CloverBootloader/Trash/BiosVideoAuto/Resolution/915resolution.c

1128 lines
27 KiB
C
Raw Normal View History

/*
* resolution.h
*
* NOTE: I don't beleive this code is production ready / should be in trunk
* Atleast, not in it's current state.
*
* Created by Evan Lojewski on 3/4/10.
* Copyright 2009. All rights reserved.
*
*/
#ifndef _RESOLUTION_H_
#define _RESOLUTION_H_
//#include "libsaio.h"
//#include "edid.h" //included
#include "915resolution.h"
//#define void VOID
#define uint8_t UINT8
#define uint16_t UINT16
#define uint32_t UINT32
#define uintptr_t UINTN
#define RT_INLINE_ASM_GNU_STYLE 1
#define RTIOPORT UINT32
#define RT_INLINE_ASM_EXTERNAL 0
#define DECLINLINE(type) type
/** @file
* IPRT - AMD64 and x86 Specific Assembly Functions.
*/
/*
* Copyright (C) 2006-2010 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/**
* Writes a 8-bit unsigned integer to an I/O port, ordered.
*
* @param Port I/O port to write to.
* @param u8 8-bit integer to write.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMOutU8(RTIOPORT Port, uint8_t u8);
#else
DECLINLINE(void) ASMOutU8(RTIOPORT Port, uint8_t u8)
{
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("outb %b1, %w0\n\t"
:: "Nd" (Port),
"a" (u8));
# elif RT_INLINE_ASM_USES_INTRIN
__outbyte(Port, u8);
# else
__asm
{
mov dx, [Port]
mov al, [u8]
out dx, al
}
# endif
}
#endif
/**
* Reads a 8-bit unsigned integer from an I/O port, ordered.
*
* @returns 8-bit integer.
* @param Port I/O port to read from.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(uint8_t) ASMInU8(RTIOPORT Port);
#else
DECLINLINE(uint8_t) ASMInU8(RTIOPORT Port)
{
uint8_t u8;
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("inb %w1, %b0\n\t"
: "=a" (u8)
: "Nd" (Port));
# elif RT_INLINE_ASM_USES_INTRIN
u8 = __inbyte(Port);
# else
__asm
{
mov dx, [Port]
in al, dx
mov [u8], al
}
# endif
return u8;
}
#endif
/**
* Writes a 16-bit unsigned integer to an I/O port, ordered.
*
* @param Port I/O port to write to.
* @param u16 16-bit integer to write.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMOutU16(RTIOPORT Port, uint16_t u16);
#else
DECLINLINE(void) ASMOutU16(RTIOPORT Port, uint16_t u16)
{
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("outw %w1, %w0\n\t"
:: "Nd" (Port),
"a" (u16));
# elif RT_INLINE_ASM_USES_INTRIN
__outword(Port, u16);
# else
__asm
{
mov dx, [Port]
mov ax, [u16]
out dx, ax
}
# endif
}
#endif
/**
* Reads a 16-bit unsigned integer from an I/O port, ordered.
*
* @returns 16-bit integer.
* @param Port I/O port to read from.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(uint16_t) ASMInU16(RTIOPORT Port);
#else
DECLINLINE(uint16_t) ASMInU16(RTIOPORT Port)
{
uint16_t u16;
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("inw %w1, %w0\n\t"
: "=a" (u16)
: "Nd" (Port));
# elif RT_INLINE_ASM_USES_INTRIN
u16 = __inword(Port);
# else
__asm
{
mov dx, [Port]
in ax, dx
mov [u16], ax
}
# endif
return u16;
}
#endif
/**
* Writes a 32-bit unsigned integer to an I/O port, ordered.
*
* @param Port I/O port to write to.
* @param u32 32-bit integer to write.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(void) ASMOutU32(RTIOPORT Port, uint32_t u32);
#else
DECLINLINE(void) ASMOutU32(RTIOPORT Port, uint32_t u32)
{
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("outl %1, %w0\n\t"
:: "Nd" (Port),
"a" (u32));
# elif RT_INLINE_ASM_USES_INTRIN
__outdword(Port, u32);
# else
__asm
{
mov dx, [Port]
mov eax, [u32]
out dx, eax
}
# endif
}
#endif
/**
* Reads a 32-bit unsigned integer from an I/O port, ordered.
