CloverBootloader/Drivers/XhciDxe/UsbHcMem.c

818 lines
21 KiB
C
Raw Normal View History

/** @file
Routine procedures for memory allocate/free.
Copyright (c) 2013 - 2016, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "Xhci.h"
/**
Allocate a block of memory to be used by the buffer pool.
@param Pool The buffer pool to allocate memory for.
@param Pages How many pages to allocate.
@return The allocated memory block or NULL if failed.
**/
USBHC_MEM_BLOCK *
UsbHcAllocMemBlock (
IN USBHC_MEM_POOL *Pool,
IN UINTN Pages
)
{
USBHC_MEM_BLOCK *Block;
EFI_PCI_IO_PROTOCOL *PciIo;
VOID *BufHost;
VOID *Mapping;
EFI_PHYSICAL_ADDRESS MappedAddr;
UINTN Bytes;
EFI_STATUS Status;
PciIo = Pool->PciIo;
Block = AllocateZeroPool(sizeof (USBHC_MEM_BLOCK));
if (Block == NULL) {
return NULL;
}
//
// each bit in the bit array represents USBHC_MEM_UNIT
// bytes of memory in the memory block.
//
// ASSERT (USBHC_MEM_UNIT * 8 <= EFI_PAGE_SIZE);
Block->BufLen = EFI_PAGES_TO_SIZE (Pages);
Block->BitsLen = Block->BufLen / (USBHC_MEM_UNIT * 8);
Block->Bits = AllocateZeroPool(Block->BitsLen);
if (Block->Bits == NULL) {
gBS->FreePool(Block);
return NULL;
}
//
// Allocate the number of Pages of memory, then map it for
// bus master read and write.
//
Status = PciIo->AllocateBuffer (
PciIo,
AllocateAnyPages,
EfiBootServicesData,
Pages,
&BufHost,
0
);
if (EFI_ERROR(Status)) {
goto FREE_BITARRAY;
}
Bytes = EFI_PAGES_TO_SIZE (Pages);
Status = PciIo->Map (
PciIo,
EfiPciIoOperationBusMasterCommonBuffer,
BufHost,
&Bytes,
&MappedAddr,
&Mapping
);
if (EFI_ERROR(Status) || (Bytes != EFI_PAGES_TO_SIZE (Pages))) {
goto FREE_BUFFER;
}
Block->BufHost = BufHost;
Block->Buf = (UINT8 *) ((UINTN) MappedAddr);
Block->Mapping = Mapping;
return Block;
FREE_BUFFER:
PciIo->FreeBuffer (PciIo, Pages, BufHost);
FREE_BITARRAY:
gBS->FreePool(Block->Bits);
gBS->FreePool(Block);
return NULL;
}
/**
Free the memory block from the memory pool.
@param Pool The memory pool to free the block from.
@param Block The memory block to free.
**/
VOID
UsbHcFreeMemBlock (
IN USBHC_MEM_POOL *Pool,
IN USBHC_MEM_BLOCK *Block
)
{
EFI_PCI_IO_PROTOCOL *PciIo;
ASSERT ((Pool != NULL) && (Block != NULL));
PciIo = Pool->PciIo;
//
// Unmap the common buffer then free the structures
//
PciIo->Unmap (PciIo, Block->Mapping);
PciIo->FreeBuffer (PciIo, EFI_SIZE_TO_PAGES (Block->BufLen), Block->BufHost);
gBS->FreePool(Block->Bits);
gBS->FreePool(Block);
}
/**
Alloc some memory from the block.
@param Block The memory block to allocate memory from.
@param Units Number of memory units to allocate.
@return The pointer to the allocated memory. If couldn't allocate the needed memory,
the return value is NULL.
**/
VOID *
UsbHcAllocMemFromBlock (
IN USBHC_MEM_BLOCK *Block,
IN UINTN Units
)
{
UINTN Byte;
UINT8 Bit;
UINTN StartByte;
UINT8 StartBit;
UINTN Available;
UINTN Count;
// ASSERT ((Block != 0) && (Units != 0));
if (!Block || !Units) {
return NULL;
}
StartByte = 0;
StartBit = 0;
Available = 0;
for (Byte = 0, Bit = 0; Byte < Block->BitsLen;) {
//
// If current bit is zero, the corresponding memory unit is
// available, otherwise we need to restart our searching.
