CloverBootloader/rEFIt_UEFI/libeg/nanosvgrast.cpp

1793 lines
51 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2013-14 Mikko Mononen memon@inside.org
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*
* The polygon rasterization is heavily based on stb_truetype rasterizer
* by Sean Barrett - http://nothings.org/
*
*/
/* Example Usage:
// Load SVG
struct SNVGImage* image = nsvgParseFromFile("test.svg.");
// Create rasterizer (can be used to render multiple images).
struct NSVGrasterizer* rast = nsvgCreateRasterizer();
// Allocate memory for image
unsigned char* img = malloc(w*h*4);
// Rasterize
scaleX = width_to_see / design_width
nsvgRasterize(rast, image, 0,0, scaleX, scaleY, img, w, h, w*4);
*/
#include "nanosvg.h"
#include "FloatLib.h"
2020-08-17 21:40:52 +02:00
#include "XImage.h"
#ifndef DEBUG_ALL
#define DEBUG_SVG 0
#else
#define DEBUG_SVG DEBUG_ALL
#endif
#if DEBUG_SVG == 0
#define DBG(...)
#else
#define DBG(...) DebugLog(DEBUG_SVG, __VA_ARGS__)
#endif
#define pow(x,n) PowF(x,n)
#define sqrtf(x) SqrtF(x)
#define sinf(x) SinF(x)
#define cosf(x) CosF(x)
#define tanf(x) TanF(x)
#define ceilf(x) CeilF(x)
#define floorf(x) FloorF(x)
#define fmodf(x,y) ModF(x,y)
#define acosf(x) AcosF(x)
#define atan2f(y,x) Atan2F(y,x)
//#define fabsf(x) ((x >= 0.0f)?x:(-x))
#define fabsf(x) FabsF(x)
static void renderShape(NSVGrasterizer* r,
NSVGshape* shape, float *xform, float min_scale);
void DumpFloat (char* s, float* t, int N)
{
#if DEBUG_SVG
int i;
DBG("%s: ", s);
for(i=0; i<N;i++) {
float a = t[i];
int b = (int)a;
int sign = (a < 0.f);
DBG("%c%d.%06d ", ((b == 0) && sign)?'-':' ', b, (int)(fabsf((a-(float)b)*1.0e6f)));
}
DBG("\n");
#endif
}
void nsvg_qsort(NSVGedge* Array, int Low, int High)
{
int i = Low, j = High;
NSVGedge Temp;
// UINTN Size = sizeof(NSVGedge);
int Imed;
Imed = (Low + High) / 2; // Central element, just pointer
float med = Array[Imed].y0;
// Temp = (__typeof__(Temp))AllocatePool(sizeof(NSVGedge));
// Sort around center
while (i <= j) {
while (Array[i].y0 < med) i++;
while (Array[j].y0 > med) j--;
// Change
if (i <= j) {
memcpy(&Temp, &Array[i], sizeof(NSVGedge));
memcpy(&Array[i++], &Array[j], sizeof(NSVGedge));
memcpy(&Array[j--], &Temp, sizeof(NSVGedge));
}
}
// FreePool(Temp);
// Recursion
if (j > Low) nsvg_qsort(Array, Low, j);
if (High > i) nsvg_qsort(Array, i, High);
}
void nsvg_qsort(void* Array, int Num, INTN Size,
int (*compare)(const void* a, const void* b))
{
// QuickSort(Array, 0, Num - 1, Size, compare);
nsvg_qsort((NSVGedge*)Array, 0, Num - 1);
}
//caller is responsible for free memory
NSVGrasterizer* nsvgCreateRasterizer()
{
NSVGrasterizer* r = (NSVGrasterizer*)AllocateZeroPool(sizeof(NSVGrasterizer));
if (r == NULL) return NULL;
r->tessTol = 0.1f; //0.25f;
r->distTol = 0.01f;
return r;
}
void nsvgDeleteRasterizer(NSVGrasterizer* r)
{
NSVGmemPage* p;
if (r == NULL) return;
p = r->pages;
while (p != NULL) {
NSVGmemPage* next = p->next;
FreePool(p);
p = next;
}
if (r->edges) FreePool(r->edges);
if (r->points) FreePool(r->points);
if (r->points2) FreePool(r->points2);
if (r->scanline) FreePool(r->scanline);
if (r->stencil) FreePool(r->stencil);
FreePool(r);
}
static NSVGmemPage* nsvg__nextPage(NSVGrasterizer* r, NSVGmemPage* cur)
{
NSVGmemPage *newp;
// If using existing chain, return the next page in chain
if (cur != NULL && cur->next != NULL) {
return cur->next;
}
// Alloc new page
newp = (NSVGmemPage*)AllocateZeroPool(sizeof(NSVGmemPage));
if (newp == NULL) return NULL;
// Add to linked list
if (cur != NULL)
cur->next = newp;
else
r->pages = newp;
return newp;
}
static void nsvg__resetPool(NSVGrasterizer* r)
{
NSVGmemPage* p = r->pages;
while (p != NULL) {
p->size = 0;
p = p->next;
}
r->curpage = r->pages;
}
static unsigned char* nsvg__alloc(NSVGrasterizer* r, int size)
{
unsigned char* buf;
if (size > NSVG__MEMPAGE_SIZE) return NULL;
if (r->curpage == NULL || r->curpage->size+size > NSVG__MEMPAGE_SIZE) {
r->curpage = nsvg__nextPage(r, r->curpage);
}
buf = &r->curpage->mem[r->curpage->size];
r->curpage->size += size;
return buf;
}
static int nsvg__ptEquals(NSVGpoint* pt1, NSVGpoint* pt2, float tol)
{
float dx = pt2->x - pt1->x;
float dy = pt2->y - pt1->y;
return SqrF(dx) + SqrF(dy) < SqrF(tol);
}
// t is a matrix xform
static void nsvg__addPathPoint(NSVGrasterizer* r, NSVGpoint* pt, float* t, int flags)
{
NSVGpoint* pt1;
NSVGpoint pt2;
if (!t) {
pt2 = *pt;
} else {
pt2.x = pt->x*t[0] + pt->y*t[2] + t[4];
pt2.y = pt->x*t[1] + pt->y*t[3] + t[5];
}
if (r->npoints > 0) {
pt1 = &r->points[r->npoints-1];
if (nsvg__ptEquals(pt1, &pt2, r->distTol)) {
r->points[r->npoints-1].flags |= (unsigned char)flags;
return;
}
}
if (r->npoints+1 > r->cpoints) {
int OldSize = r->cpoints * sizeof(NSVGpoint);
r->cpoints = r->cpoints > 0 ? r->cpoints * 2 : 64;
if (OldSize == 0) {
r->points = (NSVGpoint*)AllocatePool(64 * sizeof(NSVGpoint));
} else {
r->points = (NSVGpoint*)ReallocatePool(OldSize, sizeof(NSVGpoint) * r->cpoints, r->points);
}
if (r->points == NULL) return;
}
pt1 = &r->points[r->npoints];
pt1->x = pt2.x;
pt1->y = pt2.y;
pt1->flags = (unsigned char)flags;
r->npoints++;
}
static void nsvg__appendPathPoint(NSVGrasterizer* r, NSVGpoint* pt)
{
if (r->npoints+1 > r->cpoints) {
int OldSize = r->cpoints * sizeof(NSVGpoint);
r->cpoints = r->cpoints > 0 ? r->cpoints * 2 : 64;
if (OldSize == 0) {
