CloverBootloader/rEFIt_UEFI/Platform/Hibernate.cpp

1177 lines
38 KiB
C++
Raw Normal View History

/*
* Hibernate.c
*
* Created by dmazar, 01.2014.
*
* Hibernate support.
*
*/
#include <Platform.h>
#include "AcpiPatcher.h"
#include "guid.h"
#include "APFS.h"
#include "Nvram.h"
#include "BootOptions.h"
#ifndef DEBUG_ALL
#define DEBUG_HIB 1
#else
#define DEBUG_HIB DEBUG_ALL
#endif
#if DEBUG_HIB == 0
#define DBG(...)
#else
#define DBG(...) DebugLog(DEBUG_HIB, __VA_ARGS__);
#endif
#define CREATE_NEW_BOOT_IMAGE 1
extern XObjArray<REFIT_VOLUME> Volumes;
#pragma pack(push, 1)
//
// Just the first part of HFS+ volume header from where we can take modification time
//
typedef struct _HFSPlusVolumeHeaderMin {
UINT16 signature;
UINT16 version;
UINT32 attributes;
UINT32 lastMountedVersion;
UINT32 journalInfoBlock;
UINT32 createDate;
UINT32 modifyDate;
UINT32 backupDate;
UINT32 checkedDate;
UINT32 fileCount;
UINT32 folderCount;
UINT32 blockSize;
UINT32 totalBlocks;
UINT32 freeBlocks;
} HFSPlusVolumeHeaderMin;
// IOHibernateImageHeader.signature
enum
{
kIOHibernateHeaderSignature = 0x73696d65,
kIOHibernateHeaderInvalidSignature = 0x7a7a7a7a
};
typedef struct _IOHibernateImageHeaderMin
{
UINT64 imageSize;
UINT64 image1Size;
UINT32 restore1CodePhysPage;
UINT32 reserved1;
UINT64 restore1CodeVirt;
UINT32 restore1PageCount;
UINT32 restore1CodeOffset;
UINT32 restore1StackOffset;
UINT32 pageCount;
UINT32 bitmapSize;
UINT32 restore1Sum;
UINT32 image1Sum;
UINT32 image2Sum;
UINT32 actualRestore1Sum;
UINT32 actualImage1Sum;
UINT32 actualImage2Sum;
UINT32 actualUncompressedPages;
UINT32 conflictCount;
UINT32 nextFree;
UINT32 signature;
UINT32 processorFlags;
UINT32 runtimePages;
UINT32 runtimePageCount;
UINT64 runtimeVirtualPages;
UINT32 performanceDataStart;
UINT32 performanceDataSize;
UINT64 encryptStart;
UINT64 machineSignature;
UINT32 previewSize;
UINT32 previewPageListSize;
UINT32 diag[4];
UINT32 handoffPages;
UINT32 handoffPageCount;
UINT32 systemTableOffset;
UINT32 debugFlags;
UINT32 options;
UINT32 sleepTime;
UINT32 compression;
} IOHibernateImageHeaderMin;
typedef struct _IOHibernateImageHeaderMinSnow
{
UINT64 imageSize;
UINT64 image1Size;
UINT32 restore1CodePhysPage;
UINT32 restore1PageCount;
UINT32 restore1CodeOffset;
UINT32 restore1StackOffset;
UINT32 pageCount;
UINT32 bitmapSize;
UINT32 restore1Sum;
UINT32 image1Sum;
UINT32 image2Sum;
UINT32 actualRestore1Sum;
UINT32 actualImage1Sum;
UINT32 actualImage2Sum;
UINT32 actualUncompressedPages;
UINT32 conflictCount;
UINT32 nextFree;
UINT32 signature;
UINT32 processorFlags;
} IOHibernateImageHeaderMinSnow;
typedef struct _AppleRTCHibernateVars
{
UINT8 signature[4];
UINT32 revision;
UINT8 booterSignature[20];
UINT8 wiredCryptKey[16];
} AppleRTCHibernateVars;
#pragma pack(pop)
//
// Taken from VBoxFsDxe
//
//
// time conversion
//
// Adopted from public domain code in FreeBSD libc.
//
#define SECSPERMIN 60
#define MINSPERHOUR 60
#define HOURSPERDAY 24
#define DAYSPERWEEK 7
#define DAYSPERNYEAR 365
#define DAYSPERLYEAR 366
#define SECSPERHOUR (SECSPERMIN * MINSPERHOUR)
#define SECSPERDAY ((INTN) SECSPERHOUR * HOURSPERDAY)
#define MONSPERYEAR 12
#define EPOCH_YEAR 1970
#define EPOCH_WDAY TM_THURSDAY
#define isleap(y) (((y) % 4) == 0 && (((y) % 100) != 0 || ((y) % 400) == 0))
#define LEAPS_THRU_END_OF(y) ((y) / 4 - (y) / 100 + (y) / 400)
INT32 mon_lengths[2][MONSPERYEAR] = {
{ 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 },
{ 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }
};
INT32 year_lengths[2] = {
DAYSPERNYEAR, DAYSPERLYEAR
};
//static fsw_u32 mac_to_posix(fsw_u32 mac_time)
INT32 mac_to_posix(UINT32 mac_time)
{
/* Mac time is 1904 year based */
return mac_time ? mac_time - 2082844800 : 0;
}
/* not used
VOID fsw_efi_decode_time(OUT EFI_TIME *EfiTime, IN UINT32 UnixTime)
{
INT32 days, rem;
INT32 y, newy, yleap;
INT32 *ip;
ZeroMem(EfiTime, sizeof(EFI_TIME));
days = ((INTN)UnixTime) / SECSPERDAY;
rem = ((INTN)UnixTime) % SECSPERDAY;
EfiTime->Hour = (UINT8) (rem / SECSPERHOUR);
rem = rem % SECSPERHOUR;
EfiTime->Minute = (UINT8) (rem / SECSPERMIN);
EfiTime->Second = (UINT8) (rem % SECSPERMIN);
y = EPOCH_YEAR;
while (days < 0 || days >= (INT64) year_lengths[yleap = isleap(y)]) {
newy = y + days / DAYSPERNYEAR;
if (days < 0)
--newy;
days -= (newy - y) * DAYSPERNYEAR +
LEAPS_THRU_END_OF(newy - 1) -
LEAPS_THRU_END_OF(y - 1);
y = newy;
}
EfiTime->Year = (UINT16)y;
ip = mon_lengths[yleap];
for (EfiTime->Month = 0; days >= (INT64) ip[EfiTime->Month]; ++(EfiTime->Month))
days = days - (INT64) ip[EfiTime->Month];
EfiTime->Month++; // adjust range to EFI conventions
EfiTime->Day = (UINT8) (days + 1);
}
*/
EFI_BLOCK_READ OrigBlockIoRead = NULL;
UINT64 gSleepImageOffset = 0;
UINT32 gSleepTime = 0;
//
// Available on all platforms, requires NMI bit handling.