// Available counts the consective number of zero bit.
//
if (!USB_HC_BIT_IS_SET (Block->Bits[Byte], Bit)) {
Available++;
if (Available >= Units) {
break;
}
NEXT_BIT (Byte, Bit);
} else {
NEXT_BIT (Byte, Bit);
Available = 0;
StartByte = Byte;
StartBit = Bit;
}
}
if (Available < Units) {
return NULL;
}
//
// Mark the memory as allocated
//
Byte = StartByte;
Bit = StartBit;
for (Count = 0; Count < Units; Count++) {
// ASSERT (!USB_HC_BIT_IS_SET (Block->Bits[Byte], Bit));
if (USB_HC_BIT_IS_SET (Block->Bits[Byte], Bit)) {
break;
}
Block->Bits[Byte] = (UINT8) (Block->Bits[Byte] | USB_HC_BIT (Bit));
NEXT_BIT (Byte, Bit);
}
return Block->BufHost + (StartByte * 8 + StartBit) * USBHC_MEM_UNIT;
}
/**
Calculate the corresponding pci bus address according to the Mem parameter.
@param Pool The memory pool of the host controller.
@param Mem The pointer to host memory.
@param Size The size of the memory region.
@return The pci memory address
**/
EFI_PHYSICAL_ADDRESS
UsbHcGetPciAddrForHostAddr (
IN USBHC_MEM_POOL *Pool,
IN VOID *Mem,
IN UINTN Size
)
{
USBHC_MEM_BLOCK *Head;
USBHC_MEM_BLOCK *Block;
UINTN AllocSize;
EFI_PHYSICAL_ADDRESS PhyAddr;
UINTN Offset;
Head = Pool->Head;
AllocSize = USBHC_MEM_ROUND (Size);
if (Mem == NULL) {
return 0;
}
for (Block = Head; Block != NULL; Block = Block->Next) {
//
// scan the memory block list for the memory block that
// completely contains the allocated memory.
//
if ((Block->BufHost <= (UINT8 *) Mem) && (((UINT8 *) Mem + AllocSize) <= (Block->BufHost + Block->BufLen))) {
break;
}
}
// ASSERT ((Block != NULL));
if (!Block) {
return 0;
}
//
// calculate the pci memory address for host memory address.
//
Offset = (UINT8 *)Mem - Block->BufHost;
PhyAddr = (EFI_PHYSICAL_ADDRESS)(UINTN) (Block->Buf + Offset);
return PhyAddr;
}
/**
Calculate the corresponding host address according to the pci address.
@param Pool The memory pool of the host controller.
@param Mem The pointer to pci memory.
@param Size The size of the memory region.
@return The host memory address
**/
EFI_PHYSICAL_ADDRESS
UsbHcGetHostAddrForPciAddr (
IN USBHC_MEM_POOL *Pool,
IN VOID *Mem,
IN UINTN Size
)
{
USBHC_MEM_BLOCK *Head;
USBHC_MEM_BLOCK *Block;
UINTN AllocSize;
EFI_PHYSICAL_ADDRESS HostAddr;
UINTN Offset;
Head = Pool->Head;
AllocSize = USBHC_MEM_ROUND (Size);
if (Mem == NULL) {
return 0;
}
for (Block = Head; Block != NULL; Block = Block->Next) {
//
// scan the memory block list for the memory block that
// completely contains the allocated memory.
//
if ((Block->Buf <= (UINT8 *) Mem) && (((UINT8 *) Mem + AllocSize) <= (Block->Buf + Block->BufLen))) {
break;
}
}
// ASSERT ((Block != NULL));
if (!Block) {
return 0;
}
//
// calculate the pci memory address for host memory address.
//
Offset = (UINT8 *)Mem - Block->Buf;
HostAddr = (EFI_PHYSICAL_ADDRESS)(UINTN) (Block->BufHost + Offset);
return HostAddr;
}
/**
Insert the memory block to the pool's list of the blocks.
@param Head The head of the memory pool's block list.
@param Block The memory block to insert.
**/
VOID
UsbHcInsertMemBlockToPool (
IN USBHC_MEM_BLOCK *Head,
IN USBHC_MEM_BLOCK *Block
)
{
// ASSERT ((Head != NULL) && (Block != NULL));
if (!Head || !Block) {
return;
}
Block->Next = Head->Next;
Head->Next = Block;
}
/**
Is the memory block empty?
