mirror of
https://github.com/CloverHackyColor/CloverBootloader.git
synced 2024-12-04 13:23:26 +01:00
691 lines
32 KiB
Plaintext
691 lines
32 KiB
Plaintext
|
=pod
|
||
|
|
||
|
=head1 NAME
|
||
|
|
||
|
EVP_PKEY_CTX_ctrl,
|
||
|
EVP_PKEY_CTX_ctrl_str,
|
||
|
EVP_PKEY_CTX_ctrl_uint64,
|
||
|
EVP_PKEY_CTX_md,
|
||
|
EVP_PKEY_CTX_set_signature_md,
|
||
|
EVP_PKEY_CTX_get_signature_md,
|
||
|
EVP_PKEY_CTX_set_mac_key,
|
||
|
EVP_PKEY_CTX_set_group_name,
|
||
|
EVP_PKEY_CTX_get_group_name,
|
||
|
EVP_PKEY_CTX_set_rsa_padding,
|
||
|
EVP_PKEY_CTX_get_rsa_padding,
|
||
|
EVP_PKEY_CTX_set_rsa_pss_saltlen,
|
||
|
EVP_PKEY_CTX_get_rsa_pss_saltlen,
|
||
|
EVP_PKEY_CTX_set_rsa_keygen_bits,
|
||
|
EVP_PKEY_CTX_set_rsa_keygen_pubexp,
|
||
|
EVP_PKEY_CTX_set1_rsa_keygen_pubexp,
|
||
|
EVP_PKEY_CTX_set_rsa_keygen_primes,
|
||
|
EVP_PKEY_CTX_set_rsa_mgf1_md_name,
|
||
|
EVP_PKEY_CTX_set_rsa_mgf1_md,
|
||
|
EVP_PKEY_CTX_get_rsa_mgf1_md,
|
||
|
EVP_PKEY_CTX_get_rsa_mgf1_md_name,
|
||
|
EVP_PKEY_CTX_set_rsa_oaep_md_name,
|
||
|
EVP_PKEY_CTX_set_rsa_oaep_md,
|
||
|
EVP_PKEY_CTX_get_rsa_oaep_md,
|
||
|
EVP_PKEY_CTX_get_rsa_oaep_md_name,
|
||
|
EVP_PKEY_CTX_set0_rsa_oaep_label,
|
||
|
EVP_PKEY_CTX_get0_rsa_oaep_label,
|
||
|
EVP_PKEY_CTX_set_dsa_paramgen_bits,
|
||
|
EVP_PKEY_CTX_set_dsa_paramgen_q_bits,
|
||
|
EVP_PKEY_CTX_set_dsa_paramgen_md,
|
||
|
EVP_PKEY_CTX_set_dsa_paramgen_md_props,
|
||
|
EVP_PKEY_CTX_set_dsa_paramgen_gindex,
|
||
|
EVP_PKEY_CTX_set_dsa_paramgen_type,
|
||
|
EVP_PKEY_CTX_set_dsa_paramgen_seed,
|
||
|
EVP_PKEY_CTX_set_dh_paramgen_prime_len,
|
||
|
EVP_PKEY_CTX_set_dh_paramgen_subprime_len,
|
||
|
EVP_PKEY_CTX_set_dh_paramgen_generator,
|
||
|
EVP_PKEY_CTX_set_dh_paramgen_type,
|
||
|
EVP_PKEY_CTX_set_dh_paramgen_gindex,
|
||
|
EVP_PKEY_CTX_set_dh_paramgen_seed,
|
||
|
EVP_PKEY_CTX_set_dh_rfc5114,
|
||
|
EVP_PKEY_CTX_set_dhx_rfc5114,
|
||
|
EVP_PKEY_CTX_set_dh_pad,
|
||
|
EVP_PKEY_CTX_set_dh_nid,
|
||
|
EVP_PKEY_CTX_set_dh_kdf_type,
|
||
|
EVP_PKEY_CTX_get_dh_kdf_type,
|
||
|
EVP_PKEY_CTX_set0_dh_kdf_oid,
|
||
|
EVP_PKEY_CTX_get0_dh_kdf_oid,
|
||
|
EVP_PKEY_CTX_set_dh_kdf_md,
|
||
|
EVP_PKEY_CTX_get_dh_kdf_md,
|
||
|
EVP_PKEY_CTX_set_dh_kdf_outlen,
|
||
|
EVP_PKEY_CTX_get_dh_kdf_outlen,
|
||
|
EVP_PKEY_CTX_set0_dh_kdf_ukm,
|
||
|
EVP_PKEY_CTX_get0_dh_kdf_ukm,
|
||
|
EVP_PKEY_CTX_set_ec_paramgen_curve_nid,
|
||
|
EVP_PKEY_CTX_set_ec_param_enc,
|
||
|
EVP_PKEY_CTX_set_ecdh_cofactor_mode,
|
||
|
EVP_PKEY_CTX_get_ecdh_cofactor_mode,
|
||
|
EVP_PKEY_CTX_set_ecdh_kdf_type,
|
||
|
EVP_PKEY_CTX_get_ecdh_kdf_type,
|
||
|
EVP_PKEY_CTX_set_ecdh_kdf_md,
|
||
|
EVP_PKEY_CTX_get_ecdh_kdf_md,
|
||
|
EVP_PKEY_CTX_set_ecdh_kdf_outlen,
|
||
|
EVP_PKEY_CTX_get_ecdh_kdf_outlen,
|
||
|
EVP_PKEY_CTX_set0_ecdh_kdf_ukm,
|
||
|
EVP_PKEY_CTX_get0_ecdh_kdf_ukm,
|
||
|
EVP_PKEY_CTX_set1_id, EVP_PKEY_CTX_get1_id, EVP_PKEY_CTX_get1_id_len,
|
||
|
EVP_PKEY_CTX_set_kem_op
|
||
|
- algorithm specific control operations
|
||
|
|
||
|
=head1 SYNOPSIS
|
||
|
|
||
|
#include <openssl/evp.h>
|
||
|
|
||
|
int EVP_PKEY_CTX_ctrl(EVP_PKEY_CTX *ctx, int keytype, int optype,
|
||
|
int cmd, int p1, void *p2);
|
||
|
int EVP_PKEY_CTX_ctrl_uint64(EVP_PKEY_CTX *ctx, int keytype, int optype,
|
||
|
int cmd, uint64_t value);
|
||
|
int EVP_PKEY_CTX_ctrl_str(EVP_PKEY_CTX *ctx, const char *type,
|
||
|
const char *value);
|
||
|
|
||
|
int EVP_PKEY_CTX_md(EVP_PKEY_CTX *ctx, int optype, int cmd, const char *md);
|
||
|
|
||
|
int EVP_PKEY_CTX_set_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
|
||
|
int EVP_PKEY_CTX_get_signature_md(EVP_PKEY_CTX *ctx, const EVP_MD **pmd);
|
||
|
|
||
|
int EVP_PKEY_CTX_set_mac_key(EVP_PKEY_CTX *ctx, const unsigned char *key,
|
||
|
int len);
|
||
|
int EVP_PKEY_CTX_set_group_name(EVP_PKEY_CTX *ctx, const char *name);
|
||
|
int EVP_PKEY_CTX_get_group_name(EVP_PKEY_CTX *ctx, char *name, size_t namelen);
|
||
|
|
||
|
int EVP_PKEY_CTX_set_kem_op(EVP_PKEY_CTX *ctx, const char *op);
|
||
|
|
||
|
#include <openssl/rsa.h>
|
||
|
|
||
|
int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int pad);
|
||
|
int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *pad);