*
* @returns 32-bit integer.
* @param Port I/O port to read from.
*/
#if RT_INLINE_ASM_EXTERNAL && !RT_INLINE_ASM_USES_INTRIN
DECLASM(uint32_t) ASMInU32(RTIOPORT Port);
#else
DECLINLINE(uint32_t) ASMInU32(RTIOPORT Port)
{
uint32_t u32;
# if RT_INLINE_ASM_GNU_STYLE
__asm__ __volatile__("inl %w1, %0\n\t"
: "=a" (u32)
: "Nd" (Port));
# elif RT_INLINE_ASM_USES_INTRIN
u32 = __indword(Port);
# else
__asm
{
mov dx, [Port]
in eax, dx
mov [u32], eax
}
# endif
return u32;
}
#endif
#define inb(port) ASMInU8((port))
#define inw(port) ASMInU16((port))
#define inl(port) ASMInU32((port))
#define outb(port, val) ASMOutU8((port), (val))
#define outw(port, val) ASMOutU16((port), (val))
#define outl(port, val) ASMOutU32((port), (val))
VOID patchVideoBios()
{
//test to ensure that outb and inb work
/*UINT8 first, second;
UINT32 cfgAPort=0x2e;
UINT32 cfgDPort=0x2f;
outb (cfgAPort, 0x87);
outb (cfgAPort, 0x01);
outb (cfgAPort, 0x55);
outb (cfgAPort, 0x55);
first=inb(cfgDPort);
outb (cfgAPort, 0x21);
second=inb (cfgDPort);
AsciiPrint("DeviceID: 0x%x%x\n", first, second);*/
UINT32 x = 0, y = 0, bp = 0;
getResolution(&x, &y, &bp);
AsciiPrint("getResolution: %dx%dx%d\n", x, y, bp);
if (x != 0 &&
y != 0 &&
bp != 0)
{
AsciiPrint("Opening BIOS\n");
vbios_map * map;
map = open_vbios(CT_UNKNOWN);
if(map)
{
unlock_vbios(map);
set_mode(map, x, y, bp, 0, 0);
relock_vbios(map);
close_vbios(map);
}
}
}
static const UINT8 nvda_pattern[] = {
0x44, 0x01, 0x04, 0x00
};
static const CHAR8 nvda_string[] = "NVID";
/* Copied from 915 resolution created by steve tomljenovic
*
* This code is based on the techniques used in :
*
* - 855patch. Many thanks to Christian Zietz (czietz gmx net)
* for demonstrating how to shadow the VBIOS INTo system RAM
* and then modify it.
*
* - 1280patch by Andrew Tipton (andrewtipton null li).
*
* - 855resolution by Alain Poirier
*
* This source code is INTo the public domain.
*/
/**
**
**/
#define CONFIG_MECH_ONE_ADDR 0xCF8
#define CONFIG_MECH_ONE_DATA 0xCFC
INT32 freqs[] = { 60, 75, 85 };
UINT32 get_chipset_id(VOID)
{
/*FIXME: assembler port I/O*/
outl(CONFIG_MECH_ONE_ADDR, 0x80000000);
return inl(CONFIG_MECH_ONE_DATA);
}
chipset_type get_chipset(UINT32 id)
{
chipset_type type;
switch (id) {
case 0x35758086:
type = CT_830;
break;
case 0x25608086:
type = CT_845G;
break;
case 0x35808086:
type = CT_855GM;
break;
case 0x25708086:
type = CT_865G;
break;
case 0x25808086:
type = CT_915G;
break;
case 0x25908086:
type = CT_915GM;
break;
case 0x27708086:
type = CT_945G;
break;
case 0x27a08086:
type = CT_945GM;
break;
case 0x27ac8086:
type = CT_945GME;
break;
case 0x29708086:
type = CT_946GZ;
break;
case 0x27748086:
type = CT_955X;
break;
case 0x277c8086:
type = CT_975X;
break;
case 0x29a08086:
type = CT_G965;
break;
case 0x29908086:
type = CT_Q965;
break;
case 0x81008086:
type = CT_500;
break;
