CloverBootloader/CloverPackage/utils/boot1-install/boot1-install.c

841 lines
19 KiB
C
Raw Normal View History

/*
* boot1-install.c
* boot1-install
*
* Created by Zenith432 on November 19th, 2014.
* Copyright (c) 2014 Zenith432. All rights reserved.
*/
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>
#include <CoreFoundation/CoreFoundation.h>
#include <DiskArbitration/DiskArbitration.h>
struct buffer_t
{
unsigned char* _b;
size_t _s;
};
enum volume_kind_t
{
_undetected = 0,
_exfat = 1,
_hfs = 2,
_msdos = 3,
_ntfs = 4,
_ext4 = 5,
_other = 255
};
static int isVolumeMounted = 0;
static int isMediaWhole = 0;
static int isMediaLeaf = 0;
static enum volume_kind_t daVolumeKind = _undetected;
static struct buffer_t bpbBlob = { NULL, 0 };
static struct buffer_t bootBlob = { NULL, 0 };
static struct buffer_t outputBlob = { NULL, 0 };
static char const UnsupportedMessage[] = "Only exFAT, FAT32 or HFS+ volumes are supported\n";
static char const exfatID[] = "EXFAT ";
static char const fat32ID[] = "FAT32 ";
static char const devrdisk[] = "/dev/rdisk";
static char const devdisk[] = "/dev/disk";
static char const defaultBootFile_exfat[] = "./boot1x";
static char const defaultBootFile_hfs[] = "./boot1h";
static char const defaultBootFile_fat32[] = "./boot1f32";
static __used char const copyright[] = "Copyright 2014 Zenith432";
static int checkExfat(struct buffer_t const*);
static int checkFat32(struct buffer_t const*);
static int loadChunk(char const*, off_t, off_t, struct buffer_t*);
static void unsupported(void);
#pragma mark -
#pragma mark Cleaners
#pragma mark -
static
void free_buffer(struct buffer_t* pBuffer)
{
assert(pBuffer);
if (pBuffer->_b) {
free(pBuffer->_b);
pBuffer->_b = NULL;
pBuffer->_s = 0;
}
}
/*
* Uses statics
*/
static
void cleanup(void)
{
free_buffer(&outputBlob);
free_buffer(&bootBlob);
free_buffer(&bpbBlob);
}
#pragma mark -
#pragma mark ExFAT Processor
#pragma mark -
static
unsigned VBRChecksum(unsigned char const* octets, size_t NumberOfBytes)
{
unsigned Checksum = 0;
size_t Index;
for (Index = 0; Index != NumberOfBytes; ++Index)
{
if (Index == 106 || Index == 107 || Index == 112)
continue;
Checksum = ((Checksum << 31) | (Checksum >> 1)) + (unsigned) octets[Index];
}
return Checksum;
}
static
int calcSum(struct buffer_t const* pBootBlob,
struct buffer_t const* pBpbBlob,
struct buffer_t* pOutputBlob,
char const* pathName)
{
unsigned char *outBuffer, *p, *q;
size_t outSize, toCopy, leftOver;
unsigned Checksum;
assert(pBootBlob && pBpbBlob);
if (pBootBlob->_s > 9U * 512U) {
fprintf(stderr, "Boot Code must be at most 4608 bytes\n");
return -1;
}
if (pBpbBlob->_s < 113U) {
fprintf(stderr, "BPB must be at least 113 bytes\n");
return -1;
}
if (!checkExfat(pBpbBlob)) {
fprintf(stderr, "BPB does not contain proper exFAT signature\n");
return -1;
}
outSize = 12U * 512U;
outBuffer = malloc(outSize);
if (!outBuffer) {
fprintf(stderr, "%s: Memory allocation failed\n", __FUNCTION__);
return -1;
}
memset(outBuffer, 0, outSize);
memcpy(outBuffer, pBootBlob->_b, pBootBlob->_s);
memcpy(&outBuffer[3], &pBpbBlob->_b[3], 8);
