2019-09-03 11:58:42 +02:00
|
|
|
/** @file
|
|
|
|
|
|
|
|
EHCI transfer scheduling routines.
|
|
|
|
|
|
|
|
Copyright (c) 2007 - 2018, Intel Corporation. All rights reserved.<BR>
|
|
|
|
SPDX-License-Identifier: BSD-2-Clause-Patent
|
|
|
|
|
|
|
|
**/
|
|
|
|
|
|
|
|
#include "Ehci.h"
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
Create helper QTD/QH for the EHCI device.
|
|
|
|
|
|
|
|
@param Ehc The EHCI device.
|
|
|
|
|
|
|
|
@retval EFI_OUT_OF_RESOURCES Failed to allocate resource for helper QTD/QH.
|
|
|
|
@retval EFI_SUCCESS Helper QH/QTD are created.
|
|
|
|
|
|
|
|
**/
|
|
|
|
EFI_STATUS
|
|
|
|
EhcCreateHelpQ (
|
|
|
|
IN USB2_HC_DEV *Ehc
|
|
|
|
)
|
|
|
|
{
|
|
|
|
USB_ENDPOINT Ep;
|
|
|
|
EHC_QH *Qh;
|
|
|
|
QH_HW *QhHw;
|
|
|
|
EHC_QTD *Qtd;
|
|
|
|
EFI_PHYSICAL_ADDRESS PciAddr;
|
|
|
|
|
|
|
|
//
|
|
|
|
// Create an inactive Qtd to terminate the short packet read.
|
|
|
|
//
|
|
|
|
Qtd = EhcCreateQtd (Ehc, NULL, NULL, 0, QTD_PID_INPUT, 0, 64);
|
|
|
|
|
|
|
|
if (Qtd == NULL) {
|
|
|
|
return EFI_OUT_OF_RESOURCES;
|
|
|
|
}
|
|
|
|
|
|
|
|
Qtd->QtdHw.Status = QTD_STAT_HALTED;
|
|
|
|
Ehc->ShortReadStop = Qtd;
|
|
|
|
|
|
|
|
//
|
|
|
|
// Create a QH to act as the EHC reclamation header.
|
|
|
|
// Set the header to loopback to itself.
|
|
|
|
//
|
|
|
|
Ep.DevAddr = 0;
|
|
|
|
Ep.EpAddr = 1;
|
|
|
|
Ep.Direction = EfiUsbDataIn;
|
|
|
|
Ep.DevSpeed = EFI_USB_SPEED_HIGH;
|
|
|
|
Ep.MaxPacket = 64;
|
|
|
|
Ep.HubAddr = 0;
|
|
|
|
Ep.HubPort = 0;
|
|
|
|
Ep.Toggle = 0;
|
|
|
|
Ep.Type = EHC_BULK_TRANSFER;
|
|
|
|
Ep.PollRate = 1;
|
|
|
|
|
|
|
|
Qh = EhcCreateQh (Ehc, &Ep);
|
|
|
|
|
|
|
|
if (Qh == NULL) {
|
|
|
|
return EFI_OUT_OF_RESOURCES;
|
|
|
|
}
|
|
|
|
|
|
|
|
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, Qh, sizeof (EHC_QH));
|
|
|
|
QhHw = &Qh->QhHw;
|
|
|
|
QhHw->HorizonLink = QH_LINK (PciAddr + OFFSET_OF(EHC_QH, QhHw), EHC_TYPE_QH, FALSE);
|
|
|
|
QhHw->Status = QTD_STAT_HALTED;
|
|
|
|
QhHw->ReclaimHead = 1;
|
|
|
|
Qh->NextQh = Qh;
|
|
|
|
Ehc->ReclaimHead = Qh;
|
|
|
|
|
|
|
|
//
|
|
|
|
// Create a dummy QH to act as the terminator for periodical schedule
|
|
|
|
//
|
|
|
|
Ep.EpAddr = 2;
|
|
|
|
Ep.Type = EHC_INT_TRANSFER_SYNC;
|
|
|
|
|
|
|
|
Qh = EhcCreateQh (Ehc, &Ep);
|
|
|
|
|
|
|
|
if (Qh == NULL) {
|
|
|
|
return EFI_OUT_OF_RESOURCES;
|
|
|
|
}
|
|
|
|
|
|
|
|
Qh->QhHw.Status = QTD_STAT_HALTED;
|
|
|
|
Ehc->PeriodOne = Qh;
|
|
|
|
|
|
|
|
return EFI_SUCCESS;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
Initialize the schedule data structure such as frame list.
|
|
|
|
|
|
|
|
@param Ehc The EHCI device to init schedule data.
|
|
|
|
|
|
|
|
@retval EFI_OUT_OF_RESOURCES Failed to allocate resource to init schedule data.
|
|
|
|
@retval EFI_SUCCESS The schedule data is initialized.