case 0x2e108086:
case 0X2e908086:
type = CT_B43;
break;
case 0x2e208086:
type = CT_P45;
break;
case 0x2e308086:
type = CT_G41;
break;
case 0x29c08086:
type = CT_G31;
break;
case 0x29208086:
type = CT_G45;
break;
case 0xA0108086: // mobile
case 0xA0008086: // desktop
type = CT_3150;
break;
case 0x2a008086:
type = CT_965GM;
break;
case 0x29e08086:
type = CT_X48;
break;
case 0x2a408086:
type = CT_GM45;
break;
default:
if((id & 0x0000FFFF) == 0x00008086) // INTel chipset
{
//AsciiPrint("Unknown chipset 0x%llX, please post id to projectosx.com or applelife.ru", id);
//getc();
type = CT_UNKNOWN_INTEL;
//type = CT_UNKNOWN;
}
else
{
type = CT_UNKNOWN;
}
break;
}
return type;
}
vbios_resolution_type1 * map_type1_resolution(vbios_map * map, UINT16 res)
{
vbios_resolution_type1 * ptr = ((vbios_resolution_type1*)(map->bios_ptr + res));
return ptr;
}
vbios_resolution_type2 * map_type2_resolution(vbios_map * map, UINT16 res)
{
vbios_resolution_type2 * ptr = ((vbios_resolution_type2*)(map->bios_ptr + res));
return ptr;
}
vbios_resolution_type3 * map_type3_resolution(vbios_map * map, UINT16 res)
{
vbios_resolution_type3 * ptr = ((vbios_resolution_type3*)(map->bios_ptr + res));
return ptr;
}
CHAR8 detect_bios_type(vbios_map * map, CHAR8 modeline, INT32 entry_size);
CHAR8 detect_bios_type(vbios_map * map, CHAR8 modeline, INT32 entry_size)
{
UINT32 i;
UINT16 r1, r2;
r1 = r2 = 32000;
for (i=0; i < map->mode_table_size; i++)
{
if (map->mode_table[i].resolution <= r1)
{
r1 = map->mode_table[i].resolution;
}
else
{
if (map->mode_table[i].resolution <= r2)
{
r2 = map->mode_table[i].resolution;
}
}
/*AsciiPrint("r1 = %d r2 = %d\n", r1, r2);*/
}
return (r2-r1-6) % entry_size == 0;
}
VOID close_vbios(vbios_map * map);
CHAR8 detect_ati_bios_type(vbios_map * map)
{
return map->mode_table_size % sizeof(ATOM_MODE_TIMING) == 0;
}
vbios_map * open_vbios(chipset_type forced_chipset)
{
vbios_map * map = AllocatePool(sizeof(vbios_map));
SetMem((VOID*)map, sizeof(vbios_map), 0);
/*
* Determine chipset
*/
if (forced_chipset == CT_UNKNOWN)
{
map->chipset_id = get_chipset_id();
map->chipset = get_chipset(map->chipset_id);
}
else if (forced_chipset != CT_UNKNOWN)
{
map->chipset = forced_chipset;
}
if (map->chipset == CT_UNKNOWN)
{
//AsciiPrint("Unknown chipset type.\n");
//AsciiPrint("915resolution only works with INTel 800/900 series graphic chipsets.\n");
//AsciiPrint("Chipset Id: %x\n", map->chipset_id);
close_vbios(map);
return 0;
}
/*
* Map the video bios to memory
*/
map->bios_ptr=(CHAR8*)VBIOS_START; //this is 0xc0000
AsciiPrint("bios_ptr: 0x%x\n", (UINTN)(VOID*)map->bios_ptr);
/*
* check if we have ATI Radeon
*/
map->ati_tables.base = map->bios_ptr;
map->ati_tables.AtomRomHeader = (ATOM_ROM_HEADER *) (map->bios_ptr + *(UINT16 *) (map->bios_ptr + OFFSET_TO_POINTER_TO_ATOM_ROM_HEADER));