r->points = (NSVGpoint*)AllocatePool(64 * sizeof(NSVGpoint));
} else
r->points = (NSVGpoint*)ReallocatePool(OldSize, sizeof(NSVGpoint) * r->cpoints, r->points);
if (r->points == NULL) return;
}
r->points[r->npoints] = *pt;
r->npoints++;
}
static void nsvg__duplicatePoints(NSVGrasterizer* r)
{
if (r->npoints > r->cpoints2) {
int OldSize = r->cpoints2 * sizeof(NSVGpoint);
r->cpoints2 = r->npoints;
if (OldSize == 0) {
r->points2 = (NSVGpoint*)AllocatePool(r->npoints * sizeof(NSVGpoint));
} else
r->points2 = (NSVGpoint*)ReallocatePool(OldSize, sizeof(NSVGpoint) * r->cpoints2, r->points2);
if (r->points2 == NULL) return;
}
if (r->npoints) {
memcpy(r->points2, r->points, sizeof(NSVGpoint) * r->npoints);
}
r->npoints2 = r->npoints;
}
static void nsvg__addEdge(NSVGrasterizer* r, float x0, float y0, float x1, float y1)
{
NSVGedge* e;
// Skip horizontal edges
if (y0 == y1)
return;
// DBG("nedges=%d cedges=%d\n", r->nedges, r->cedges);
if (r->nedges+1 > r->cedges) {
int OldSize = r->cedges * sizeof(NSVGedge);
r->cedges = r->cedges > 0 ? r->cedges * 2 : 64;
if (OldSize == 0) {
r->edges = (NSVGedge*)AllocatePool(64 * sizeof(NSVGedge));
} else
r->edges = (NSVGedge*)ReallocatePool(OldSize, sizeof(NSVGedge) * r->cedges, r->edges);
if (r->edges == NULL) return;
}
e = &r->edges[r->nedges];
r->nedges++;
if (y0 < y1) {
e->x0 = x0;
e->y0 = y0;
e->x1 = x1;
e->y1 = y1;
e->dir = 1;
} else {
e->x0 = x1;
e->y0 = y1;
e->x1 = x0;
e->y1 = y0;
e->dir = -1;
}
}
static float nsvg__normalize(float *x, float* y)
{
// float d = sqrtf((*x)*(*x) + (*y)*(*y));
float d = SqrtF(SqrF(*x) + SqrF(*y));
if (d > 1e-6f) {
float id = 1.0f / d;
*x *= id;
*y *= id;
}
return d;
}
//static float nsvg__absf(float x) { return x < 0 ? -x : x; }
#define nsvg__absf(x) FabsF(x)
//static float nsvg__sqr(float x) { return x*x; }
#define nsvg__sqr(x) SqrF(x)
// 0 1 2 3 4 5 6 7
static float nsvg__controlPathLength(float x1, float y1, float x2, float y2, float x3, float y3, float x4, float y4)
{
float l1, l2, l3;
l1 = (float) sqrtf(nsvg__sqr(x2 - x1) + nsvg__sqr(y2 - y1));
l2 = (float) sqrtf(nsvg__sqr(x3 - x2) + nsvg__sqr(y3 - y2));
l3 = (float) sqrtf(nsvg__sqr(x4 - x3) + nsvg__sqr(y4 - y3));
return l1 + l2 + l3;
}
static void nsvg__flattenCubicBez2(NSVGrasterizer* r, float* x, float* t, int type)
{
float ax, ay, bx, by, cx, cy, dx, dy;
float x1, y1, x2, y2, x3, y3, x4, y4;
// float pointX, pointY;
NSVGpoint p;
float firstFDX, firstFDY, secondFDX, secondFDY, thirdFDX, thirdFDY;
float h, h2, h3;
int i;
float control_path_len;
int N;
x1 = x[0]*t[0] + x[1]*t[2] + t[4];
y1 = x[0]*t[1] + x[1]*t[3] + t[5];
x2 = x[2]*t[0] + x[3]*t[2] + t[4];
y2 = x[2]*t[1] + x[3]*t[3] + t[5];
x3 = x[4]*t[0] + x[5]*t[2] + t[4];
y3 = x[4]*t[1] + x[5]*t[3] + t[5];
x4 = x[6]*t[0] + x[7]*t[2] + t[4];
y4 = x[6]*t[1] + x[7]*t[3] + t[5];
control_path_len = nsvg__controlPathLength(x1, y1, x2, y2, x3, y3, x4, y4);
/* This is going to need tweaking, gives approximate same number of divisons
as old code on the test image */
N = (int)(control_path_len / ( 32 * r->tessTol)) + 2;
if (N > 1024)
N = 1024;
/* Compute polynomial coefficients from Bezier points */
ax = -x1 + 3.f * x2 + -3.f * x3 + x4;
ay = -y1 + 3.f * y2 + -3.f * y3 + y4;
bx = 3.f * x1 - 6.f * x2 + 3.f * x3;
by = 3.f * y1 - 6.f * y2 + 3.f * y3;
cx = 3.0f * (x2 - x1); //-3 * x1 + 3 * x2;
cy = 3.0f * (y2 - y1); //-3 * y1 + 3 * y2;
dx = x1;
dy = y1;
/* Set up step size */
h = 1.0f / (N-1);
h2 = h * h;
h3 = h2 * h;
/* Compute forward differences from Bezier points and "h" */
p.x = dx;
p.y = dy;
firstFDX = ((ax * h + bx) * h + cx) * h;
firstFDY = ((ay * h + by) * h + cy) * h;
secondFDX = (6.0f * ax * h + 2.0f * bx) * h2;
secondFDY = (6.0f * ay * h + 2.0f * by) * h2;
thirdFDX = 6.0f * ax * h3;
thirdFDY = 6.0f * ay * h3;
/* Compute points at each step */
for (i = 0; i < N-1; i++) {
nsvg__addPathPoint(r, &p, NULL, 0);
p.x += firstFDX;
p.y += firstFDY;
firstFDX += secondFDX;
firstFDY += secondFDY;
secondFDX += thirdFDX;
secondFDY += thirdFDY;
}
nsvg__addPathPoint(r, &p, NULL, type);
return;
}
static void nsvg__flattenShape(NSVGrasterizer* r, NSVGshape* shape, float* xform)
{
int i, j;
NSVGpath* path;
NSVGpoint pt;
// DumpFloat("flattenShape with", xform, 6);
for (path = shape->paths; path != NULL; path = path->next) {
r->npoints = 0;
// Flatten path
pt.x = path->pts[0];
pt.y = path->pts[1];
nsvg__addPathPoint(r, &pt, xform, 0);
for (i = 0; i < path->npts-1; i += 3) {
float* p = &path->pts[i*2];
nsvg__flattenCubicBez2(r, p, xform, 0);
}
// Close path
nsvg__addPathPoint(r, &pt, xform, 0);
// Build edges
for (i = 0, j = r->npoints-1; i < r->npoints; j = i++)
nsvg__addEdge(r, r->points[j].x, r->points[j].y, r->points[i].x, r->points[i].y);
}
}
enum NSVGpointFlags
{
NSVG_PT_CORNER = 0x01,
NSVG_PT_BEVEL = 0x02,
NSVG_PT_LEFT = 0x04
};
static void nsvg__initClosed(NSVGpoint* left, NSVGpoint* right, NSVGpoint* p0, NSVGpoint* p1, float lineWidth)
{
float w = lineWidth * 0.5f;
float dx = p1->x - p0->x;
float dy = p1->y - p0->y;
float len = nsvg__normalize(&dx, &dy);
float px = p0->x + dx*len*0.5f, py = p0->y + dy*len*0.5f;
float dlx = dy, dly = -dx;
float lx = px - dlx*w, ly = py - dly*w;
float rx = px + dlx*w, ry = py + dly*w;
left->x = lx; left->y = ly;
right->x = rx; right->y = ry;
}
static void nsvg__buttCap(NSVGrasterizer* r, NSVGpoint* left, NSVGpoint* right, NSVGpoint* p, float dx, float dy, float lineWidth, int connect)