//
#define R_PCH_RTC_INDEX 0x70
#define R_PCH_RTC_TARGET 0x71
#define R_PCH_RTC_EXT_INDEX 0x72
#define R_PCH_RTC_EXT_TARGET 0x73
//
// Available on Ivy Bridge and newer. Ignores NMI bit.
//
#define R_PCH_RTC_INDEX_ALT 0x74
#define R_PCH_RTC_TARGET_ALT 0x75
#define R_PCH_RTC_EXT_INDEX_ALT 0x76
#define R_PCH_RTC_EXT_TARGET_ALT 0x77
//
// RTC Memory bank size
//
#define RTC_BANK_SIZE 0x80
//
// RTC INDEX bit mask
//
#define RTC_DATA_MASK 0x7F
#define RTC_NMI_MASK 0x80
STATIC
UINT8
SimpleRtcRead (
IN UINT8 Offset
)
{
UINT8 RtcIndexPort;
UINT8 RtcDataPort;
UINT8 RtcIndexNmi;
if (Offset < RTC_BANK_SIZE) {
RtcIndexPort = R_PCH_RTC_INDEX;
RtcDataPort = R_PCH_RTC_TARGET;
} else {
RtcIndexPort = R_PCH_RTC_EXT_INDEX;
RtcDataPort = R_PCH_RTC_EXT_TARGET;
}
RtcIndexNmi = IoRead8 (RtcIndexPort) & RTC_NMI_MASK;
IoWrite8 (RtcIndexPort, (Offset & RTC_DATA_MASK) | RtcIndexNmi);
return IoRead8 (RtcDataPort);
}
STATIC
VOID
SimpleRtcWrite (
IN UINT8 Offset,
IN UINT8 Value
)
{
UINT8 RtcIndexPort;
UINT8 RtcDataPort;
UINT8 RtcIndexNmi;
if (Offset < RTC_BANK_SIZE) {
RtcIndexPort = R_PCH_RTC_INDEX;
RtcDataPort = R_PCH_RTC_TARGET;
} else {
RtcIndexPort = R_PCH_RTC_EXT_INDEX;
RtcDataPort = R_PCH_RTC_EXT_TARGET;
}
RtcIndexNmi = IoRead8 (RtcIndexPort) & RTC_NMI_MASK;
IoWrite8 (RtcIndexPort, (Offset & RTC_DATA_MASK) | RtcIndexNmi);
IoWrite8 (RtcDataPort, Value);
}
/** BlockIo->Read() override. */
EFI_STATUS
EFIAPI OurBlockIoRead (
IN EFI_BLOCK_IO_PROTOCOL *This,
IN UINT32 MediaId,
IN EFI_LBA Lba,
IN UINTN BufferSize,
OUT VOID *Buffer
)
{
EFI_STATUS Status;
Status = OrigBlockIoRead(This, MediaId, Lba, BufferSize, Buffer);
// Enter special processing only when gSleepImageOffset == 0, to avoid recursion when Boot/Log=true
if (gSleepImageOffset == 0 && Status == EFI_SUCCESS && BufferSize >= sizeof(IOHibernateImageHeaderMin)) { //sizeof(IOHibernateImageHeaderMin)==96
IOHibernateImageHeaderMin *Header;
IOHibernateImageHeaderMinSnow *Header2;
UINT32 BlockSize = 0;
// Mark that we are executing, to avoid entering above phrase again, and don't add DBGs outside this scope, to avoid recursion
gSleepImageOffset = (UINT64)-1;
if (This->Media != NULL) {
BlockSize = This->Media->BlockSize;
} else {
BlockSize = 512;
}
// DBG(" OurBlockIoRead: Lba=%lx, Offset=%lx (BlockSize=%d)\n", Lba, MultU64x32(Lba, BlockSize), BlockSize);
Header = (IOHibernateImageHeaderMin *) Buffer;
Header2 = (IOHibernateImageHeaderMinSnow *) Buffer;
// DBG(" sig lion: %X\n", Header->signature);
// DBG(" sig snow: %X\n", Header2->signature);
// DBG(" sig swap: %X\n", SwapBytes32(Header->signature));
if (Header->signature == kIOHibernateHeaderSignature ||
Header2->signature == kIOHibernateHeaderSignature) {
gSleepImageOffset = MultU64x32(Lba, BlockSize);
DBG(" got sleep image offset\n");
machineSignature = ((IOHibernateImageHeaderMin*)Buffer)->machineSignature;
DBG(" image has machineSignature =0x%llX\n", machineSignature);
//save sleep time as lvs1974 suggested
if (Header->signature == kIOHibernateHeaderSignature) {
gSleepTime = Header->sleepTime;
} else
gSleepTime = 0;
// return invalid parameter in case of success in order to prevent driver from caching our buffer
return EFI_INVALID_PARAMETER;
} else {
DBG(" no valid sleep image offset was found\n");
gSleepImageOffset = 0;
}
}
return Status;
}
/** Get sleep image location (volume and name) */
VOID
2020-08-09 17:55:30 +02:00
GetSleepImageLocation(IN REFIT_VOLUME *Volume, REFIT_VOLUME **SleepImageVolume, XStringW* SleepImageNamePtr)
{