if (AsciiStrCmp ((CHAR8 *) map->ati_tables.AtomRomHeader->uaFirmWareSignature, "ATOM") == 0)
{
// ATI Radeon Card
map->bios = BT_ATI_1;
map->ati_tables.MasterDataTables = (UINT16 *) &((ATOM_MASTER_DATA_TABLE *) (map->bios_ptr + map->ati_tables.AtomRomHeader->usMasterDataTableOffset))->ListOfDataTables;
UINT16 std_vesa_offset = (UINT16) ((ATOM_MASTER_LIST_OF_DATA_TABLES *)map->ati_tables.MasterDataTables)->StandardVESA_Timing;
ATOM_STANDARD_VESA_TIMING * std_vesa = (ATOM_STANDARD_VESA_TIMING *) (map->bios_ptr + std_vesa_offset);
map->ati_mode_table = (CHAR8 *) &std_vesa->aModeTimings;
if (map->ati_mode_table == 0)
{
AsciiPrint("Unable to locate the mode table.\n");
AsciiPrint("Please run the program 'dump_bios' as root and\n");
AsciiPrint("email the file 'vbios.dmp' to stomljen@yahoo.com.\n");
AsciiPrint("Chipset: %d\n", map->chipset);
close_vbios(map);
return 0;
}
map->mode_table_size = std_vesa->sHeader.usStructureSize - sizeof(ATOM_COMMON_TABLE_HEADER);
if (!detect_ati_bios_type(map)) map->bios = BT_ATI_2;
}
else {
/*
* check if we have NVIDIA
*/
UINTN i;
for (i = 0; i < 512; i++) // we don't need to look through the whole bios, just the first 512 bytes
if (CompareMem(map->bios_ptr+i, nvda_string, 4)==0)
{
AsciiPrint("nVidia BIOS found\n");
map->bios = BT_NVDA;
UINT16 nv_data_table_offset = 0;
UINT16 * nv_data_table;
NV_VESA_TABLE * std_vesa;
UINTN j;
for (j = 0; j < 0x300; j++)
if (CompareMem(map->bios_ptr+j, nvda_pattern, 4)==0)
{
nv_data_table_offset = *((UINT16*)(map->bios_ptr+j+4));
AsciiPrint("nv_data_table_offset: 0x%x\n", (UINTN)nv_data_table_offset);
break;
}
nv_data_table = (UINT16 *) (map->bios_ptr + (nv_data_table_offset + OFFSET_TO_VESA_TABLE_INDEX));
AsciiPrint("nv_data_table: 0x%x\n", (UINTN)(VOID*)(nv_data_table));
std_vesa = (NV_VESA_TABLE *) (map->bios_ptr + *nv_data_table);
AsciiPrint("std_vesa: 0x%x\n", (UINTN)(VOID*)std_vesa);
map->nv_mode_table = (CHAR8*)std_vesa+sizeof(NV_COMMON_TABLE_HEADER);
AsciiPrint("nv_mode_table: 0x%x\n", (UINTN)(VOID*)map->nv_mode_table);
if (map->nv_mode_table == 0)
{
AsciiPrint("Unable to locate the mode table.\n");
AsciiPrint("Please run the program 'dump_bios' as root and\n");
AsciiPrint("email the file 'vbios.dmp' to stomljen@yahoo.com.\n");
AsciiPrint("Chipset: %s\n", map->chipset);
close_vbios(map);
return 0;
}
map->mode_table_size = std_vesa->sHeader.usTable_Size;
break;
}
}
/*
* check if we have INTel
*/
/*if (map->chipset == CT_UNKNOWN && memmem(map->bios_ptr, VBIOS_SIZE, INTEL_SIGNATURE, strlen(INTEL_SIGNATURE))) {
AsciiPrint( "INTel chipset detected. However, 915resolution was unable to determine the chipset type.\n");
AsciiPrint("Chipset Id: %x\n", map->chipset_id);
AsciiPrint("Please report this problem to stomljen@yahoo.com\n");
close_vbios(map);
return 0;
}*/
/*
* check for others
*/
/*
* Figure out where the mode table is
*/