|
|
|
|
|
|
|
|
**/
|
|
|
|
EFI_STATUS
|
|
|
|
EhcInitSched (
|
|
|
|
IN USB2_HC_DEV *Ehc
|
|
|
|
)
|
|
|
|
{
|
|
|
|
EFI_PCI_IO_PROTOCOL *PciIo;
|
|
|
|
VOID *Buf;
|
|
|
|
EFI_PHYSICAL_ADDRESS PhyAddr;
|
|
|
|
VOID *Map;
|
|
|
|
UINTN Pages;
|
|
|
|
UINTN Bytes;
|
|
|
|
UINTN Index;
|
|
|
|
EFI_STATUS Status;
|
|
|
|
EFI_PHYSICAL_ADDRESS PciAddr;
|
|
|
|
|
|
|
|
//
|
|
|
|
// First initialize the periodical schedule data:
|
|
|
|
// 1. Allocate and map the memory for the frame list
|
|
|
|
// 2. Create the help QTD/QH
|
|
|
|
// 3. Initialize the frame entries
|
|
|
|
// 4. Set the frame list register
|
|
|
|
//
|
|
|
|
PciIo = Ehc->PciIo;
|
|
|
|
|
|
|
|
Bytes = 4096;
|
|
|
|
Pages = EFI_SIZE_TO_PAGES (Bytes);
|
|
|
|
|
|
|
|
Status = PciIo->AllocateBuffer (
|
|
|
|
PciIo,
|
|
|
|
AllocateAnyPages,
|
|
|
|
EfiBootServicesData,
|
|
|
|
Pages,
|
|
|
|
&Buf,
|
|
|
|
0
|
|
|
|
);
|
|
|
|
|
2020-04-23 11:08:10 +02:00
|
|
|
if (EFI_ERROR(Status)) {
|
2019-09-03 11:58:42 +02:00
|
|
|
return EFI_OUT_OF_RESOURCES;
|
|
|
|
}
|
|
|
|
|
|
|
|
Status = PciIo->Map (
|
|
|
|
PciIo,
|
|
|
|
EfiPciIoOperationBusMasterCommonBuffer,
|
|
|
|
Buf,
|
|
|
|
&Bytes,
|
|
|
|
&PhyAddr,
|
|
|
|
&Map
|
|
|
|
);
|
|
|
|
|
2020-04-23 11:08:10 +02:00
|
|
|
if (EFI_ERROR(Status) || (Bytes != 4096)) {
|
2019-09-03 11:58:42 +02:00
|
|
|
PciIo->FreeBuffer (PciIo, Pages, Buf);
|
|
|
|
return EFI_OUT_OF_RESOURCES;
|
|
|
|
}
|
|
|
|
|
|
|
|
Ehc->PeriodFrame = Buf;
|
|
|
|
Ehc->PeriodFrameMap = Map;
|
|
|
|
|
|
|
|
//
|
|
|
|
// Program the FRAMELISTBASE register with the low 32 bit addr
|
|
|
|
//
|
|
|
|
EhcWriteOpReg (Ehc, EHC_FRAME_BASE_OFFSET, EHC_LOW_32BIT (PhyAddr));
|
|
|
|
//
|
|
|
|
// Program the CTRLDSSEGMENT register with the high 32 bit addr
|
|
|
|
//
|
|
|
|
EhcWriteOpReg (Ehc, EHC_CTRLDSSEG_OFFSET, EHC_HIGH_32BIT (PhyAddr));
|
|
|
|
|
|
|
|
//
|
|
|
|
// Init memory pool management then create the helper
|
|
|
|
// QTD/QH. If failed, previously allocated resources
|
|
|
|
// will be freed by EhcFreeSched
|
|
|
|
//
|
|
|
|
Ehc->MemPool = UsbHcInitMemPool (
|
|
|
|
PciIo,
|
|
|
|
Ehc->Support64BitDma,
|
|
|
|
EHC_HIGH_32BIT (PhyAddr)
|
|
|
|
);
|
|
|
|
|
|
|
|
if (Ehc->MemPool == NULL) {
|
|
|
|
Status = EFI_OUT_OF_RESOURCES;
|
|
|
|
goto ErrorExit1;
|
|
|
|
}
|
|
|
|
|
|
|
|
Status = EhcCreateHelpQ (Ehc);
|
|
|
|
|
2020-04-23 11:08:10 +02:00
|
|
|
if (EFI_ERROR(Status)) {
|
2019-09-03 11:58:42 +02:00
|
|
|
goto ErrorExit;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Initialize the frame list entries then set the registers
|
|
|
|
//
|
2020-04-28 12:49:24 +02:00
|
|
|
Ehc->PeriodFrameHost = AllocateZeroPool(EHC_FRAME_LEN * sizeof (UINTN));
|
2019-09-03 11:58:42 +02:00
|
|
|
if (Ehc->PeriodFrameHost == NULL) {
|
|
|
|
Status = EFI_OUT_OF_RESOURCES;
|
|
|
|
goto ErrorExit;
|
|
|
|
}
|
|
|
|
|
|
|
|
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, Ehc->PeriodOne, sizeof (EHC_QH));
|
|
|
|
|
|
|
|
for (Index = 0; Index < EHC_FRAME_LEN; Index++) {
|
|
|
|
//
|
|
|
|
// Store the pci bus address of the QH in period frame list which will be accessed by pci bus master.
|
|
|
|
//
|
|
|
|
((UINT32 *)(Ehc->PeriodFrame))[Index] = QH_LINK (PciAddr, EHC_TYPE_QH, FALSE);
|
|
|
|
//
|
|
|
|
// Store the host address of the QH in period frame list which will be accessed by host.
|
|
|
|
//
|
|
|
|
((UINTN *)(Ehc->PeriodFrameHost))[Index] = (UINTN)Ehc->PeriodOne;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Second initialize the asynchronous schedule:
|
|
|
|
// Only need to set the AsynListAddr register to
|
|
|
|
// the reclamation header
|
|
|
|
//
|
|
|
|
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, Ehc->ReclaimHead, sizeof (EHC_QH));
|
|
|
|
EhcWriteOpReg (Ehc, EHC_ASYNC_HEAD_OFFSET, EHC_LOW_32BIT (PciAddr));
|
|
|
|
return EFI_SUCCESS;
|
|
|
|
|
|
|
|
ErrorExit:
|
|
|
|
if (Ehc->PeriodOne != NULL) {
|
|
|
|
UsbHcFreeMem (Ehc->MemPool, Ehc->PeriodOne, sizeof (EHC_QH));
|
|
|
|
Ehc->PeriodOne = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (Ehc->ReclaimHead != NULL) {
|
|
|
|
UsbHcFreeMem (Ehc->MemPool, Ehc->ReclaimHead, sizeof (EHC_QH));
|
|
|
|
Ehc->ReclaimHead = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (Ehc->ShortReadStop != NULL) {
|
|
|
|
UsbHcFreeMem (Ehc->MemPool, Ehc->ShortReadStop, sizeof (EHC_QTD));
|
|
|
|
Ehc->ShortReadStop = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
ErrorExit1:
|
|
|
|
PciIo->FreeBuffer (PciIo, Pages, Buf);
|
|
|
|
PciIo->Unmap (PciIo, Map);
|
|
|
|
|
|
|
|
return Status;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
Free the schedule data. It may be partially initialized.
|
|
|
|
|
|
|
|
@param Ehc The EHCI device.
