
||
|
|
||
|
if (Fv->Signature != EFI_FVH_SIGNATURE) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if ((UINTN)Fv->FvLength > Distance) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
*BootFv = Fv;
|
||
|
return EFI_SUCCESS;
|
||
|
} while (TRUE);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
Locates a section within a series of sections
|
||
|
with the specified section type.
|
||
|
|
||
|
The Instance parameter indicates which instance of the section
|
||
|
type to return. (0 is first instance, 1 is second...)
|
||
|
|
||
|
@param[in] Sections The sections to search
|
||
|
@param[in] SizeOfSections Total size of all sections
|
||
|
@param[in] SectionType The section type to locate
|
||
|
@param[in] Instance The section instance number
|
||
|
@param[out] FoundSection The FFS section if found
|
||
|
|
||
|
@retval EFI_SUCCESS The file and section was found
|
||
|
@retval EFI_NOT_FOUND The file and section was not found
|
||
|
@retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted
|
||
|
|
||
|
**/
|
||
|
EFI_STATUS
|
||
|
FindFfsSectionInstance (
|
||
|
IN VOID *Sections,
|
||
|
IN UINTN SizeOfSections,
|
||
|
IN EFI_SECTION_TYPE SectionType,
|
||
|
IN UINTN Instance,
|
||
|
OUT EFI_COMMON_SECTION_HEADER **FoundSection
|
||
|
)
|
||
|
{
|
||
|
EFI_PHYSICAL_ADDRESS CurrentAddress;
|
||
|
UINT32 Size;
|
||
|
EFI_PHYSICAL_ADDRESS EndOfSections;
|
||
|
EFI_COMMON_SECTION_HEADER *Section;
|
||
|
EFI_PHYSICAL_ADDRESS EndOfSection;
|
||
|
|
||
|
//
|
||
|
// Loop through the FFS file sections within the PEI Core FFS file
|
||
|
//
|
||
|
EndOfSection = (EFI_PHYSICAL_ADDRESS)(UINTN)Sections;
|
||
|
EndOfSections = EndOfSection + SizeOfSections;
|
||
|
for ( ; ;) {
|
||
|
if (EndOfSection == EndOfSections) {
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
CurrentAddress = (EndOfSection + 3) & ~(3ULL);
|
||
|
if (CurrentAddress >= EndOfSections) {
|
||
|
return EFI_VOLUME_CORRUPTED;
|
||
|
}
|
||
|
|
||
|
Section = (EFI_COMMON_SECTION_HEADER *)(UINTN)CurrentAddress;
|
||
|
|
||
|
Size = SECTION_SIZE (Section);
|
||
|
if (Size < sizeof (*Section)) {
|
||
|
return EFI_VOLUME_CORRUPTED;
|
||
|
}
|
||
|
|
||
|
EndOfSection = CurrentAddress + Size;
|
||
|
if (EndOfSection > EndOfSections) {
|
||
|
return EFI_VOLUME_CORRUPTED;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Look for the requested section type
|
||
|
//
|
||
|
if (Section->Type == SectionType) {
|
||
|
if (Instance == 0) {
|
||
|
*FoundSection = Section;
|
||
|
return EFI_SUCCESS;
|
||
|
} else {
|
||
|
Instance--;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return EFI_NOT_FOUND;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
Locates a section within a series of sections
|
||
|
with the specified section type.
|
||
|
|
||
|
@param[in] Sections The sections to search
|
||
|
@param[in] SizeOfSections Total size of all sections
|
||
|
@param[in] SectionType The section type to locate
|
||
|
@param[out] FoundSection The FFS section if found
|
||
|
|
||
|
@retval EFI_SUCCESS The file and section was found
|
||
|
@retval EFI_NOT_FOUND The file and section was not found
|
||
|
@retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted
|
||
|
|
||
|
**/
|
||
|
EFI_STATUS
|
||
|
FindFfsSectionInSections (
|
||
|
IN VOID *Sections,
|
||
|
IN UINTN SizeOfSections,
|
||
|
IN EFI_SECTION_TYPE SectionType,
|
||
|
OUT EFI_COMMON_SECTION_HEADER **FoundSection
|
||
|
)
|
||
|
{
|
||
|
return FindFfsSectionInstance (
|
||
|
Sections,
|
||
|
SizeOfSections,
|
||
|
SectionType,
|
||
|
0,
|
||
|
FoundSection
|
||
|
);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
Locates a FFS file with the specified file type and a section
|
||
|
within that file with the specified section type.