if ((map->bios != BT_ATI_1) && (map->bios != BT_NVDA))
{
CHAR8* p = map->bios_ptr + 16;
CHAR8* limit = map->bios_ptr + VBIOS_SIZE - (3 * sizeof(vbios_mode));
while (p < limit && map->mode_table == 0)
{
vbios_mode * mode_ptr = (vbios_mode *) p;
if (((mode_ptr[0].mode & 0xf0) == 0x30) && ((mode_ptr[1].mode & 0xf0) == 0x30) &&
((mode_ptr[2].mode & 0xf0) == 0x30) && ((mode_ptr[3].mode & 0xf0) == 0x30))
{
map->mode_table = mode_ptr;
}
p++;
}
if (map->mode_table == 0)
{
close_vbios(map);
return 0;
}
}
/*
* Determine size of mode table
*/
if ((map->bios != BT_ATI_1) && (map->bios != BT_ATI_2) && (map->bios != BT_NVDA))
{
vbios_mode * mode_ptr = map->mode_table;
while (mode_ptr->mode != 0xff)
{
map->mode_table_size++;
mode_ptr++;
}
}
/*
* Figure out what type of bios we have
* order of detection is important
*/
if ((map->bios != BT_ATI_1) && (map->bios != BT_ATI_2) && (map->bios != BT_NVDA))
{
if (detect_bios_type(map, TRUE, sizeof(vbios_modeline_type3)))
{
map->bios = BT_3;
}
else if (detect_bios_type(map, TRUE, sizeof(vbios_modeline_type2)))
{
map->bios = BT_2;
}
else if (detect_bios_type(map, FALSE, sizeof(vbios_resolution_type1)))
{
map->bios = BT_1;
}
else {
return 0;
}
}
return map;
}
VOID close_vbios(vbios_map * map)
{
//FreePool(map);
}
VOID unlock_vbios(vbios_map * map)
{
map->unlocked = TRUE;
switch (map->chipset) {
case CT_UNKNOWN:
break;
case CT_830:
case CT_855GM:
outl(CONFIG_MECH_ONE_ADDR, 0x8000005a); /*FIXME: assembler port I/O*/
map->b1 = inb(CONFIG_MECH_ONE_DATA + 2);
outl(CONFIG_MECH_ONE_ADDR, 0x8000005a);
outb(CONFIG_MECH_ONE_DATA + 2, 0x33);
break;
case CT_845G:
case CT_865G:
case CT_915G:
case CT_915GM:
case CT_945G:
case CT_945GM:
case CT_945GME:
case CT_946GZ:
case CT_G965:
case CT_Q965:
case CT_965GM:
case CT_975X:
case CT_P35:
case CT_955X:
case CT_X48:
case CT_B43:
case CT_Q45:
case CT_P45:
case CT_GM45:
case CT_G45:
case CT_G41:
case CT_G31:
case CT_500:
case CT_3150:
case CT_UNKNOWN_INTEL: // Assume newer INTel chipset is the same as before
outl(CONFIG_MECH_ONE_ADDR, 0x80000090);
map->b1 = inb(CONFIG_MECH_ONE_DATA + 1);
map->b2 = inb(CONFIG_MECH_ONE_DATA + 2);
outl(CONFIG_MECH_ONE_ADDR, 0x80000090);
outb(CONFIG_MECH_ONE_DATA + 1, 0x33);
outb(CONFIG_MECH_ONE_DATA + 2, 0x33);
break;
}
#if DEBUG
{
UINT32 t = inl(CONFIG_MECH_ONE_DATA);
AsciiPrint("unlock PAM: (0x%08x)\n", t);
}
#endif
}
VOID relock_vbios(vbios_map * map)
{
map->unlocked = FALSE;
switch (map->chipset)
{
case CT_UNKNOWN:
break;
case CT_830:
case CT_855GM:
outl(CONFIG_MECH_ONE_ADDR, 0x8000005a); /*FIXME: assembler port I/O*/
outb(CONFIG_MECH_ONE_DATA + 2, map->b1);
break;
case CT_845G:
case CT_865G:
case CT_915G:
case CT_915GM:
case CT_945G:
case CT_945GM:
case CT_945GME:
case CT_946GZ:
case CT_G965:
case CT_955X:
case CT_G45:
case CT_Q965:
case CT_965GM:
case CT_975X:
case CT_P35:
case CT_X48:
case CT_B43:
case CT_Q45:
case CT_P45:
case CT_GM45:
case CT_G41:
case CT_G31:
case CT_500:
case CT_3150:
case CT_UNKNOWN_INTEL:
outl(CONFIG_MECH_ONE_ADDR, 0x80000090);
outb(CONFIG_MECH_ONE_DATA + 1, map->b1);
outb(CONFIG_MECH_ONE_DATA + 2, map->b2);
break;
}
#if DEBUG
{
UINT32 t = inl(CONFIG_MECH_ONE_DATA);
AsciiPrint("relock PAM: (0x%08x)\n", t);
}
#endif
}
INT32 getMode(edid_mode *mode)
{
CHAR8* edidInfo = readEDID();
if(!edidInfo) return 1;
//Slice
if(!fb_parse_edid((struct EDID *)edidInfo, mode))
{
FreePool( edidInfo );
return 1;
}
/* mode->pixel_clock = (edidInfo[55] << 8) | edidInfo[54];
mode->h_active = edidInfo[56] | ((edidInfo[58] & 0xF0) << 4);
mode->h_blanking = ((edidInfo[58] & 0x0F) << 8) | edidInfo[57];
mode->v_active = edidInfo[59] | ((edidInfo[61] & 0xF0) << 4);
mode->v_blanking = ((edidInfo[61] & 0x0F) << 8) | edidInfo[60];
mode->h_sync_offset = ((edidInfo[65] & 0xC0) >> 2) | edidInfo[62];
mode->h_sync_width = (edidInfo[65] & 0x30) | edidInfo[63];
mode->v_sync_offset = (edidInfo[65] & 0x0C) | ((edidInfo[64] & 0x0C) >> 2);
mode->v_sync_width = ((edidInfo[65] & 0x3) << 2) | (edidInfo[64] & 0x03);
*/
FreePool( edidInfo );
if(!mode->h_active) return 1;
return 0;
}
static VOID gtf_timings(UINT32 x, UINT32 y, UINT32 freq,
UINT32 *clock,
UINT16 *hsyncstart, UINT16 *hsyncend, UINT16 *hblank,
UINT16 *vsyncstart, UINT16 *vsyncend, UINT16 *vblank)
{
UINT32 hbl, vbl, vfreq;
vbl = y + (y+1)/(20000.0/(11*freq) - 1) + 1.5;
vfreq = vbl * freq;
hbl = 16 * (INT32)(x * (30.0 - 300000.0 / vfreq) /
+ (70.0 + 300000.0 / vfreq) / 16.0 + 0.5);
*vsyncstart = y;
*vsyncend = y + 3;
*vblank = vbl - 1;
*hsyncstart = x + hbl / 2 - (x + hbl + 50) / 100 * 8 - 1;
*hsyncend = x + hbl / 2 - 1;
*hblank = x + hbl - 1;
*clock = (x + hbl) * vfreq / 1000;
}
VOID set_mode(vbios_map * map, /*UINT32 mode,*/ UINT32 x, UINT32 y, UINT32 bp, UINT32 htotal, UINT32 vtotal) {
UINT32 xprev, yprev;
UINT32 i = 0, j;
// patch first available mode
AsciiPrint("Setting mode %dx%dx%d\n", x, y, bp);
// for (i=0; i < map->mode_table_size; i++) {
// if (map->mode_table[0].mode == mode) {
switch(map->bios) {
case BT_INTEL:
return;
case BT_1:
{
vbios_resolution_type1 * res = map_type1_resolution(map, map->mode_table[i].resolution);
if (bp) {
map->mode_table[i].bits_per_pixel = bp;
}
res->x2 = (htotal?(((htotal-x) >> 8) & 0x0f) : (res->x2 & 0x0f)) | ((x >> 4) & 0xf0);
res->x1 = (x & 0xff);
res->y2 = (vtotal?(((vtotal-y) >> 8) & 0x0f) : (res->y2 & 0x0f)) | ((y >> 4) & 0xf0);
res->y1 = (y & 0xff);
if (htotal)
res->x_total = ((htotal-x) & 0xff);
if (vtotal)
res->y_total = ((vtotal-y) & 0xff);
break;
}
case BT_2:
{
vbios_resolution_type2 * res = map_type2_resolution(map, map->mode_table[i].resolution);
res->xCHAR8s = x / 8;
res->yCHAR8s = y / 16 - 1;
xprev = res->modelines[0].x1;
yprev = res->modelines[0].y1;
for(j=0; j < 3; j++) {