|
||
|
int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int saltlen);
|
||
|
int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *saltlen);
|
||
|
int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int mbits);
|
||
|
int EVP_PKEY_CTX_set1_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp);
|
||
|
int EVP_PKEY_CTX_set_rsa_keygen_primes(EVP_PKEY_CTX *ctx, int primes);
|
||
|
int EVP_PKEY_CTX_set_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
|
||
|
const char *mdprops);
|
||
|
int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
|
||
|
int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
|
||
|
int EVP_PKEY_CTX_get_rsa_mgf1_md_name(EVP_PKEY_CTX *ctx, char *name,
|
||
|
size_t namelen);
|
||
|
int EVP_PKEY_CTX_set_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, const char *mdname,
|
||
|
const char *mdprops);
|
||
|
int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
|
||
|
int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
|
||
|
int EVP_PKEY_CTX_get_rsa_oaep_md_name(EVP_PKEY_CTX *ctx, char *name,
|
||
|
size_t namelen);
|
||
|
int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, void *label,
|
||
|
int len);
|
||
|
int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx, unsigned char **label);
|
||
|
|
||
|
#include <openssl/dsa.h>
|
||
|
|
||
|
int EVP_PKEY_CTX_set_dsa_paramgen_bits(EVP_PKEY_CTX *ctx, int nbits);
|
||
|
int EVP_PKEY_CTX_set_dsa_paramgen_q_bits(EVP_PKEY_CTX *ctx, int qbits);
|
||
|
int EVP_PKEY_CTX_set_dsa_paramgen_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
|
||
|
int EVP_PKEY_CTX_set_dsa_paramgen_md_props(EVP_PKEY_CTX *ctx,
|
||
|
const char *md_name,
|
||
|
const char *md_properties);
|
||
|
int EVP_PKEY_CTX_set_dsa_paramgen_type(EVP_PKEY_CTX *ctx, const char *name);
|
||
|
int EVP_PKEY_CTX_set_dsa_paramgen_gindex(EVP_PKEY_CTX *ctx, int gindex);
|
||
|
int EVP_PKEY_CTX_set_dsa_paramgen_seed(EVP_PKEY_CTX *ctx,
|
||
|
const unsigned char *seed,
|
||
|
size_t seedlen);
|
||
|
|
||
|
#include <openssl/dh.h>
|
||
|
|
||
|
int EVP_PKEY_CTX_set_dh_paramgen_prime_len(EVP_PKEY_CTX *ctx, int len);
|
||
|
int EVP_PKEY_CTX_set_dh_paramgen_subprime_len(EVP_PKEY_CTX *ctx, int len);
|
||
|
int EVP_PKEY_CTX_set_dh_paramgen_generator(EVP_PKEY_CTX *ctx, int gen);
|
||
|
int EVP_PKEY_CTX_set_dh_paramgen_type(EVP_PKEY_CTX *ctx, int type);
|
||
|
int EVP_PKEY_CTX_set_dh_pad(EVP_PKEY_CTX *ctx, int pad);
|
||
|
int EVP_PKEY_CTX_set_dh_nid(EVP_PKEY_CTX *ctx, int nid);
|
||
|
int EVP_PKEY_CTX_set_dh_rfc5114(EVP_PKEY_CTX *ctx, int rfc5114);
|
||
|
int EVP_PKEY_CTX_set_dhx_rfc5114(EVP_PKEY_CTX *ctx, int rfc5114);
|
||
|
int EVP_PKEY_CTX_set_dh_paramgen_gindex(EVP_PKEY_CTX *ctx, int gindex);
|
||
|
int EVP_PKEY_CTX_set_dh_paramgen_seed(EVP_PKEY_CTX *ctx,
|
||
|
const unsigned char *seed,
|
||
|
size_t seedlen);
|
||
|
int EVP_PKEY_CTX_set_dh_kdf_type(EVP_PKEY_CTX *ctx, int kdf);
|
||
|
int EVP_PKEY_CTX_get_dh_kdf_type(EVP_PKEY_CTX *ctx);
|
||
|
int EVP_PKEY_CTX_set0_dh_kdf_oid(EVP_PKEY_CTX *ctx, ASN1_OBJECT *oid);
|
||
|
int EVP_PKEY_CTX_get0_dh_kdf_oid(EVP_PKEY_CTX *ctx, ASN1_OBJECT **oid);
|
||
|
int EVP_PKEY_CTX_set_dh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
|
||
|
int EVP_PKEY_CTX_get_dh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
|
||
|
int EVP_PKEY_CTX_set_dh_kdf_outlen(EVP_PKEY_CTX *ctx, int len);
|
||
|
int EVP_PKEY_CTX_get_dh_kdf_outlen(EVP_PKEY_CTX *ctx, int *len);
|
||
|
int EVP_PKEY_CTX_set0_dh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char *ukm, int len);
|
||
|
|
||
|
#include <openssl/ec.h>
|
||
|
|
||
|
int EVP_PKEY_CTX_set_ec_paramgen_curve_nid(EVP_PKEY_CTX *ctx, int nid);
|
||
|
int EVP_PKEY_CTX_set_ec_param_enc(EVP_PKEY_CTX *ctx, int param_enc);
|
||
|
int EVP_PKEY_CTX_set_ecdh_cofactor_mode(EVP_PKEY_CTX *ctx, int cofactor_mode);
|
||
|
int EVP_PKEY_CTX_get_ecdh_cofactor_mode(EVP_PKEY_CTX *ctx);
|
||
|
int EVP_PKEY_CTX_set_ecdh_kdf_type(EVP_PKEY_CTX *ctx, int kdf);
|
||
|
int EVP_PKEY_CTX_get_ecdh_kdf_type(EVP_PKEY_CTX *ctx);
|
||
|
int EVP_PKEY_CTX_set_ecdh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD *md);