|
||
|
|
||
|
@param[in] Fv The firmware volume to search
|
||
|
@param[in] FileType The file type to locate
|
||
|
@param[in] SectionType The section type to locate
|
||
|
@param[out] FoundSection The FFS section if found
|
||
|
|
||
|
@retval EFI_SUCCESS The file and section was found
|
||
|
@retval EFI_NOT_FOUND The file and section was not found
|
||
|
@retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted
|
||
|
|
||
|
**/
|
||
|
EFI_STATUS
|
||
|
FindFfsFileAndSection (
|
||
|
IN EFI_FIRMWARE_VOLUME_HEADER *Fv,
|
||
|
IN EFI_FV_FILETYPE FileType,
|
||
|
IN EFI_SECTION_TYPE SectionType,
|
||
|
OUT EFI_COMMON_SECTION_HEADER **FoundSection
|
||
|
)
|
||
|
{
|
||
|
EFI_STATUS Status;
|
||
|
EFI_PHYSICAL_ADDRESS CurrentAddress;
|
||
|
EFI_PHYSICAL_ADDRESS EndOfFirmwareVolume;
|
||
|
EFI_FFS_FILE_HEADER *File;
|
||
|
UINT32 Size;
|
||
|
EFI_PHYSICAL_ADDRESS EndOfFile;
|
||
|
|
||
|
if (Fv->Signature != EFI_FVH_SIGNATURE) {
|
||
|
DEBUG ((DEBUG_ERROR, "FV at %p does not have FV header signature\n", Fv));
|
||
|
return EFI_VOLUME_CORRUPTED;
|
||
|
}
|
||
|
|
||
|
CurrentAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)Fv;
|
||
|
EndOfFirmwareVolume = CurrentAddress + Fv->FvLength;
|
||
|
|
||
|
//
|
||
|
// Loop through the FFS files in the Boot Firmware Volume
|
||
|
//
|
||
|
for (EndOfFile = CurrentAddress + Fv->HeaderLength; ; ) {
|
||
|
CurrentAddress = (EndOfFile + 7) & ~(7ULL);
|
||
|
if (CurrentAddress > EndOfFirmwareVolume) {
|
||
|
return EFI_VOLUME_CORRUPTED;
|
||
|
}
|
||
|
|
||
|
File = (EFI_FFS_FILE_HEADER *)(UINTN)CurrentAddress;
|
||
|
Size = FFS_FILE_SIZE (File);
|
||
|
if (Size < (sizeof (*File) + sizeof (EFI_COMMON_SECTION_HEADER))) {
|
||
|
return EFI_VOLUME_CORRUPTED;
|
||
|
}
|
||
|
|
||
|
EndOfFile = CurrentAddress + Size;
|
||
|
if (EndOfFile > EndOfFirmwareVolume) {
|
||
|
return EFI_VOLUME_CORRUPTED;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Look for the request file type
|
||
|
//
|
||
|
if (File->Type != FileType) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
Status = FindFfsSectionInSections (
|
||
|
(VOID *)(File + 1),
|
||
|
(UINTN)EndOfFile - (UINTN)(File + 1),
|
||
|
SectionType,
|
||
|
FoundSection
|
||
|
);
|
||
|
if (!EFI_ERROR (Status) || (Status == EFI_VOLUME_CORRUPTED)) {
|
||
|
return Status;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
Locates the compressed main firmware volume and decompresses it.
|
||
|
|
||
|
@param[in,out] Fv On input, the firmware volume to search
|
||
|
On output, the decompressed BOOT/PEI FV
|
||
|
|
||
|
@retval EFI_SUCCESS The file and section was found
|
||
|
@retval EFI_NOT_FOUND The file and section was not found
|
||
|
@retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted
|
||
|
|
||
|
**/
|
||
|
EFI_STATUS
|
||
|
DecompressMemFvs (
|
||
|
IN OUT EFI_FIRMWARE_VOLUME_HEADER **Fv
|
||
|
)
|
||
|
{
|
||
|
EFI_STATUS Status;
|
||
|
EFI_GUID_DEFINED_SECTION *Section;
|
||
|
UINT32 OutputBufferSize;
|
||
|
UINT32 ScratchBufferSize;
|
||
|
UINT16 SectionAttribute;
|
||
|
UINT32 AuthenticationStatus;
|
||
|
VOID *OutputBuffer;
|
||
|
VOID *ScratchBuffer;
|
||
|
EFI_COMMON_SECTION_HEADER *FvSection;
|
||
|
EFI_FIRMWARE_VOLUME_HEADER *PeiMemFv;
|
||
|
EFI_FIRMWARE_VOLUME_HEADER *DxeMemFv;
|
||
|
UINT32 FvHeaderSize;
|
||
|
UINT32 FvSectionSize;
|
||
|
|
||
|
FvSection = (EFI_COMMON_SECTION_HEADER *)NULL;
|
||
|
|
||
|
Status = FindFfsFileAndSection (
|
||
|
*Fv,
|
||
|
EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE,
|
||
|
EFI_SECTION_GUID_DEFINED,
|
||
|
(EFI_COMMON_SECTION_HEADER **)&Section
|
||
|
);
|
||
|
if (EFI_ERROR (Status)) {
|
||
|
DEBUG ((DEBUG_ERROR, "Unable to find GUID defined section\n"));
|
||
|
return Status;
|
||
|
}
|
||
|
|
||
|
Status = ExtractGuidedSectionGetInfo (
|
||
|
Section,
|
||
|
&OutputBufferSize,
|
||
|
&ScratchBufferSize,
|
||
|
&SectionAttribute
|
||
|
);
|
||
|
if (EFI_ERROR (Status)) {
|
||
|
DEBUG ((DEBUG_ERROR, "Unable to GetInfo for GUIDed section\n"));
|
||
|
return Status;
|
||
|
}
|
||
|
|
||
|
OutputBuffer = (VOID *)((UINT8 *)(UINTN)PcdGet32 (PcdOvmfDxeMemFvBase) + SIZE_1MB);