memset(&outBuffer[11], 0, 53);
toCopy = 120;
if (pBpbBlob->_s < toCopy)
toCopy = pBpbBlob->_s;
leftOver = 120 - toCopy;
memcpy(&outBuffer[64], &pBpbBlob->_b[64], toCopy - 64);
if (leftOver)
memset(&outBuffer[120 - leftOver], 0, leftOver);
for (toCopy = 0; toCopy != 9; ++toCopy) {
p = outBuffer + toCopy * 512U + 508U;
p[2] = 0x55U;
p[3] = 0xAAU;
if (toCopy) {
p[0] = 0U;
p[1] = 0U;
}
}
if (pathName) {
/*
* Copy OEM Parameters record
*/
struct buffer_t auxBlob = { NULL, 0 };
if (loadChunk(pathName, 9 * 512 , 512, &auxBlob) >= 0) {
memcpy(&outBuffer[9 * 512], &auxBlob._b[0], 512);
free_buffer(&auxBlob);
}
}
Checksum = VBRChecksum(outBuffer, 11U * 512U);
p = outBuffer + 11U * 512U;
q = p + 512U;
for (; p < q; p += 4) {
*(unsigned*) p = Checksum;
}
if (pOutputBlob) {
pOutputBlob->_b = outBuffer;
pOutputBlob->_s = outSize;
} else
free(outBuffer);
return 0;
}
#pragma mark -
#pragma mark FAT32 Processor
#pragma mark -
static
int fat32Layout(struct buffer_t const* pBootBlob,
struct buffer_t const* pBpbBlob,
struct buffer_t* pOutputBlob)
{
unsigned char *outBuffer;
size_t outSize;
assert(pBootBlob && pBpbBlob);
if (pBootBlob->_s > 512U) {
fprintf(stderr, "Boot Code must be at most 512 bytes\n");
return -1;
}
if (pBpbBlob->_s < 90U) {
fprintf(stderr, "BPB must be at least 90 bytes\n");
return -1;
}
if (!checkFat32(pBpbBlob)) {
fprintf(stderr, "BPB does not contain proper FAT32 signature\n");
return -1;
}
outSize = 512U;
outBuffer = malloc(outSize);
if (!outBuffer) {
fprintf(stderr, "%s: Memory allocation failed\n", __FUNCTION__);
return -1;
}
memset(outBuffer, 0, outSize);
memcpy(outBuffer, pBootBlob->_b, pBootBlob->_s);
memcpy(&outBuffer[3], &pBpbBlob->_b[3], 87);
outBuffer[510] = 0x55U;
outBuffer[511] = 0xAAU;
if (pOutputBlob) {
pOutputBlob->_b = outBuffer;
pOutputBlob->_s = outSize;
} else
free(outBuffer);
return 0;
}
#pragma mark -
#pragma mark File Operations
#pragma mark -
static
void writeVBR(char const* pathName,
struct buffer_t const* pBuffer,
int numCopies,
size_t expectedSize,
char const* volumeType)
{
int fd, j;
assert(pathName && pBuffer && volumeType);
if (pBuffer->_s != expectedSize) {
fprintf(stderr, "Unexpected %s VBR size %lu (expected %lu)\n", volumeType, pBuffer->_s, expectedSize);
return;
}
fd = open(pathName, O_WRONLY);
if (fd < 0) {
fprintf(stderr, "Unable to write boot record to %s, %s\n", pathName, strerror(errno));
}
for (j = 0; j != numCopies; ++j)
write(fd, pBuffer->_b, pBuffer->_s);
close(fd);
}
static
int loadChunk(char const* pathName, off_t startOffset, off_t bytesToRead, struct buffer_t* pBuffer)
{
int fd;
ssize_t rc;
unsigned char* p;
struct stat buf;
assert(pathName);
fd = open(pathName, O_RDONLY);
if (fd < 0) {
fprintf(stderr, "Unable to open %s, %s\n", pathName, strerror(errno));
return -1;
}
if (bytesToRead > 0)
buf.st_size = bytesToRead;
else if (fstat(fd, &buf) < 0) {
fprintf(stderr, "Unable to fstat %s, %s\n", pathName, strerror(errno));
close(fd);
return -1;
}
if (startOffset > 0) {
off_t t = lseek(fd, startOffset, SEEK_SET);
if (t < 0) {
fprintf(stderr, "Unable to lseek %s, %s\n", pathName, strerror(errno));