|
||
|
int EVP_PKEY_CTX_get_ecdh_kdf_md(EVP_PKEY_CTX *ctx, const EVP_MD **md);
|
||
|
int EVP_PKEY_CTX_set_ecdh_kdf_outlen(EVP_PKEY_CTX *ctx, int len);
|
||
|
int EVP_PKEY_CTX_get_ecdh_kdf_outlen(EVP_PKEY_CTX *ctx, int *len);
|
||
|
int EVP_PKEY_CTX_set0_ecdh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char *ukm, int len);
|
||
|
|
||
|
int EVP_PKEY_CTX_set1_id(EVP_PKEY_CTX *ctx, void *id, size_t id_len);
|
||
|
int EVP_PKEY_CTX_get1_id(EVP_PKEY_CTX *ctx, void *id);
|
||
|
int EVP_PKEY_CTX_get1_id_len(EVP_PKEY_CTX *ctx, size_t *id_len);
|
||
|
|
||
|
The following functions have been deprecated since OpenSSL 3.0, and can be
|
||
|
hidden entirely by defining B<OPENSSL_API_COMPAT> with a suitable version value,
|
||
|
see L<openssl_user_macros(7)>:
|
||
|
|
||
|
#include <openssl/rsa.h>
|
||
|
|
||
|
int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *pubexp);
|
||
|
|
||
|
#include <openssl/dh.h>
|
||
|
|
||
|
int EVP_PKEY_CTX_get0_dh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char **ukm);
|
||
|
|
||
|
#include <openssl/ec.h>
|
||
|
|
||
|
int EVP_PKEY_CTX_get0_ecdh_kdf_ukm(EVP_PKEY_CTX *ctx, unsigned char **ukm);
|
||
|
|
||
|
=head1 DESCRIPTION
|
||
|
|
||
|
EVP_PKEY_CTX_ctrl() sends a control operation to the context I<ctx>. The key
|
||
|
type used must match I<keytype> if it is not -1. The parameter I<optype> is a
|
||
|
mask indicating which operations the control can be applied to.
|
||
|
The control command is indicated in I<cmd> and any additional arguments in
|
||
|
I<p1> and I<p2>.
|
||
|
|
||
|
For I<cmd> = B<EVP_PKEY_CTRL_SET_MAC_KEY>, I<p1> is the length of the MAC key,
|
||
|
and I<p2> is the MAC key. This is used by Poly1305, SipHash, HMAC and CMAC.
|
||
|
|
||
|
Applications will not normally call EVP_PKEY_CTX_ctrl() directly but will
|
||
|
instead call one of the algorithm specific functions below.
|
||
|
|
||
|
EVP_PKEY_CTX_ctrl_uint64() is a wrapper that directly passes a
|
||
|
uint64 value as I<p2> to EVP_PKEY_CTX_ctrl().
|
||
|
|
||
|
EVP_PKEY_CTX_ctrl_str() allows an application to send an algorithm
|
||
|
specific control operation to a context I<ctx> in string form. This is
|
||
|
intended to be used for options specified on the command line or in text
|
||
|
files. The commands supported are documented in the openssl utility
|
||
|
command line pages for the option I<-pkeyopt> which is supported by the
|
||
|
I<pkeyutl>, I<genpkey> and I<req> commands.
|
||
|
|
||
|
EVP_PKEY_CTX_md() sends a message digest control operation to the context
|
||
|
I<ctx>. The message digest is specified by its name I<md>.
|
||
|
|
||
|
EVP_PKEY_CTX_set_signature_md() sets the message digest type used
|
||
|
in a signature. It can be used in the RSA, DSA and ECDSA algorithms.
|
||
|
|
||
|
EVP_PKEY_CTX_get_signature_md()gets the message digest type used
|
||
|
in a signature. It can be used in the RSA, DSA and ECDSA algorithms.
|
||
|
|
||
|
Key generation typically involves setting up parameters to be used and
|
||
|
generating the private and public key data. Some algorithm implementations
|
||
|
allow private key data to be set explicitly using EVP_PKEY_CTX_set_mac_key().
|
||
|
In this case key generation is simply the process of setting up the
|
||
|
parameters for the key and then setting the raw key data to the value explicitly.
|
||
|
Normally applications would call L<EVP_PKEY_new_raw_private_key(3)> or similar
|
||
|
functions instead.
|
||
|
|
||
|
EVP_PKEY_CTX_set_mac_key() can be used with any of the algorithms supported by
|
||
|
the L<EVP_PKEY_new_raw_private_key(3)> function.
|
||
|
|
||
|
EVP_PKEY_CTX_set_group_name() sets the group name to I<name> for parameter and
|
||
|
key generation. For example for EC keys this will set the curve name and for
|
||
|
DH keys it will set the name of the finite field group.
|
||
|
|
||
|
EVP_PKEY_CTX_get_group_name() finds the group name that's currently
|
||
|
set with I<ctx>, and writes it to the location that I<name> points at, as long
|
||
|
as its size I<namelen> is large enough to store that name, including a
|
||
|
terminating NUL byte.