{
float w = lineWidth * 0.5f;
float px = p->x, py = p->y;
float dlx = dy, dly = -dx;
float lx = px - dlx*w, ly = py - dly*w;
float rx = px + dlx*w, ry = py + dly*w;
nsvg__addEdge(r, lx, ly, rx, ry);
if (connect) {
nsvg__addEdge(r, left->x, left->y, lx, ly);
nsvg__addEdge(r, rx, ry, right->x, right->y);
}
left->x = lx; left->y = ly;
right->x = rx; right->y = ry;
}
static void nsvg__squareCap(NSVGrasterizer* r, NSVGpoint* left, NSVGpoint* right, NSVGpoint* p, float dx, float dy, float lineWidth, int connect)
{
float w = lineWidth * 0.5f;
float px = p->x - dx*w, py = p->y - dy*w;
float dlx = dy, dly = -dx;
float lx = px - dlx*w, ly = py - dly*w;
float rx = px + dlx*w, ry = py + dly*w;
nsvg__addEdge(r, lx, ly, rx, ry);
if (connect) {
nsvg__addEdge(r, left->x, left->y, lx, ly);
nsvg__addEdge(r, rx, ry, right->x, right->y);
}
left->x = lx; left->y = ly;
right->x = rx; right->y = ry;
}
#ifndef NSVG_PI
#define NSVG_PI (3.14159265358979323846264338327f)
#endif
static void nsvg__roundCap(NSVGrasterizer* r, NSVGpoint* left, NSVGpoint* right, NSVGpoint* p, float dx, float dy, float lineWidth, int ncap, int connect)
{
int i;
float w = lineWidth * 0.5f;
float px = p->x, py = p->y;
float dlx = dy, dly = -dx;
float lx = 0, ly = 0, rx = 0, ry = 0, prevx = 0, prevy = 0;
for (i = 0; i < ncap; i++) {
float a = (float)i/(float)(ncap-1)*NSVG_PI;
float ax = cosf(a) * w, ay = sinf(a) * w;
float x = px - dlx*ax - dx*ay;
float y = py - dly*ax - dy*ay;
if (i > 0)
nsvg__addEdge(r, prevx, prevy, x, y);
prevx = x;
prevy = y;
if (i == 0) {
lx = x; ly = y;
} else if (i == ncap-1) {
rx = x; ry = y;
}
}
if (connect) {
nsvg__addEdge(r, left->x, left->y, lx, ly);
nsvg__addEdge(r, rx, ry, right->x, right->y);
}
left->x = lx; left->y = ly;
right->x = rx; right->y = ry;
}
static void nsvg__bevelJoin(NSVGrasterizer* r, NSVGpoint* left, NSVGpoint* right, NSVGpoint* p0, NSVGpoint* p1, float lineWidth)
{
float w = lineWidth * 0.5f;
float dlx0 = p0->dy, dly0 = -p0->dx;
float dlx1 = p1->dy, dly1 = -p1->dx;
float lx0 = p1->x - (dlx0 * w), ly0 = p1->y - (dly0 * w);
float rx0 = p1->x + (dlx0 * w), ry0 = p1->y + (dly0 * w);
float lx1 = p1->x - (dlx1 * w), ly1 = p1->y - (dly1 * w);
float rx1 = p1->x + (dlx1 * w), ry1 = p1->y + (dly1 * w);
nsvg__addEdge(r, lx0, ly0, left->x, left->y);
nsvg__addEdge(r, lx1, ly1, lx0, ly0);
nsvg__addEdge(r, right->x, right->y, rx0, ry0);
nsvg__addEdge(r, rx0, ry0, rx1, ry1);
left->x = lx1; left->y = ly1;
right->x = rx1; right->y = ry1;
}
static void nsvg__miterJoin(NSVGrasterizer* r, NSVGpoint* left, NSVGpoint* right, NSVGpoint* p0, NSVGpoint* p1, float lineWidth)
{
float w = lineWidth * 0.5f;
float dlx0 = p0->dy, dly0 = -p0->dx;
float dlx1 = p1->dy, dly1 = -p1->dx;
float lx0, rx0, lx1, rx1;
float ly0, ry0, ly1, ry1;
if (p1->flags & NSVG_PT_LEFT) {
lx0 = lx1 = p1->x - p1->dmx * w;
ly0 = ly1 = p1->y - p1->dmy * w;
nsvg__addEdge(r, lx1, ly1, left->x, left->y);
rx0 = p1->x + (dlx0 * w);
ry0 = p1->y + (dly0 * w);
rx1 = p1->x + (dlx1 * w);
ry1 = p1->y + (dly1 * w);
nsvg__addEdge(r, right->x, right->y, rx0, ry0);
nsvg__addEdge(r, rx0, ry0, rx1, ry1);
} else {
lx0 = p1->x - (dlx0 * w);
ly0 = p1->y - (dly0 * w);
lx1 = p1->x - (dlx1 * w);
ly1 = p1->y - (dly1 * w);
nsvg__addEdge(r, lx0, ly0, left->x, left->y);
nsvg__addEdge(r, lx1, ly1, lx0, ly0);
rx0 = rx1 = p1->x + p1->dmx * w;
ry0 = ry1 = p1->y + p1->dmy * w;
nsvg__addEdge(r, right->x, right->y, rx1, ry1);
}
left->x = lx1; left->y = ly1;
right->x = rx1; right->y = ry1;
}
static void nsvg__roundJoin(NSVGrasterizer* r, NSVGpoint* left, NSVGpoint* right, NSVGpoint* p0, NSVGpoint* p1, float lineWidth, int ncap)
{
int i, n;
float w = lineWidth * 0.5f;
float dlx0 = p0->dy, dly0 = -p0->dx;
float dlx1 = p1->dy, dly1 = -p1->dx;
float a0 = atan2f(dly0, dlx0);
float a1 = atan2f(dly1, dlx1);
float da = a1 - a0;
float lx, ly, rx, ry;
if (da < -NSVG_PI) da += PI2; //NSVG_PI*2;
if (da > NSVG_PI) da -= PI2; //NSVG_PI*2;
n = (int)ceilf((nsvg__absf(da) / NSVG_PI) * (float)ncap);
if (n < 2) n = 2;
if (n > ncap) n = ncap;
lx = left->x;
ly = left->y;
rx = right->x;
ry = right->y;
for (i = 0; i < n; i++) {
float u = (float)i/(float)(n-1);
float a = a0 + u*da;
float ax = cosf(a) * w, ay = sinf(a) * w;
float lx1 = p1->x - ax, ly1 = p1->y - ay;
float rx1 = p1->x + ax, ry1 = p1->y + ay;
nsvg__addEdge(r, lx1, ly1, lx, ly);
nsvg__addEdge(r, rx, ry, rx1, ry1);
lx = lx1; ly = ly1;
rx = rx1; ry = ry1;
}
left->x = lx; left->y = ly;
right->x = rx; right->y = ry;
}
static void nsvg__straightJoin(NSVGrasterizer* r, NSVGpoint* left, NSVGpoint* right, NSVGpoint* p1, float lineWidth)
{
float w = lineWidth * 0.5f;
float lx = p1->x - (p1->dmx * w), ly = p1->y - (p1->dmy * w);
float rx = p1->x + (p1->dmx * w), ry = p1->y + (p1->dmy * w);
nsvg__addEdge(r, lx, ly, left->x, left->y);
nsvg__addEdge(r, right->x, right->y, rx, ry);
left->x = lx; left->y = ly;
right->x = rx; right->y = ry;
}
static int nsvg__curveDivs(float r, float arc, float tol)
{
float da = acosf(r / (r + tol)) * 2.0f;
int divs = (int)ceilf(arc / da);
if (divs < 2) divs = 2;
return divs;
}
static void nsvg__expandStroke(NSVGrasterizer* r, NSVGpoint* points, int npoints, int closed, int lineJoin, int lineCap, float lineWidth)
{
int ncap = nsvg__curveDivs(lineWidth*0.5f, NSVG_PI, r->tessTol); // Calculate divisions per half circle.