|
|
|
|
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
EhcFreeSched (
|
|
|
|
IN USB2_HC_DEV *Ehc
|
|
|
|
)
|
|
|
|
{
|
|
|
|
EFI_PCI_IO_PROTOCOL *PciIo;
|
|
|
|
|
|
|
|
EhcWriteOpReg (Ehc, EHC_FRAME_BASE_OFFSET, 0);
|
|
|
|
EhcWriteOpReg (Ehc, EHC_ASYNC_HEAD_OFFSET, 0);
|
|
|
|
|
|
|
|
if (Ehc->PeriodOne != NULL) {
|
|
|
|
UsbHcFreeMem (Ehc->MemPool, Ehc->PeriodOne, sizeof (EHC_QH));
|
|
|
|
Ehc->PeriodOne = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (Ehc->ReclaimHead != NULL) {
|
|
|
|
UsbHcFreeMem (Ehc->MemPool, Ehc->ReclaimHead, sizeof (EHC_QH));
|
|
|
|
Ehc->ReclaimHead = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (Ehc->ShortReadStop != NULL) {
|
|
|
|
UsbHcFreeMem (Ehc->MemPool, Ehc->ShortReadStop, sizeof (EHC_QTD));
|
|
|
|
Ehc->ShortReadStop = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (Ehc->MemPool != NULL) {
|
|
|
|
UsbHcFreeMemPool (Ehc->MemPool);
|
|
|
|
Ehc->MemPool = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (Ehc->PeriodFrame != NULL) {
|
|
|
|
PciIo = Ehc->PciIo;
|
|
|
|
ASSERT (PciIo != NULL);
|
|
|
|
|
|
|
|
PciIo->Unmap (PciIo, Ehc->PeriodFrameMap);
|
|
|
|
|
|
|
|
PciIo->FreeBuffer (
|
|
|
|
PciIo,
|
|
|
|
EFI_SIZE_TO_PAGES (EFI_PAGE_SIZE),
|
|
|
|
Ehc->PeriodFrame
|
|
|
|
);
|
|
|
|
|
|
|
|
Ehc->PeriodFrame = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (Ehc->PeriodFrameHost != NULL) {
|
2020-04-23 11:08:10 +02:00
|
|
|
FreePool(Ehc->PeriodFrameHost);
|
2019-09-03 11:58:42 +02:00
|
|
|
Ehc->PeriodFrameHost = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
Link the queue head to the asynchronous schedule list.
|
|
|
|
UEFI only supports one CTRL/BULK transfer at a time
|
|
|
|
due to its interfaces. This simplifies the AsynList
|
|
|
|
management: A reclamation header is always linked to
|
|
|
|
the AsyncListAddr, the only active QH is appended to it.
|
|
|
|
|
|
|
|
@param Ehc The EHCI device.
|
|
|
|
@param Qh The queue head to link.
|
|
|
|
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
EhcLinkQhToAsync (
|
|
|
|
IN USB2_HC_DEV *Ehc,
|
|
|
|
IN EHC_QH *Qh
|
|
|
|
)
|
|
|
|
{
|
|
|
|
EHC_QH *Head;
|
|
|
|
EFI_PHYSICAL_ADDRESS PciAddr;
|
|
|
|
|
|
|
|
//
|
|
|
|
// Append the queue head after the reclaim header, then
|
|
|
|
// fix the hardware visiable parts (EHCI R1.0 page 72).
|
|
|
|
// ReclaimHead is always linked to the EHCI's AsynListAddr.
|
|
|
|
//
|
|
|
|
Head = Ehc->ReclaimHead;
|
|
|
|
|
|
|
|
Qh->NextQh = Head->NextQh;
|
|
|
|
Head->NextQh = Qh;
|
|
|
|
|
|
|
|
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, Qh->NextQh, sizeof (EHC_QH));
|
|
|
|
Qh->QhHw.HorizonLink = QH_LINK (PciAddr, EHC_TYPE_QH, FALSE);
|
|
|
|
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, Head->NextQh, sizeof (EHC_QH));
|
|
|
|
Head->QhHw.HorizonLink = QH_LINK (PciAddr, EHC_TYPE_QH, FALSE);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
Unlink a queue head from the asynchronous schedule list.
|
|
|
|
Need to synchronize with hardware.
|
|
|
|
|
|
|
|
@param Ehc The EHCI device.
|
|
|
|
@param Qh The queue head to unlink.
|
|
|
|
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
EhcUnlinkQhFromAsync (
|
|
|
|
IN USB2_HC_DEV *Ehc,
|
|
|
|
IN EHC_QH *Qh
|
|
|
|
)
|
|
|
|
{
|
|
|
|
EHC_QH *Head;
|
|
|
|
EFI_STATUS Status;
|
|
|
|
EFI_PHYSICAL_ADDRESS PciAddr;
|
|
|
|
|
|
|
|
ASSERT (Ehc->ReclaimHead->NextQh == Qh);
|
|
|
|
|
|
|
|
//
|
|
|
|
// Remove the QH from reclamation head, then update the hardware
|
|
|
|
// visiable part: Only need to loopback the ReclaimHead. The Qh
|
|
|
|
// is pointing to ReclaimHead (which is staill in the list).
|
|
|
|
//
|
|
|
|
Head = Ehc->ReclaimHead;
|
|
|
|
|
|
|
|
Head->NextQh = Qh->NextQh;
|
|
|
|
Qh->NextQh = NULL;
|
|
|
|
|
|
|
|
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, Head->NextQh, sizeof (EHC_QH));
|
|
|
|
Head->QhHw.HorizonLink = QH_LINK (PciAddr, EHC_TYPE_QH, FALSE);
|
|
|
|
|
|
|
|
//
|
|
|
|
// Set and wait the door bell to synchronize with the hardware
|
|
|
|
//
|
|
|
|
Status = EhcSetAndWaitDoorBell (Ehc, EHC_GENERIC_TIMEOUT);
|
|
|
|
|
2020-04-23 11:08:10 +02:00
|
|
|
if (EFI_ERROR(Status)) {
|
2019-09-03 11:58:42 +02:00
|
|
|
DEBUG ((EFI_D_ERROR, "EhcUnlinkQhFromAsync: Failed to synchronize with doorbell\n"));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
Link a queue head for interrupt transfer to the periodic
|
|
|
|
schedule frame list. This code is very much the same as
|
|
|
|
that in UHCI.
|
|
|
|
|
|
|
|
@param Ehc The EHCI device.
|
|
|
|
@param Qh The queue head to link.
|
|
|
|
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
EhcLinkQhToPeriod (
|
|
|
|
IN USB2_HC_DEV *Ehc,
|
|
|
|
IN EHC_QH *Qh
|
|
|
|
)
|
|
|
|
{
|
|
|
|
UINTN Index;
|
|
|
|
EHC_QH *Prev;
|
|
|
|
EHC_QH *Next;
|
|
|
|
EFI_PHYSICAL_ADDRESS PciAddr;
|
|
|
|
|
|
|
|
for (Index = 0; Index < EHC_FRAME_LEN; Index += Qh->Interval) {
|
|
|
|
//
|
|
|
|
// First QH can't be NULL because we always keep PeriodOne
|
|
|
|
// heads on the frame list
|
|
|
|
//
|
|
|
|
ASSERT (!EHC_LINK_TERMINATED (((UINT32*)Ehc->PeriodFrame)[Index]));
|
|
|
|
Next = (EHC_QH*)((UINTN*)Ehc->PeriodFrameHost)[Index];
|
|
|
|
Prev = NULL;
|
|
|
|
|
|
|
|
//
|
|
|
|
// Now, insert the queue head (Qh) into this frame:
|
|
|
|
// 1. Find a queue head with the same poll interval, just insert
|
|
|
|
// Qh after this queue head, then we are done.