close(fd);
return -1;
}
if (t != startOffset) {
fprintf(stderr, "lseek %s returned wrong value %lld instead of %lld\n", pathName, t, startOffset);
close(fd);
return -1;
}
if (bytesToRead <= 0)
buf.st_size -= t;
}
p = malloc((size_t) buf.st_size);
if (!p) {
fprintf(stderr, "%s: Memory allocation failed\n", __FUNCTION__);
close(fd);
return -1;
}
rc = read(fd, p, (size_t) buf.st_size);
if (rc < 0) {
fprintf(stderr, "Unable to read from %s, %s\n", pathName, strerror(errno));
free(p);
close(fd);
return -1;
}
close(fd);
if (rc != buf.st_size) {
fprintf(stderr, "Unable to read entire chunk from %s, read %ld/%lld\n", pathName, rc, buf.st_size);
free(p);
return -1;
}
if (pBuffer) {
pBuffer->_b = p;
pBuffer->_s = (size_t) rc;
} else
free(p);
return 0;
}
#pragma mark -
#pragma mark DiskArbitration Helpers
#pragma mark -
static
char const* toBSDName(char const* pathName)
{
assert(pathName);
return strncmp(pathName, &devrdisk[0], 10) ? pathName : &pathName[6];
}
static
char const* daReturnStr(DAReturn v)
{
if (unix_err(err_get_code(v)) == v)
return strerror(err_get_code(v));
switch (v) {
case kDAReturnError:
return "Error";
case kDAReturnBusy:
return "Busy";
case kDAReturnBadArgument:
return "Bad Argument";
case kDAReturnExclusiveAccess:
return "Exclusive Access";
case kDAReturnNoResources:
return "No Resources";
case kDAReturnNotFound:
return "Not Found";
case kDAReturnNotMounted:
return "Not Mounted";
case kDAReturnNotPermitted:
return "Not Permitted";
case kDAReturnNotPrivileged:
return "Not Privileged";
case kDAReturnNotReady:
return "Not Ready";
case kDAReturnNotWritable:
return "Not Writable";
case kDAReturnUnsupported:
return "Unsupported";
default:
return "Unknown";
}
}
static
int getDASessionAndDisk(char const* pathName, DASessionRef* pSession, DADiskRef* pDisk)
{
DASessionRef session;
DADiskRef disk;
assert(pathName);
session = DASessionCreate(kCFAllocatorDefault);
if (!session) {
fprintf(stderr, "DASessionCreate returned NULL\n");
return -1;
}
disk = DADiskCreateFromBSDName(kCFAllocatorDefault, session, toBSDName(pathName));
if (!disk) {
CFRelease(session);
fprintf(stderr, "DADiskCreateFromBSDName(%s) returned NULL\n", pathName);
return -1;
}
if (pDisk)
*pDisk = disk;
else
CFRelease(disk);
if (pSession)
*pSession = session;
else
CFRelease(session);
return 0;
}
#pragma mark -
#pragma mark Mount/UMount
#pragma mark -
static
void umountCallback(DADiskRef disk __unused,
DADissenterRef dissenter,
void *context)
{
if (context && dissenter != NULL) {
*(int*) context = -1;
fprintf(stderr, "umount unsuccessful, status %s\n", daReturnStr(DADissenterGetStatus(dissenter)));
}
CFRunLoopStop(CFRunLoopGetCurrent());
}
static
int umount(char const* pathName)
{
DASessionRef session;
DADiskRef disk;
int rc;
assert(pathName);
if (getDASessionAndDisk(pathName, &session, &disk) < 0)
return -1;
rc = 0;
DASessionScheduleWithRunLoop(session, CFRunLoopGetCurrent(), kCFRunLoopDefaultMode);
DADiskUnmount(disk, kDADiskUnmountOptionDefault, umountCallback, &rc);
CFRunLoopRun();
DASessionUnscheduleFromRunLoop(session, CFRunLoopGetCurrent(), kCFRunLoopDefaultMode);