NSVGpoint left = {0,0,0,0,0,0,0,0,{0,0,0}}, right = {0,0,0,0,0,0,0,0,{0,0,0}}, firstLeft = {0,0,0,0,0,0,0,0,{0,0,0}}, firstRight = {0,0,0,0,0,0,0,0,{0,0,0}};
NSVGpoint* p0, *p1;
int j, s, e;
// Build stroke edges
if (closed) {
// Looping
p0 = &points[npoints-1];
p1 = &points[0];
s = 0;
e = npoints;
} else {
// Add cap
p0 = &points[0];
p1 = &points[1];
s = 1;
e = npoints-1;
}
if (closed) {
nsvg__initClosed(&left, &right, p0, p1, lineWidth);
firstLeft = left;
firstRight = right;
} else {
// Add cap
float dx = p1->x - p0->x;
float dy = p1->y - p0->y;
nsvg__normalize(&dx, &dy);
if (lineCap == NSVG_CAP_BUTT)
nsvg__buttCap(r, &left, &right, p0, dx, dy, lineWidth, 0);
else if (lineCap == NSVG_CAP_SQUARE)
nsvg__squareCap(r, &left, &right, p0, dx, dy, lineWidth, 0);
else if (lineCap == NSVG_CAP_ROUND)
nsvg__roundCap(r, &left, &right, p0, dx, dy, lineWidth, ncap, 0);
}
for (j = s; j < e; ++j) {
if (p1->flags & NSVG_PT_CORNER) {
if (lineJoin == NSVG_JOIN_ROUND)
nsvg__roundJoin(r, &left, &right, p0, p1, lineWidth, ncap);
else if (lineJoin == NSVG_JOIN_BEVEL || (p1->flags & NSVG_PT_BEVEL))
nsvg__bevelJoin(r, &left, &right, p0, p1, lineWidth);
else
nsvg__miterJoin(r, &left, &right, p0, p1, lineWidth);
} else {
nsvg__straightJoin(r, &left, &right, p1, lineWidth);
}
p0 = p1++;
}
if (closed) {
// Loop it
nsvg__addEdge(r, firstLeft.x, firstLeft.y, left.x, left.y);
nsvg__addEdge(r, right.x, right.y, firstRight.x, firstRight.y);
} else {
// Add cap
float dx = p1->x - p0->x;
float dy = p1->y - p0->y;
nsvg__normalize(&dx, &dy);
if (lineCap == NSVG_CAP_BUTT)
nsvg__buttCap(r, &right, &left, p1, -dx, -dy, lineWidth, 1);
else if (lineCap == NSVG_CAP_SQUARE)
nsvg__squareCap(r, &right, &left, p1, -dx, -dy, lineWidth, 1);
else if (lineCap == NSVG_CAP_ROUND)
nsvg__roundCap(r, &right, &left, p1, -dx, -dy, lineWidth, ncap, 1);
}
}
static void nsvg__prepareStroke(NSVGrasterizer* r, float miterLimit, int lineJoin)
{
int i, j;
NSVGpoint* p0, *p1;
p0 = &r->points[r->npoints-1];
p1 = &r->points[0];
for (i = 0; i < r->npoints; i++) {
// Calculate segment direction and length
p0->dx = p1->x - p0->x;
p0->dy = p1->y - p0->y;
p0->len = nsvg__normalize(&p0->dx, &p0->dy);
// Advance
p0 = p1++;
}
// calculate joins
p0 = &r->points[r->npoints-1];
p1 = &r->points[0];
for (j = 0; j < r->npoints; j++) {
float dlx0, dly0, dlx1, dly1, dmr2, cross;
dlx0 = p0->dy;
dly0 = -p0->dx;
dlx1 = p1->dy;
dly1 = -p1->dx;
// Calculate extrusions
p1->dmx = (dlx0 + dlx1) * 0.5f;
p1->dmy = (dly0 + dly1) * 0.5f;
dmr2 = p1->dmx*p1->dmx + p1->dmy*p1->dmy;
if (dmr2 > 0.000001f) {
float s2 = 1.0f / dmr2;
if (s2 > 600.0f) {
s2 = 600.0f;
}
p1->dmx *= s2;
p1->dmy *= s2;
}
// Clear flags, but keep the corner.
p1->flags = (p1->flags & NSVG_PT_CORNER) ? NSVG_PT_CORNER : 0;
// Keep track of left turns.
cross = p1->dx * p0->dy - p0->dx * p1->dy;
if (cross > 0.0f)
p1->flags |= NSVG_PT_LEFT;
// Check to see if the corner needs to be beveled.
if (p1->flags & NSVG_PT_CORNER) {
if ((dmr2 * miterLimit*miterLimit) < 1.0f || lineJoin == NSVG_JOIN_BEVEL || lineJoin == NSVG_JOIN_ROUND) {
p1->flags |= NSVG_PT_BEVEL;
}
}
p0 = p1++;
}
}
static void nsvg__flattenShapeStroke(NSVGrasterizer* r, NSVGshape* shape, float* xform)
{
int i, j, closed;
NSVGpath* path;
NSVGpoint* p0, *p1;
NSVGpoint p;
float lineWidth = 0.5;
float scalex1 = fabsf(xform[0]);
float scalex2 = fabsf(xform[2]);
float scaley1 = fabsf(xform[1]);
float scaley2 = fabsf(xform[3]);
// float scale = (scalex > scaley)?scalex:scaley; //(scalex + scaley) * 0.5f
float scale = (sqrtf(scalex1*scalex1 + scalex2*scalex2) +
sqrtf(scaley1*scaley1 + scaley2*scaley2)) * 0.5f;
float miterLimit = shape->miterLimit;
int lineJoin = shape->strokeLineJoin;
int lineCap = shape->strokeLineCap;
/* if (shape->isText) {
lineWidth = shape->strokeWidth;
} else { */
lineWidth = shape->strokeWidth * scale;
// }
//DumpFloat("shapeStroke", xform, 6);
for (path = shape->paths; path != NULL; path = path->next) {
// Flatten path
r->npoints = 0;
p.x = path->pts[0];
p.y = path->pts[1];
nsvg__addPathPoint(r, &p, xform, NSVG_PT_CORNER);
for (i = 0; i < path->npts-1; i += 3) {
float* pt = &path->pts[i*2];
nsvg__flattenCubicBez2(r, pt, xform, NSVG_PT_CORNER);
}
if (r->npoints < 2)
continue;
closed = path->closed;
// If the first and last points are the same, remove the last, mark as closed path.
p0 = &r->points[r->npoints-1];
p1 = &r->points[0];
if (nsvg__ptEquals(p0, p1, r->distTol)) {
r->npoints--;
p0 = &r->points[r->npoints-1];
closed = 1;
}
if (shape->strokeDashCount > 0) {
int idash = 0, dashState = 1;
float totalDist = 0, dashLen, allDashLen, dashOffset;
NSVGpoint* cur;
if (closed)
nsvg__appendPathPoint(r, p1);
// Duplicate points -> points2.
nsvg__duplicatePoints(r);
r->npoints = 0;
cur = &r->points2[0];
nsvg__appendPathPoint(r, cur);
// Figure out dash offset.
allDashLen = 0;
for (j = 0; j < shape->strokeDashCount; j++)
allDashLen += shape->strokeDashArray[j];
if (shape->strokeDashCount & 1)
allDashLen *= 2.0f;
// Find location inside pattern
dashOffset = fmodf(shape->strokeDashOffset, allDashLen);
if (dashOffset < 0.0f)
dashOffset += allDashLen;
while (dashOffset > shape->strokeDashArray[idash]) {
dashOffset -= shape->strokeDashArray[idash];
idash = (idash + 1) % shape->strokeDashCount;
}
dashLen = (shape->strokeDashArray[idash] - dashOffset) * scale;
for (j = 1; j < r->npoints2; ) {
float dx = r->points2[j].x - cur->x;
float dy = r->points2[j].y - cur->y;
float dist = sqrtf(dx*dx + dy*dy);
if ((totalDist + dist) > dashLen) {
// Calculate intermediate point
float d = (dashLen - totalDist) / dist;
NSVGpoint pc;
pc.x = cur->x + dx * d;
pc.y = cur->y + dy * d;
nsvg__addPathPoint(r, &pc, NULL, NSVG_PT_CORNER);
// Stroke
if (r->npoints > 1 && dashState) {
nsvg__prepareStroke(r, miterLimit, lineJoin);
nsvg__expandStroke(r, r->points, r->npoints, 0, lineJoin, lineCap, lineWidth);
}
// Advance dash pattern
dashState = !dashState;
idash = (idash+1) % shape->strokeDashCount;
dashLen = shape->strokeDashArray[idash] * scale;
// Restart
cur->x = pc.x;
cur->y = pc.y;
cur->flags = NSVG_PT_CORNER;
totalDist = 0.0f;
r->npoints = 0;
nsvg__appendPathPoint(r, cur);
} else {
totalDist += dist;
cur = &r->points2[j];
nsvg__appendPathPoint(r, cur);
j++;
}
}
// Stroke any leftover path
if (r->npoints > 1 && dashState)
nsvg__expandStroke(r, r->points, r->npoints, 0, lineJoin, lineCap, lineWidth);
} else {
nsvg__prepareStroke(r, miterLimit, lineJoin);
nsvg__expandStroke(r, r->points, r->npoints, closed, lineJoin, lineCap, lineWidth);
}
}
}
/*
static int nsvg__cmpEdge(const void *p, const void *q)
{
const NSVGedge* a = (const NSVGedge*)p;
const NSVGedge* b = (const NSVGedge*)q;
if (a->y0 < b->y0) return -1;
if (a->y0 > b->y0) return 1;
return 0;
}
*/
static NSVGactiveEdge* nsvg__addActive(NSVGrasterizer* r, NSVGedge* e, float startPoint)
{
NSVGactiveEdge* z;
if (r->freelist != NULL) {
// Restore from freelist.
