This commit is contained in:
SergeySlice 2023-09-01 19:59:18 +03:00
commit 9c3e895a1a
524 changed files with 68602 additions and 1741 deletions

243
ArmPkg/ArmPkg.ci.yaml Normal file
View File

@ -0,0 +1,243 @@
## @file
# CI configuration for ArmPkg
#
# Copyright (c) 2021, Arm Limited. All rights reserved.<BR>
# SPDX-License-Identifier: BSD-2-Clause-Patent
##
{
## options defined .pytool/Plugin/LicenseCheck
"LicenseCheck": {
"IgnoreFiles": []
},
"EccCheck": {
## Exception sample looks like below:
## "ExceptionList": [
## "<ErrorID>", "<KeyWord>"
## ]
"ExceptionList": [
],
## Both file path and directory path are accepted.
"IgnoreFiles": [
"Library/ArmSoftFloatLib/berkeley-softfloat-3",
"Library/ArmSoftFloatLib/ArmSoftFloatLib.c",
"Library/CompilerIntrinsicsLib",
"Universal/Smbios/SmbiosMiscDxe"
]
},
## options defined .pytool/Plugin/CompilerPlugin
"CompilerPlugin": {
"DscPath": "ArmPkg.dsc"
},
## options defined .pytool/Plugin/HostUnitTestCompilerPlugin
"HostUnitTestCompilerPlugin": {
"DscPath": "" # Don't support this test
},
## options defined .pytool/Plugin/CharEncodingCheck
"CharEncodingCheck": {
"IgnoreFiles": []
},
## options defined .pytool/Plugin/DependencyCheck
"DependencyCheck": {
"AcceptableDependencies": [
"ArmPlatformPkg/ArmPlatformPkg.dec",
"ArmPkg/ArmPkg.dec",
"EmbeddedPkg/EmbeddedPkg.dec",
"MdeModulePkg/MdeModulePkg.dec",
"MdePkg/MdePkg.dec",
"ShellPkg/ShellPkg.dec"
],
# For host based unit tests
"AcceptableDependencies-HOST_APPLICATION":[
"UnitTestFrameworkPkg/UnitTestFrameworkPkg.dec"
],
# For UEFI shell based apps
"AcceptableDependencies-UEFI_APPLICATION":[],
"IgnoreInf": []
},
## options defined .pytool/Plugin/DscCompleteCheck
"DscCompleteCheck": {
"IgnoreInf": [],
"DscPath": "ArmPkg.dsc"
},
## options defined .pytool/Plugin/HostUnitTestDscCompleteCheck
"HostUnitTestDscCompleteCheck": {
"IgnoreInf": [""],
"DscPath": "" # Don't support this test
},
## options defined .pytool/Plugin/GuidCheck
"GuidCheck": {
"IgnoreGuidName": [],
"IgnoreGuidValue": [],
"IgnoreFoldersAndFiles": [],
"IgnoreDuplicates": [],
},
## options defined .pytool/Plugin/LibraryClassCheck
"LibraryClassCheck": {
"IgnoreHeaderFile": []
},
## options defined .pytool/Plugin/SpellCheck
"SpellCheck": {
"AuditOnly": True,
"IgnoreFiles": [
"Library/ArmSoftFloatLib/berkeley-softfloat-3/**"
], # use gitignore syntax to ignore errors
# in matching files
"ExtendWords": [
"api's",
"ackintid",
"actlr",
"aeabi",
"asedis",
"ashldi",
"ashrdi",
"baddr",
"ccidx",
"ccsidr",
"clidr",
"clrex",
"clzsi",
"cnthctl",
"cortexa",