CFRelease(disk);
CFRelease(session);
return rc;
}
static
void mountCallback(DADiskRef disk __unused,
DADissenterRef dissenter,
void *context)
{
if (context && dissenter != NULL) {
*(int*) context = -1;
fprintf(stderr, "mount unsuccessful, status %s\n", daReturnStr(DADissenterGetStatus(dissenter)));
}
CFRunLoopStop(CFRunLoopGetCurrent());
}
static
int mount(char const* pathName)
{
DASessionRef session;
DADiskRef disk;
int rc;
assert(pathName);
if (getDASessionAndDisk(pathName, &session, &disk) < 0)
return -1;
rc = 0;
DASessionScheduleWithRunLoop(session, CFRunLoopGetCurrent(), kCFRunLoopDefaultMode);
DADiskMount(disk, NULL, kDADiskMountOptionDefault, mountCallback, &rc);
CFRunLoopRun();
DASessionUnscheduleFromRunLoop(session, CFRunLoopGetCurrent(), kCFRunLoopDefaultMode);
CFRelease(disk);
CFRelease(session);
return rc;
}
#pragma mark -
#pragma mark Analyze Volume
#pragma mark -
static
int checkExfat(struct buffer_t const* pBpbBlob)
{
assert(pBpbBlob);
return !memcmp(&pBpbBlob->_b[3], &exfatID[0], 8);
}
static
int checkHFS(struct buffer_t const* pBpbBlob)
{
uint16_t sig;
assert(pBpbBlob);
sig = OSSwapBigToHostInt16(*(uint16_t const*)&pBpbBlob->_b[0]);
return sig == 0x4244 || sig == 0x482B || sig == 0x4858; /* 'BD', 'H+', 'HX' */
}
static
int checkFat32(struct buffer_t const* pBpbBlob)
{
uint16_t bytesPerSector, rootEntCnt;
uint8_t sectorsPerCluster;
assert(pBpbBlob);
bytesPerSector = OSSwapLittleToHostInt16(*(uint16_t const*)&pBpbBlob->_b[11]);
if ((bytesPerSector & (bytesPerSector - 1U)) ||
bytesPerSector < 0x200U ||
bytesPerSector > 0x1000U)
return 0;
sectorsPerCluster = pBpbBlob->_b[13];
if (!sectorsPerCluster ||
(sectorsPerCluster & (sectorsPerCluster - 1U)))
return 0;
rootEntCnt = OSSwapLittleToHostInt16(*(uint16_t const*)&pBpbBlob->_b[17]);
if (rootEntCnt)
return 0;
return !memcmp(&pBpbBlob->_b[82], &fat32ID[0], 8);
}
static
int checkSupportedVolume(enum volume_kind_t* pKind, struct buffer_t const* pBpbBlob, char const* pathName)
{
int rc;
assert(pKind && pBpbBlob);
rc = -1;
switch (*pKind) {
case _undetected:
if (checkExfat(pBpbBlob)) {
*pKind = _exfat;
rc = 0;
} else if (checkFat32(pBpbBlob)) {
*pKind = _msdos;
rc = 0;
} else if (pathName) {
struct buffer_t auxBlob = { NULL, 0 };
if (loadChunk(pathName, 1024 , 512, &auxBlob) >= 0) {
if (checkHFS(&auxBlob)) {
*pKind = _hfs;
rc = 0;
}
free_buffer(&auxBlob);
}
}
break;
case _exfat:
if (checkExfat(pBpbBlob))
rc = 0;
else
*pKind = _other;
break;
case _hfs:
if (checkHFS(pBpbBlob))
rc = 0;
else
*pKind = _other;
break;
case _msdos:
if (checkFat32(pBpbBlob))
rc = 0;
else
*pKind = _other;
break;
case _ntfs:
rc = 0;
break;
default:
break;
}
if (rc < 0)
unsupported();
return rc;
}
/*
* Uses statics
*/
static
int checkDevicePath2(char const* pathName)
{
DASessionRef session;
DADiskRef disk;
CFDictionaryRef descDict;
CFStringRef s_ref;
CFBooleanRef b_ref;
assert(pathName);
if (getDASessionAndDisk(pathName, &session, &disk) < 0)
return -1;
descDict = DADiskCopyDescription(disk);
if (!descDict) {
CFRelease(disk);
CFRelease(session);