|
||
|
ScratchBuffer = ALIGN_POINTER ((UINT8 *)OutputBuffer + OutputBufferSize, SIZE_1MB);
|
||
|
|
||
|
DEBUG ((
|
||
|
DEBUG_VERBOSE,
|
||
|
"%a: OutputBuffer@%p+0x%x ScratchBuffer@%p+0x%x "
|
||
|
"PcdOvmfDecompressionScratchEnd=0x%x\n",
|
||
|
__func__,
|
||
|
OutputBuffer,
|
||
|
OutputBufferSize,
|
||
|
ScratchBuffer,
|
||
|
ScratchBufferSize,
|
||
|
PcdGet32 (PcdOvmfDecompressionScratchEnd)
|
||
|
));
|
||
|
ASSERT (
|
||
|
(UINTN)ScratchBuffer + ScratchBufferSize ==
|
||
|
PcdGet32 (PcdOvmfDecompressionScratchEnd)
|
||
|
);
|
||
|
|
||
|
Status = ExtractGuidedSectionDecode (
|
||
|
Section,
|
||
|
&OutputBuffer,
|
||
|
ScratchBuffer,
|
||
|
&AuthenticationStatus
|
||
|
);
|
||
|
if (EFI_ERROR (Status)) {
|
||
|
DEBUG ((DEBUG_ERROR, "Error during GUID section decode\n"));
|
||
|
return Status;
|
||
|
}
|
||
|
|
||
|
Status = FindFfsSectionInstance (
|
||
|
OutputBuffer,
|
||
|
OutputBufferSize,
|
||
|
EFI_SECTION_FIRMWARE_VOLUME_IMAGE,
|
||
|
0,
|
||
|
&FvSection
|
||
|
);
|
||
|
if (EFI_ERROR (Status)) {
|
||
|
DEBUG ((DEBUG_ERROR, "Unable to find PEI FV section\n"));
|
||
|
return Status;
|
||
|
}
|
||
|
|
||
|
ASSERT (
|
||
|
SECTION_SIZE (FvSection) ==
|
||
|
(PcdGet32 (PcdOvmfPeiMemFvSize) + sizeof (*FvSection))
|
||
|
);
|
||
|
ASSERT (FvSection->Type == EFI_SECTION_FIRMWARE_VOLUME_IMAGE);
|
||
|
|
||
|
PeiMemFv = (EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)PcdGet32 (PcdOvmfPeiMemFvBase);
|
||
|
CopyMem (PeiMemFv, (VOID *)(FvSection + 1), PcdGet32 (PcdOvmfPeiMemFvSize));
|
||
|
|
||
|
if (PeiMemFv->Signature != EFI_FVH_SIGNATURE) {
|
||
|
DEBUG ((DEBUG_ERROR, "Extracted FV at %p does not have FV header signature\n", PeiMemFv));
|
||
|
CpuDeadLoop ();
|
||
|
return EFI_VOLUME_CORRUPTED;
|
||
|
}
|
||
|
|
||
|
Status = FindFfsSectionInstance (
|
||
|
OutputBuffer,
|
||
|
OutputBufferSize,
|
||
|
EFI_SECTION_FIRMWARE_VOLUME_IMAGE,
|
||
|
1,
|
||
|
&FvSection
|
||
|
);
|
||
|
if (EFI_ERROR (Status)) {
|
||
|
DEBUG ((DEBUG_ERROR, "Unable to find DXE FV section\n"));
|
||
|
return Status;
|
||
|
}
|
||
|
|
||
|
ASSERT (FvSection->Type == EFI_SECTION_FIRMWARE_VOLUME_IMAGE);
|
||
|
|
||
|
if (IS_SECTION2 (FvSection)) {
|
||
|
FvSectionSize = SECTION2_SIZE (FvSection);
|
||
|
FvHeaderSize = sizeof (EFI_COMMON_SECTION_HEADER2);
|
||
|
} else {
|
||
|
FvSectionSize = SECTION_SIZE (FvSection);
|
||
|
FvHeaderSize = sizeof (EFI_COMMON_SECTION_HEADER);
|
||
|
}
|
||
|
|
||
|
ASSERT (FvSectionSize == (PcdGet32 (PcdOvmfDxeMemFvSize) + FvHeaderSize));
|
||
|
|
||
|
DxeMemFv = (EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)PcdGet32 (PcdOvmfDxeMemFvBase);
|
||
|
CopyMem (DxeMemFv, (VOID *)((UINTN)FvSection + FvHeaderSize), PcdGet32 (PcdOvmfDxeMemFvSize));
|
||
|
|
||
|
if (DxeMemFv->Signature != EFI_FVH_SIGNATURE) {
|
||
|
DEBUG ((DEBUG_ERROR, "Extracted FV at %p does not have FV header signature\n", DxeMemFv));
|
||
|
CpuDeadLoop ();
|
||
|
return EFI_VOLUME_CORRUPTED;
|
||
|
}
|
||
|
|
||
|
*Fv = PeiMemFv;
|
||
|
return EFI_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
Locates the PEI Core entry point address
|
||
|
|
||
|
@param[in] Fv The firmware volume to search
|
||
|
@param[out] PeiCoreEntryPoint The entry point of the PEI Core image
|
||
|
|
||
|
@retval EFI_SUCCESS The file and section was found
|
||
|
@retval EFI_NOT_FOUND The file and section was not found
|
||
|
@retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted
|
||
|
|
||
|
**/
|
||
|
EFI_STATUS
|
||
|
FindPeiCoreImageBaseInFv (
|
||
|
IN EFI_FIRMWARE_VOLUME_HEADER *Fv,
|
||
|
OUT EFI_PHYSICAL_ADDRESS *PeiCoreImageBase,
|
||
|
OUT UINT32 *PeiCoreImageSize
|
||
|
)
|
||
|
{
|
||
|
EFI_STATUS Status;
|
||
|
EFI_COMMON_SECTION_HEADER *Section;
|
||
|
|
||
|
Status = FindFfsFileAndSection (
|
||
|
Fv,
|
||
|
EFI_FV_FILETYPE_PEI_CORE,
|
||
|
EFI_SECTION_PE32,
|
||
|
&Section
|
||
|
);
|
||
|
if (EFI_ERROR (Status)) {
|
||
|
DEBUG ((DEBUG_ERROR, "Unable to find PEI Core image\n"));
|
||
|
return Status;
|
||
|
}
|
||
|
|
||
|
*PeiCoreImageBase = (EFI_PHYSICAL_ADDRESS)(UINTN)(Section + 1);
|
||
|
// FIXME: Size check, common API?