EFI_STATUS Status = EFI_NOT_FOUND;
UINT8 *PrefBuffer = NULL;
UINTN PrefBufferLen = 0;
TagPtr PrefDict, dict, dict2, prop;
2020-08-09 17:55:30 +02:00
CONST CHAR16 *PrefName = L"\\Library\\Preferences\\SystemConfiguration\\com.apple.PowerManagement.plist";
CONST CHAR16 *PrefName2 = L"\\Library\\Preferences\\com.apple.PowerManagement.plist";
REFIT_VOLUME *ImageVolume = Volume;
2020-08-09 17:55:30 +02:00
XStringW& SleepImageName = *SleepImageNamePtr;
if (Volume->RootDir) {
// find sleep image entry from plist
Status = egLoadFile(Volume->RootDir, PrefName, &PrefBuffer, &PrefBufferLen);
if (EFI_ERROR(Status)) {
2020-08-09 17:55:30 +02:00
XStringW PrefName3 = SWPrintf("\\Library\\Preferences\\com.apple.PowerManagement.%ls.plist", GuidBeToStr(&gUuid).wc_str());
Status = egLoadFile(Volume->RootDir, PrefName3.wc_str(), &PrefBuffer, &PrefBufferLen);
if (EFI_ERROR(Status)) {
Status = egLoadFile(Volume->RootDir, PrefName2, &PrefBuffer, &PrefBufferLen);
if (!EFI_ERROR(Status)) {
DBG(" read prefs %ls status=%s\n", PrefName2, strerror(Status));
}
} else {
2020-08-09 17:55:30 +02:00
DBG(" read prefs %ls status=%s\n", PrefName3.wc_str(), strerror(Status));
}
} else {
DBG(" read prefs %ls status=%s\n", PrefName, strerror(Status));
}
}
if (!EFI_ERROR(Status)) {
Status = ParseXML((const CHAR8*)PrefBuffer, &PrefDict, (UINT32)PrefBufferLen);
if (!EFI_ERROR(Status)) {
dict = GetProperty(PrefDict, "Custom Profile");
if (dict) {
dict2 = GetProperty(dict, "AC Power");
if (dict2) {
prop = GetProperty(dict2, "Hibernate File");
if (prop && prop->type == kTagTypeString ) {
if (AsciiStrStr(prop->string, "/Volumes/")) {
CHAR8 *VolNameStart = NULL, *VolNameEnd = NULL;
2020-08-09 17:55:30 +02:00
XStringW VolName;
UINTN VolNameSize = 0;
// Extract Volumes Name
VolNameStart = AsciiStrStr(prop->string + 1, "/") + 1;
if (VolNameStart) {
VolNameEnd = AsciiStrStr(VolNameStart, "/");
if (VolNameEnd) {
VolNameSize = (VolNameEnd - VolNameStart + 1) * sizeof(CHAR16);
if (VolNameSize > 0) {
2020-08-09 17:55:30 +02:00
VolName.strncpy(VolNameStart, VolNameSize);
}
}
}
2020-08-09 17:55:30 +02:00
if (VolName.notEmpty()) {
ImageVolume = FindVolumeByName(VolName.wc_str());
if (ImageVolume) {
2020-08-09 17:55:30 +02:00
SleepImageName = SWPrintf("%s", VolNameEnd);
} else {
ImageVolume = Volume;
}
}
} else if (AsciiStrStr(prop->string, "/var") && !AsciiStrStr(prop->string, "private")) {
2020-08-09 17:55:30 +02:00
SleepImageName = SWPrintf("\\private%s", prop->string);
} else {
2020-08-09 17:55:30 +02:00
SleepImageName = SWPrintf("%s", prop->string);
}
2020-08-09 17:55:30 +02:00
wchar_t* p = SleepImageName.data(0);
while (*p) {
if (*p == L'/') {
*p = L'\\';
}
p++;
}
2020-08-09 17:55:30 +02:00
DBG(" SleepImage name from pref: ImageVolume = '%ls', ImageName = '%ls'\n", ImageVolume->VolName.wc_str(), SleepImageName.wc_str());
}
}
}
}
}
2020-08-09 17:55:30 +02:00
if (SleepImageName.isEmpty()) {
SleepImageName = SWPrintf("\\private\\var\\vm\\sleepimage");
DBG(" using default sleep image name = %ls\n", SleepImageName.wc_str());
}
if (PrefBuffer) {
FreePool(PrefBuffer); //allocated by egLoadFile
}
*SleepImageVolume = ImageVolume;
}
/** Returns byte offset of sleepimage on the whole disk or 0 if not found or error.
*
* To avoid messing with HFS+ format, we'll use the trick with overriding
* BlockIo->Read() of the disk and then read first bytes of the sleepimage
* through file system driver. And then we'll detect block delivered by BlockIo
* and calculate position from there.
