CloverBootloader/Library/OpensslLib/openssl/crypto/bn/bn_rsa_fips186_4.c

368 lines
12 KiB
C
Raw Normal View History

/*
* Copyright 2018-2023 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* According to NIST SP800-131A "Transitioning the use of cryptographic
* algorithms and key lengths" Generation of 1024 bit RSA keys are no longer
* allowed for signatures (Table 2) or key transport (Table 5). In the code
* below any attempt to generate 1024 bit RSA keys will result in an error (Note
* that digital signature verification can still use deprecated 1024 bit keys).
*
* FIPS 186-4 relies on the use of the auxiliary primes p1, p2, q1 and q2 that
* must be generated before the module generates the RSA primes p and q.
* Table B.1 in FIPS 186-4 specifies RSA modulus lengths of 2048 and
* 3072 bits only, the min/max total length of the auxiliary primes.
* FIPS 186-5 Table A.1 includes an additional entry for 4096 which has been
* included here.
*/
#include <stdio.h>
#include <openssl/bn.h>
#include "bn_local.h"
#include "crypto/bn.h"
#include "internal/nelem.h"
#if BN_BITS2 == 64
# define BN_DEF(lo, hi) (BN_ULONG)hi<<32|lo
#else
# define BN_DEF(lo, hi) lo, hi
#endif
/* 1 / sqrt(2) * 2^256, rounded up */
static const BN_ULONG inv_sqrt_2_val[] = {
BN_DEF(0x83339916UL, 0xED17AC85UL), BN_DEF(0x893BA84CUL, 0x1D6F60BAUL),
BN_DEF(0x754ABE9FUL, 0x597D89B3UL), BN_DEF(0xF9DE6484UL, 0xB504F333UL)
};
const BIGNUM ossl_bn_inv_sqrt_2 = {
(BN_ULONG *)inv_sqrt_2_val,
OSSL_NELEM(inv_sqrt_2_val),
OSSL_NELEM(inv_sqrt_2_val),
0,
BN_FLG_STATIC_DATA
};
/*
* FIPS 186-5 Table A.1. "Min length of auxiliary primes p1, p2, q1, q2".
* (FIPS 186-5 has an entry for >= 4096 bits).
*
* Params:
* nbits The key size in bits.
* Returns:
* The minimum size of the auxiliary primes or 0 if nbits is invalid.
*/
static int bn_rsa_fips186_5_aux_prime_min_size(int nbits)
{
if (nbits >= 4096)
return 201;
if (nbits >= 3072)
return 171;
if (nbits >= 2048)
return 141;
return 0;
}
/*
* FIPS 186-5 Table A.1 "Max of len(p1) + len(p2) and
* len(q1) + len(q2) for p,q Probable Primes".
* (FIPS 186-5 has an entry for >= 4096 bits).
* Params:
* nbits The key size in bits.
* Returns:
* The maximum length or 0 if nbits is invalid.
*/
static int bn_rsa_fips186_5_aux_prime_max_sum_size_for_prob_primes(int nbits)
{
if (nbits >= 4096)
return 2030;
if (nbits >= 3072)
return 1518;
if (nbits >= 2048)
return 1007;
return 0;
}
/*
* Find the first odd integer that is a probable prime.
*
* See section FIPS 186-4 B.3.6 (Steps 4.2/5.2).
*
* Params:
* Xp1 The passed in starting point to find a probably prime.
* p1 The returned probable prime (first odd integer >= Xp1)
* ctx A BN_CTX object.
* cb An optional BIGNUM callback.
* Returns: 1 on success otherwise it returns 0.
*/
static int bn_rsa_fips186_4_find_aux_prob_prime(const BIGNUM *Xp1,
BIGNUM *p1, BN_CTX *ctx,
BN_GENCB *cb)
{
int ret = 0;
int i = 0;
int tmp = 0;
if (BN_copy(p1, Xp1) == NULL)
return 0;
BN_set_flags(p1, BN_FLG_CONSTTIME);
/* Find the first odd number >= Xp1 that is probably prime */
for(;;) {
i++;
BN_GENCB_call(cb, 0, i);
/* MR test with trial division */
tmp = BN_check_prime(p1, ctx, cb);
if (tmp > 0)
break;
if (tmp < 0)
goto err;
/* Get next odd number */
if (!BN_add_word(p1, 2))
goto err;
}
BN_GENCB_call(cb, 2, i);
ret = 1;
err:
return ret;
}
/*
* Generate a probable prime (p or q).
*
* See FIPS 186-4 B.3.6 (Steps 4 & 5)
*
* Params:
* p The returned probable prime.
* Xpout An optionally returned random number used during generation of p.