|
||
|
*PeiCoreImageSize = SECTION_SIZE (Section) - sizeof (*Section);
|
||
|
return EFI_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
Reads 8-bits of CMOS data.
|
||
|
|
||
|
Reads the 8-bits of CMOS data at the location specified by Index.
|
||
|
The 8-bit read value is returned.
|
||
|
|
||
|
@param Index The CMOS location to read.
|
||
|
|
||
|
@return The value read.
|
||
|
|
||
|
**/
|
||
|
STATIC
|
||
|
UINT8
|
||
|
CmosRead8 (
|
||
|
IN UINTN Index
|
||
|
)
|
||
|
{
|
||
|
IoWrite8 (0x70, (UINT8)Index);
|
||
|
return IoRead8 (0x71);
|
||
|
}
|
||
|
|
||
|
STATIC
|
||
|
BOOLEAN
|
||
|
IsS3Resume (
|
||
|
VOID
|
||
|
)
|
||
|
{
|
||
|
return (CmosRead8 (0xF) == 0xFE);
|
||
|
}
|
||
|
|
||
|
STATIC
|
||
|
EFI_STATUS
|
||
|
GetS3ResumePeiFv (
|
||
|
IN OUT EFI_FIRMWARE_VOLUME_HEADER **PeiFv
|
||
|
)
|
||
|
{
|
||
|
*PeiFv = (EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)PcdGet32 (PcdOvmfPeiMemFvBase);
|
||
|
return EFI_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
Locates the PEI Core entry point address
|
||
|
|
||
|
@param[in,out] Fv The firmware volume to search
|
||
|
@param[out] PeiCoreEntryPoint The entry point of the PEI Core image
|
||
|
|
||
|
@retval EFI_SUCCESS The file and section was found
|
||
|
@retval EFI_NOT_FOUND The file and section was not found
|
||
|
@retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted
|
||
|
|
||
|
**/
|
||
|
VOID
|
||
|
FindPeiCoreImageBase (
|
||
|
IN OUT EFI_FIRMWARE_VOLUME_HEADER **BootFv,
|
||
|
OUT EFI_PHYSICAL_ADDRESS *PeiCoreImageBase,
|
||
|
OUT UINT32 *PeiCoreImageSize
|
||
|
)
|
||
|
{
|
||
|
BOOLEAN S3Resume;
|
||
|
|
||
|
*PeiCoreImageBase = 0;
|
||
|
|
||
|
S3Resume = IsS3Resume ();
|
||
|
if (S3Resume && !FeaturePcdGet (PcdSmmSmramRequire)) {
|
||
|
//
|
||
|
// A malicious runtime OS may have injected something into our previously
|
||
|
// decoded PEI FV, but we don't care about that unless SMM/SMRAM is required.
|
||
|
//
|
||
|
DEBUG ((DEBUG_VERBOSE, "SEC: S3 resume\n"));
|
||
|
GetS3ResumePeiFv (BootFv);
|
||
|
} else {
|
||
|
//
|
||
|
// We're either not resuming, or resuming "securely" -- we'll decompress
|
||
|
// both PEI FV and DXE FV from pristine flash.
|
||
|
//
|
||
|
DEBUG ((
|
||
|
DEBUG_VERBOSE,
|
||
|
"SEC: %a\n",
|
||
|
S3Resume ? "S3 resume (with PEI decompression)" : "Normal boot"
|
||
|
));
|
||
|
FindMainFv (BootFv);
|
||
|
|
||
|
DecompressMemFvs (BootFv);
|
||
|
}
|
||
|
|
||
|
FindPeiCoreImageBaseInFv (*BootFv, PeiCoreImageBase, PeiCoreImageSize);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
Find core image base.