fprintf(stderr, "DADiskCopyDescription(%s) returned NULL\n", pathName);
return -1;
}
if (CFDictionaryGetValueIfPresent(descDict, kDADiskDescriptionMediaWholeKey, (void const**) &b_ref) &&
CFBooleanGetValue(b_ref))
isMediaWhole = 1;
if (CFDictionaryGetValueIfPresent(descDict, kDADiskDescriptionMediaLeafKey, (void const**) &b_ref) &&
CFBooleanGetValue(b_ref))
isMediaLeaf = 1;
if (CFDictionaryContainsKey(descDict, kDADiskDescriptionVolumePathKey))
isVolumeMounted = 1;
if (CFDictionaryGetValueIfPresent(descDict, kDADiskDescriptionVolumeKindKey, (void const**) &s_ref)) {
static char cstr_buffer[64];
char const* cstr = CFStringGetCStringPtr(s_ref, kCFStringEncodingUTF8);
if (!cstr) {
CFStringGetCString(s_ref, &cstr_buffer[0], (CFIndex) sizeof cstr_buffer, kCFStringEncodingUTF8);
cstr = &cstr_buffer[0];
}
#if 0
printf("DAVolumeKind %s\n", cstr);
#endif
if (!strcmp(cstr, "exfat"))
daVolumeKind = _exfat;
else if (!strcmp(cstr, "hfs"))
daVolumeKind = _hfs;
else if (!strcmp(cstr, "msdos"))
daVolumeKind = _msdos;
else if (!strcmp(cstr, "ntfs"))
daVolumeKind = _ntfs;
else
daVolumeKind = _other;
}
#if 0
printf(stderr, "whole %c, leaf %c, mounted %c\n",
isMediaWhole ? 'Y' : 'N',
isMediaLeaf ? 'Y' : 'N',
isVolumeMounted ? 'Y' : 'N');
#endif
#if 0
CFShow(descDict);
#endif
CFRelease(descDict);
CFRelease(disk);
CFRelease(session);
return 0;
}
static
int checkDevicePath(char const* pathName)
{
struct stat buf;
assert(pathName);
if (strncmp(pathName, &devdisk[0], 9) != 0 &&
strncmp(pathName, &devrdisk[0], 10) != 0) {
fprintf(stderr, "disk must be of form /dev/rdiskUsS or /dev/diskUsS\n");
return -1;
}
if (stat(pathName, &buf) < 0) {
fprintf(stderr, "stat on %s failed, %s\n", pathName, strerror(errno));
return -1;
}
if (!(buf.st_mode & (S_IFCHR | S_IFBLK))) {
fprintf(stderr, "%s is not a block or character special device\n", pathName);
return -1;
}
/*
* FIXME: milk information from st_rdev - what's in it?
*/
#if 0
printf("size of buf is %lu\n", sizeof buf);
printf("st_dev %#x\n", buf.st_dev);
printf("st_ino %llu\n", buf.st_ino);
printf("st_mode %#o\n", buf.st_mode);
printf("st_nlink %u\n", buf.st_nlink);
printf("st_uid %u\n", buf.st_uid);
printf("st_gid %u\n", buf.st_gid);
printf("st_rdev %#x\n", buf.st_rdev);
printf("st_size %llu\n", buf.st_size);
printf("st_blocks %llu\n", buf.st_blocks);
printf("st_blksize %u\n", buf.st_blksize);
printf("st_flags %#x\n", buf.st_flags);
printf("st_gen %u\n", buf.st_gen);
#endif
return 0;
}
#pragma mark -
#pragma mark Usage
#pragma mark -
static
void usage(char const* self)
{
assert(self);
fprintf(stderr, "Usage: %s [-yM] [-f boot_code_file] disk\n", self);
fprintf(stderr, " boot_code_file is an optional boot template\n");
fprintf(stderr, " -y: don't ask any questions\n");
fprintf(stderr, " -M: keep volume mounted while proceeding (useful for root filesystem)\n");
fprintf(stderr, "disk is of the form /dev/rdiskUsS or /dev/diskUsS\n");
fprintf(stderr, "default boot files are\n");
fprintf(stderr, " boot1h for HFS+\n");
fprintf(stderr, " boot1f32 for FAT32\n");
fprintf(stderr, " boot1x for exFAT\n");
}
static