|
|
|
|
//
|
|
|
|
// 2. Find the position to insert the queue head into:
|
|
|
|
// Previous head's interval is bigger than Qh's
|
|
|
|
// Next head's interval is less than Qh's
|
|
|
|
// Then, insert the Qh between then
|
|
|
|
//
|
|
|
|
while (Next->Interval > Qh->Interval) {
|
|
|
|
Prev = Next;
|
|
|
|
Next = Next->NextQh;
|
|
|
|
}
|
|
|
|
|
|
|
|
ASSERT (Next != NULL);
|
|
|
|
|
|
|
|
//
|
|
|
|
// The entry may have been linked into the frame by early insertation.
|
|
|
|
// For example: if insert a Qh with Qh.Interval == 4, and there is a Qh
|
|
|
|
// with Qh.Interval == 8 on the frame. If so, we are done with this frame.
|
|
|
|
// It isn't necessary to compare all the QH with the same interval to
|
|
|
|
// Qh. This is because if there is other QH with the same interval, Qh
|
|
|
|
// should has been inserted after that at Frames[0] and at Frames[0] it is
|
|
|
|
// impossible for (Next == Qh)
|
|
|
|
//
|
|
|
|
if (Next == Qh) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (Next->Interval == Qh->Interval) {
|
|
|
|
//
|
|
|
|
// If there is a QH with the same interval, it locates at
|
|
|
|
// Frames[0], and we can simply insert it after this QH. We
|
|
|
|
// are all done.
|
|
|
|
//
|
|
|
|
ASSERT ((Index == 0) && (Qh->NextQh == NULL));
|
|
|
|
|
|
|
|
Prev = Next;
|
|
|
|
Next = Next->NextQh;
|
|
|
|
|
|
|
|
Qh->NextQh = Next;
|
|
|
|
Prev->NextQh = Qh;
|
|
|
|
|
|
|
|
Qh->QhHw.HorizonLink = Prev->QhHw.HorizonLink;
|
|
|
|
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, Qh, sizeof (EHC_QH));
|
|
|
|
Prev->QhHw.HorizonLink = QH_LINK (PciAddr, EHC_TYPE_QH, FALSE);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// OK, find the right position, insert it in. If Qh's next
|
|
|
|
// link has already been set, it is in position. This is
|
|
|
|
// guarranted by 2^n polling interval.
|
|
|
|
//
|
|
|
|
if (Qh->NextQh == NULL) {
|
|
|
|
Qh->NextQh = Next;
|
|
|
|
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, Next, sizeof (EHC_QH));
|
|
|
|
Qh->QhHw.HorizonLink = QH_LINK (PciAddr, EHC_TYPE_QH, FALSE);
|
|
|
|
}
|
|
|
|
|
|
|
|
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, Qh, sizeof (EHC_QH));
|
|
|
|
|
|
|
|
if (Prev == NULL) {
|
|
|
|
((UINT32*)Ehc->PeriodFrame)[Index] = QH_LINK (PciAddr, EHC_TYPE_QH, FALSE);
|
|
|
|
((UINTN*)Ehc->PeriodFrameHost)[Index] = (UINTN)Qh;
|
|
|
|
} else {
|
|
|
|
Prev->NextQh = Qh;
|
|
|
|
Prev->QhHw.HorizonLink = QH_LINK (PciAddr, EHC_TYPE_QH, FALSE);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
Unlink an interrupt queue head from the periodic
|
|
|
|
schedule frame list.
|
|
|
|
|
|
|
|
@param Ehc The EHCI device.
|
|
|
|
@param Qh The queue head to unlink.
|
|
|
|
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
EhcUnlinkQhFromPeriod (
|
|
|
|
IN USB2_HC_DEV *Ehc,
|
|
|
|
IN EHC_QH *Qh
|
|
|
|
)
|
|
|
|
{
|
|
|
|
UINTN Index;
|
|
|
|
EHC_QH *Prev;
|
|
|
|
EHC_QH *This;
|
|
|
|
|
|
|
|
for (Index = 0; Index < EHC_FRAME_LEN; Index += Qh->Interval) {
|
|
|
|
//
|
|
|
|
// Frame link can't be NULL because we always keep PeroidOne
|
|
|
|
// on the frame list
|
|
|
|
//
|
|
|
|
ASSERT (!EHC_LINK_TERMINATED (((UINT32*)Ehc->PeriodFrame)[Index]));
|
|
|
|
This = (EHC_QH*)((UINTN*)Ehc->PeriodFrameHost)[Index];
|
|
|
|
Prev = NULL;
|
|
|
|
|
|
|
|
//
|
|
|
|
// Walk through the frame's QH list to find the
|
|
|
|
// queue head to remove
|
|
|
|
//
|
|
|
|
while ((This != NULL) && (This != Qh)) {
|
|
|
|
Prev = This;
|
|
|
|
This = This->NextQh;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Qh may have already been unlinked from this frame
|
|
|
|
// by early action. See the comments in EhcLinkQhToPeriod.
|
|
|
|
//
|
|
|
|
if (This == NULL) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (Prev == NULL) {
|
|
|
|
//
|
|
|
|
// Qh is the first entry in the frame
|
|
|
|
//
|
|
|
|
((UINT32*)Ehc->PeriodFrame)[Index] = Qh->QhHw.HorizonLink;
|
|
|
|
((UINTN*)Ehc->PeriodFrameHost)[Index] = (UINTN)Qh->NextQh;
|
|
|
|
} else {
|
|
|
|
Prev->NextQh = Qh->NextQh;
|
|
|
|
Prev->QhHw.HorizonLink = Qh->QhHw.HorizonLink;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
Check the URB's execution result and update the URB's
|
|
|
|
result accordingly.
|
|
|
|
|
|
|
|
@param Ehc The EHCI device.
|
|
|
|
@param Urb The URB to check result.
|
|
|
|
|
|
|
|
@return Whether the result of URB transfer is finialized.