"cpacr",
"cpuactlr",
"csselr",
"ctzsi",
"cygdrive",
"cygpaths",
"datas",
"dcmpeq",
"dcmpge",
"dcmpgt",
"dcmple",
"dcmplt",
"ddisable",
"divdi",
"divsi",
"dmdepkg",
"dpref",
"drsub",
"fcmpeq",
"fcmpge",
"fcmpgt",
"fcmple",
"fcmplt",
"ffreestanding",
"frsub",
"hisilicon",
"iccabpr",
"iccbpr",
"icciar",
"iccicr",
"icciidr",
"iccpir",
"iccpmr",
"iccrpr",
"icdabr",
"icdicer",
"icdicfr",
"icdicpr",
"icdictr",
"icdiidr",
"icdiser",
"icdisr",
"icdppisr",
"icdsgir",
"icdspr",
"icenabler",
"intid",
"ipriority",
"irouter",
"isenabler",
"istatus",
"itargets",
"lable",
"ldivmod",
"ldmdb",
"ldmia",
"ldrbt",
"ldrex",
"ldrexb",
"ldrexd",
"ldrexh",
"ldrhbt",
"ldrht",
"ldrsb",
"ldrsbt",
"ldrsh",
"lshrdi",
"moddi",
"modsi",
"mpcore",
"mpidr",
"muldi",
"mullu",
"nonshareable",
"nsacr",
"nsasedis",
"nuvia",
"oldit",
"pcten",
"plpis",
"procno",
"readc",
"revsh",
"rfedb",
"sctlr",
"smccc",
"smlabb",
"smlabt",
"smlad",
"smladx",
"smlatb",
"smlatt",
"smlawb",
"smlawt",
"smlsd",
"smlsdx",
"smmla",
"smmlar",
"smmls",
"smmlsr",
"sourcery",
"srsdb",
"ssacr",
"stmdb",
"stmia",
"strbt",
"strexb",
"strexd",
"strexh",
"strht",
"switchu",
"tpidrurw",
"ttbcr",
"typer",
"ucmpdi",
"udivdi",
"udivmoddi",
"udivsi",
"uefi's",
"uldiv",
"umoddi",
"umodsi",
"usada",
"vlpis",
"writec"
], # words to extend to the dictionary for this package
"IgnoreStandardPaths": [ # Standard Plugin defined paths that
"*.asm", "*.s" # should be ignore
],
"AdditionalIncludePaths": [] # Additional paths to spell check
# (wildcards supported)
}
}

401
ArmPkg/ArmPkg.dec Normal file
View File

@ -0,0 +1,401 @@
#/** @file
# ARM processor package.
#
# Copyright (c) 2009 - 2010, Apple Inc. All rights reserved.<BR>
# Copyright (c) 2011 - 2022, ARM Limited. All rights reserved.
# Copyright (c) 2021, Ampere Computing LLC. All rights reserved.
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
#
#**/
[Defines]
DEC_SPECIFICATION = 0x00010005
PACKAGE_NAME = ArmPkg
PACKAGE_GUID = 5CFBD99E-3C43-4E7F-8054-9CDEAFF7710F
PACKAGE_VERSION = 0.1
################################################################################
#
# Include Section - list of Include Paths that are provided by this package.
# Comments are used for Keywords and Module Types.
#
# Supported Module Types:
# BASE SEC PEI_CORE PEIM DXE_CORE DXE_DRIVER DXE_RUNTIME_DRIVER DXE_SMM_DRIVER DXE_SAL_DRIVER UEFI_DRIVER UEFI_APPLICATION
#
################################################################################
[Includes.common]
Include # Root include for the package
[LibraryClasses.common]