* It's for hack after all :)
*/
UINT64
GetSleepImagePosition (IN REFIT_VOLUME *Volume, REFIT_VOLUME **SleepImageVolume)
{
EFI_STATUS Status = EFI_SUCCESS;
EFI_FILE *File = NULL;
VOID *Buffer;
UINTN BufferSize;
2020-08-09 17:55:30 +02:00
XStringW ImageName;
REFIT_VOLUME *ImageVolume;
if (!Volume) {
DBG(" no volume to get sleepimage\n");
return 0;
}
if (Volume->WholeDiskBlockIO == NULL) {
DBG(" no disk BlockIo\n");
return 0;
}
// If IsSleepImageValidBySignature() was used, then we already have that offset
if (Volume->SleepImageOffset != 0) {
if (SleepImageVolume != NULL) {
// Update caller's SleepImageVolume when requested
GetSleepImageLocation(Volume, SleepImageVolume, &ImageName);
}
DBG(" returning previously calculated offset: %llx\n", Volume->SleepImageOffset);
return Volume->SleepImageOffset;
}
// Get sleepimage name and volume
GetSleepImageLocation(Volume, &ImageVolume, &ImageName);
if (ImageVolume->RootDir) {
// Open sleepimage
2020-08-09 17:55:30 +02:00
Status = ImageVolume->RootDir->Open(ImageVolume->RootDir, &File, ImageName.wc_str(), EFI_FILE_MODE_READ, 0);
if (EFI_ERROR(Status)) {
DBG(" sleepimage not found -> %s\n", strerror(Status));
return 0;
}
}
// We want to read the first 512 bytes from sleepimage
BufferSize = 512;
Buffer = (__typeof__(Buffer))AllocatePool(BufferSize);
if (Buffer == NULL) {
DBG(" could not allocate buffer for sleepimage\n");
return 0;
}
// DBG(" Reading first %d bytes of sleepimage ...\n", BufferSize);
if (!ImageVolume->WholeDiskBlockIO) {
DBG(" can not get whole disk\n");
if (Buffer) {
FreePool(Buffer);
}
return 0;
}
// Override disk BlockIo
OrigBlockIoRead = ImageVolume->WholeDiskBlockIO->ReadBlocks;
ImageVolume->WholeDiskBlockIO->ReadBlocks = OurBlockIoRead;
gSleepImageOffset = 0; //used as temporary global variable to pass our value
Status = File->Read(File, &BufferSize, Buffer);
// Restore original disk BlockIo
ImageVolume->WholeDiskBlockIO->ReadBlocks = OrigBlockIoRead;
// OurBlockIoRead always returns invalid parameter in order to avoid driver caching, so that is a good value
if (Status == EFI_INVALID_PARAMETER) {
Status = EFI_SUCCESS;
}
// DBG(" Reading completed -> %s\n", strerror(Status));
// Close sleepimage
File->Close(File);
// We don't use the buffer, as actual signature checking is being done by OurBlockIoRead
if (Buffer) {
FreePool(Buffer);
}
if (EFI_ERROR(Status)) {
DBG(" can not read sleepimage -> %s\n", strerror(Status));
return 0;
}
// We store SleepImageOffset, in case our BlockIoRead does not execute again on next read due to driver caching.
if (gSleepImageOffset != 0) {
DBG(" sleepimage offset acquired successfully: %llx\n", gSleepImageOffset);
ImageVolume->SleepImageOffset = gSleepImageOffset;
} else {
DBG(" sleepimage offset could not be acquired\n");
}
if (SleepImageVolume != NULL) {
// Update caller's SleepImageVolume when requested
*SleepImageVolume = ImageVolume;
}
return gSleepImageOffset;
}
/** Returns TRUE if /private/var/vm/sleepimage exists
* and it's modification time is close to volume modification time).
*/
BOOLEAN
IsSleepImageValidBySleepTime (IN REFIT_VOLUME *Volume)
{
EFI_STATUS Status;
VOID *Buffer;
EFI_BLOCK_IO_PROTOCOL *BlockIo;
HFSPlusVolumeHeaderMin *HFSHeader;
UINT32 HFSVolumeModifyDate;
INTN TimeDelta;
INTN Pages; // = 1;
//EFI_TIME ImageModifyTime;
//EFI_TIME *TimePtr;
//EFI_TIME HFSVolumeModifyTime;
DBG(" gSleepTime: %d\n", gSleepTime);
//fsw_efi_decode_time(&ImageModifyTime, gSleepTime);
//TimePtr = &ImageModifyTime;
//DBG(" in EFI: %d-%d-%d %d:%d:%d\n", TimePtr->Year, TimePtr->Month, TimePtr->Day, TimePtr->Hour, TimePtr->Minute, TimePtr->Second);
//
// Get HFS+ volume nodification time
//
// use 4KB aligned page to avoid possible issues with BlockIo buffer alignment
BlockIo = Volume->BlockIO;
Pages = EFI_SIZE_TO_PAGES(BlockIo->Media->BlockSize);
Buffer = (__typeof__(Buffer))AllocatePages(Pages);
if (Buffer == NULL) {
return FALSE;
}
Status = BlockIo->ReadBlocks(BlockIo, BlockIo->Media->MediaId, 2, BlockIo->Media->BlockSize, Buffer);
if (EFI_ERROR(Status)) {
DBG(" can not read HFS+ header -> %s\n", strerror(Status));
FreePages(Buffer, Pages);
return FALSE;
}
HFSHeader = (HFSPlusVolumeHeaderMin *)Buffer;
HFSVolumeModifyDate = SwapBytes32(HFSHeader->modifyDate);
HFSVolumeModifyDate = mac_to_posix(HFSVolumeModifyDate);
DBG(" HFS+ volume modifyDate: %d\n", HFSVolumeModifyDate);
//fsw_efi_decode_time(&HFSVolumeModifyTime, mac_to_posix(HFSVolumeModifyDate));
//TimePtr = &HFSVolumeModifyTime;
//DBG(" in EFI: %d-%d-%d %d:%d:%d\n", TimePtr->Year, TimePtr->Month, TimePtr->Day, TimePtr->Hour, TimePtr->Minute, TimePtr->Second);
//
// Check that sleepimage is not more then 5 secs older then volume modification date
// Idea is from Chameleon
//
TimeDelta = HFSVolumeModifyDate - (INTN)gSleepTime;
DBG(" image older then volume: %lld sec\n", TimeDelta);
if (TimeDelta > 5 /*|| TimeDelta < -5 */) {
//Slice - if image newer then volume it should be OK
DBG(" image too old\n");
FreePages(Buffer, Pages);
return FALSE;
}
DBG(" machineSignature from FACS =0x%llX\n", machineSignature);
// machineSignature = ((IOHibernateImageHeaderMin*)Buffer)->machineSignature;
// DBG(" image has machineSignature =0x%X\n", machineSignature);
FreePages(Buffer, Pages);
return TRUE;
}
/** Returns TRUE if /private/var/vm/sleepimage exists
* and it's signature is kIOHibernateHeaderSignature.