|
|
|
|
|
|
|
|
**/
|
|
|
|
BOOLEAN
|
|
|
|
EhcCheckUrbResult (
|
|
|
|
IN USB2_HC_DEV *Ehc,
|
|
|
|
IN URB *Urb
|
|
|
|
)
|
|
|
|
{
|
|
|
|
LIST_ENTRY *Entry;
|
|
|
|
EHC_QTD *Qtd;
|
|
|
|
QTD_HW *QtdHw;
|
|
|
|
UINT8 State;
|
|
|
|
BOOLEAN Finished;
|
|
|
|
EFI_PHYSICAL_ADDRESS PciAddr;
|
|
|
|
|
|
|
|
ASSERT ((Ehc != NULL) && (Urb != NULL) && (Urb->Qh != NULL));
|
|
|
|
|
|
|
|
Finished = TRUE;
|
|
|
|
Urb->Completed = 0;
|
|
|
|
|
|
|
|
Urb->Result = EFI_USB_NOERROR;
|
|
|
|
|
|
|
|
if (EhcIsHalt (Ehc) || EhcIsSysError (Ehc)) {
|
|
|
|
Urb->Result |= EFI_USB_ERR_SYSTEM;
|
|
|
|
goto ON_EXIT;
|
|
|
|
}
|
|
|
|
|
|
|
|
EFI_LIST_FOR_EACH (Entry, &Urb->Qh->Qtds) {
|
|
|
|
Qtd = EFI_LIST_CONTAINER (Entry, EHC_QTD, QtdList);
|
|
|
|
QtdHw = &Qtd->QtdHw;
|
|
|
|
State = (UINT8) QtdHw->Status;
|
|
|
|
|
|
|
|
if (EHC_BIT_IS_SET (State, QTD_STAT_HALTED)) {
|
|
|
|
//
|
|
|
|
// EHCI will halt the queue head when met some error.
|
|
|
|
// If it is halted, the result of URB is finialized.
|
|
|
|
//
|
|
|
|
if ((State & QTD_STAT_ERR_MASK) == 0) {
|
|
|
|
Urb->Result |= EFI_USB_ERR_STALL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (EHC_BIT_IS_SET (State, QTD_STAT_BABBLE_ERR)) {
|
|
|
|
Urb->Result |= EFI_USB_ERR_BABBLE;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (EHC_BIT_IS_SET (State, QTD_STAT_BUFF_ERR)) {
|
|
|
|
Urb->Result |= EFI_USB_ERR_BUFFER;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (EHC_BIT_IS_SET (State, QTD_STAT_TRANS_ERR) && (QtdHw->ErrCnt == 0)) {
|
|
|
|
Urb->Result |= EFI_USB_ERR_TIMEOUT;
|
|
|
|
}
|
|
|
|
|
|
|
|
Finished = TRUE;
|
|
|
|
goto ON_EXIT;
|
|
|
|
|
|
|
|
} else if (EHC_BIT_IS_SET (State, QTD_STAT_ACTIVE)) {
|
|
|
|
//
|
|
|
|
// The QTD is still active, no need to check furthur.
|
|
|
|
//
|
|
|
|
Urb->Result |= EFI_USB_ERR_NOTEXECUTE;
|
|
|
|
|
|
|
|
Finished = FALSE;
|
|
|
|
goto ON_EXIT;
|
|
|
|
|
|
|
|
} else {
|
|
|
|
//
|
|
|
|
// This QTD is finished OK or met short packet read. Update the
|
|
|
|
// transfer length if it isn't a setup.
|
|
|
|
//
|
|
|
|
if (QtdHw->Pid != QTD_PID_SETUP) {
|
|
|
|
Urb->Completed += Qtd->DataLen - QtdHw->TotalBytes;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((QtdHw->TotalBytes != 0) && (QtdHw->Pid == QTD_PID_INPUT)) {
|
|
|
|
EhcDumpQh (Urb->Qh, "Short packet read", FALSE);
|
|
|
|
|
|
|
|
//
|
|
|
|
// Short packet read condition. If it isn't a setup transfer,
|
|
|
|
// no need to check furthur: the queue head will halt at the
|
|
|
|
// ShortReadStop. If it is a setup transfer, need to check the
|
|
|
|
// Status Stage of the setup transfer to get the finial result
|
|
|
|
//
|
|
|
|
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, Ehc->ShortReadStop, sizeof (EHC_QTD));
|
|
|
|
if (QtdHw->AltNext == QTD_LINK (PciAddr, FALSE)) {
|
|
|
|
DEBUG ((EFI_D_VERBOSE, "EhcCheckUrbResult: Short packet read, break\n"));
|
|
|
|
|
|
|
|
Finished = TRUE;
|
|
|
|
goto ON_EXIT;
|
|
|
|
}
|
|
|
|
|
|
|
|
DEBUG ((EFI_D_VERBOSE, "EhcCheckUrbResult: Short packet read, continue\n"));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ON_EXIT:
|
|
|
|
//
|
|
|
|
// Return the data toggle set by EHCI hardware, bulk and interrupt
|
|
|
|
// transfer will use this to initialize the next transaction. For
|
|
|
|
// Control transfer, it always start a new data toggle sequence for
|
|
|
|
// new transfer.
|
|
|
|
//
|
|
|
|
// NOTICE: don't move DT update before the loop, otherwise there is
|
|
|
|
// a race condition that DT is wrong.
|
|
|
|
//
|
|
|
|
Urb->DataToggle = (UINT8) Urb->Qh->QhHw.DataToggle;
|
|
|
|
|
|
|
|
return Finished;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
Execute the transfer by polling the URB. This is a synchronous operation.
|
|
|
|
|
|
|
|
@param Ehc The EHCI device.
|
|
|
|
@param Urb The URB to execute.
|
|
|
|
@param TimeOut The time to wait before abort, in millisecond.
|
|
|
|
|
|
|
|
@return EFI_DEVICE_ERROR The transfer failed due to transfer error.
|
|
|
|
@return EFI_TIMEOUT The transfer failed due to time out.
|
|
|
|
@return EFI_SUCCESS The transfer finished OK.
|
|
|
|
|
|
|
|
**/
|
|
|
|
EFI_STATUS
|
|
|
|
EhcExecTransfer (
|
|
|
|
IN USB2_HC_DEV *Ehc,
|
|
|
|
IN URB *Urb,
|
|
|
|
IN UINTN TimeOut
|
|
|
|
)
|
|
|
|
{
|
|
|
|
EFI_STATUS Status;
|
|
|
|
UINTN Index;
|
|
|
|
UINTN Loop;
|
|
|
|
BOOLEAN Finished;
|
|
|
|
BOOLEAN InfiniteLoop;
|
|
|
|
|
|
|
|
Status = EFI_SUCCESS;
|
|
|
|
Loop = TimeOut * EHC_1_MILLISECOND;
|
|
|
|
Finished = FALSE;
|
|
|
|
InfiniteLoop = FALSE;
|
|
|
|
|
|
|
|
//
|
|
|
|
// According to UEFI spec section 16.2.4, If Timeout is 0, then the caller
|
|
|
|
// must wait for the function to be completed until EFI_SUCCESS or EFI_DEVICE_ERROR
|
|
|
|
// is returned.