@param Block The memory block to check.
@retval TRUE The memory block is empty.
@retval FALSE The memory block isn't empty.
**/
BOOLEAN
UsbHcIsMemBlockEmpty (
IN USBHC_MEM_BLOCK *Block
)
{
UINTN Index;
if (!Block) {
return FALSE;
}
for (Index = 0; Index < Block->BitsLen; Index++) {
if (Block->Bits[Index] != 0) {
return FALSE;
}
}
return TRUE;
}
/**
Unlink the memory block from the pool's list.
@param Head The block list head of the memory's pool.
@param BlockToUnlink The memory block to unlink.
**/
VOID
UsbHcUnlinkMemBlock (
IN USBHC_MEM_BLOCK *Head,
IN USBHC_MEM_BLOCK *BlockToUnlink
)
{
USBHC_MEM_BLOCK *Block;
// ASSERT ((Head != NULL) && (BlockToUnlink != NULL));
if (!Head || !BlockToUnlink) {
return;
}
for (Block = Head; Block != NULL; Block = Block->Next) {
if (Block->Next == BlockToUnlink) {
Block->Next = BlockToUnlink->Next;
BlockToUnlink->Next = NULL;
break;
}
}
}
/**
Initialize the memory management pool for the host controller.
@param PciIo The PciIo that can be used to access the host controller.
@retval EFI_SUCCESS The memory pool is initialized.
@retval EFI_OUT_OF_RESOURCE Fail to init the memory pool.
**/
USBHC_MEM_POOL *
UsbHcInitMemPool (
IN EFI_PCI_IO_PROTOCOL *PciIo
)
{
USBHC_MEM_POOL *Pool;
Pool = AllocatePool (sizeof (USBHC_MEM_POOL));
if (Pool == NULL) {
return Pool;
}
Pool->PciIo = PciIo;
Pool->Head = UsbHcAllocMemBlock (Pool, USBHC_MEM_DEFAULT_PAGES);
if (Pool->Head == NULL) {
gBS->FreePool(Pool);
Pool = NULL;
}
return Pool;
}
/**
Release the memory management pool.
@param Pool The USB memory pool to free.
@retval EFI_SUCCESS The memory pool is freed.
@retval EFI_DEVICE_ERROR Failed to free the memory pool.
**/
EFI_STATUS
UsbHcFreeMemPool (
IN USBHC_MEM_POOL *Pool
)
{
USBHC_MEM_BLOCK *Block;
// ASSERT (Pool->Head != NULL);
if (!Pool || !Pool->Head) {
return EFI_INVALID_PARAMETER;
}
//
// Unlink all the memory blocks from the pool, then free them.
// UsbHcUnlinkMemBlock can't be used to unlink and free the
// first block.
//
for (Block = Pool->Head->Next; Block != NULL; Block = Pool->Head->Next) {
UsbHcUnlinkMemBlock (Pool->Head, Block);
UsbHcFreeMemBlock (Pool, Block);
}
UsbHcFreeMemBlock (Pool, Pool->Head);
gBS->FreePool(Pool);
return EFI_SUCCESS;
}
/**
Allocate some memory from the host controller's memory pool
which can be used to communicate with host controller.
@param Pool The host controller's memory pool.
@param Size Size of the memory to allocate.
@return The allocated memory or NULL.
**/
VOID *
UsbHcAllocateMem (
IN USBHC_MEM_POOL *Pool,
IN UINTN Size
)
{
USBHC_MEM_BLOCK *Head;
USBHC_MEM_BLOCK *Block;
USBHC_MEM_BLOCK *NewBlock;
VOID *Mem;
UINTN AllocSize;
UINTN Pages;
if (!Pool) {
return NULL;
}
Mem = NULL;
AllocSize = USBHC_MEM_ROUND (Size);
Head = Pool->Head;
// ASSERT (Head != NULL);
if (!Head) {
return NULL;
}
//
// First check whether current memory blocks can satisfy the allocation.
//
for (Block = Head; Block != NULL; Block = Block->Next) {
Mem = UsbHcAllocMemFromBlock (Block, AllocSize / USBHC_MEM_UNIT);
if (Mem != NULL) {
ZeroMem (Mem, Size);
break;
}
}
if (Mem != NULL) {
return Mem;
}
//
// Create a new memory block if there is not enough memory
// in the pool. If the allocation size is larger than the
// default page number, just allocate a large enough memory
// block. Otherwise allocate default pages.