*/
BOOLEAN
IsSleepImageValidBySignature (IN REFIT_VOLUME *Volume)
{
// We'll have to detect offset here also in case driver caches
// some data and stops us from detecting offset later.
// So, make first call to GetSleepImagePosition() now.
DBG(" Check sleep image 'by signature':\n");
return (GetSleepImagePosition (Volume, NULL) != 0);
}
UINT16 PartNumForVolume(REFIT_VOLUME *Volume)
{
UINT16 PartNum = 0; //if not found then zero mean whole disk
HARDDRIVE_DEVICE_PATH *HdPath = NULL;
EFI_DEVICE_PATH_PROTOCOL *DevicePath = Volume->DevicePath;
while (DevicePath && !IsDevicePathEnd (DevicePath)) {
if ((DevicePathType (DevicePath) == MEDIA_DEVICE_PATH) &&
(DevicePathSubType (DevicePath) == MEDIA_HARDDRIVE_DP)) {
HdPath = (HARDDRIVE_DEVICE_PATH *)DevicePath;
break;
}
DevicePath = NextDevicePathNode (DevicePath);
}
if (HdPath != NULL) {
PartNum = (UINT16)(HdPath->PartitionNumber);
}
return PartNum;
}
REFIT_VOLUME *FoundParentVolume(REFIT_VOLUME *Volume)
{
UINTN VolumeIndex;
REFIT_VOLUME *Volume1 = NULL;
INT16 SearchPartNum = PartNumForVolume(Volume);
if (SearchPartNum < 3) {
// 0 - whole disk
// 1 - ESP
// 2 - a partition to search
// 3 - minimum # for recovery
DBG(" the volume has wrong partition number %d\n", SearchPartNum);
return NULL; //don't search!
}
for (VolumeIndex = 0; VolumeIndex < Volumes.size(); VolumeIndex++) {
Volume1 = &Volumes[VolumeIndex];
if (Volume1 != Volume &&
Volume1->WholeDiskBlockIO == Volume->WholeDiskBlockIO) {
if (PartNumForVolume(Volume1) == SearchPartNum - 1) {
return Volume1;
}
}
}
return NULL;
}
STATIC CHAR16 OffsetHexStr[100];
/** Returns TRUE if given OSX on given volume is hibernated. */
BOOLEAN
IsOsxHibernated (IN LOADER_ENTRY *Entry)
{
EFI_STATUS Status = EFI_SUCCESS;
UINTN Size = 0;
UINT8 *Data = NULL;
// REFIT_VOLUME *ThisVolume = Entry->Volume;
REFIT_VOLUME *Volume = Entry->Volume;
EFI_GUID *BootGUID = NULL;
BOOLEAN ret = FALSE;
UINT8 *Value = NULL;
// UINTN VolumeIndex;
EFI_GUID *VolumeUUID;
// CHAR16 *VolumeUUIDStr = NULL;
if (!Volume) {
return FALSE;
}
/*
Status = GetRootUUID(ThisVolume); // already done
if (!EFI_ERROR(Status)) { //this is set by scan loaders only for Recovery volumes
FP.1EE01920[\].Open('com.apple.boot.R', 1, 0) = Not Found
FP.1EE01920[\].Open('com.apple.boot.P', 1, 0) = Not Found
FP.1EE01920[\].Open('com.apple.boot.S', 1, 0) = EFI_SUCCESS -> FP.1EE01A20[\com.apple.boot.S]
FP.1EE01A20[\com.apple.boot.S].Open('Library\Preferences\SystemConfiguration\com.apple.Boot.plist', 1, 0) = EFI_SUCCESS -> FP.1F7F7F20[\com.apple.boot.S\Library\Preferences\SystemConfiguration\com.apple.Boot.plist]
FP.1F7F7F20[\com.apple.boot.S\Library\Preferences\SystemConfiguration\com.apple.Boot.plist].GetInfo(gEfiFileInfoGuid, 122, 1F7FAE18) = Success
FP.1F7F7F20[\com.apple.boot.S\Library\Preferences\SystemConfiguration\com.apple.Boot.plist].Read(309, 1CF27018) = Success
FP.1F7F7F20[\com.apple.boot.S\Library\Preferences\SystemConfiguration\com.apple.Boot.plist].Close() = Success
<dict>
<key>Kernel Flags</key>
<string></string>
<key>Root UUID</key>
<string>D6E74829-F4A5-3CBA-B8EE-D0B6E40E4D53</string>
</dict>
// Volume = from UUID
// We can obtain Partition UUID but not Volume UUID
Status = EFI_NOT_FOUND;
for (VolumeIndex = 0; VolumeIndex < VolumesCount; VolumeIndex++) {
Volume = Volumes[VolumeIndex];
VolumeUUID = FindGPTPartitionGuidInDevicePath(Volume->DevicePath);
DBG("Volume[%d] has UUID=%ls\n", VolumeIndex, GuidLEToStr(VolumeUUID));
if (CompareGuid(&ThisVolume->RootUUID, VolumeUUID)) {
DBG("found root volume at path: %ls\n", FileDevicePathToStr(Volume->DevicePath));
Status = EFI_SUCCESS;
break;
}
}
if (EFI_ERROR(Status)) {
Volume = ThisVolume;
DBG("cant find volume with UUID=%ls\n", GuidLEToStr(&ThisVolume->RootUUID));
}
DBG(" got RootUUID %s\n", strguid(&ThisVolume->RootUUID));
VolumeUUIDStr = GuidLEToStr(&ThisVolume->RootUUID);
DBG(" Search for Volume with UUID: %ls\n", VolumeUUIDStr);
if (VolumeUUIDStr) {
FreePool(VolumeUUIDStr);
}
Volume = FoundParentVolume(ThisVolume);
if (Volume) {
DBG(" Found parent Volume with name %ls\n", Volume->VolName);
if (Volume->RootDir == NULL) {
return FALSE;
}
} else {
DBG(" Parent Volume not found, use this one\n");
Volume = ThisVolume;
}
}
*/
//For tests
/* Status = GetRootUUID(Volume);
if (!EFI_ERROR(Status)) {
EFI_GUID TmpGuid;
CHAR16 *Ptr = GuidLEToStr(&Volume->RootUUID);
DBG("got str=%ls\n", Ptr);
Status = StrToGuidLE (Ptr, &TmpGuid);
if (EFI_ERROR(Status)) {
DBG(" cant convert Str %ls to GUID\n", Ptr);
} else {
2020-08-09 17:55:30 +02:00
XStringW TmpStr = SWPrintf("%ls", strguid(&TmpGuid));
DBG("got the guid %ls\n", TmpStr.wc_str());
CopyMem((VOID*)Ptr, TmpStr, StrSize(TmpStr));
DBG("fter CopyMem: %ls\n", Ptr);
}
}
*/
//if sleep image is good but OSX was not hibernated.