|
|
|
|
//
|
|
|
|
if (TimeOut == 0) {
|
|
|
|
InfiniteLoop = TRUE;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (Index = 0; InfiniteLoop || (Index < Loop); Index++) {
|
|
|
|
Finished = EhcCheckUrbResult (Ehc, Urb);
|
|
|
|
|
|
|
|
if (Finished) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
gBS->Stall (EHC_1_MICROSECOND);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!Finished) {
|
|
|
|
DEBUG ((EFI_D_ERROR, "EhcExecTransfer: transfer not finished in %dms\n", (UINT32)TimeOut));
|
|
|
|
EhcDumpQh (Urb->Qh, NULL, FALSE);
|
|
|
|
|
|
|
|
Status = EFI_TIMEOUT;
|
|
|
|
|
|
|
|
} else if (Urb->Result != EFI_USB_NOERROR) {
|
|
|
|
DEBUG ((EFI_D_ERROR, "EhcExecTransfer: transfer failed with %x\n", Urb->Result));
|
|
|
|
EhcDumpQh (Urb->Qh, NULL, FALSE);
|
|
|
|
|
|
|
|
Status = EFI_DEVICE_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
return Status;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
Delete a single asynchronous interrupt transfer for
|
|
|
|
the device and endpoint.
|
|
|
|
|
|
|
|
@param Ehc The EHCI device.
|
|
|
|
@param DevAddr The address of the target device.
|
|
|
|
@param EpNum The endpoint of the target.
|
|
|
|
@param DataToggle Return the next data toggle to use.
|
|
|
|
|
|
|
|
@retval EFI_SUCCESS An asynchronous transfer is removed.
|
|
|
|
@retval EFI_NOT_FOUND No transfer for the device is found.
|
|
|
|
|
|
|
|
**/
|
|
|
|
EFI_STATUS
|
|
|
|
EhciDelAsyncIntTransfer (
|
|
|
|
IN USB2_HC_DEV *Ehc,
|
|
|
|
IN UINT8 DevAddr,
|
|
|
|
IN UINT8 EpNum,
|
|
|
|
OUT UINT8 *DataToggle
|
|
|
|
)
|
|
|
|
{
|
|
|
|
LIST_ENTRY *Entry;
|
|
|
|
LIST_ENTRY *Next;
|
|
|
|
URB *Urb;
|
|
|
|
EFI_USB_DATA_DIRECTION Direction;
|
|
|
|
|
|
|
|
Direction = (((EpNum & 0x80) != 0) ? EfiUsbDataIn : EfiUsbDataOut);
|
|
|
|
EpNum &= 0x0F;
|
|
|
|
|
|
|
|
EFI_LIST_FOR_EACH_SAFE (Entry, Next, &Ehc->AsyncIntTransfers) {
|
|
|
|
Urb = EFI_LIST_CONTAINER (Entry, URB, UrbList);
|
|
|
|
|
|
|
|
if ((Urb->Ep.DevAddr == DevAddr) && (Urb->Ep.EpAddr == EpNum) &&
|
|
|
|
(Urb->Ep.Direction == Direction)) {
|
|
|
|
//
|
|
|
|
// Check the URB status to retrieve the next data toggle
|
|
|
|
// from the associated queue head.
|
|
|
|
//
|
|
|
|
EhcCheckUrbResult (Ehc, Urb);
|
|
|
|
*DataToggle = Urb->DataToggle;
|
|
|
|
|
|
|
|
EhcUnlinkQhFromPeriod (Ehc, Urb->Qh);
|
|
|
|
RemoveEntryList (&Urb->UrbList);
|
|
|
|
|
2020-04-23 11:08:10 +02:00
|
|
|
gBS->FreePool(Urb->Data);
|
2019-09-03 11:58:42 +02:00
|
|
|
EhcFreeUrb (Ehc, Urb);
|
|
|
|
return EFI_SUCCESS;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return EFI_NOT_FOUND;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
Remove all the asynchronous interrutp transfers.
|
|
|
|
|
|
|
|
@param Ehc The EHCI device.
|
|
|
|
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
EhciDelAllAsyncIntTransfers (
|
|
|
|
IN USB2_HC_DEV *Ehc
|
|
|
|
)
|
|
|
|
{
|
|
|
|
LIST_ENTRY *Entry;
|
|
|
|
LIST_ENTRY *Next;
|
|
|
|
URB *Urb;
|
|
|
|
|
|
|
|
EFI_LIST_FOR_EACH_SAFE (Entry, Next, &Ehc->AsyncIntTransfers) {
|
|
|
|
Urb = EFI_LIST_CONTAINER (Entry, URB, UrbList);
|
|
|
|
|
|
|
|
EhcUnlinkQhFromPeriod (Ehc, Urb->Qh);
|
|
|
|
RemoveEntryList (&Urb->UrbList);
|
|
|
|
|
2020-04-23 11:08:10 +02:00
|
|
|
gBS->FreePool(Urb->Data);
|
2019-09-03 11:58:42 +02:00
|
|
|
EhcFreeUrb (Ehc, Urb);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Insert a single asynchronous interrupt transfer for
|
|
|
|
the device and endpoint.
|
|
|
|
|
|
|
|
@param Ehc The EHCI device.
|
|
|
|
@param DevAddr The device address.
|
|
|
|
@param EpAddr Endpoint addrress & its direction.
|
|
|
|
@param DevSpeed The device speed.
|
|
|
|
@param Toggle Initial data toggle to use.
|
|
|
|
@param MaxPacket The max packet length of the endpoint.
|
|
|
|
@param Hub The transaction translator to use.
|
|
|
|
@param DataLen The length of data buffer.
|
|
|
|
@param Callback The function to call when data is transferred.
|
|
|
|
@param Context The context to the callback.
|
|
|
|
@param Interval The interval for interrupt transfer.
|
|
|
|
|
|
|
|
@return Created URB or NULL.