z = r->freelist;
r->freelist = z->next;
} else {
// Alloc new edge.
z = (NSVGactiveEdge*)nsvg__alloc(r, sizeof(NSVGactiveEdge));
if (z == NULL) return NULL;
}
float dxdy = (e->x1 - e->x0) / (e->y1 - e->y0);
// STBTT_assert(e->y0 <= start_point);
// round dx down to avoid going too far
if (dxdy < 0)
z->dx = (int)(-floorf(NSVG__FIX * -dxdy));
else
z->dx = (int)floorf(NSVG__FIX * dxdy);
z->x = (int)floorf(NSVG__FIX * (e->x0 + dxdy * (startPoint - e->y0)));
// z->x -= off_x * FIX;
z->ey = e->y1;
z->next = 0;
z->dir = e->dir;
return z;
}
static void nsvg__freeActive(NSVGrasterizer* r, NSVGactiveEdge* z)
{
z->next = r->freelist;
r->freelist = z;
}
static void nsvg__fillScanline(unsigned char* scanline, int len, int x0, int x1, int maxWeight, int* xmin, int* xmax)
{
int i = x0 >> NSVG__FIXSHIFT;
int j = x1 >> NSVG__FIXSHIFT;
if (i < *xmin) *xmin = i;
if (j > *xmax) *xmax = j;
if (i < len && j >= 0) {
if (i == j) {
// x0,x1 are the same pixel, so compute combined coverage
scanline[i] = (unsigned char)(scanline[i] + ((x1 - x0) * maxWeight >> NSVG__FIXSHIFT));
} else {
if (i >= 0) // add antialiasing for x0
scanline[i] = (unsigned char)(scanline[i] + (((NSVG__FIX - (x0 & NSVG__FIXMASK)) * maxWeight) >> NSVG__FIXSHIFT));
else
i = -1; // clip
if (j < len) // add antialiasing for x1
scanline[j] = (unsigned char)(scanline[j] + (((x1 & NSVG__FIXMASK) * maxWeight) >> NSVG__FIXSHIFT));
else
j = len; // clip
for (++i; i < j; ++i) // fill pixels between x0 and x1
scanline[i] = (unsigned char)(scanline[i] + maxWeight);
}
}
}
// note: this routine clips fills that extend off the edges... ideally this
// wouldn't happen, but it could happen if the truetype glyph bounding boxes
// are wrong, or if the user supplies a too-small bitmap
static void nsvg__fillActiveEdges(unsigned char* scanline, int len, NSVGactiveEdge* e, int maxWeight, int* xmin, int* xmax, char fillRule)
{
// non-zero winding fill
int x0 = 0, w = 0;
if (fillRule == NSVG_FILLRULE_NONZERO) {
// Non-zero
while (e != NULL) {
if (w == 0) {
// if we're currently at zero, we need to record the edge start point
x0 = e->x; w += e->dir;
} else {
int x1 = e->x; w += e->dir;
// if we went to zero, we need to draw
if (w == 0)
nsvg__fillScanline(scanline, len, x0, x1, maxWeight, xmin, xmax);
}
e = e->next;
}
} else if (fillRule == NSVG_FILLRULE_EVENODD) {
// Even-odd
while (e != NULL) {
if (w == 0) {
// if we're currently at zero, we need to record the edge start point
x0 = e->x; w = 1;
} else {
int x1 = e->x; w = 0;
nsvg__fillScanline(scanline, len, x0, x1, maxWeight, xmin, xmax);
}
e = e->next;
}
}
}
static float nsvg__clampf(float a, float mn, float mx)
{
return a < mn ? mn : (a > mx ? mx : a);
}
static unsigned int nsvg__RGBA(unsigned char r, unsigned char g, unsigned char b, unsigned char a)
{
return (b) | (g << 8) | (r << 16) | (a << 24);
}
static unsigned int nsvg__lerpRGBA(unsigned int c0, unsigned int c1, float u, float opacity)
{
float xu = nsvg__clampf(u, 0.0f, 1.0f) * 256.0f;
int iu = (int)(xu); //0..256
int ia = (int)(nsvg__clampf(opacity, 0.0f, 1.0f) * 256.0f);
int b = (((c0) & 0xff)*(256-iu) + (((c1) & 0xff)*iu)) >> 8;
int g = (((c0>>8) & 0xff)*(256-iu) + (((c1>>8) & 0xff)*iu)) >> 8;
int r = (((c0>>16) & 0xff)*(256-iu) + (((c1>>16) & 0xff)*iu)) >> 8;
int a = ((((c0>>24) & 0xff)*(256-iu) + (((c1>>24) & 0xff)*iu)) * ia) >> 16;
return nsvg__RGBA((unsigned char)r, (unsigned char)g, (unsigned char)b, (unsigned char)a);
}
static unsigned int nsvg__applyOpacity(unsigned int c, float u)
{
int iu = (int)(nsvg__clampf(u, 0.0f, 1.0f) * 256.0f);
int b = (c) & 0xff;
int g = (c>>8) & 0xff;
int r = (c>>16) & 0xff;
int a = (((c>>24) & 0xff)*iu) >> 8;
return nsvg__RGBA((unsigned char)r, (unsigned char)g, (unsigned char)b, (unsigned char)a);
}
static inline int nsvg__div255(int x)
{
return ((x+1) * 257) >> 16;
}
static void nsvg__scanlineBit(
unsigned char* row, int count, unsigned char* cover, int x, int y,
/* float tx, float ty, float scalex, float scaley, */ NSVGcachedPaint* cache)
{
//xxx where is security check that x/8 and (x+count)/8 is inside row[] index?
// called by r->fscanline(&r->bitmap[y * r->stride], xmax-xmin+1, &r->scanline[xmin], xmin, y,/* tx,ty, scalex, scaley, */ cache);
int x1 = x + count;
for (; x < x1; x++) {
row[x / 8] |= 1 << (x % 8);
}
}
static void nsvg__scanlineSolid(unsigned char* row, int count, unsigned char* cover, int x, int y,
/* float tx, float ty, float scalex, float scaley, */ NSVGcachedPaint* cache)
{
// static int once = 0;
unsigned char* dst = row + x*4;
if (cache->type == NSVG_PAINT_COLOR) {
int i, cr, cg, cb, ca;
cr = cache->colors[0] & 0xff;
cg = (cache->colors[0] >> 8) & 0xff;
cb = (cache->colors[0] >> 16) & 0xff;
ca = (cache->colors[0] >> 24) & 0xff;
for (i = 0; i < count; i++) {
int r,g,b;
int a = nsvg__div255((int)cover[0] * ca);
int ia = 255 - a;
// Premultiply
r = nsvg__div255(cr * a);
g = nsvg__div255(cg * a);
b = nsvg__div255(cb * a);
// Blend over
r += nsvg__div255(ia * (int)dst[0]);
g += nsvg__div255(ia * (int)dst[1]);
b += nsvg__div255(ia * (int)dst[2]);
a += nsvg__div255(ia * (int)dst[3]);
dst[0] = (unsigned char)r;
dst[1] = (unsigned char)g;
dst[2] = (unsigned char)b;
dst[3] = (unsigned char)a;
cover++;
dst += 4;
}
} else if (cache->type == NSVG_PAINT_LINEAR_GRADIENT) {
// TODO: spread modes.