//or we choose "cancel hibernate wake" then it must be canceled
if (GlobalConfig.NeverHibernate) {
DBG(" hibernated: set as never\n");
return FALSE;
}
DBG(" Check if volume Is Hibernated:\n");
if (!GlobalConfig.StrictHibernate) {
// CloverEFI or UEFI with EmuVariable
if (IsSleepImageValidBySignature(Volume)) {
if ((gSleepTime == 0) || IsSleepImageValidBySleepTime(Volume)) {
DBG(" hibernated: yes\n");
ret = TRUE;
} else {
DBG(" hibernated: no - time\n");
return FALSE;
}
// IsHibernate = TRUE;
} else {
DBG(" hibernated: no - sign\n");
return FALSE; //test
}
}
if (!gFirmwareClover &&
(!gDriversFlags.EmuVariableLoaded || GlobalConfig.HibernationFixup)) {
DBG(" UEFI with NVRAM? ");
Status = GetVariable2 (L"Boot0082", &gEfiGlobalVariableGuid, (VOID**)&Data, &Size);
if (EFI_ERROR(Status)) {
DBG(" no, Boot0082 not exists\n");
ret = FALSE;
} else {
DBG("yes\n");
ret = TRUE;
//1. Parse Media Device Path from Boot0082 load option
//Cut Data pointer by 0x08 up to DevicePath
// Data += 0x08;
// Size -= 0x08;
//We get starting offset of media device path, and then jumping 24 bytes to GUID start
// BootGUID = (EFI_GUID*)(Data + NodeParser(Data, Size, 0x04) + 0x18);
/* APFS Hibernation support*/
//Check that current volume is APFS
if ((VolumeUUID = APFSPartitionUUIDExtract(Volume->DevicePath)) != NULL) {
//BootGUID = (EFI_GUID*)(Data + Size - 0x14);
BootGUID = (EFI_GUID*)ScanGuid(Data, Size, VolumeUUID);
//DBG(" APFS Boot0082 points to UUID:%s\n", strguid(BootGUID));
} else {
//BootGUID = (EFI_GUID*)(Data + Size - 0x16);
VolumeUUID = FindGPTPartitionGuidInDevicePath(Volume->DevicePath);
if (VolumeUUID != NULL) {
BootGUID = (EFI_GUID*)ScanGuid(Data, Size, VolumeUUID);
//DBG(" Boot0082 points to UUID:%s\n", strguid(BootGUID));
}
}
//DBG(" Volume has PartUUID=%s\n", strguid(VolumeUUID));
if (BootGUID != NULL && VolumeUUID != NULL && !CompareGuid(BootGUID, VolumeUUID)) {
ret = FALSE;
} else {
DBG(" Boot0082 points to Volume with UUID:%s\n", strguid(BootGUID));
//3. Checks for boot-image exists
if (GlobalConfig.StrictHibernate) {
/*
Variable NV+RT+BS '7C436110-AB2A-4BBB-A880-FE41995C9F82:boot-image' DataSize = 0x3A
00000000: 02 01 0C 00 D0 41 03 0A-00 00 00 00 01 01 06 00 *.....A..........*
00000010: 02 1F 03 12 0A 00 00 00-00 00 00 00 04 04 1A 00 *................*
00000020: 33 00 36 00 63 00 34 00-64 00 64 00 63 00 30 00 *3.6.c.4.d.d.c.0.*
00000030: 30 00 30 00 00 00 7F FF-04 00 *0.0.......*
02 - ACPI_DEVICE_PATH
01 - ACPI_DP
0C - 4 bytes
00 D0 41 03 - PNP0A03
// FileVault2
4:609 0:000 Boot0082 points to Volume with UUID:BA92975E-E2FB-48E6-95CC-8138B286F646
4:609 0:000 boot-image before: PciRoot(0x0)\Pci(0x1F,0x2)\Sata(0x5,0x0,0x0)\25593c7000:A82E84C6-9DD6-49D6-960A-0F4C2FE4851C
*/
Status = GetVariable2 (L"boot-image", &gEfiAppleBootGuid, (VOID**)&Value, &Size);
if (EFI_ERROR(Status)) {
// leave it as is
DBG(" boot-image not found while we want StrictHibernate\n");
ret = FALSE;
} else {
EFI_DEVICE_PATH_PROTOCOL *BootImageDevPath;
// UINTN Size;
CHAR16 *Ptr = (CHAR16*)&OffsetHexStr[0];
2020-08-09 17:55:30 +02:00
DBG(" boot-image before: %ls\n", FileDevicePathToXStringW((EFI_DEVICE_PATH_PROTOCOL*)Value).wc_str());
snwprintf(OffsetHexStr, sizeof(OffsetHexStr), "%ls", (CHAR16 *)(Value + 0x20));
// DBG("OffsetHexStr=%ls\n", OffsetHexStr);
while ((*Ptr != L':') && (*Ptr != 0)) {
Ptr++;
}
// DBG(" have ptr=%p, in Str=%p, text:%ls\n", Ptr, &OffsetHexStr, Ptr);
if (*Ptr++ == L':') {
//Convert BeUUID to LeUUID
//Ptr points to begin L"A82E84C6-9DD6-49D6-960A-0F4C2FE4851C"
EFI_GUID TmpGuid;
2020-04-27 11:50:49 +02:00
// CHAR16 *TmpStr = NULL;
ResumeFromCoreStorage = TRUE;
// DBG("got str=%ls\n", Ptr);
2020-08-09 17:55:30 +02:00
Status = StrToGuidLE(Ptr, &TmpGuid);
if (EFI_ERROR(Status)) {
DBG(" cant convert Str %ls to GUID\n", Ptr);
} else {
2020-08-09 17:55:30 +02:00
XStringW TmpStr = GuidLEToXStringW(&TmpGuid);
//DBG("got the guid %ls\n", TmpStr);