|
||
|
|
||
|
=head2 RSA parameters
|
||
|
|
||
|
EVP_PKEY_CTX_set_rsa_padding() sets the RSA padding mode for I<ctx>.
|
||
|
The I<pad> parameter can take the value B<RSA_PKCS1_PADDING> for PKCS#1
|
||
|
padding, B<RSA_NO_PADDING> for
|
||
|
no padding, B<RSA_PKCS1_OAEP_PADDING> for OAEP padding (encrypt and
|
||
|
decrypt only), B<RSA_X931_PADDING> for X9.31 padding (signature operations
|
||
|
only), B<RSA_PKCS1_PSS_PADDING> (sign and verify only) and
|
||
|
B<RSA_PKCS1_WITH_TLS_PADDING> for TLS RSA ClientKeyExchange message padding
|
||
|
(decryption only).
|
||
|
|
||
|
Two RSA padding modes behave differently if EVP_PKEY_CTX_set_signature_md()
|
||
|
is used. If this function is called for PKCS#1 padding the plaintext buffer is
|
||
|
an actual digest value and is encapsulated in a DigestInfo structure according
|
||
|
to PKCS#1 when signing and this structure is expected (and stripped off) when
|
||
|
verifying. If this control is not used with RSA and PKCS#1 padding then the
|
||
|
supplied data is used directly and not encapsulated. In the case of X9.31
|
||
|
padding for RSA the algorithm identifier byte is added or checked and removed
|
||
|
if this control is called. If it is not called then the first byte of the plaintext
|
||
|
buffer is expected to be the algorithm identifier byte.
|
||
|
|
||
|
EVP_PKEY_CTX_get_rsa_padding() gets the RSA padding mode for I<ctx>.
|
||
|
|
||
|
EVP_PKEY_CTX_set_rsa_pss_saltlen() sets the RSA PSS salt length to I<saltlen>.
|
||
|
As its name implies it is only supported for PSS padding. If this function is
|
||
|
not called then the maximum salt length is used when signing and auto detection
|
||
|
when verifying. Three special values are supported:
|
||
|
|
||
|
=over 4
|
||
|
|
||
|
=item B<RSA_PSS_SALTLEN_DIGEST>
|
||
|
|
||
|
sets the salt length to the digest length.
|
||
|
|
||
|
=item B<RSA_PSS_SALTLEN_MAX>
|
||
|
|
||
|
sets the salt length to the maximum permissible value.
|
||
|
|
||
|
=item B<RSA_PSS_SALTLEN_AUTO>
|
||
|
|
||
|
causes the salt length to be automatically determined based on the
|
||
|
B<PSS> block structure when verifying. When signing, it has the same
|
||
|
meaning as B<RSA_PSS_SALTLEN_MAX>.
|
||
|
|
||
|
=back
|
||
|
|
||
|
EVP_PKEY_CTX_get_rsa_pss_saltlen() gets the RSA PSS salt length for I<ctx>.
|
||
|
The padding mode must already have been set to B<RSA_PKCS1_PSS_PADDING>.
|
||
|
|
||
|
EVP_PKEY_CTX_set_rsa_keygen_bits() sets the RSA key length for
|
||
|
RSA key generation to I<bits>. If not specified 2048 bits is used.
|
||
|
|
||
|
EVP_PKEY_CTX_set1_rsa_keygen_pubexp() sets the public exponent value for RSA key
|
||
|
generation to the value stored in I<pubexp>. Currently it should be an odd
|
||
|
integer. In accordance with the OpenSSL naming convention, the I<pubexp> pointer
|
||
|
must be freed independently of the EVP_PKEY_CTX (ie, it is internally copied).
|
||
|
If not specified 65537 is used.
|
||
|
|
||
|
EVP_PKEY_CTX_set_rsa_keygen_pubexp() does the same as
|
||
|
EVP_PKEY_CTX_set1_rsa_keygen_pubexp() except that there is no internal copy and
|
||
|
therefore I<pubexp> should not be modified or freed after the call.
|
||
|
|
||
|
EVP_PKEY_CTX_set_rsa_keygen_primes() sets the number of primes for
|
||
|
RSA key generation to I<primes>. If not specified 2 is used.
|
||
|
|
||
|
EVP_PKEY_CTX_set_rsa_mgf1_md_name() sets the MGF1 digest for RSA
|
||
|
padding schemes to the digest named I<mdname>. If the RSA algorithm
|
||
|
implementation for the selected provider supports it then the digest will be
|
||
|
fetched using the properties I<mdprops>. If not explicitly set the signing
|
||
|
digest is used. The padding mode must have been set to B<RSA_PKCS1_OAEP_PADDING>
|
||
|
or B<RSA_PKCS1_PSS_PADDING>.
|
||
|
|
||
|
EVP_PKEY_CTX_set_rsa_mgf1_md() does the same as
|
||
|
EVP_PKEY_CTX_set_rsa_mgf1_md_name() except that the name of the digest is
|
||
|
inferred from the supplied I<md> and it is not possible to specify any
|
||
|
properties.
|
||
|
|
||
|
EVP_PKEY_CTX_get_rsa_mgf1_md_name() gets the name of the MGF1
|
||
|
digest algorithm for I<ctx>. If not explicitly set the signing digest is used.
|
||
|
The padding mode must have been set to B<RSA_PKCS1_OAEP_PADDING> or
|
||
|
B<RSA_PKCS1_PSS_PADDING>.
|
||
|
|
||
|
EVP_PKEY_CTX_get_rsa_mgf1_md() does the same as
|
||
|
EVP_PKEY_CTX_get_rsa_mgf1_md_name() except that it returns a pointer to an
|
||
|
EVP_MD object instead. Note that only known, built-in EVP_MD objects will be
|
||
|
returned. The EVP_MD object may be NULL if the digest is not one of these (such
|
||
|
as a digest only implemented in a third party provider).