|
||
|
|
||
|
**/
|
||
|
EFI_STATUS
|
||
|
FindImageBase (
|
||
|
IN EFI_FIRMWARE_VOLUME_HEADER *BootFirmwareVolumePtr,
|
||
|
OUT EFI_PHYSICAL_ADDRESS *SecCoreImageBase,
|
||
|
OUT UINT32 *SecCoreImageSize
|
||
|
)
|
||
|
{
|
||
|
EFI_PHYSICAL_ADDRESS CurrentAddress;
|
||
|
EFI_PHYSICAL_ADDRESS EndOfFirmwareVolume;
|
||
|
EFI_FFS_FILE_HEADER *File;
|
||
|
UINT32 Size;
|
||
|
EFI_PHYSICAL_ADDRESS EndOfFile;
|
||
|
EFI_COMMON_SECTION_HEADER *Section;
|
||
|
EFI_PHYSICAL_ADDRESS EndOfSection;
|
||
|
|
||
|
*SecCoreImageBase = 0;
|
||
|
*SecCoreImageSize = 0;
|
||
|
|
||
|
CurrentAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)BootFirmwareVolumePtr;
|
||
|
EndOfFirmwareVolume = CurrentAddress + BootFirmwareVolumePtr->FvLength;
|
||
|
|
||
|
//
|
||
|
// Loop through the FFS files in the Boot Firmware Volume
|
||
|
//
|
||
|
for (EndOfFile = CurrentAddress + BootFirmwareVolumePtr->HeaderLength; ; ) {
|
||
|
CurrentAddress = (EndOfFile + 7) & 0xfffffffffffffff8ULL;
|
||
|
if (CurrentAddress > EndOfFirmwareVolume) {
|
||
|
return EFI_NOT_FOUND;
|
||
|
}
|
||
|
|
||
|
File = (EFI_FFS_FILE_HEADER *)(UINTN)CurrentAddress;
|
||
|
Size = FFS_FILE_SIZE (File);
|
||
|
if (Size < sizeof (*File)) {
|
||
|
return EFI_NOT_FOUND;
|
||
|
}
|
||
|
|
||
|
EndOfFile = CurrentAddress + Size;
|
||
|
if (EndOfFile > EndOfFirmwareVolume) {
|
||
|
return EFI_NOT_FOUND;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Look for SEC Core
|
||
|
//
|
||
|
if (File->Type != EFI_FV_FILETYPE_SECURITY_CORE) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Loop through the FFS file sections within the FFS file
|
||
|
//
|
||
|
EndOfSection = (EFI_PHYSICAL_ADDRESS)(UINTN)(File + 1);
|
||
|
for ( ; ;) {
|
||
|
CurrentAddress = (EndOfSection + 3) & 0xfffffffffffffffcULL;
|
||
|
Section = (EFI_COMMON_SECTION_HEADER *)(UINTN)CurrentAddress;
|
||
|
|
||
|
Size = SECTION_SIZE (Section);
|
||
|
if (Size < sizeof (*Section)) {
|
||
|
return EFI_NOT_FOUND;
|
||
|
}
|
||
|
|
||
|
EndOfSection = CurrentAddress + Size;
|
||
|
if (EndOfSection > EndOfFile) {
|
||
|
return EFI_NOT_FOUND;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Look for executable sections
|
||
|
//
|
||
|
if (Section->Type == EFI_SECTION_PE32) {
|
||
|
if (File->Type == EFI_FV_FILETYPE_SECURITY_CORE) {
|
||
|
*SecCoreImageBase = (PHYSICAL_ADDRESS)(UINTN)(Section + 1);
|
||
|
*SecCoreImageSize = Size - sizeof (*Section);
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// SEC Core image found
|
||
|
//
|
||
|
if (*SecCoreImageBase != 0) {
|
||
|
return EFI_SUCCESS;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Find and return Pei Core entry point.
|
||
|
|
||
|
It also find SEC and PEI Core file debug information. It will report them if
|
||
|
remote debug is enabled.
|
||
|
|
||
|
**/
|
||
|
VOID
|
||
|
FindAndReportEntryPoints (
|
||
|
IN EFI_FIRMWARE_VOLUME_HEADER **BootFirmwareVolumePtr,
|
||
|
OUT EFI_PEI_CORE_ENTRY_POINT *PeiCoreEntryPoint
|
||
|
)
|
||
|
{
|
||
|
EFI_STATUS Status;
|
||
|
EFI_PHYSICAL_ADDRESS SecCoreImageBase;
|
||
|
UINT32 SecCoreImageSize;
|
||
|
EFI_PHYSICAL_ADDRESS PeiCoreImageBase;
|
||
|
UINT32 PeiCoreImageSize;
|
||
|
UEFI_IMAGE_LOADER_IMAGE_CONTEXT ImageContext;
|
||
|
|
||
|
//
|
||
|
// Find SEC Core and PEI Core image base
|
||
|
//
|
||
|
Status = FindImageBase (*BootFirmwareVolumePtr, &SecCoreImageBase, &SecCoreImageSize);
|
||
|
ASSERT_EFI_ERROR (Status);
|
||
|
|
||
|
FindPeiCoreImageBase (BootFirmwareVolumePtr, &PeiCoreImageBase, &PeiCoreImageSize);
|
||
|
|
||
|
//
|
||
|
// Report SEC Core debug information when remote debug is enabled
|
||
|
//
|
||
|
Status = UefiImageInitializeContext (
|
||
|
&ImageContext,
|
||
|
(VOID *) (UINTN) SecCoreImageBase,
|
||
|
SecCoreImageSize,
|
||
|
UEFI_IMAGE_SOURCE_FV,
|
||
|
UefiImageOriginFv
|
||
|
);
|
||
|
ASSERT_EFI_ERROR (Status);
|
||
|
|
||
|
Status = UefiImageLoadImageInplace (&ImageContext);
|
||
|
ASSERT_EFI_ERROR (Status);
|
||
|
|
||
|
UefiImageLoaderRelocateImageExtraAction (&ImageContext);
|
||
|
|
||
|
//
|
||
|
// Find PEI Core entry point
|
||
|
//
|
||
|
Status = UefiImageInitializeContext (
|
||
|
&ImageContext,
|
||
|
(VOID *) (UINTN) PeiCoreImageBase,
|
||
|
PeiCoreImageSize,
|
||
|
UEFI_IMAGE_SOURCE_FV,
|
||
|
UefiImageOriginFv
|
||
|
);
|
||
|
ASSERT_EFI_ERROR (Status);
|
||
|
|
||
|
Status = UefiImageLoadImageInplace (&ImageContext);
|
||
|
ASSERT_EFI_ERROR (Status);
|
||
|
|
||
|
//
|
||
|
// Report PEI Core debug information when remote debug is enabled
|
||
|
//
|
||
|
UefiImageLoaderRelocateImageExtraAction (&ImageContext);
|
||
|
|
||
|
*PeiCoreEntryPoint = (EFI_PEI_CORE_ENTRY_POINT)(UINTN)(UefiImageLoaderGetImageEntryPoint (&ImageContext));
|
||
|
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
VOID
|
||
|
EFIAPI
|
||
|
SecCoreStartupWithStack (
|
||
|
IN EFI_FIRMWARE_VOLUME_HEADER *BootFv,
|
||
|
IN VOID *TopOfCurrentStack
|
||
|
)
|
||
|
{
|
||
|
EFI_SEC_PEI_HAND_OFF SecCoreData;
|
||
|
SEC_IDT_TABLE IdtTableInStack;
|
||
|
IA32_DESCRIPTOR IdtDescriptor;
|
||
|
UINT32 Index;
|
||
|
volatile UINT8 *Table;
|
||
|
|
||
|
#if defined (TDX_GUEST_SUPPORTED)
|
||
|
if (CcProbe () == CcGuestTypeIntelTdx) {
|
||
|
//
|
||
|
// From the security perspective all the external input should be measured before
|
||
|
// it is consumed. TdHob and Configuration FV (Cfv) image are passed from VMM
|
||
|
// and should be measured here.