//
if (AllocSize > EFI_PAGES_TO_SIZE (USBHC_MEM_DEFAULT_PAGES)) {
Pages = EFI_SIZE_TO_PAGES (AllocSize) + 1;
} else {
Pages = USBHC_MEM_DEFAULT_PAGES;
}
NewBlock = UsbHcAllocMemBlock (Pool, Pages);
if (NewBlock == NULL) {
DEBUG ((EFI_D_ERROR, "UsbHcAllocateMem: failed to allocate block\n"));
return NULL;
}
//
// Add the new memory block to the pool, then allocate memory from it
//
UsbHcInsertMemBlockToPool (Head, NewBlock);
Mem = UsbHcAllocMemFromBlock (NewBlock, AllocSize / USBHC_MEM_UNIT);
if (Mem != NULL) {
ZeroMem (Mem, Size);
}
return Mem;
}
/**
Free the allocated memory back to the memory pool.
@param Pool The memory pool of the host controller.
@param Mem The memory to free.
@param Size The size of the memory to free.
**/
VOID
UsbHcFreeMem (
IN USBHC_MEM_POOL *Pool,
IN VOID *Mem,
IN UINTN Size
)
{
USBHC_MEM_BLOCK *Head;
USBHC_MEM_BLOCK *Block;
UINT8 *ToFree;
UINTN AllocSize;
UINTN Byte;
UINTN Bit;
UINTN Count;
if (!Pool || !Mem) {
return;
}
Head = Pool->Head;
AllocSize = USBHC_MEM_ROUND (Size);
ToFree = (UINT8 *) Mem;
for (Block = Head; Block != NULL; Block = Block->Next) {
//
// scan the memory block list for the memory block that
// completely contains the memory to free.
//
if ((Block->BufHost <= ToFree) && ((ToFree + AllocSize) <= (Block->BufHost + Block->BufLen))) {
//
// compute the start byte and bit in the bit array
//
Byte = ((ToFree - Block->BufHost) / USBHC_MEM_UNIT) / 8;
Bit = ((ToFree - Block->BufHost) / USBHC_MEM_UNIT) % 8;
//
// reset associated bits in bit array
//
for (Count = 0; Count < (AllocSize / USBHC_MEM_UNIT); Count++) {
// ASSERT (USB_HC_BIT_IS_SET (Block->Bits[Byte], Bit));
if (!(USB_HC_BIT_IS_SET (Block->Bits[Byte], Bit))) {
continue;
}
Block->Bits[Byte] = (UINT8) (Block->Bits[Byte] ^ USB_HC_BIT (Bit));
NEXT_BIT (Byte, Bit);
}
break;
}
}
//
// If Block == NULL, it means that the current memory isn't
// in the host controller's pool. This is critical because
// the caller has passed in a wrong memory point
//
// ASSERT (Block != NULL);
if (!Block) {
return;
}
//
// Release the current memory block if it is empty and not the head
//
if ((Block != Head) && UsbHcIsMemBlockEmpty (Block)) {
UsbHcUnlinkMemBlock (Head, Block);
UsbHcFreeMemBlock (Pool, Block);
}
return ;
}
/**
Allocates pages at a specified alignment that are suitable for an EfiPciIoOperationBusMasterCommonBuffer mapping.
If Alignment is not a power of two and Alignment is not zero, then ASSERT().
@param PciIo The PciIo that can be used to access the host controller.
@param Pages The number of pages to allocate.
@param Alignment The requested alignment of the allocation. Must be a power of two.
@param HostAddress The system memory address to map to the PCI controller.
@param DeviceAddress The resulting map address for the bus master PCI controller to
use to access the hosts HostAddress.
@param Mapping A resulting value to pass to Unmap().
@retval EFI_SUCCESS Success to allocate aligned pages.
@retval EFI_INVALID_PARAMETER Pages or Alignment is not valid.
@retval EFI_OUT_OF_RESOURCES Do not have enough resources to allocate memory.