void unsupported(void)
{
fprintf(stderr, "%s", &UnsupportedMessage[0]);
}
#pragma mark -
#pragma mark Main
#pragma mark -
int main(int argc, char* const argv[])
{
int ch;
char const* bootFile = NULL;
char const* devicePath = NULL;
int dontAsk = 0;
int keepMounted = 0;
while ((ch = getopt(argc, argv, "yMf:")) != -1)
switch (ch) {
case 'y':
dontAsk = 1;
break;
case 'M':
keepMounted = 1;
break;
case 'f':
bootFile = optarg;
break;
default:
goto usage_and_error;
}
if (optind + 1 > argc)
goto usage_and_error;
devicePath = argv[optind];
if (geteuid() != 0) {
fprintf(stderr, "This program must be run as root\n");
return -1;
}
#if 0
printf("bootFile %s, devicePath %s, dontAsk %d\n", bootFile, devicePath, dontAsk);
#endif
if (checkDevicePath(devicePath) < 0)
return -1;
if (checkDevicePath2(devicePath) >= 0) {
if (isMediaWhole && !isMediaLeaf) {
fprintf(stderr, "%s is a whole disk\n", devicePath);
return -1;
}
switch (daVolumeKind) {
case _undetected:
case _exfat:
case _hfs:
case _msdos:
case _ntfs:
break;
default:
unsupported();
return -1;
}
if (isVolumeMounted && keepMounted)
isVolumeMounted = 0;
if (isVolumeMounted && umount(devicePath) < 0) {
fprintf(stderr, "Unable to umount %s, please 'diskutil umount' manually before running this program\n", devicePath);
return -1;
}
}
/*
* Note:
* Reading a non-multiple of 512 does not work on /dev/rdisk
*/
if (loadChunk(devicePath, daVolumeKind == _hfs ? 1024 : 0, 512, &bpbBlob) < 0)
goto remount_and_error;
if (checkSupportedVolume(&daVolumeKind, &bpbBlob, devicePath) < 0)
goto cleanup_and_error;
if (!bootFile) {
switch (daVolumeKind) {
case _exfat:
bootFile = &defaultBootFile_exfat[0];
break;
case _hfs:
bootFile = &defaultBootFile_hfs[0];
break;
case _msdos:
bootFile = &defaultBootFile_fat32[0];
break;
default:
unsupported();
return -1;
}
printf("Using %s as default boot template\n", bootFile);
}
if (loadChunk(bootFile, 0, 0, &bootBlob) < 0)
goto cleanup_and_error;
switch (daVolumeKind) {
case _exfat:
if (calcSum(&bootBlob, &bpbBlob, &outputBlob, devicePath) < 0)
goto cleanup_and_error;
break;
case _hfs:
free_buffer(&bpbBlob);
if (bootBlob._s != 1024U) {
fprintf(stderr, "Boot Code size must be 1024 bytes\n");
goto cleanup_and_error;
}
break;
case _msdos:
if (fat32Layout(&bootBlob, &bpbBlob, &outputBlob) < 0)
goto cleanup_and_error;
break;
default:
assert(0);
break;
}
if (!dontAsk) {
printf("About to write new boot record on %s, Are You Sure (Y/N)?", devicePath);
ch = 0;
while (ch != 'Y' && ch != 'N')
ch = getchar();
if (ch != 'Y') {
printf("Aborted due to user request\n");
goto cleanup_and_exit;
}
}
switch (daVolumeKind) {
case _exfat:
writeVBR(devicePath, &outputBlob, 2, 12U * 512U, "exFAT");
break;
case _hfs:
writeVBR(devicePath, &bootBlob, 1, 1024U, "HFS+");
break;
case _msdos:
writeVBR(devicePath, &outputBlob, 1, 512U, "FAT32");
break;
default:
assert(0);
break;
}
cleanup_and_exit:
cleanup();
if (isVolumeMounted)
mount(devicePath);
return 0;
cleanup_and_error:
cleanup();
remount_and_error:
if (isVolumeMounted)
mount(devicePath);
return -1;
usage_and_error:
usage(argv[0]);
return -1;
}