|
||
|
//
|
||
|
if (EFI_ERROR (TdxHelperMeasureTdHob ())) {
|
||
|
CpuDeadLoop ();
|
||
|
}
|
||
|
|
||
|
if (EFI_ERROR (TdxHelperMeasureCfvImage ())) {
|
||
|
CpuDeadLoop ();
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// For Td guests, the memory map info is in TdHobLib. It should be processed
|
||
|
// first so that the memory is accepted. Otherwise access to the unaccepted
|
||
|
// memory will trigger tripple fault.
|
||
|
//
|
||
|
if (TdxHelperProcessTdHob () != EFI_SUCCESS) {
|
||
|
CpuDeadLoop ();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
//
|
||
|
// To ensure SMM can't be compromised on S3 resume, we must force re-init of
|
||
|
// the BaseExtractGuidedSectionLib. Since this is before library contructors
|
||
|
// are called, we must use a loop rather than SetMem.
|
||
|
//
|
||
|
Table = (UINT8 *)(UINTN)FixedPcdGet64 (PcdGuidedExtractHandlerTableAddress);
|
||
|
for (Index = 0;
|
||
|
Index < FixedPcdGet32 (PcdGuidedExtractHandlerTableSize);
|
||
|
++Index)
|
||
|
{
|
||
|
Table[Index] = 0;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Initialize IDT - Since this is before library constructors are called,
|
||
|
// we use a loop rather than CopyMem.
|
||
|
//
|
||
|
IdtTableInStack.PeiService = NULL;
|
||
|
|
||
|
for (Index = 0; Index < SEC_IDT_ENTRY_COUNT; Index++) {
|
||
|
//
|
||
|
// Declare the local variables that actually move the data elements as
|
||
|
// volatile to prevent the optimizer from replacing this function with
|
||
|
// the intrinsic memcpy()
|
||
|
//
|
||
|
CONST UINT8 *Src;
|
||
|
volatile UINT8 *Dst;
|
||
|
UINTN Byte;
|
||
|
|
||
|
Src = (CONST UINT8 *)&mIdtEntryTemplate;
|
||
|
Dst = (volatile UINT8 *)&IdtTableInStack.IdtTable[Index];
|
||
|
for (Byte = 0; Byte < sizeof (mIdtEntryTemplate); Byte++) {
|
||
|
Dst[Byte] = Src[Byte];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
IdtDescriptor.Base = (UINTN)&IdtTableInStack.IdtTable;
|
||
|
IdtDescriptor.Limit = (UINT16)(sizeof (IdtTableInStack.IdtTable) - 1);
|
||
|
|
||
|
if (SevEsIsEnabled ()) {
|
||
|
SevEsProtocolCheck ();
|
||
|
|
||
|
//
|
||
|
// For SEV-ES guests, the exception handler is needed before calling
|
||
|
// ProcessLibraryConstructorList() because some of the library constructors
|
||
|
// perform some functions that result in #VC exceptions being generated.
|
||
|
//
|
||
|
// Due to this code executing before library constructors, *all* library
|
||
|
// API calls are theoretically interface contract violations. However,
|
||
|
// because this is SEC (executing in flash), those constructors cannot
|
||
|
// write variables with static storage duration anyway. Furthermore, only
|
||
|
// a small, restricted set of APIs, such as AsmWriteIdtr() and
|
||
|
// InitializeCpuExceptionHandlers(), are called, where we require that the
|
||
|
// underlying library not require constructors to have been invoked and
|
||
|
// that the library instance not trigger any #VC exceptions.
|
||
|
//
|
||
|
AsmWriteIdtr (&IdtDescriptor);
|
||
|
InitializeCpuExceptionHandlers (NULL);
|
||
|
}
|
||
|
|
||
|
ProcessLibraryConstructorList (NULL, NULL);
|
||
|
|
||
|
if (!SevEsIsEnabled ()) {
|
||
|
//
|
||
|
// For non SEV-ES guests, just load the IDTR.
|
||
|
//
|
||
|
AsmWriteIdtr (&IdtDescriptor);
|
||
|
} else {
|
||
|
//
|
||
|
// Under SEV-ES, the hypervisor can't modify CR0 and so can't enable
|
||
|
// caching in order to speed up the boot. Enable caching early for
|
||
|
// an SEV-ES guest.
|
||
|
//
|
||
|
AsmEnableCache ();
|
||
|
}
|
||
|
|
||
|
#if defined (TDX_GUEST_SUPPORTED)
|
||
|
if (CcProbe () == CcGuestTypeIntelTdx) {
|
||
|
//
|
||
|
// InitializeCpuExceptionHandlers () should be called in Td guests so that
|
||
|
// #VE exceptions can be handled correctly.