**/
EFI_STATUS
UsbHcAllocateAlignedPages (
IN EFI_PCI_IO_PROTOCOL *PciIo,
IN UINTN Pages,
IN UINTN Alignment,
OUT VOID **HostAddress,
OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
OUT VOID **Mapping
)
{
EFI_STATUS Status;
VOID *Memory;
UINTN AlignedMemory;
UINTN AlignmentMask;
UINTN UnalignedPages;
UINTN RealPages;
UINTN Bytes;
//
// Alignment must be a power of two or zero.
//
// ASSERT ((Alignment & (Alignment - 1)) == 0);
if ((Alignment & (Alignment - 1)) != 0) {
return EFI_INVALID_PARAMETER;
}
if (Pages == 0) {
return EFI_INVALID_PARAMETER;
}
if (Alignment > EFI_PAGE_SIZE) {
//
// Calculate the total number of pages since alignment is larger than page size.
//
AlignmentMask = Alignment - 1;
RealPages = Pages + EFI_SIZE_TO_PAGES (Alignment);
//
// Make sure that Pages plus EFI_SIZE_TO_PAGES (Alignment) does not overflow.
//
// ASSERT (RealPages > Pages);
if (RealPages <= Pages) {
return EFI_INVALID_PARAMETER;
}
Status = PciIo->AllocateBuffer (
PciIo,
AllocateAnyPages,
EfiBootServicesData,
Pages,
&Memory,
0
);
if (EFI_ERROR(Status)) {
return EFI_OUT_OF_RESOURCES;
}
AlignedMemory = ((UINTN) Memory + AlignmentMask) & ~AlignmentMask;
UnalignedPages = EFI_SIZE_TO_PAGES (AlignedMemory - (UINTN) Memory);
if (UnalignedPages > 0) {
//
// Free first unaligned page(s).
//
Status = PciIo->FreeBuffer (PciIo, UnalignedPages, Memory);
// ASSERT_EFI_ERROR(Status);
if (EFI_ERROR(Status)) {
return EFI_OUT_OF_RESOURCES;
}
}
Memory = (VOID *)(UINTN)(AlignedMemory + EFI_PAGES_TO_SIZE (Pages));
UnalignedPages = RealPages - Pages - UnalignedPages;
if (UnalignedPages > 0) {
//
// Free last unaligned page(s).
//
Status = PciIo->FreeBuffer (PciIo, UnalignedPages, Memory);
// ASSERT_EFI_ERROR(Status);
if (EFI_ERROR(Status)) {
return EFI_OUT_OF_RESOURCES;
}
}
} else {
//
// Do not over-allocate pages in this case.
//
Status = PciIo->AllocateBuffer (
PciIo,
AllocateAnyPages,
EfiBootServicesData,
Pages,
&Memory,
0
);
if (EFI_ERROR(Status)) {
return EFI_OUT_OF_RESOURCES;
}
AlignedMemory = (UINTN) Memory;
}
Bytes = EFI_PAGES_TO_SIZE (Pages);
Status = PciIo->Map (
PciIo,
EfiPciIoOperationBusMasterCommonBuffer,
(VOID *) AlignedMemory,
&Bytes,
DeviceAddress,
Mapping
);
if (EFI_ERROR(Status) || (Bytes != EFI_PAGES_TO_SIZE (Pages))) {
/*Status = */PciIo->FreeBuffer (PciIo, Pages, (VOID *) AlignedMemory);
return EFI_OUT_OF_RESOURCES;
}
*HostAddress = (VOID *) AlignedMemory;
return EFI_SUCCESS;
}
/**
Frees memory that was allocated with UsbHcAllocateAlignedPages().
@param PciIo The PciIo that can be used to access the host controller.
@param HostAddress The system memory address to map to the PCI controller.
@param Pages The number of 4 KB pages to free.
@param Mapping The mapping value returned from Map().
**/
VOID
UsbHcFreeAlignedPages (
IN EFI_PCI_IO_PROTOCOL *PciIo,
IN VOID *HostAddress,
IN UINTN Pages,
VOID *Mapping
)
{
EFI_STATUS Status;
// ASSERT (Pages != 0);
if (!Pages) {
return;
}
Status = PciIo->Unmap (PciIo, Mapping);
// ASSERT_EFI_ERROR(Status);
if (EFI_ERROR(Status)) {
return;
}
Status = PciIo->FreeBuffer (
PciIo,
Pages,
HostAddress
);
// ASSERT_EFI_ERROR(Status);
if (EFI_ERROR(Status)) {
return;
}
}