|
||
|
|
||
|
EVP_PKEY_CTX_set_rsa_oaep_md_name() sets the message digest type
|
||
|
used in RSA OAEP to the digest named I<mdname>. If the RSA algorithm
|
||
|
implementation for the selected provider supports it then the digest will be
|
||
|
fetched using the properties I<mdprops>. The padding mode must have been set to
|
||
|
B<RSA_PKCS1_OAEP_PADDING>.
|
||
|
|
||
|
EVP_PKEY_CTX_set_rsa_oaep_md() does the same as
|
||
|
EVP_PKEY_CTX_set_rsa_oaep_md_name() except that the name of the digest is
|
||
|
inferred from the supplied I<md> and it is not possible to specify any
|
||
|
properties.
|
||
|
|
||
|
EVP_PKEY_CTX_get_rsa_oaep_md_name() gets the message digest
|
||
|
algorithm name used in RSA OAEP and stores it in the buffer I<name> which is of
|
||
|
size I<namelen>. The padding mode must have been set to
|
||
|
B<RSA_PKCS1_OAEP_PADDING>. The buffer should be sufficiently large for any
|
||
|
expected digest algorithm names or the function will fail.
|
||
|
|
||
|
EVP_PKEY_CTX_get_rsa_oaep_md() does the same as
|
||
|
EVP_PKEY_CTX_get_rsa_oaep_md_name() except that it returns a pointer to an
|
||
|
EVP_MD object instead. Note that only known, built-in EVP_MD objects will be
|
||
|
returned. The EVP_MD object may be NULL if the digest is not one of these (such
|
||
|
as a digest only implemented in a third party provider).
|
||
|
|
||
|
EVP_PKEY_CTX_set0_rsa_oaep_label() sets the RSA OAEP label to binary data
|
||
|
I<label> and its length in bytes to I<len>. If I<label> is NULL or I<len> is 0,
|
||
|
the label is cleared. The library takes ownership of the label so the
|
||
|
caller should not free the original memory pointed to by I<label>.
|
||
|
The padding mode must have been set to B<RSA_PKCS1_OAEP_PADDING>.
|
||
|
|
||
|
EVP_PKEY_CTX_get0_rsa_oaep_label() gets the RSA OAEP label to
|
||
|
I<label>. The return value is the label length. The padding mode
|
||
|
must have been set to B<RSA_PKCS1_OAEP_PADDING>. The resulting pointer is owned
|
||
|
by the library and should not be freed by the caller.
|
||
|
|
||
|
B<RSA_PKCS1_WITH_TLS_PADDING> is used when decrypting an RSA encrypted TLS
|
||
|
pre-master secret in a TLS ClientKeyExchange message. It is the same as
|
||
|
RSA_PKCS1_PADDING except that it additionally verifies that the result is the
|
||
|
correct length and the first two bytes are the protocol version initially
|
||
|
requested by the client. If the encrypted content is publicly invalid then the
|
||
|
decryption will fail. However, if the padding checks fail then decryption will
|
||
|
still appear to succeed but a random TLS premaster secret will be returned
|
||
|
instead. This padding mode accepts two parameters which can be set using the
|
||
|
L<EVP_PKEY_CTX_set_params(3)> function. These are
|
||
|
OSSL_ASYM_CIPHER_PARAM_TLS_CLIENT_VERSION and
|
||
|
OSSL_ASYM_CIPHER_PARAM_TLS_NEGOTIATED_VERSION, both of which are expected to be
|
||
|
unsigned integers. Normally only the first of these will be set and represents
|
||
|
the TLS protocol version that was first requested by the client (e.g. 0x0303 for
|
||
|
TLSv1.2, 0x0302 for TLSv1.1 etc). Historically some buggy clients would use the
|
||
|
negotiated protocol version instead of the protocol version first requested. If
|
||
|
this behaviour should be tolerated then
|
||
|
OSSL_ASYM_CIPHER_PARAM_TLS_NEGOTIATED_VERSION should be set to the actual
|
||
|
negotiated protocol version. Otherwise it should be left unset.
|
||
|
|
||
|
=head2 DSA parameters
|
||
|
|
||
|
EVP_PKEY_CTX_set_dsa_paramgen_bits() sets the number of bits used for DSA
|
||
|
parameter generation to B<nbits>. If not specified, 2048 is used.
|
||
|
|
||
|
EVP_PKEY_CTX_set_dsa_paramgen_q_bits() sets the number of bits in the subprime
|
||
|
parameter I<q> for DSA parameter generation to I<qbits>. If not specified, 224
|
||
|
is used. If a digest function is specified below, this parameter is ignored and
|
||
|
instead, the number of bits in I<q> matches the size of the digest.
|
||
|
|
||
|
EVP_PKEY_CTX_set_dsa_paramgen_md() sets the digest function used for DSA
|
||
|
parameter generation to I<md>. If not specified, one of SHA-1, SHA-224, or
|
||
|
SHA-256 is selected to match the bit length of I<q> above.
|
||
|
|
||
|
EVP_PKEY_CTX_set_dsa_paramgen_md_props() sets the digest function used for DSA
|
||
|
parameter generation using I<md_name> and I<md_properties> to retrieve the
|
||
|
digest from a provider.
|
||
|
If not specified, I<md_name> will be set to one of SHA-1, SHA-224, or
|
||
|
SHA-256 depending on the bit length of I<q> above. I<md_properties> is a
|
||
|
property query string that has a default value of '' if not specified.
|
||
|
|
||
|
EVP_PKEY_CTX_set_dsa_paramgen_gindex() sets the I<gindex> used by the generator
|
||
|
G. The default value is -1 which uses unverifiable g, otherwise a positive value
|
||
|
uses verifiable g. This value must be saved if key validation of g is required,
|
||
|
since it is not part of a persisted key.
|
||
|
|
||
|
EVP_PKEY_CTX_set_dsa_paramgen_seed() sets the I<seed> to use for generation
|
||
|
rather than using a randomly generated value for the seed. This is useful for
|
||
|
testing purposes only and can fail if the seed does not produce primes for both
|
||
|
p & q on its first iteration. This value must be saved if key validation of
|
||
|
p, q, and verifiable g are required, since it is not part of a persisted key.