vbios_modeline_type2 * modeline = &res->modelines[j];
if (modeline->x1 == xprev && modeline->y1 == yprev) {
modeline->x1 = modeline->x2 = x-1;
modeline->y1 = modeline->y2 = y-1;
gtf_timings(x, y, freqs[j], &modeline->clock,
&modeline->hsyncstart, &modeline->hsyncend,
&modeline->hblank, &modeline->vsyncstart,
&modeline->vsyncend, &modeline->vblank);
if (htotal)
modeline->htotal = htotal;
else
modeline->htotal = modeline->hblank;
if (vtotal)
modeline->vtotal = vtotal;
else
modeline->vtotal = modeline->vblank;
}
}
break;
}
case BT_3:
{
vbios_resolution_type3 * res = map_type3_resolution(map, map->mode_table[i].resolution);
xprev = res->modelines[0].x1;
yprev = res->modelines[0].y1;
for (j=0; j < 3; j++) {
vbios_modeline_type3 * modeline = &res->modelines[j];
if (modeline->x1 == xprev && modeline->y1 == yprev) {
modeline->x1 = modeline->x2 = x-1;
modeline->y1 = modeline->y2 = y-1;
gtf_timings(x, y, freqs[j], &modeline->clock,
&modeline->hsyncstart, &modeline->hsyncend,
&modeline->hblank, &modeline->vsyncstart,
&modeline->vsyncend, &modeline->vblank);
if (htotal)
modeline->htotal = htotal;
else
modeline->htotal = modeline->hblank;
if (vtotal)
modeline->vtotal = vtotal;
else
modeline->vtotal = modeline->vblank;
modeline->timing_h = y-1;
modeline->timing_v = x-1;
}
}
break;
}
case BT_ATI_1:
{
edid_mode mode;
ATOM_MODE_TIMING *mode_timing = (ATOM_MODE_TIMING *) map->ati_mode_table;
//if (mode.pixel_clock && (mode.h_active == x) && (mode.v_active == y) && !force) {
if (!getMode(&mode)) {
mode_timing->usCRTC_H_Total = mode.h_active + mode.h_blanking;
mode_timing->usCRTC_H_Disp = mode.h_active;
mode_timing->usCRTC_H_SyncStart = mode.h_active + mode.h_sync_offset;
mode_timing->usCRTC_H_SyncWidth = mode.h_sync_width;
mode_timing->usCRTC_V_Total = mode.v_active + mode.v_blanking;
mode_timing->usCRTC_V_Disp = mode.v_active;
mode_timing->usCRTC_V_SyncStart = mode.v_active + mode.v_sync_offset;
mode_timing->usCRTC_V_SyncWidth = mode.v_sync_width;
mode_timing->usPixelClock = mode.pixel_clock;
}
/*else
{
vbios_modeline_type2 modeline;
cvt_timings(x, y, freqs[0], &modeline.clock,
&modeline.hsyncstart, &modeline.hsyncend,
&modeline.hblank, &modeline.vsyncstart,
&modeline.vsyncend, &modeline.vblank, 0);
mode_timing->usCRTC_H_Total = x + modeline.hblank;
mode_timing->usCRTC_H_Disp = x;
mode_timing->usCRTC_H_SyncStart = modeline.hsyncstart;
mode_timing->usCRTC_H_SyncWidth = modeline.hsyncend - modeline.hsyncstart;
mode_timing->usCRTC_V_Total = y + modeline.vblank;
mode_timing->usCRTC_V_Disp = y;
mode_timing->usCRTC_V_SyncStart = modeline.vsyncstart;
mode_timing->usCRTC_V_SyncWidth = modeline.vsyncend - modeline.vsyncstart;
mode_timing->usPixelClock = modeline.clock;
}*/
break;
}
case BT_ATI_2:
{
edid_mode mode;
ATOM_DTD_FORMAT *mode_timing = (ATOM_DTD_FORMAT *) map->ati_mode_table;