* p1, p2 The returned auxiliary primes. If NULL they are not returned.
* Xp An optional passed in value (that is random number used during
* generation of p).
* Xp1, Xp2 Optional passed in values that are normally generated
* internally. Used to find p1, p2.
* nlen The bit length of the modulus (the key size).
* e The public exponent.
* ctx A BN_CTX object.
* cb An optional BIGNUM callback.
* Returns: 1 on success otherwise it returns 0.
*/
int ossl_bn_rsa_fips186_4_gen_prob_primes(BIGNUM *p, BIGNUM *Xpout,
BIGNUM *p1, BIGNUM *p2,
const BIGNUM *Xp, const BIGNUM *Xp1,
const BIGNUM *Xp2, int nlen,
const BIGNUM *e, BN_CTX *ctx,
BN_GENCB *cb)
{
int ret = 0;
BIGNUM *p1i = NULL, *p2i = NULL, *Xp1i = NULL, *Xp2i = NULL;
int bitlen;
if (p == NULL || Xpout == NULL)
return 0;
BN_CTX_start(ctx);
p1i = (p1 != NULL) ? p1 : BN_CTX_get(ctx);
p2i = (p2 != NULL) ? p2 : BN_CTX_get(ctx);
Xp1i = (Xp1 != NULL) ? (BIGNUM *)Xp1 : BN_CTX_get(ctx);
Xp2i = (Xp2 != NULL) ? (BIGNUM *)Xp2 : BN_CTX_get(ctx);
if (p1i == NULL || p2i == NULL || Xp1i == NULL || Xp2i == NULL)
goto err;
bitlen = bn_rsa_fips186_5_aux_prime_min_size(nlen);
if (bitlen == 0)
goto err;
/* (Steps 4.1/5.1): Randomly generate Xp1 if it is not passed in */
if (Xp1 == NULL) {
/* Set the top and bottom bits to make it odd and the correct size */
if (!BN_priv_rand_ex(Xp1i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD,
0, ctx))
goto err;
}
/* (Steps 4.1/5.1): Randomly generate Xp2 if it is not passed in */
if (Xp2 == NULL) {
/* Set the top and bottom bits to make it odd and the correct size */
if (!BN_priv_rand_ex(Xp2i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD,
0, ctx))
goto err;
}
/* (Steps 4.2/5.2) - find first auxiliary probable primes */
if (!bn_rsa_fips186_4_find_aux_prob_prime(Xp1i, p1i, ctx, cb)
|| !bn_rsa_fips186_4_find_aux_prob_prime(Xp2i, p2i, ctx, cb))
goto err;
/* (Table B.1) auxiliary prime Max length check */
if ((BN_num_bits(p1i) + BN_num_bits(p2i)) >=
bn_rsa_fips186_5_aux_prime_max_sum_size_for_prob_primes(nlen))
goto err;
/* (Steps 4.3/5.3) - generate prime */
if (!ossl_bn_rsa_fips186_4_derive_prime(p, Xpout, Xp, p1i, p2i, nlen, e,
ctx, cb))
goto err;
ret = 1;
err:
/* Zeroize any internally generated values that are not returned */
if (p1 == NULL)
BN_clear(p1i);
if (p2 == NULL)
BN_clear(p2i);
if (Xp1 == NULL)
BN_clear(Xp1i);
if (Xp2 == NULL)
BN_clear(Xp2i);
BN_CTX_end(ctx);
return ret;
}
/*
* Constructs a probable prime (a candidate for p or q) using 2 auxiliary
* prime numbers and the Chinese Remainder Theorem.
*
* See FIPS 186-4 C.9 "Compute a Probable Prime Factor Based on Auxiliary
* Primes". Used by FIPS 186-4 B.3.6 Section (4.3) for p and Section (5.3) for q.
*
* Params:
* Y The returned prime factor (private_prime_factor) of the modulus n.
* X The returned random number used during generation of the prime factor.
* Xin An optional passed in value for X used for testing purposes.
* r1 An auxiliary prime.
* r2 An auxiliary prime.
* nlen The desired length of n (the RSA modulus).
* e The public exponent.
* ctx A BN_CTX object.
* cb An optional BIGNUM callback object.
* Returns: 1 on success otherwise it returns 0.
* Assumptions:
* Y, X, r1, r2, e are not NULL.