|
|
|
|
|
|
|
|
**/
|
|
|
|
URB *
|
|
|
|
EhciInsertAsyncIntTransfer (
|
|
|
|
IN USB2_HC_DEV *Ehc,
|
|
|
|
IN UINT8 DevAddr,
|
|
|
|
IN UINT8 EpAddr,
|
|
|
|
IN UINT8 DevSpeed,
|
|
|
|
IN UINT8 Toggle,
|
|
|
|
IN UINTN MaxPacket,
|
|
|
|
IN EFI_USB2_HC_TRANSACTION_TRANSLATOR *Hub,
|
|
|
|
IN UINTN DataLen,
|
|
|
|
IN EFI_ASYNC_USB_TRANSFER_CALLBACK Callback,
|
|
|
|
IN VOID *Context,
|
|
|
|
IN UINTN Interval
|
|
|
|
)
|
|
|
|
{
|
|
|
|
VOID *Data;
|
|
|
|
URB *Urb;
|
|
|
|
|
|
|
|
Data = AllocatePool (DataLen);
|
|
|
|
|
|
|
|
if (Data == NULL) {
|
|
|
|
DEBUG ((DEBUG_ERROR, "%a: failed to allocate buffer\n", __FUNCTION__));
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
Urb = EhcCreateUrb (
|
|
|
|
Ehc,
|
|
|
|
DevAddr,
|
|
|
|
EpAddr,
|
|
|
|
DevSpeed,
|
|
|
|
Toggle,
|
|
|
|
MaxPacket,
|
|
|
|
Hub,
|
|
|
|
EHC_INT_TRANSFER_ASYNC,
|
|
|
|
NULL,
|
|
|
|
Data,
|
|
|
|
DataLen,
|
|
|
|
Callback,
|
|
|
|
Context,
|
|
|
|
Interval
|
|
|
|
);
|
|
|
|
|
|
|
|
if (Urb == NULL) {
|
|
|
|
DEBUG ((DEBUG_ERROR, "%a: failed to create URB\n", __FUNCTION__));
|
2020-04-23 11:08:10 +02:00
|
|
|
gBS->FreePool(Data);
|
2019-09-03 11:58:42 +02:00
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// New asynchronous transfer must inserted to the head.
|
|
|
|
// Check the comments in EhcMoniteAsyncRequests
|
|
|
|
//
|
|
|
|
EhcLinkQhToPeriod (Ehc, Urb->Qh);
|
|
|
|
InsertHeadList (&Ehc->AsyncIntTransfers, &Urb->UrbList);
|
|
|
|
|
|
|
|
return Urb;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
Flush data from PCI controller specific address to mapped system
|
|
|
|
memory address.
|
|
|
|
|
|
|
|
@param Ehc The EHCI device.
|
|
|
|
@param Urb The URB to unmap.
|
|
|
|
|
|
|
|
@retval EFI_SUCCESS Success to flush data to mapped system memory.
|
|
|
|
@retval EFI_DEVICE_ERROR Fail to flush data to mapped system memory.
|
|
|
|
|
|
|
|
**/
|
|
|
|
EFI_STATUS
|
|
|
|
EhcFlushAsyncIntMap (
|
|
|
|
IN USB2_HC_DEV *Ehc,
|
|
|
|
IN URB *Urb
|
|
|
|
)
|
|
|
|
{
|
|
|
|
EFI_STATUS Status;
|
|
|
|
EFI_PHYSICAL_ADDRESS PhyAddr;
|
|
|
|
EFI_PCI_IO_PROTOCOL_OPERATION MapOp;
|
|
|
|
EFI_PCI_IO_PROTOCOL *PciIo;
|
|
|
|
UINTN Len;
|
|
|
|
VOID *Map;
|
|
|
|
|
|
|
|
PciIo = Ehc->PciIo;
|
|
|
|
Len = Urb->DataLen;
|
|
|
|
|
|
|
|
if (Urb->Ep.Direction == EfiUsbDataIn) {
|
|
|
|
MapOp = EfiPciIoOperationBusMasterWrite;
|
|
|
|
} else {
|
|
|
|
MapOp = EfiPciIoOperationBusMasterRead;
|
|
|
|
}
|
|
|
|
|
|
|
|
Status = PciIo->Unmap (PciIo, Urb->DataMap);
|
2020-04-23 11:08:10 +02:00
|
|
|
if (EFI_ERROR(Status)) {
|
2019-09-03 11:58:42 +02:00
|
|
|
goto ON_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
Urb->DataMap = NULL;
|
|
|
|
|
|
|
|
Status = PciIo->Map (PciIo, MapOp, Urb->Data, &Len, &PhyAddr, &Map);
|
2020-04-23 11:08:10 +02:00
|
|
|
if (EFI_ERROR(Status) || (Len != Urb->DataLen)) {
|
2019-09-03 11:58:42 +02:00
|
|
|
goto ON_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
Urb->DataPhy = (VOID *) ((UINTN) PhyAddr);
|
|
|
|
Urb->DataMap = Map;
|
|
|
|
return EFI_SUCCESS;
|
|
|
|
|
|
|
|
ON_ERROR:
|
|
|
|
return EFI_DEVICE_ERROR;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
Update the queue head for next round of asynchronous transfer.
|
|
|
|
|
|
|
|
@param Ehc The EHCI device.
|
|
|
|
@param Urb The URB to update.
|
|
|
|
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
EhcUpdateAsyncRequest (
|
|
|
|
IN USB2_HC_DEV *Ehc,
|
|
|
|
IN URB *Urb
|
|
|
|
)
|
|
|
|
{
|
|
|
|
LIST_ENTRY *Entry;
|
|
|
|
EHC_QTD *FirstQtd;
|
|
|
|
QH_HW *QhHw;
|
|
|
|
EHC_QTD *Qtd;
|
|
|
|
QTD_HW *QtdHw;
|
|
|
|
UINTN Index;
|
|
|
|
EFI_PHYSICAL_ADDRESS PciAddr;
|
|
|
|
|
|
|
|
Qtd = NULL;
|
|
|
|
|
|
|
|
if (Urb->Result == EFI_USB_NOERROR) {
|
|
|
|
FirstQtd = NULL;
|
|
|
|
|
|
|
|
EFI_LIST_FOR_EACH (Entry, &Urb->Qh->Qtds) {
|
|
|
|
Qtd = EFI_LIST_CONTAINER (Entry, EHC_QTD, QtdList);
|
|
|
|
|
|
|
|
if (FirstQtd == NULL) {
|
|
|
|
FirstQtd = Qtd;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Update the QTD for next round of transfer. Host control
|
|
|
|
// may change dt/Total Bytes to Transfer/C_Page/Cerr/Status/
|
|
|
|
// Current Offset. These fields need to be updated. DT isn't
|
|
|
|
// used by interrupt transfer. It uses DT in queue head.
|
|
|
|
// Current Offset is in Page[0], only need to reset Page[0]
|
|
|
|
// to initial data buffer.