## @libraryclass Convert Arm instructions to a human readable format.
#
ArmDisassemblerLib|Include/Library/ArmDisassemblerLib.h
## @libraryclass Provides an interface to Arm generic counters.
#
ArmGenericTimerCounterLib|Include/Library/ArmGenericTimerCounterLib.h
## @libraryclass Provides an interface to initialize a
# Generic Interrupt Controller (GIC).
#
ArmGicArchLib|Include/Library/ArmGicArchLib.h
## @libraryclass Provides a Generic Interrupt Controller (GIC)
# configuration interface.
#
ArmGicLib|Include/Library/ArmGicLib.h
## @libraryclass Provides a HyperVisor Call (HVC) interface.
#
ArmHvcLib|Include/Library/ArmHvcLib.h
## @libraryclass Provides an interface to Arm registers.
#
ArmLib|Include/Library/ArmLib.h
## @libraryclass Provides a Mmu interface.
#
ArmMmuLib|Include/Library/ArmMmuLib.h
## @libraryclass Provides a Mailbox Transport Layer (MTL) interface
# for the System Control and Management Interface (SCMI).
#
ArmMtlLib|Include/Library/ArmMtlLib.h
## @libraryclass Provides a System Monitor Call (SMC) interface.
#
ArmSmcLib|Include/Library/ArmSmcLib.h
## @libraryclass Provides a SuperVisor Call (SVC) interface.
#
ArmSvcLib|Include/Library/ArmSvcLib.h
## @libraryclass Provides a Monitor Call interface that will use the
# default conduit (HVC or SMC).
#
ArmMonitorLib|Include/Library/ArmMonitorLib.h
## @libraryclass Provides a default exception handler.
#
DefaultExceptionHandlerLib|Include/Library/DefaultExceptionHandlerLib.h
## @libraryclass Provides an interface to query miscellaneous OEM
# information.
#
OemMiscLib|Include/Library/OemMiscLib.h
## @libraryclass Provides an OpTee interface.
#
OpteeLib|Include/Library/OpteeLib.h
## @libraryclass Provides a semihosting interface.
#
SemihostLib|Include/Library/SemihostLib.h
## @libraryclass Provides an interface for a StandaloneMm Mmu.
#
StandaloneMmMmuLib|Include/Library/StandaloneMmMmuLib.h
[Guids.common]
gArmTokenSpaceGuid = { 0xBB11ECFE, 0x820F, 0x4968, { 0xBB, 0xA6, 0xF7, 0x6A, 0xFE, 0x30, 0x25, 0x96 } }
## ARM MPCore table
# Include/Guid/ArmMpCoreInfo.h
gArmMpCoreInfoGuid = { 0xa4ee0728, 0xe5d7, 0x4ac5, {0xb2, 0x1e, 0x65, 0x8e, 0xd8, 0x57, 0xe8, 0x34} }
gArmMmuReplaceLiveTranslationEntryFuncGuid = { 0xa8b50ff3, 0x08ec, 0x4dd3, {0xbf, 0x04, 0x28, 0xbf, 0x71, 0x75, 0xc7, 0x4a} }
[Protocols.common]
## Arm System Control and Management Interface(SCMI) Base protocol
## ArmPkg/Include/Protocol/ArmScmiBaseProtocol.h
gArmScmiBaseProtocolGuid = { 0xd7e5abe9, 0x33ab, 0x418e, { 0x9f, 0x91, 0x72, 0xda, 0xe2, 0xba, 0x8e, 0x2f } }
## Arm System Control and Management Interface(SCMI) Clock management protocol
## ArmPkg/Include/Protocol/ArmScmiClockProtocol.h
gArmScmiClockProtocolGuid = { 0x91ce67a8, 0xe0aa, 0x4012, { 0xb9, 0x9f, 0xb6, 0xfc, 0xf3, 0x4, 0x8e, 0xaa } }
gArmScmiClock2ProtocolGuid = { 0xb8d8caf2, 0x9e94, 0x462c, { 0xa8, 0x34, 0x6c, 0x99, 0xfc, 0x05, 0xef, 0xcf } }
## Arm System Control and Management Interface(SCMI) Clock management protocol
## ArmPkg/Include/Protocol/ArmScmiPerformanceProtocol.h
gArmScmiPerformanceProtocolGuid = { 0x9b8ba84, 0x3dd3, 0x49a6, { 0xa0, 0x5a, 0x31, 0x34, 0xa5, 0xf0, 0x7b, 0xad } }
[Ppis]
## Include/Ppi/ArmMpCoreInfo.h
gArmMpCoreInfoPpiGuid = { 0x6847cc74, 0xe9ec, 0x4f8f, {0xa2, 0x9d, 0xab, 0x44, 0xe7, 0x54, 0xa8, 0xfc} }
[PcdsFeatureFlag.common]