|
||
|
|
||
|
EVP_PKEY_CTX_set_dsa_paramgen_type() sets the generation type to use FIPS186-4
|
||
|
generation if I<name> is "fips186_4", or FIPS186-2 generation if I<name> is
|
||
|
"fips186_2". The default value for the default provider is "fips186_2". The
|
||
|
default value for the FIPS provider is "fips186_4".
|
||
|
|
||
|
=head2 DH parameters
|
||
|
|
||
|
EVP_PKEY_CTX_set_dh_paramgen_prime_len() sets the length of the DH prime
|
||
|
parameter I<p> for DH parameter generation. If this function is not called then
|
||
|
2048 is used. Only accepts lengths greater than or equal to 256.
|
||
|
|
||
|
EVP_PKEY_CTX_set_dh_paramgen_subprime_len() sets the length of the DH
|
||
|
optional subprime parameter I<q> for DH parameter generation. The default is
|
||
|
256 if the prime is at least 2048 bits long or 160 otherwise. The DH paramgen
|
||
|
type must have been set to "fips186_4".
|
||
|
|
||
|
EVP_PKEY_CTX_set_dh_paramgen_generator() sets DH generator to I<gen> for DH
|
||
|
parameter generation. If not specified 2 is used.
|
||
|
|
||
|
EVP_PKEY_CTX_set_dh_paramgen_type() sets the key type for DH parameter
|
||
|
generation. The supported parameters are:
|
||
|
|
||
|
=over 4
|
||
|
|
||
|
=item B<DH_PARAMGEN_TYPE_GROUP>
|
||
|
|
||
|
Use a named group. If only the safe prime parameter I<p> is set this can be
|
||
|
used to select a ffdhe safe prime group of the correct size.
|
||
|
|
||
|
=item B<DH_PARAMGEN_TYPE_FIPS_186_4>
|
||
|
|
||
|
FIPS186-4 FFC parameter generator.
|
||
|
|
||
|
=item B<DH_PARAMGEN_TYPE_FIPS_186_2>
|
||
|
|
||
|
FIPS186-2 FFC parameter generator (X9.42 DH).
|
||
|
|
||
|
=item B<DH_PARAMGEN_TYPE_GENERATOR>
|
||
|
|
||
|
Uses a safe prime generator g (PKCS#3 format).
|
||
|
|
||
|
=back
|
||
|
|
||
|
The default in the default provider is B<DH_PARAMGEN_TYPE_GENERATOR> for the
|
||
|
"DH" keytype, and B<DH_PARAMGEN_TYPE_FIPS_186_2> for the "DHX" keytype. In the
|
||
|
FIPS provider the default value is B<DH_PARAMGEN_TYPE_GROUP> for the "DH"
|
||
|
keytype and <B<DH_PARAMGEN_TYPE_FIPS_186_4> for the "DHX" keytype.
|
||
|
|
||
|
EVP_PKEY_CTX_set_dh_paramgen_gindex() sets the I<gindex> used by the generator G.
|
||
|
The default value is -1 which uses unverifiable g, otherwise a positive value
|
||
|
uses verifiable g. This value must be saved if key validation of g is required,
|
||
|
since it is not part of a persisted key.
|
||
|
|
||
|
EVP_PKEY_CTX_set_dh_paramgen_seed() sets the I<seed> to use for generation
|
||
|
rather than using a randomly generated value for the seed. This is useful for
|
||
|
testing purposes only and can fail if the seed does not produce primes for both
|
||
|
p & q on its first iteration. This value must be saved if key validation of p, q,
|
||
|
and verifiable g are required, since it is not part of a persisted key.
|
||
|
|
||
|
EVP_PKEY_CTX_set_dh_pad() sets the DH padding mode.
|
||
|
If I<pad> is 1 the shared secret is padded with zeros up to the size of the DH
|
||
|
prime I<p>.
|
||
|
If I<pad> is zero (the default) then no padding is performed.
|
||
|
|
||
|
EVP_PKEY_CTX_set_dh_nid() sets the DH parameters to values corresponding to
|
||
|
I<nid> as defined in RFC7919 or RFC3526. The I<nid> parameter must be
|
||
|
B<NID_ffdhe2048>, B<NID_ffdhe3072>, B<NID_ffdhe4096>, B<NID_ffdhe6144>,
|
||
|
B<NID_ffdhe8192>, B<NID_modp_1536>, B<NID_modp_2048>, B<NID_modp_3072>,
|
||
|
B<NID_modp_4096>, B<NID_modp_6144>, B<NID_modp_8192> or B<NID_undef> to clear
|
||
|
the stored value. This function can be called during parameter or key generation.
|
||
|
The nid parameter and the rfc5114 parameter are mutually exclusive.
|
||
|
|
||
|
EVP_PKEY_CTX_set_dh_rfc5114() and EVP_PKEY_CTX_set_dhx_rfc5114() both set the
|
||
|
DH parameters to the values defined in RFC5114. The I<rfc5114> parameter must
|
||
|
be 1, 2 or 3 corresponding to RFC5114 sections 2.1, 2.2 and 2.3. or 0 to clear
|
||
|
the stored value. This macro can be called during parameter generation. The
|
||
|
I<ctx> must have a key type of B<EVP_PKEY_DHX>.
|
||
|
The rfc5114 parameter and the nid parameter are mutually exclusive.
|
||
|
|
||
|
=head2 DH key derivation function parameters
|
||
|
|
||
|
Note that all of the following functions require that the I<ctx> parameter has
|
||
|
a private key type of B<EVP_PKEY_DHX>. When using key derivation, the output of
|
||
|
EVP_PKEY_derive() is the output of the KDF instead of the DH shared secret.
|
||
|
The KDF output is typically used as a Key Encryption Key (KEK) that in turn
|
||
|
encrypts a Content Encryption Key (CEK).
|
||
|
|
||
|
EVP_PKEY_CTX_set_dh_kdf_type() sets the key derivation function type to I<kdf>
|
||
|
for DH key derivation. Possible values are B<EVP_PKEY_DH_KDF_NONE> and
|
||
|
B<EVP_PKEY_DH_KDF_X9_42> which uses the key derivation specified in RFC2631
|
||
|
(based on the keying algorithm described in X9.42). When using key derivation,
|
||
|
the I<kdf_oid>, I<kdf_md> and I<kdf_outlen> parameters must also be specified.