|
|
|
|
//
|
|
|
|
QtdHw = &Qtd->QtdHw;
|
|
|
|
QtdHw->Status = QTD_STAT_ACTIVE;
|
|
|
|
QtdHw->ErrCnt = QTD_MAX_ERR;
|
|
|
|
QtdHw->CurPage = 0;
|
|
|
|
QtdHw->TotalBytes = (UINT32) Qtd->DataLen;
|
|
|
|
//
|
|
|
|
// calculate physical address by offset.
|
|
|
|
//
|
|
|
|
PciAddr = (UINTN)Urb->DataPhy + ((UINTN)Qtd->Data - (UINTN)Urb->Data);
|
|
|
|
QtdHw->Page[0] = EHC_LOW_32BIT (PciAddr);
|
|
|
|
QtdHw->PageHigh[0]= EHC_HIGH_32BIT (PciAddr);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Update QH for next round of transfer. Host control only
|
|
|
|
// touch the fields in transfer overlay area. Only need to
|
|
|
|
// zero out the overlay area and set NextQtd to the first
|
|
|
|
// QTD. DateToggle bit is left untouched.
|
|
|
|
//
|
|
|
|
QhHw = &Urb->Qh->QhHw;
|
|
|
|
QhHw->CurQtd = QTD_LINK (0, TRUE);
|
|
|
|
QhHw->AltQtd = 0;
|
|
|
|
|
|
|
|
QhHw->Status = 0;
|
|
|
|
QhHw->Pid = 0;
|
|
|
|
QhHw->ErrCnt = 0;
|
|
|
|
QhHw->CurPage = 0;
|
|
|
|
QhHw->Ioc = 0;
|
|
|
|
QhHw->TotalBytes = 0;
|
|
|
|
|
|
|
|
for (Index = 0; Index < 5; Index++) {
|
|
|
|
QhHw->Page[Index] = 0;
|
|
|
|
QhHw->PageHigh[Index] = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, FirstQtd, sizeof (EHC_QTD));
|
|
|
|
QhHw->NextQtd = QTD_LINK (PciAddr, FALSE);
|
|
|
|
}
|
|
|
|
|
|
|
|
return ;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
Interrupt transfer periodic check handler.
|
|
|
|
|
|
|
|
@param Event Interrupt event.
|
|
|
|
@param Context Pointer to USB2_HC_DEV.
|
|
|
|
|
|
|
|
**/
|
|
|
|
VOID
|
|
|
|
EFIAPI
|
|
|
|
EhcMonitorAsyncRequests (
|
|
|
|
IN EFI_EVENT Event,
|
|
|
|
IN VOID *Context
|
|
|
|
)
|
|
|
|
{
|
|
|
|
USB2_HC_DEV *Ehc;
|
|
|
|
EFI_TPL OldTpl;
|
|
|
|
LIST_ENTRY *Entry;
|
|
|
|
LIST_ENTRY *Next;
|
|
|
|
BOOLEAN Finished;
|
|
|
|
UINT8 *ProcBuf;
|
|
|
|
URB *Urb;
|
|
|
|
EFI_STATUS Status;
|
|
|
|
|
|
|
|
OldTpl = gBS->RaiseTPL (EHC_TPL);
|
|
|
|
Ehc = (USB2_HC_DEV *) Context;
|
|
|
|
|
|
|
|
EFI_LIST_FOR_EACH_SAFE (Entry, Next, &Ehc->AsyncIntTransfers) {
|
|
|
|
Urb = EFI_LIST_CONTAINER (Entry, URB, UrbList);
|
|
|
|
|
|
|
|
//
|
|
|
|
// Check the result of URB execution. If it is still
|
|
|
|
// active, check the next one.
|
|
|
|
//
|
|
|
|
Finished = EhcCheckUrbResult (Ehc, Urb);
|
|
|
|
|
|
|
|
if (!Finished) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Flush any PCI posted write transactions from a PCI host
|
|
|
|
// bridge to system memory.
|
|
|
|
//
|
|
|
|
Status = EhcFlushAsyncIntMap (Ehc, Urb);
|
2020-04-23 11:08:10 +02:00
|
|
|
if (EFI_ERROR(Status)) {
|
2019-09-03 11:58:42 +02:00
|
|
|
DEBUG ((EFI_D_ERROR, "EhcMonitorAsyncRequests: Fail to Flush AsyncInt Mapped Memeory\n"));
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
// Allocate a buffer then copy the transferred data for user.
|
|
|
|
// If failed to allocate the buffer, update the URB for next
|
|
|
|
// round of transfer. Ignore the data of this round.
|
|
|
|
//
|
|
|
|
ProcBuf = NULL;
|
|
|
|
|
|
|
|
if (Urb->Result == EFI_USB_NOERROR) {
|
|
|
|
//
|
|
|
|
// Make sure the data received from HW is no more than expected.
|
|
|
|
//
|
|
|
|
if (Urb->Completed <= Urb->DataLen) {
|
|
|
|
ProcBuf = AllocatePool (Urb->Completed);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ProcBuf == NULL) {
|
|
|
|
EhcUpdateAsyncRequest (Ehc, Urb);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2020-05-01 18:26:28 +02:00
|
|
|
CopyMem(ProcBuf, Urb->Data, Urb->Completed);
|
2019-09-03 11:58:42 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
EhcUpdateAsyncRequest (Ehc, Urb);
|
|
|
|
|
|
|
|
//
|
|
|
|
// Leave error recovery to its related device driver. A
|
|
|
|
// common case of the error recovery is to re-submit the
|
|
|
|
// interrupt transfer which is linked to the head of the
|
|
|
|
// list. This function scans from head to tail. So the
|
|
|
|
// re-submitted interrupt transfer's callback function
|
|
|
|
// will not be called again in this round. Don't touch this
|
|
|
|
// URB after the callback, it may have been removed by the
|
|
|
|
// callback.
|
|
|
|
//
|
|
|
|
if (Urb->Callback != NULL) {
|
|
|
|
//
|
|
|
|
// Restore the old TPL, USB bus maybe connect device in
|
|
|
|
// his callback. Some drivers may has a lower TPL restriction.
|
|
|
|
//
|
|
|
|
gBS->RestoreTPL (OldTpl);
|
|
|
|
(Urb->Callback) (ProcBuf, Urb->Completed, Urb->Context, Urb->Result);
|
|
|
|
OldTpl = gBS->RaiseTPL (EHC_TPL);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ProcBuf != NULL) {
|
2020-04-23 11:08:10 +02:00
|
|
|
FreePool(ProcBuf);
|
2019-09-03 11:58:42 +02:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
gBS->RestoreTPL (OldTpl);
|
|
|
|
}
|