|
||
|
//
|
||
|
InitializeCpuExceptionHandlers (NULL);
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
DEBUG ((
|
||
|
DEBUG_INFO,
|
||
|
"SecCoreStartupWithStack(0x%x, 0x%x)\n",
|
||
|
(UINT32)(UINTN)BootFv,
|
||
|
(UINT32)(UINTN)TopOfCurrentStack
|
||
|
));
|
||
|
|
||
|
//
|
||
|
// Initialize floating point operating environment
|
||
|
// to be compliant with UEFI spec.
|
||
|
//
|
||
|
InitializeFloatingPointUnits ();
|
||
|
|
||
|
#if defined (MDE_CPU_X64)
|
||
|
//
|
||
|
// ASSERT that the Page Tables were set by the reset vector code to
|
||
|
// the address we expect.
|
||
|
//
|
||
|
ASSERT (AsmReadCr3 () == (UINTN)PcdGet32 (PcdOvmfSecPageTablesBase));
|
||
|
#endif
|
||
|
|
||
|
//
|
||
|
// |-------------| <-- TopOfCurrentStack
|
||
|
// | Stack | 32k
|
||
|
// |-------------|
|
||
|
// | Heap | 32k
|
||
|
// |-------------| <-- SecCoreData.TemporaryRamBase
|
||
|
//
|
||
|
|
||
|
ASSERT (
|
||
|
(UINTN)(PcdGet32 (PcdOvmfSecPeiTempRamBase) +
|
||
|
PcdGet32 (PcdOvmfSecPeiTempRamSize)) ==
|
||
|
(UINTN)TopOfCurrentStack
|
||
|
);
|
||
|
|
||
|
//
|
||
|
// Initialize SEC hand-off state
|
||
|
//
|
||
|
SecCoreData.DataSize = sizeof (EFI_SEC_PEI_HAND_OFF);
|
||
|
|
||
|
SecCoreData.TemporaryRamSize = (UINTN)PcdGet32 (PcdOvmfSecPeiTempRamSize);
|
||
|
SecCoreData.TemporaryRamBase = (VOID *)((UINT8 *)TopOfCurrentStack - SecCoreData.TemporaryRamSize);
|
||
|
|
||
|
SecCoreData.PeiTemporaryRamBase = SecCoreData.TemporaryRamBase;
|
||
|
SecCoreData.PeiTemporaryRamSize = SecCoreData.TemporaryRamSize >> 1;
|
||
|
|
||
|
SecCoreData.StackBase = (UINT8 *)SecCoreData.TemporaryRamBase + SecCoreData.PeiTemporaryRamSize;
|
||
|
SecCoreData.StackSize = SecCoreData.TemporaryRamSize >> 1;
|
||
|
|
||
|
SecCoreData.BootFirmwareVolumeBase = BootFv;
|
||
|
SecCoreData.BootFirmwareVolumeSize = (UINTN)BootFv->FvLength;
|
||
|
|
||
|
//
|
||
|
// Validate the System RAM used in the SEC Phase
|
||
|
//
|
||
|
SecValidateSystemRam ();
|
||
|
|
||
|
//
|
||
|
// Make sure the 8259 is masked before initializing the Debug Agent and the debug timer is enabled
|
||
|
//
|
||
|
IoWrite8 (0x21, 0xff);
|
||
|
IoWrite8 (0xA1, 0xff);
|
||
|
|
||
|
//
|
||
|
// Initialize Local APIC Timer hardware and disable Local APIC Timer
|
||
|
// interrupts before initializing the Debug Agent and the debug timer is
|
||
|
// enabled.
|
||
|
//
|
||
|
InitializeApicTimer (0, MAX_UINT32, TRUE, 5);
|
||
|
DisableApicTimerInterrupt ();
|
||
|
|
||
|
//
|
||
|
// Initialize Debug Agent to support source level debug in SEC/PEI phases before memory ready.
|
||
|
//
|
||
|
InitializeDebugAgent (DEBUG_AGENT_INIT_PREMEM_SEC, &SecCoreData, SecStartupPhase2);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
Caller provided function to be invoked at the end of InitializeDebugAgent().
|
||
|
|
||
|
Entry point to the C language phase of SEC. After the SEC assembly
|
||
|
code has initialized some temporary memory and set up the stack,
|
||
|
the control is transferred to this function.
|
||
|
|
||
|
@param[in] Context The first input parameter of InitializeDebugAgent().
|
||
|
|
||
|
**/
|
||
|
VOID
|
||
|
EFIAPI
|
||
|
SecStartupPhase2 (
|
||
|
IN VOID *Context
|
||
|
)
|
||
|
{
|
||
|
EFI_SEC_PEI_HAND_OFF *SecCoreData;
|
||
|
EFI_FIRMWARE_VOLUME_HEADER *BootFv;
|
||
|
EFI_PEI_CORE_ENTRY_POINT PeiCoreEntryPoint;
|
||
|
EFI_PEI_PPI_DESCRIPTOR *EfiPeiPpiDescriptor;
|
||
|
|
||
|
SecCoreData = (EFI_SEC_PEI_HAND_OFF *)Context;
|
||
|
|
||
|
//
|
||
|
// Find PEI Core entry point. It will report SEC and Pei Core debug information if remote debug
|
||
|
// is enabled.