/*if (mode.pixel_clock && (mode.h_active == x) && (mode.v_active == y) && !force) {*/
if (!getMode(&mode)) {
mode_timing->usHBlanking_Time = mode.h_blanking;
mode_timing->usHActive = mode.h_active;
mode_timing->usHSyncOffset = mode.h_sync_offset;
mode_timing->usHSyncWidth = mode.h_sync_width;
mode_timing->usVBlanking_Time = mode.v_blanking;
mode_timing->usVActive = mode.v_active;
mode_timing->usVSyncOffset = mode.v_sync_offset;
mode_timing->usVSyncWidth = mode.v_sync_width;
mode_timing->usPixClk = mode.pixel_clock;
}
/*else
{
vbios_modeline_type2 modeline;
cvt_timings(x, y, freqs[0], &modeline.clock,
&modeline.hsyncstart, &modeline.hsyncend,
&modeline.hblank, &modeline.vsyncstart,
&modeline.vsyncend, &modeline.vblank, 0);
mode_timing->usHBlanking_Time = modeline.hblank;
+ mode_timing->usHActive = x;
+ mode_timing->usHSyncOffset = modeline.hsyncstart - x;
+ mode_timing->usHSyncWidth = modeline.hsyncend - modeline.hsyncstart;
+
+ mode_timing->usVBlanking_Time = modeline.vblank;
+ mode_timing->usVActive = y;
+ mode_timing->usVSyncOffset = modeline.vsyncstart - y;
+ mode_timing->usVSyncWidth = modeline.hsyncend - modeline.hsyncstart;
+
+ mode_timing->usPixClk = modeline.clock;
+ }*/
break;
}
case BT_NVDA:
{
edid_mode mode;
NV_MODELINE *mode_timing = (NV_MODELINE *) map->nv_mode_table;
AsciiPrint("nVidia mode table at 0x%x\n", (UINTN)(VOID*)(map->nv_mode_table));
/*if (mode.pixel_clock && (mode.h_active == x) && (mode.v_active == y) && !force) {*/
if (!getMode(&mode)) {
AsciiPrint("Setting mode %dx%d\n", mode.h_active, mode.v_active);
mode_timing[i].usH_Total = mode.h_active + mode.h_blanking;
mode_timing[i].usH_Active = mode.h_active;
mode_timing[i].usH_SyncStart = mode.h_active + mode.h_sync_offset;
mode_timing[i].usH_SyncEnd = mode.h_active + mode.h_sync_offset + mode.h_sync_width;
mode_timing[i].usV_Total = mode.v_active + mode.v_blanking;
mode_timing[i].usV_Active = mode.v_active;
mode_timing[i].usV_SyncStart = mode.v_active + mode.v_sync_offset;
mode_timing[i].usV_SyncEnd = mode.v_active + mode.v_sync_offset + mode.v_sync_width;
mode_timing[i].usPixel_Clock = mode.pixel_clock;
}
/*else
{
vbios_modeline_type2 modeline;
cvt_timings(x, y, freqs[0], &modeline.clock,
&modeline.hsyncstart, &modeline.hsyncend,
&modeline.hblank, &modeline.vsyncstart,
&modeline.vsyncend, &modeline.vblank, 0);
mode_timing[i].usH_Total = x + modeline.hblank - 1;
mode_timing[i].usH_Active = x;
mode_timing[i].usH_SyncStart = modeline.hsyncstart - 1;
mode_timing[i].usH_SyncEnd = modeline.hsyncend - 1;
mode_timing[i].usV_Total = y + modeline.vblank - 1;
mode_timing[i].usV_Active = y;
mode_timing[i].usV_SyncStart = modeline.vsyncstart - 1;
mode_timing[i].usV_SyncEnd = modeline.vsyncend - 1;
mode_timing[i].usPixel_Clock = modeline.clock;
}*/
break;
}
case BT_UNKNOWN:
{
break;
}
}
// }
// }
}
#endif // _RESOLUTION_H_