*/
int ossl_bn_rsa_fips186_4_derive_prime(BIGNUM *Y, BIGNUM *X, const BIGNUM *Xin,
const BIGNUM *r1, const BIGNUM *r2,
int nlen, const BIGNUM *e, BN_CTX *ctx,
BN_GENCB *cb)
{
int ret = 0;
int i, imax;
int bits = nlen >> 1;
BIGNUM *tmp, *R, *r1r2x2, *y1, *r1x2;
BIGNUM *base, *range;
BN_CTX_start(ctx);
base = BN_CTX_get(ctx);
range = BN_CTX_get(ctx);
R = BN_CTX_get(ctx);
tmp = BN_CTX_get(ctx);
r1r2x2 = BN_CTX_get(ctx);
y1 = BN_CTX_get(ctx);
r1x2 = BN_CTX_get(ctx);
if (r1x2 == NULL)
goto err;
if (Xin != NULL && BN_copy(X, Xin) == NULL)
goto err;
/*
* We need to generate a random number X in the range
* 1/sqrt(2) * 2^(nlen/2) <= X < 2^(nlen/2).
* We can rewrite that as:
* base = 1/sqrt(2) * 2^(nlen/2)
* range = ((2^(nlen/2))) - (1/sqrt(2) * 2^(nlen/2))
* X = base + random(range)
* We only have the first 256 bit of 1/sqrt(2)
*/
if (Xin == NULL) {
if (bits < BN_num_bits(&ossl_bn_inv_sqrt_2))
goto err;
if (!BN_lshift(base, &ossl_bn_inv_sqrt_2,
bits - BN_num_bits(&ossl_bn_inv_sqrt_2))
|| !BN_lshift(range, BN_value_one(), bits)
|| !BN_sub(range, range, base))
goto err;
}
if (!(BN_lshift1(r1x2, r1)
/* (Step 1) GCD(2r1, r2) = 1 */
&& BN_gcd(tmp, r1x2, r2, ctx)
&& BN_is_one(tmp)
/* (Step 2) R = ((r2^-1 mod 2r1) * r2) - ((2r1^-1 mod r2)*2r1) */
&& BN_mod_inverse(R, r2, r1x2, ctx)
&& BN_mul(R, R, r2, ctx) /* R = (r2^-1 mod 2r1) * r2 */
&& BN_mod_inverse(tmp, r1x2, r2, ctx)
&& BN_mul(tmp, tmp, r1x2, ctx) /* tmp = (2r1^-1 mod r2)*2r1 */
&& BN_sub(R, R, tmp)
/* Calculate 2r1r2 */
&& BN_mul(r1r2x2, r1x2, r2, ctx)))
goto err;
/* Make positive by adding the modulus */
if (BN_is_negative(R) && !BN_add(R, R, r1r2x2))
goto err;
/*
* In FIPS 186-4 imax was set to 5 * nlen/2.
* Analysis by Allen Roginsky (See https://csrc.nist.gov/CSRC/media/Publications/fips/186/4/final/documents/comments-received-fips186-4-december-2015.pdf
* page 68) indicates this has a 1 in 2 million chance of failure.
* The number has been updated to 20 * nlen/2 as used in
* FIPS186-5 Appendix B.9 Step 9.
*/
imax = 20 * bits; /* max = 20/2 * nbits */
for (;;) {
if (Xin == NULL) {
/*
* (Step 3) Choose Random X such that
* sqrt(2) * 2^(nlen/2-1) <= Random X <= (2^(nlen/2)) - 1.
*/
if (!BN_priv_rand_range_ex(X, range, 0, ctx) || !BN_add(X, X, base))
goto err;
}
/* (Step 4) Y = X + ((R - X) mod 2r1r2) */
if (!BN_mod_sub(Y, R, X, r1r2x2, ctx) || !BN_add(Y, Y, X))
goto err;
/* (Step 5) */
i = 0;
for (;;) {
/* (Step 6) */
if (BN_num_bits(Y) > bits) {
if (Xin == NULL)
break; /* Randomly Generated X so Go back to Step 3 */
else
goto err; /* X is not random so it will always fail */
}
BN_GENCB_call(cb, 0, 2);
/* (Step 7) If GCD(Y-1) == 1 & Y is probably prime then return Y */
if (BN_copy(y1, Y) == NULL
|| !BN_sub_word(y1, 1)
|| !BN_gcd(tmp, y1, e, ctx))
goto err;
if (BN_is_one(tmp)) {
int rv = BN_check_prime(Y, ctx, cb);
if (rv > 0)
goto end;
if (rv < 0)
goto err;
}
/* (Step 8-10) */
if (++i >= imax) {
ERR_raise(ERR_LIB_BN, BN_R_NO_PRIME_CANDIDATE);
goto err;
}
if (!BN_add(Y, Y, r1r2x2))
goto err;
}
}
end:
ret = 1;
BN_GENCB_call(cb, 3, 0);
err:
BN_clear(y1);
BN_CTX_end(ctx);
return ret;
}