|
||
|
//
|
||
|
BootFv = (EFI_FIRMWARE_VOLUME_HEADER *)SecCoreData->BootFirmwareVolumeBase;
|
||
|
FindAndReportEntryPoints (&BootFv, &PeiCoreEntryPoint);
|
||
|
SecCoreData->BootFirmwareVolumeBase = BootFv;
|
||
|
SecCoreData->BootFirmwareVolumeSize = (UINTN)BootFv->FvLength;
|
||
|
|
||
|
//
|
||
|
// Td guest is required to use the MpInitLibUp (unique-processor version).
|
||
|
// Other guests use the MpInitLib (multi-processor version).
|
||
|
//
|
||
|
if (CcProbe () == CcGuestTypeIntelTdx) {
|
||
|
EfiPeiPpiDescriptor = (EFI_PEI_PPI_DESCRIPTOR *)&mPrivateDispatchTableUp;
|
||
|
} else {
|
||
|
EfiPeiPpiDescriptor = (EFI_PEI_PPI_DESCRIPTOR *)&mPrivateDispatchTableMp;
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Transfer the control to the PEI core
|
||
|
//
|
||
|
(*PeiCoreEntryPoint)(SecCoreData, EfiPeiPpiDescriptor);
|
||
|
|
||
|
//
|
||
|
// If we get here then the PEI Core returned, which is not recoverable.
|
||
|
//
|
||
|
ASSERT (FALSE);
|
||
|
CpuDeadLoop ();
|
||
|
}
|
||
|
|
||
|
EFI_STATUS
|
||
|
EFIAPI
|
||
|
TemporaryRamMigration (
|
||
|
IN CONST EFI_PEI_SERVICES **PeiServices,
|
||
|
IN EFI_PHYSICAL_ADDRESS TemporaryMemoryBase,
|
||
|
IN EFI_PHYSICAL_ADDRESS PermanentMemoryBase,
|
||
|
IN UINTN CopySize
|
||
|
)
|
||
|
{
|
||
|
IA32_DESCRIPTOR IdtDescriptor;
|
||
|
VOID *OldHeap;
|
||
|
VOID *NewHeap;
|
||
|
VOID *OldStack;
|
||
|
VOID *NewStack;
|
||
|
DEBUG_AGENT_CONTEXT_POSTMEM_SEC DebugAgentContext;
|
||
|
BOOLEAN OldStatus;
|
||
|
BASE_LIBRARY_JUMP_BUFFER JumpBuffer;
|
||
|
|
||
|
DEBUG ((
|
||
|
DEBUG_INFO,
|
||
|
"TemporaryRamMigration(0x%Lx, 0x%Lx, 0x%Lx)\n",
|
||
|
TemporaryMemoryBase,
|
||
|
PermanentMemoryBase,
|
||
|
(UINT64)CopySize
|
||
|
));
|
||
|
|
||
|
OldHeap = (VOID *)(UINTN)TemporaryMemoryBase;
|
||
|
NewHeap = (VOID *)((UINTN)PermanentMemoryBase + (CopySize >> 1));
|
||
|
|
||
|
OldStack = (VOID *)((UINTN)TemporaryMemoryBase + (CopySize >> 1));
|
||
|
NewStack = (VOID *)(UINTN)PermanentMemoryBase;
|
||
|
|
||
|
DebugAgentContext.HeapMigrateOffset = (UINTN)NewHeap - (UINTN)OldHeap;
|
||
|
DebugAgentContext.StackMigrateOffset = (UINTN)NewStack - (UINTN)OldStack;
|
||
|
|
||
|
OldStatus = SaveAndSetDebugTimerInterrupt (FALSE);
|
||
|
InitializeDebugAgent (DEBUG_AGENT_INIT_POSTMEM_SEC, (VOID *)&DebugAgentContext, NULL);
|
||
|
|
||
|
//
|
||
|
// Migrate Heap
|
||
|
//
|
||
|
CopyMem (NewHeap, OldHeap, CopySize >> 1);
|
||
|
|
||
|
//
|
||
|
// Migrate Stack
|
||
|
//
|
||
|
CopyMem (NewStack, OldStack, CopySize >> 1);
|
||
|
|
||
|
//
|
||
|
// Rebase IDT table in permanent memory
|
||
|
//
|
||
|
AsmReadIdtr (&IdtDescriptor);
|
||
|
IdtDescriptor.Base = IdtDescriptor.Base - (UINTN)OldStack + (UINTN)NewStack;
|
||
|
|
||
|
AsmWriteIdtr (&IdtDescriptor);
|
||
|
|
||
|
//
|
||
|
// Use SetJump()/LongJump() to switch to a new stack.
|
||
|
//
|
||
|
if (SetJump (&JumpBuffer) == 0) {
|
||
|
#if defined (MDE_CPU_IA32)
|
||
|
JumpBuffer.Esp = JumpBuffer.Esp + DebugAgentContext.StackMigrateOffset;
|
||
|
JumpBuffer.Ebp = JumpBuffer.Ebp + DebugAgentContext.StackMigrateOffset;
|
||
|
#endif
|
||
|
#if defined (MDE_CPU_X64)
|
||
|
JumpBuffer.Rsp = JumpBuffer.Rsp + DebugAgentContext.StackMigrateOffset;
|
||
|
JumpBuffer.Rbp = JumpBuffer.Rbp + DebugAgentContext.StackMigrateOffset;
|
||
|
#endif
|
||
|
LongJump (&JumpBuffer, (UINTN)-1);
|
||
|
}
|
||
|
|
||
|
SaveAndSetDebugTimerInterrupt (OldStatus);
|
||
|
|
||
|
return EFI_SUCCESS;
|
||
|
}
|