memcpy((VOID*)Ptr, TmpStr.wc_str(), TmpStr.sizeInBytes());
}
}
if (StrCmp(gST->FirmwareVendor, L"INSYDE Corp.") != 0) {
// skip this on INSYDE UEFI
UINT8 SataNum = Value[22];
FreePool(Value);
BootImageDevPath = FileDevicePath(Volume->WholeDiskDeviceHandle, OffsetHexStr);
// DBG(" boot-image device path:\n");
Size = GetDevicePathSize(BootImageDevPath);
Value = (UINT8*)BootImageDevPath;
2020-08-09 17:55:30 +02:00
DBG(" boot-image after: %ls\n", FileDevicePathToXStringW(BootImageDevPath).wc_str());
//Apple's device path differs from UEFI BIOS device path that will be used by boot.efi
//Value[6] = 8; //Acpi(PNP0A08,0)
Value[22] = SataNum;
Value[24] = 0xFF;
Value[25] = 0xFF;
2020-08-09 17:55:30 +02:00
DBG(" boot-image corrected: %ls\n", FileDevicePathToXStringW((EFI_DEVICE_PATH_PROTOCOL*)Value).wc_str());
PrintBytes(Value, Size);
Status = gRT->SetVariable(L"boot-image", &gEfiAppleBootGuid,
EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS,
Size , Value);
if (EFI_ERROR(Status)) {
DBG(" can not write boot-image -> %s\n", strerror(Status));
ret = FALSE;
}
}
}
} //else boot-image will be created
}
FreePool(Data);
}
}
if (Value) {
FreePool(Value);
}
return ret;
}
/** Prepares nvram vars needed for boot.efi to wake from hibernation:
* boot-switch-vars and boot-image.
*
* Normally those vars should be set by kernel
* boot-switch-vars: structure with image encription key
* boot-image: device path like Acpi(PNP0A03,0)/Pci(1f,2)/Sata(2,0)/File(56b99e000)
* where Acpi(PNP0A03,0)/Pci(1f,2)/Sata(2,0) points to the disk containing sleepimage
* and File(56b99e000) contains hex position (in bytes) of the beginning of the sleepimage
*
* Since boot-switch-vars is not present in CloverEFI or with EmuVar driver (no real NVRAM) but also not on UEFI hack
* (not written by the kernel for some reason), and since boot-image is also not present in CloverEFI
* and on UEFI hack device path as set by kernel can be different in some bytes from the device path
* reported by UEFI, we'll compute and set both vars here.
*
* That's the only way for CloverEFI and should be OK for UEFI hack also.
*/
BOOLEAN
PrepareHibernation (IN REFIT_VOLUME *Volume)
{
EFI_STATUS Status;
UINT64 SleepImageOffset;
EFI_DEVICE_PATH_PROTOCOL *BootImageDevPath;
UINTN Size = 0;
VOID *Value = NULL;
AppleRTCHibernateVars RtcVars;
UINT8 *VarData = NULL;
REFIT_VOLUME *SleepImageVolume;
UINT32 Attributes;
BOOLEAN HasIORTCVariables = FALSE;
BOOLEAN HasHibernateInfo = FALSE;
BOOLEAN HasHibernateInfoInRTC = FALSE;
DBG("PrepareHibernation:\n");
if (!GlobalConfig.StrictHibernate) {
// Find sleep image offset
SleepImageOffset = GetSleepImagePosition (Volume, &SleepImageVolume);
DBG(" SleepImageOffset: %llx\n", SleepImageOffset);
if (SleepImageOffset == 0 || SleepImageVolume == NULL) {
DBG(" sleepimage offset not found\n");
return FALSE;
}
// Set boot-image var
2020-04-04 15:50:13 +02:00
snwprintf(OffsetHexStr, sizeof(OffsetHexStr), "%llx", SleepImageOffset);
BootImageDevPath = FileDevicePath(SleepImageVolume->WholeDiskDeviceHandle, OffsetHexStr);
// DBG(" boot-image device path:\n");
Size = GetDevicePathSize(BootImageDevPath);
VarData = (UINT8*)BootImageDevPath;
PrintBytes(VarData, Size);
2020-08-09 17:55:30 +02:00
DBG("boot-image before: %ls\n", FileDevicePathToXStringW(BootImageDevPath).wc_str());
// VarData[6] = 8;
// VarData[24] = 0xFF;
// VarData[25] = 0xFF;
// DBG("boot-image corrected: %ls\n", FileDevicePathToStr(BootImageDevPath));
Status = gRT->SetVariable(L"boot-image", &gEfiAppleBootGuid,
EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS,
Size , BootImageDevPath);
if (EFI_ERROR(Status)) {
DBG(" can not write boot-image -> %s\n", strerror(Status));
return FALSE;
}
}
// now we should delete boot0082 to do hibernate only once
Status = DeleteBootOption(0x82);
if (EFI_ERROR(Status)) {
DBG("Options 0082 was not deleted: %s\n", strerror(Status));
}
//
// If legacy boot-switch-vars exists (NVRAM working), then use it.