|
||
|
|
||
|
EVP_PKEY_CTX_get_dh_kdf_type() gets the key derivation function type for I<ctx>
|
||
|
used for DH key derivation. Possible values are B<EVP_PKEY_DH_KDF_NONE> and
|
||
|
B<EVP_PKEY_DH_KDF_X9_42>.
|
||
|
|
||
|
EVP_PKEY_CTX_set0_dh_kdf_oid() sets the key derivation function object
|
||
|
identifier to I<oid> for DH key derivation. This OID should identify the
|
||
|
algorithm to be used with the Content Encryption Key.
|
||
|
The library takes ownership of the object identifier so the caller should not
|
||
|
free the original memory pointed to by I<oid>.
|
||
|
|
||
|
EVP_PKEY_CTX_get0_dh_kdf_oid() gets the key derivation function oid for I<ctx>
|
||
|
used for DH key derivation. The resulting pointer is owned by the library and
|
||
|
should not be freed by the caller.
|
||
|
|
||
|
EVP_PKEY_CTX_set_dh_kdf_md() sets the key derivation function message digest to
|
||
|
I<md> for DH key derivation. Note that RFC2631 specifies that this digest should
|
||
|
be SHA1 but OpenSSL tolerates other digests.
|
||
|
|
||
|
EVP_PKEY_CTX_get_dh_kdf_md() gets the key derivation function message digest for
|
||
|
I<ctx> used for DH key derivation.
|
||
|
|
||
|
EVP_PKEY_CTX_set_dh_kdf_outlen() sets the key derivation function output length
|
||
|
to I<len> for DH key derivation.
|
||
|
|
||
|
EVP_PKEY_CTX_get_dh_kdf_outlen() gets the key derivation function output length
|
||
|
for I<ctx> used for DH key derivation.
|
||
|
|
||
|
EVP_PKEY_CTX_set0_dh_kdf_ukm() sets the user key material to I<ukm> and its
|
||
|
length to I<len> for DH key derivation. This parameter is optional and
|
||
|
corresponds to the partyAInfo field in RFC2631 terms. The specification
|
||
|
requires that it is 512 bits long but this is not enforced by OpenSSL.
|
||
|
The library takes ownership of the user key material so the caller should not
|
||
|
free the original memory pointed to by I<ukm>.
|
||
|
|
||
|
EVP_PKEY_CTX_get0_dh_kdf_ukm() gets the user key material for I<ctx>.
|
||
|
The return value is the user key material length. The resulting pointer is owned
|
||
|
by the library and should not be freed by the caller.
|
||
|
|
||
|
=head2 EC parameters
|
||
|
|
||
|
Use EVP_PKEY_CTX_set_group_name() (described above) to set the curve name to
|
||
|
I<name> for parameter and key generation.
|
||
|
|
||
|
EVP_PKEY_CTX_set_ec_paramgen_curve_nid() does the same as
|
||
|
EVP_PKEY_CTX_set_group_name(), but is specific to EC and uses a I<nid> rather
|
||
|
than a name string.
|
||
|
|
||
|
For EC parameter generation, one of EVP_PKEY_CTX_set_group_name()
|
||
|
or EVP_PKEY_CTX_set_ec_paramgen_curve_nid() must be called or an error occurs
|
||
|
because there is no default curve.
|
||
|
These function can also be called to set the curve explicitly when
|
||
|
generating an EC key.
|
||
|
|
||
|
EVP_PKEY_CTX_get_group_name() (described above) can be used to obtain the curve
|
||
|
name that's currently set with I<ctx>.
|
||
|
|
||
|
EVP_PKEY_CTX_set_ec_param_enc() sets the EC parameter encoding to I<param_enc>
|
||
|
when generating EC parameters or an EC key. The encoding can be
|
||
|
B<OPENSSL_EC_EXPLICIT_CURVE> for explicit parameters (the default in versions
|
||
|
of OpenSSL before 1.1.0) or B<OPENSSL_EC_NAMED_CURVE> to use named curve form.
|
||
|
For maximum compatibility the named curve form should be used. Note: the
|
||
|
B<OPENSSL_EC_NAMED_CURVE> value was added in OpenSSL 1.1.0; previous
|
||
|
versions should use 0 instead.
|
||
|
|
||
|
=head2 ECDH parameters
|
||
|
|
||
|
EVP_PKEY_CTX_set_ecdh_cofactor_mode() sets the cofactor mode to I<cofactor_mode>
|
||
|
for ECDH key derivation. Possible values are 1 to enable cofactor
|
||
|
key derivation, 0 to disable it and -1 to clear the stored cofactor mode and
|
||
|
fallback to the private key cofactor mode.
|
||
|
|
||
|
EVP_PKEY_CTX_get_ecdh_cofactor_mode() returns the cofactor mode for I<ctx> used
|
||
|
for ECDH key derivation. Possible values are 1 when cofactor key derivation is
|
||
|
enabled and 0 otherwise.
|
||
|
|
||
|
=head2 ECDH key derivation function parameters
|
||
|
|
||
|
EVP_PKEY_CTX_set_ecdh_kdf_type() sets the key derivation function type to
|
||
|
I<kdf> for ECDH key derivation. Possible values are B<EVP_PKEY_ECDH_KDF_NONE>
|
||
|
and B<EVP_PKEY_ECDH_KDF_X9_63> which uses the key derivation specified in X9.63.
|
||
|
When using key derivation, the I<kdf_md> and I<kdf_outlen> parameters must
|
||
|
also be specified.
|
||
|
|
||
|
EVP_PKEY_CTX_get_ecdh_kdf_type() returns the key derivation function type for
|
||
|
I<ctx> used for ECDH key derivation. Possible values are
|
||
|
B<EVP_PKEY_ECDH_KDF_NONE> and B<EVP_PKEY_ECDH_KDF_X9_63>.