// TODO: plenty of opportunities to optimize.
float fx, fy, gy;
float* t = cache->xform;
// DumpFloat("cache grad xform", t, 6);
int i, cr, cg, cb, ca;
unsigned int c;
//x,y - pixels
fx = (float)x;
fy = (float)y;
// dx = 1.0f;
gy = fx*t[1] + fy*t[3] + t[5]; //gradient direction. Point at cut
for (i = 0; i < count; i++) {
int r,g,b,a,ia;
int level = cache->coarse;
c = cache->colors[dither(nsvg__clampf(gy*(255.0f-level), 0, (float)(255-level)), level)]; //assumed gy = 0.0 ... 1.0f
cr = (c) & 0xff;
cg = (c >> 8) & 0xff;
cb = (c >> 16) & 0xff;
ca = (c >> 24) & 0xff;
a = nsvg__div255((int)cover[0] * ca);
ia = 255 - a;
// Premultiply
r = nsvg__div255(cr * a);
g = nsvg__div255(cg * a);
b = nsvg__div255(cb * a);
// Blend over
r += nsvg__div255(ia * (int)dst[0]);
g += nsvg__div255(ia * (int)dst[1]);
b += nsvg__div255(ia * (int)dst[2]);
a += nsvg__div255(ia * (int)dst[3]);
dst[0] = (unsigned char)r;
dst[1] = (unsigned char)g;
dst[2] = (unsigned char)b;
dst[3] = (unsigned char)a;
cover++;
dst += 4;
// fx += dx;
gy += t[1];
}
} else if (cache->type == NSVG_PAINT_RADIAL_GRADIENT) {
// TODO: spread modes.
// TODO: plenty of opportunities to optimize.
// TODO: focus (fx,fy)
float fx, fy, gx, gy, gd;
float* t = cache->xform;
// DumpFloat("cache grad xform", t, 6);
int i, cr, cg, cb, ca;
unsigned int c;
fx = (float)x;
fy = (float)y;
// dx = 1.0f;
gx = fx*t[0] + fy*t[2] + t[4];
gy = fx*t[1] + fy*t[3] + t[5];
for (i = 0; i < count; i++) {
int r,g,b,a,ia;
gd = sqrtf(gx*gx + gy*gy);
2020-03-26 13:59:20 +01:00
// DBG("gx=%f gy=%f\n", gx, gy);
int level = cache->coarse;
c = cache->colors[dither(nsvg__clampf(gd*(255.0f-level*2), 0, (254.99f-level*2)), level)];
cr = (c) & 0xff;
cg = (c >> 8) & 0xff;
cb = (c >> 16) & 0xff;
ca = (c >> 24) & 0xff;
a = nsvg__div255((int)cover[0] * ca);
ia = 255 - a;
// Premultiply
r = nsvg__div255(cr * a);
g = nsvg__div255(cg * a);
b = nsvg__div255(cb * a);
// Blend over
r += nsvg__div255(ia * (int)dst[0]);
g += nsvg__div255(ia * (int)dst[1]);
b += nsvg__div255(ia * (int)dst[2]);
a += nsvg__div255(ia * (int)dst[3]);
dst[0] = (unsigned char)r;
dst[1] = (unsigned char)g;
dst[2] = (unsigned char)b;
dst[3] = (unsigned char)a;
cover++;
dst += 4;
// fx += dx;
gx += t[0];
gy += t[1];
}
} else if (cache->type == NSVG_PAINT_PATTERN) {
// TODO
float fx, fy, dx, gx, gy;
float* t = cache->xform;
// EG_IMAGE *Pattern = (EG_IMAGE *)cache->image;
XImage *Pattern = (XImage*)cache->image;
if (!Pattern) {
DBG("no pattern to fill\n");
return;
}
INTN Width = Pattern->GetWidth();
INTN Height = Pattern->GetHeight();
int ix, iy;
// INTN j;
fx = (float)x;
fy = (float)y;
dx = 1.0f;
// unsigned int c;
for (int i = 0; i < count; i++) {
int r,g,b,a,ia;
gx = fx*t[0] + fy*t[2] + t[4];
gy = fx*t[1] + fy*t[3] + t[5];
ix = dither(gx * Width, 2) % Width;
iy = dither(gy * Height, 2) % Height;
// j = iy * Width + ix;
EFI_GRAPHICS_OUTPUT_BLT_PIXEL cp = Pattern->GetPixel(ix, iy);
// cr = Pattern->PixelData[j].r;
// cb = Pattern->PixelData[j].b;
// cg = Pattern->PixelData[j].g;
// ca = Pattern->PixelData[j].a;
// cr = cp.Red;
a = nsvg__div255((int)cover[0] * cp.Reserved);
ia = 255 - a;
// Premultiply
r = nsvg__div255(cp.Red * a);
g = nsvg__div255(cp.Green * a);
b = nsvg__div255(cp.Blue * a);
// Blend over
r += nsvg__div255(ia * (int)dst[0]);
g += nsvg__div255(ia * (int)dst[1]);
b += nsvg__div255(ia * (int)dst[2]);
a += nsvg__div255(ia * (int)dst[3]);
dst[0] = (unsigned char)r;
dst[1] = (unsigned char)g;
dst[2] = (unsigned char)b;
dst[3] = (unsigned char)a;
cover++;
dst += 4;
fx += dx;
}
} else if (cache->type == NSVG_PAINT_CONIC_GRADIENT) {
// TODO: spread modes.
// TODO: plenty of opportunities to optimize.