//
Status = GetVariable2 (L"boot-switch-vars", &gEfiAppleBootGuid, &Value, &Size);
if (!EFI_ERROR(Status)) {
//
// Leave it as is.
//
DBG(" boot-switch-vars present\n");
ZeroMem (Value, Size);
gBS->FreePool(Value);
return TRUE;
}
//
// Work with RTC memory if allowed.
//
if (GlobalConfig.RtcHibernateAware) {
UINT8 Index;
UINT8 *RtcRawVars = (UINT8 *)&RtcVars;
for (Index = 0; Index < sizeof(AppleRTCHibernateVars); Index++) {
RtcRawVars[Index] = SimpleRtcRead (Index + 128);
}
HasHibernateInfoInRTC = (RtcVars.signature[0] == 'A' && RtcVars.signature[1] == 'A' &&
RtcVars.signature[2] == 'P' && RtcVars.signature[3] == 'L');
HasHibernateInfo = HasHibernateInfoInRTC;
//
// If RTC variables is still written to NVRAM (and RTC is broken).
// Prior to 10.13.6.
//
Status = GetVariable2 (L"IOHibernateRTCVariables", &gEfiAppleBootGuid, &Value, &Size);
DBG("get IOHR variable status=%s, size=%llu, RTC info=%d\n", strerror(Status), Size, HasHibernateInfoInRTC);
if (!HasHibernateInfo && !EFI_ERROR(Status) && Size == sizeof (RtcVars)) {
CopyMem(RtcRawVars, Value, sizeof (RtcVars));
HasHibernateInfo = (RtcVars.signature[0] == 'A' && RtcVars.signature[1] == 'A' &&
RtcVars.signature[2] == 'P' && RtcVars.signature[3] == 'L');
}
//
// Erase RTC variables in NVRAM.
//
if (!EFI_ERROR(Status)) {
Status = gRT->SetVariable (L"IOHibernateRTCVariables", &gEfiAppleBootGuid,
EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS,
0, NULL);
ZeroMem (Value, Size);
gBS->FreePool(Value);
}
//
// Convert RTC data to boot-key and boot-signature
//
if (HasHibernateInfo) {
gRT->SetVariable (L"boot-image-key", &gEfiAppleBootGuid,
EFI_VARIABLE_BOOTSERVICE_ACCESS, sizeof (RtcVars.wiredCryptKey), RtcVars.wiredCryptKey);
gRT->SetVariable (L"boot-signature", &gEfiAppleBootGuid,
EFI_VARIABLE_BOOTSERVICE_ACCESS, sizeof (RtcVars.booterSignature), RtcVars.booterSignature);
DBG("variables boot-image-key and boot-signature saved\n");
}
//
// Erase RTC memory similarly to AppleBds.
//
if (HasHibernateInfoInRTC) {
ZeroMem (RtcRawVars, sizeof(AppleRTCHibernateVars));
RtcVars.signature[0] = 'D';
RtcVars.signature[1] = 'E';
RtcVars.signature[2] = 'A';
RtcVars.signature[3] = 'D';
for (Index = 0; Index < sizeof(AppleRTCHibernateVars); Index++) {
SimpleRtcWrite (Index + 128, RtcRawVars[Index]);
}
}
//
// We have everything we need now.
//
if (HasHibernateInfo) {
return TRUE;
}
}
//
// Fallback to legacy hibernation support if any.
// if IOHibernateRTCVariables exists (NVRAM working), then copy it to boot-switch-vars
// else (no NVRAM) set boot-switch-vars to dummy one
//
Value = NULL;
Status = GetVariable2 (L"IOHibernateRTCVariables", &gEfiAppleBootGuid, &Value, &Size);
if (!EFI_ERROR(Status)) {
DBG(" IOHibernateRTCVariables found - will be used as boot-switch-vars\n");
//
// Delete IOHibernateRTCVariables.
//
Status = gRT->SetVariable(L"IOHibernateRTCVariables", &gEfiAppleBootGuid,
EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS,
0, NULL);
HasIORTCVariables = TRUE;
} else {
//
// No NVRAM support, trying unencrypted.
//
DBG(" setting dummy boot-switch-vars\n");
Size = sizeof(RtcVars);
Value = &RtcVars;
SetMem(&RtcVars, Size, 0);
RtcVars.signature[0] = 'A';
RtcVars.signature[1] = 'A';
RtcVars.signature[2] = 'P';
RtcVars.signature[3] = 'L';
RtcVars.revision = 1;
}
//
// boot-switch-vars should not be non volatile for security reasons
// For now let's preserve old behaviour without RtcHibernateAware for compatibility reasons.
//
Attributes = EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS;
if (!GlobalConfig.RtcHibernateAware) {
Attributes |= EFI_VARIABLE_NON_VOLATILE;
}
Status = gRT->SetVariable(L"boot-switch-vars", &gEfiAppleBootGuid,
Attributes,
Size, Value);
//
// Erase written boot-switch-vars buffer.
//
ZeroMem (Value, Size);
if (HasIORTCVariables) {
gBS->FreePool(Value);
}
if (EFI_ERROR(Status)) {
DBG(" can not write boot-switch-vars -> %s\n", strerror(Status));
return FALSE;
}
return TRUE;
}