|
||
|
|
||
|
EVP_PKEY_CTX_set_ecdh_kdf_md() sets the key derivation function message digest
|
||
|
to I<md> for ECDH key derivation. Note that X9.63 specifies that this digest
|
||
|
should be SHA1 but OpenSSL tolerates other digests.
|
||
|
|
||
|
EVP_PKEY_CTX_get_ecdh_kdf_md() gets the key derivation function message digest
|
||
|
for I<ctx> used for ECDH key derivation.
|
||
|
|
||
|
EVP_PKEY_CTX_set_ecdh_kdf_outlen() sets the key derivation function output
|
||
|
length to I<len> for ECDH key derivation.
|
||
|
|
||
|
EVP_PKEY_CTX_get_ecdh_kdf_outlen() gets the key derivation function output
|
||
|
length for I<ctx> used for ECDH key derivation.
|
||
|
|
||
|
EVP_PKEY_CTX_set0_ecdh_kdf_ukm() sets the user key material to I<ukm> for ECDH
|
||
|
key derivation. This parameter is optional and corresponds to the shared info in
|
||
|
X9.63 terms. The library takes ownership of the user key material so the caller
|
||
|
should not free the original memory pointed to by I<ukm>.
|
||
|
|
||
|
EVP_PKEY_CTX_get0_ecdh_kdf_ukm() gets the user key material for I<ctx>.
|
||
|
The return value is the user key material length. The resulting pointer is owned
|
||
|
by the library and should not be freed by the caller.
|
||
|
|
||
|
=head2 Other parameters
|
||
|
|
||
|
EVP_PKEY_CTX_set1_id(), EVP_PKEY_CTX_get1_id() and EVP_PKEY_CTX_get1_id_len()
|
||
|
are used to manipulate the special identifier field for specific signature
|
||
|
algorithms such as SM2. The EVP_PKEY_CTX_set1_id() sets an ID pointed by I<id> with
|
||
|
the length I<id_len> to the library. The library takes a copy of the id so that
|
||
|
the caller can safely free the original memory pointed to by I<id>.
|
||
|
EVP_PKEY_CTX_get1_id_len() returns the length of the ID set via a previous call
|
||
|
to EVP_PKEY_CTX_set1_id(). The length is usually used to allocate adequate
|
||
|
memory for further calls to EVP_PKEY_CTX_get1_id(). EVP_PKEY_CTX_get1_id()
|
||
|
returns the previously set ID value to caller in I<id>. The caller should
|
||
|
allocate adequate memory space for the I<id> before calling EVP_PKEY_CTX_get1_id().
|
||
|
|
||
|
EVP_PKEY_CTX_set_kem_op() sets the KEM operation to run. This can be set after
|
||
|
EVP_PKEY_encapsulate_init() or EVP_PKEY_decapsulate_init() to select the
|
||
|
kem operation. RSA is the only key type that supports encapsulation currently,
|
||
|
and as there is no default operation for the RSA type, this function must be
|
||
|
called before EVP_PKEY_encapsulate() or EVP_PKEY_decapsulate().
|
||
|
|
||
|
=head1 RETURN VALUES
|
||
|
|
||
|
All other functions described on this page return a positive value for success
|
||
|
and 0 or a negative value for failure. In particular a return value of -2
|
||
|
indicates the operation is not supported by the public key algorithm.
|
||
|
|
||
|
=head1 SEE ALSO
|
||
|
|
||
|
L<EVP_PKEY_CTX_set_params(3)>,
|
||
|
L<EVP_PKEY_CTX_new(3)>,
|
||
|
L<EVP_PKEY_encrypt(3)>,
|
||
|
L<EVP_PKEY_decrypt(3)>,
|
||
|
L<EVP_PKEY_sign(3)>,
|
||
|
L<EVP_PKEY_verify(3)>,
|
||
|
L<EVP_PKEY_verify_recover(3)>,
|
||
|
L<EVP_PKEY_derive(3)>,
|
||
|
L<EVP_PKEY_keygen(3)>
|
||
|
L<EVP_PKEY_encapsulate(3)>
|
||
|
L<EVP_PKEY_decapsulate(3)>
|
||
|
|
||
|
=head1 HISTORY
|
||
|
|
||
|
EVP_PKEY_CTX_get_rsa_oaep_md_name(), EVP_PKEY_CTX_get_rsa_mgf1_md_name(),
|
||
|
EVP_PKEY_CTX_set_rsa_mgf1_md_name(), EVP_PKEY_CTX_set_rsa_oaep_md_name(),
|
||
|
EVP_PKEY_CTX_set_dsa_paramgen_md_props(), EVP_PKEY_CTX_set_dsa_paramgen_gindex(),
|
||
|
EVP_PKEY_CTX_set_dsa_paramgen_type(), EVP_PKEY_CTX_set_dsa_paramgen_seed(),
|
||
|
EVP_PKEY_CTX_set_group_name() and EVP_PKEY_CTX_get_group_name()
|
||
|
were added in OpenSSL 3.0.
|
||
|
|
||
|
The EVP_PKEY_CTX_set1_id(), EVP_PKEY_CTX_get1_id() and
|
||
|
EVP_PKEY_CTX_get1_id_len() macros were added in 1.1.1, other functions were
|
||
|
added in OpenSSL 1.0.0.
|
||
|
|
||
|
In OpenSSL 1.1.1 and below the functions were mostly macros.
|
||
|
From OpenSSL 3.0 they are all functions.
|
||
|
|
||
|
EVP_PKEY_CTX_set_rsa_keygen_pubexp(), EVP_PKEY_CTX_get0_dh_kdf_ukm(),
|
||
|
and EVP_PKEY_CTX_get0_ecdh_kdf_ukm() were deprecated in OpenSSL 3.0.
|
||
|
|
||
|
=head1 COPYRIGHT
|
||
|
|
||
|
Copyright 2006-2021 The OpenSSL Project Authors. All Rights Reserved.
|
||
|
|
||
|
Licensed under the Apache License 2.0 (the "License"). You may not use
|
||
|
this file except in compliance with the License. You can obtain a copy
|
||
|
in the file LICENSE in the source distribution or at
|
||
|
L<https://www.openssl.org/source/license.html>.
|
||
|
|
||
|
=cut
|