// TODO: focus (fx,fy)
float fx, fy, gx, gy, gd;
float* t = cache->xform;
// DumpFloat("cache grad xform", t, 6);
int i, cr, cg, cb, ca;
unsigned int c;
fx = (float)x;
fy = (float)y;
// dx = 1.0f;
gx = fx*t[0] + fy*t[2] + t[4];
gy = fx*t[1] + fy*t[3] + t[5];
for (i = 0; i < count; i++) {
int r,g,b,a,ia;
if ((gx == 0.f) && (gy == 0.f)) {
c = 0;
} else {
gd = (Atan2F(gy, gx) + PI) / PI2;
c = cache->colors[dither(nsvg__clampf(gd*254.0f, 0, 253.99f), 1)];
}
cr = (c) & 0xff;
cg = (c >> 8) & 0xff;
cb = (c >> 16) & 0xff;
ca = (c >> 24) & 0xff;
a = nsvg__div255((int)cover[0] * ca);
ia = 255 - a;
// Premultiply
r = nsvg__div255(cr * a);
g = nsvg__div255(cg * a);
b = nsvg__div255(cb * a);
// Blend over
r += nsvg__div255(ia * (int)dst[0]);
g += nsvg__div255(ia * (int)dst[1]);
b += nsvg__div255(ia * (int)dst[2]);
a += nsvg__div255(ia * (int)dst[3]);
dst[0] = (unsigned char)r;
dst[1] = (unsigned char)g;
dst[2] = (unsigned char)b;
dst[3] = (unsigned char)a;
cover++;
dst += 4;
// fx += dx;
gx += t[0];
gy += t[1];
}
}
}
static void nsvg__rasterizeSortedEdges(NSVGrasterizer *r,
/* float tx, float ty, float scalex, float scaley, */
NSVGcachedPaint* cache, char fillRule, NSVGclip* clip)
{
NSVGactiveEdge *active = NULL;
int y, s;
int e = 0;
int maxWeight = (255 / NSVG__SUBSAMPLES); // weight per vertical scanline
int xmin, xmax;
for (y = 0; y < r->height; y++) {
SetMem(r->scanline, r->width, 0);
xmin = r->width;
xmax = 0;
for (s = 0; s < NSVG__SUBSAMPLES; ++s) {
// find center of pixel for this scanline
float scany = (float)(y*NSVG__SUBSAMPLES + s) + 0.5f;
NSVGactiveEdge **step = &active;
// update all active edges;
// remove all active edges that terminate before the center of this scanline
while (*step) {
NSVGactiveEdge *z = *step;
if (z->ey <= scany) {
*step = z->next; // delete from list
// NSVG__assert(z->valid);
nsvg__freeActive(r, z);
} else {
z->x += z->dx; // advance to position for current scanline
step = &((*step)->next); // advance through list
}
}
// resort the list if needed
for (;;) {
int changed = 0;
step = &active;
while (*step && (*step)->next) {
if ((*step)->x > (*step)->next->x) {
NSVGactiveEdge* t = *step;
NSVGactiveEdge* q = t->next;
t->next = q->next;
q->next = t;
*step = q;
changed = 1;
}
step = &(*step)->next;
}
if (!changed) break;
}
// insert all edges that start before the center of this scanline -- omit ones that also end on this scanline
while (e < r->nedges && r->edges[e].y0 <= scany) {
if (r->edges[e].y1 > scany) {
NSVGactiveEdge* z = nsvg__addActive(r, &r->edges[e], scany);
if (z == NULL) break;
// find insertion point
if (active == NULL) {
active = z;
} else if (z->x < active->x) {
// insert at front
z->next = active;
active = z;
} else {
// find thing to insert AFTER
NSVGactiveEdge* p = active;
while (p->next && p->next->x < z->x)
p = p->next;
// at this point, p->next->x is NOT < z->x
z->next = p->next;
p->next = z;
}
}
e++;
}
// now process all active edges in non-zero fashion
if (active != NULL)
nsvg__fillActiveEdges(r->scanline, r->width, active, maxWeight, &xmin, &xmax, fillRule);
}
// Blit
if (xmin < 0) xmin = 0;
if (xmax > r->width-1) xmax = r->width-1;
if (xmin <= xmax) {
// nsvg__scanlineSolid(&r->bitmap[y * r->stride] + xmin*4, xmax-xmin+1, &r->scanline[xmin], xmin, y, tx,ty, scalex, scaley, cache);
int i, j;
for (i = 0; i < clip->count; i++) {
unsigned char* stencil = &r->stencil[r->stencilSize * clip->index[i] + y * r->stencilStride];
for (j = xmin; j <= xmax; j++) {
if (((stencil[j / 8] >> (j % 8)) & 1) == 0) {
r->scanline[j] = 0;
}
}
}
r->fscanline(&r->bitmap[y * r->stride], xmax-xmin+1, &r->scanline[xmin], xmin, y,/* tx,ty, scalex, scaley, */ cache);
}
}
}
static void nsvg__unpremultiplyAlpha(unsigned char* image, int w, int h, int stride)
{
int x,y;
// Unpremultiply
for (y = 0; y < h; y++) {
unsigned char *row = &image[y*stride];
for (x = 0; x < w; x++) {
int r = row[0], g = row[1], b = row[2], a = row[3];
if (a != 0) {
row[0] = (unsigned char)(r*255/a);
row[1] = (unsigned char)(g*255/a);
row[2] = (unsigned char)(b*255/a);
}
row += 4;
}
}
// Defringe
for (y = 0; y < h; y++) {
unsigned char *row = &image[y*stride];
for (x = 0; x < w; x++) {
int r = 0, g = 0, b = 0, a = row[3], n = 0;
if (a == 0) {
if (x-1 > 0 && row[-1] != 0) {
r += row[-4];
g += row[-3];
b += row[-2];
n++;
}
if (x+1 < w && row[7] != 0) {
r += row[4];
g += row[5];
b += row[6];
n++;
}
if (y-1 > 0 && row[-stride+3] != 0) {
r += row[-stride];
g += row[-stride+1];
b += row[-stride+2];
n++;
}
if (y+1 < h && row[stride+3] != 0) {
r += row[stride];
g += row[stride+1];
b += row[stride+2];
n++;
}
if (n > 0) {
row[0] = (unsigned char)(r/n);
row[1] = (unsigned char)(g/n);
row[2] = (unsigned char)(b/n);
}
}
row += 4;
}
}
}
static void nsvg__initPaint(NSVGcachedPaint* cache, NSVGpaint* paint, NSVGshape* shape, float *xformShape)
{
int i, j;
NSVGgradient* grad = paint->paint.gradient;
float opacity = shape->opacity;
cache->type = paint->type;
// DBG("shape=%s, paint-type=%d\n", shape->id, cache->type);
if (cache->type == NSVG_PAINT_COLOR) {
cache->colors[0] = nsvg__applyOpacity(paint->paint.color, opacity);
return;
}
if (grad) {
cache->coarse = grad->ditherCoarse;
}
if (cache->type == NSVG_PAINT_PATTERN) {
cache->colors[0] = nsvg__applyOpacity(0, opacity);
if (grad) {
cache->image = ((NSVGpattern*)grad)->image;
}
float xform[6];
nsvg__xformIdentity(xform);
xform[0] = shape->bounds[2] - shape->bounds[0];
xform[3] = shape->bounds[3] - shape->bounds[1];
xform[4] = shape->bounds[0];
xform[5] = shape->bounds[1];
nsvg__xformMultiply(xform, xformShape);
nsvg__xformInverse(cache->xform, xform);
return;
}
cache->spread = grad->spread;
nsvg__xformInverse(cache->xform, xformShape);
nsvg__xformMultiply(cache->xform, grad->xform);
if (grad->nstops == 0) {
//for (i = 0; i < 256; i++) {
// cache->colors[i] = 0;
//}
SetMem(cache->colors, sizeof(cache->colors), 0);
} else if (grad->nstops == 1) {
for (i = 0; i < 256; i++) {
cache->colors[i] = nsvg__applyOpacity(grad->stops[i].color, opacity);
}
} else { //nstops=2 as usual gradient
unsigned int ca, cb = 0;
float ua, ub, du, u;
int ia, ib, count;
ca = nsvg__applyOpacity(grad->stops[0].color, opacity);
ua = nsvg__clampf(grad->stops[0].offset, 0, 1);
ub = nsvg__clampf(grad->stops[grad->nstops-1].offset, ua, 1);
ia = (int)(ua * 255.0f);
ib = (int)(ub * 255.0f);
for (i = 0; i < ia; i++) {
cache->colors[i] = ca; //color from stop0
}
for (i = 0; i < grad->nstops-1; i++) {
// ca = nsvg__applyOpacity(grad->stops[i].color, opacity); //= color begin
// cb = nsvg__applyOpacity(grad->stops[i+1].color, opacity); //= color end
ca = grad->stops[i].color;
cb = grad->stops[i+1].color;
ua = nsvg__clampf(grad->stops[i].offset, 0, 1); //=0
ub = nsvg__clampf(grad->stops[i+1].offset, 0, 1); //=1
ia = (int)(ua * 255.0f); //=0
ib = (int)(ub * 255.0f); //=255
count = ib - ia;
if (count <= 0) continue;
u = 0;
du = 1.0f / (float)count;
for (j = 0; j < count; j++) {
cache->colors[ia+j] = nsvg__lerpRGBA(ca,cb,u, opacity);
u += du;
}
}
// if (shape->debug) {
// DBG("Color cache [0,50,100,150,200,250]:%X,%X,%X,%X,%X,%X\n",
// cache->colors[0], cache->colors[50], cache->colors[100], cache->colors[150],
// cache->colors[200], cache->colors[250]);
// }
for (i = ib; i < 256; i++) { //tail
cache->colors[i] = cb;
// cache->colors2[i] = cb;
}
}
}
/*
static void dumpEdges(NSVGrasterizer* r, const char* name)
{
float xmin = 0, xmax = 0, ymin = 0, ymax = 0;
NSVGedge *e = NULL;
int i;
if (r->nedges == 0) return;
FILE* fp = fopen(name, "w");
if (fp == NULL) return;
xmin = xmax = r->edges[0].x0;
ymin = ymax = r->edges[0].y0;
for (i = 0; i < r->nedges; i++) {
e = &r->edges[i];
xmin = nsvg__minf(xmin, e->x0);
xmin = nsvg__minf(xmin, e->x1);
xmax = nsvg__maxf(xmax, e->x0);
xmax = nsvg__maxf(xmax, e->x1);
ymin = nsvg__minf(ymin, e->y0);
ymin = nsvg__minf(ymin, e->y1);
ymax = nsvg__maxf(ymax, e->y0);
ymax = nsvg__maxf(ymax, e->y1);
}
fprintf(fp, "<svg viewBox=\"%f %f %f %f\" xmlns=\"http://www.w3.org/2000/svg\">", xmin, ymin, (xmax - xmin), (ymax - ymin));
for (i = 0; i < r->nedges; i++) {
e = &r->edges[i];
fprintf(fp ,"<line x1=\"%f\" y1=\"%f\" x2=\"%f\" y2=\"%f\" style=\"stroke:#000;\" />", e->x0,e->y0, e->x1,e->y1);
}
for (i = 0; i < r->npoints; i++) {
if (i+1 < r->npoints)
fprintf(fp ,"<line x1=\"%f\" y1=\"%f\" x2=\"%f\" y2=\"%f\" style=\"stroke:#f00;\" />", r->points[i].x, r->points[i].y, r->points[i+1].x, r->points[i+1].y);
fprintf(fp ,"<circle cx=\"%f\" cy=\"%f\" r=\"1\" style=\"fill:%s;\" />", r->points[i].x, r->points[i].y, r->points[i].flags == 0 ? "#f00" : "#0f0");
}
fprintf(fp, "</svg>");
fclose(fp);
}
*/
static void nsvg__rasterizeShapes(NSVGrasterizer* r,
NSVGshape* shapes, float tx, float ty, float scalex, float scaley,
unsigned char* dst, int w, int h, int stride,
NSVGscanlineFunction fscanline)
{
NSVGshape *shape = NULL, *shapeLink = NULL;
float xform[6], xform2[6];
float min_scale = fabsf(scalex) < fabsf(scaley) ? fabsf(scalex) : fabsf(scaley);
r->bitmap = dst;
r->width = w;
r->height = h;
r->stride = stride;
r->fscanline = fscanline;
if (w > r->cscanline) {
int oldw = r->cscanline;
r->cscanline = w;
if (oldw == 0) {
r->scanline = (unsigned char*)AllocatePool(w);
} else {
r->scanline = (unsigned char*)ReallocatePool(oldw, w, r->scanline);
}
if (r->scanline == NULL) return;
}
nsvg__xformSetScale(&xform2[0], scalex, scaley);
xform2[4] = tx; xform2[5] = ty;
for (shape = shapes; shape != NULL; shape = shape->next) {
if (!(shape->flags & NSVG_VIS_VISIBLE))
continue;
memcpy(&xform[0], shape->xform, sizeof(float)*6);
// nsvg__xformMultiply(xform, xform2);
xform[0] *= scalex;
xform[1] *= scaley;
xform[2] *= scalex;
xform[3] *= scaley;
xform[4] = xform[4] * scalex + tx;
xform[5] = xform[5] * scaley + ty;
if (!shape->link) {
renderShape(r, shape, &xform[0], min_scale);
}
shapeLink = shape->link; //this is <use>
while (shapeLink) {
memcpy(&xform2[0], &xform[0], sizeof(float)*6);
nsvg__xformPremultiply(&xform2[0], shapeLink->xform);
renderShape(r, shapeLink, &xform2[0], min_scale);
if (!shape->isSymbol) {
break;
}
shapeLink = shapeLink->next;
}
}
r->bitmap = NULL;
r->width = 0;
r->height = 0;
r->stride = 0;
r->fscanline = NULL;
}
static void renderShape(NSVGrasterizer* r,
NSVGshape* shape, float *xform, float min_scale)
{
NSVGedge *e = NULL;
NSVGcachedPaint cache;
int i;
SetMem(&cache, sizeof(NSVGcachedPaint), 0);
if (shape->fill.type != NSVG_PAINT_NONE) {
nsvg__resetPool(r);
r->freelist = NULL;
r->nedges = 0;
nsvg__flattenShape(r, shape, xform);
// Scale and translate edges
for (i = 0; i < r->nedges; i++) {
e = &r->edges[i];
e->y0 *= NSVG__SUBSAMPLES;
e->y1 *= NSVG__SUBSAMPLES;
}
// Rasterize edges
nsvg_qsort(r->edges, r->nedges, sizeof(NSVGedge), NULL);
// now, traverse the scanlines and find the intersections on each scanline, use non-zero rule
nsvg__initPaint(&cache, &shape->fill, shape, xform);
nsvg__rasterizeSortedEdges(r, &cache, shape->fillRule, &shape->clip);
}
if (shape->stroke.type != NSVG_PAINT_NONE && (shape->strokeWidth * min_scale) > 0.01f) {
nsvg__resetPool(r);
r->freelist = NULL;
r->nedges = 0;
nsvg__flattenShapeStroke(r, shape, xform);
// Scale and translate edges
for (i = 0; i < r->nedges; i++) {
e = &r->edges[i];
e->y0 *= NSVG__SUBSAMPLES;
e->y1 *= NSVG__SUBSAMPLES;
}
// Rasterize edges
nsvg_qsort(r->edges, r->nedges, sizeof(NSVGedge), NULL);
// now, traverse the scanlines and find the intersections on each scanline, use non-zero rule
nsvg__initPaint(&cache, &shape->stroke, shape, xform);
nsvg__rasterizeSortedEdges(r, &cache, NSVG_FILLRULE_NONZERO, &shape->clip);
}
}
void nsvg__rasterizeClipPaths(
NSVGrasterizer* r, NSVGimage* image, int w, int h,
float tx, float ty, float scalex, float scaley)
{
NSVGclipPath* clipPath;
int clipPathCount = 0;
clipPath = image->clipPaths;
if (clipPath == NULL) {
r->stencil = NULL;
return;
}
while (clipPath != NULL) {
clipPathCount++;
clipPath = clipPath->next;
}
UINTN oldSize = r->stencilSize * clipPathCount;
r->stencilStride = w / 8 + (w % 8 != 0 ? 1 : 0);
r->stencilSize = h * r->stencilStride;
// r->stencil = (unsigned char*)realloc(
// r->stencil, r->stencilSize * clipPathCount);
if (oldSize == 0) {
r->stencil = (unsigned char*)AllocateZeroPool(r->stencilSize * clipPathCount);
if (r->stencil == NULL) return;
} else {
r->stencil = (unsigned char*)ReallocatePool(oldSize, r->stencilSize * clipPathCount, r->stencil);
if (r->stencil == NULL) return;
SetMem(r->stencil, r->stencilSize * clipPathCount, 0);
}
clipPath = image->clipPaths;
while (clipPath != NULL) {
nsvg__rasterizeShapes(r, clipPath->shapes, tx, ty, scalex, scaley,
&r->stencil[r->stencilSize * clipPath->index],
w, h, r->stencilStride, nsvg__scanlineBit);
clipPath = clipPath->next;
}
}
void nsvgRasterize(NSVGrasterizer* r,
NSVGimage* image, float tx, float ty, float scalex, float scaley,
unsigned char* dst, int w, int h, int stride)
{
// int i;
// for (i = 0; i < h; i++)
// memset(&dst[i*stride], 0, w*4); //dst prepared before
tx -= image->realBounds[0] * scalex;
ty -= image->realBounds[1] * scaley;
2020-03-26 13:59:20 +01:00
// DBG(" image will be shifted by [%f,%f]\n", tx, ty);
// DumpFloat(" image real bounds ", image->realBounds, 4);
nsvg__rasterizeClipPaths(r, image, w, h, tx, ty, scalex, scaley);
nsvg__rasterizeShapes(r, image->shapes, tx, ty, scalex, scaley,
dst, w, h, stride, nsvg__scanlineSolid);
nsvg__unpremultiplyAlpha(dst, w, h, stride);
}