gArmTokenSpaceGuid.PcdCpuDxeProduceDebugSupport|FALSE|BOOLEAN|0x00000001
# On ARM Architecture with the Security Extension, the address for the
# Vector Table can be mapped anywhere in the memory map. It means we can
# point the Exception Vector Table to its location in CpuDxe.
# By default we copy the Vector Table at PcdGet64(PcdCpuVectorBaseAddress)
gArmTokenSpaceGuid.PcdRelocateVectorTable|TRUE|BOOLEAN|0x00000022
# Set this PCD to TRUE if the Exception Vector is changed to add debugger support before
# it has been configured by the CPU DXE
gArmTokenSpaceGuid.PcdDebuggerExceptionSupport|FALSE|BOOLEAN|0x00000032
# Define if the GICv3 controller should use the GICv2 legacy
gArmTokenSpaceGuid.PcdArmGicV3WithV2Legacy|FALSE|BOOLEAN|0x00000042
## Define the conduit to use for monitor calls.
# Default PcdMonitorConduitHvc = FALSE, conduit = SMC
# If PcdMonitorConduitHvc = TRUE, conduit = HVC
gArmTokenSpaceGuid.PcdMonitorConduitHvc|FALSE|BOOLEAN|0x00000047
[PcdsFeatureFlag.ARM]
# Whether to map normal memory as non-shareable. FALSE is the safe choice, but
# TRUE may be appropriate to fix performance problems if you don't care about
# hardware coherency (i.e., no virtualization or cache coherent DMA)
gArmTokenSpaceGuid.PcdNormalMemoryNonshareableOverride|FALSE|BOOLEAN|0x00000043
[PcdsFeatureFlag.AARCH64, PcdsFeatureFlag.ARM]
## Used to select method for requesting services from S-EL1.<BR><BR>
# TRUE - Selects FF-A calls for communication between S-EL0 and SPMC.<BR>
# FALSE - Selects SVC calls for communication between S-EL0 and SPMC.<BR>
# @Prompt Enable FF-A support.
gArmTokenSpaceGuid.PcdFfaEnable|FALSE|BOOLEAN|0x0000005B
[PcdsFixedAtBuild.common]
gArmTokenSpaceGuid.PcdTrustzoneSupport|FALSE|BOOLEAN|0x00000006
# This PCD should be a FeaturePcd. But we used this PCD as an '#if' in an ASM file.
# Using a FeaturePcd make a '(BOOLEAN) casting for its value which is not understood by the preprocessor.
gArmTokenSpaceGuid.PcdVFPEnabled|0|UINT32|0x00000024
gArmTokenSpaceGuid.PcdCpuVectorBaseAddress|0xffff0000|UINT64|0x00000004
gArmTokenSpaceGuid.PcdCpuResetAddress|0x00000000|UINT32|0x00000005
#
# ARM Secure Firmware PCDs
#
gArmTokenSpaceGuid.PcdSecureFdBaseAddress|0|UINT64|0x00000015
gArmTokenSpaceGuid.PcdSecureFdSize|0|UINT32|0x00000016
gArmTokenSpaceGuid.PcdSecureFvBaseAddress|0x0|UINT64|0x0000002F
gArmTokenSpaceGuid.PcdSecureFvSize|0x0|UINT32|0x00000030
#
# ARM Hypervisor Firmware PCDs
#
gArmTokenSpaceGuid.PcdHypFdBaseAddress|0|UINT32|0x0000003A
gArmTokenSpaceGuid.PcdHypFdSize|0|UINT32|0x0000003B
gArmTokenSpaceGuid.PcdHypFvBaseAddress|0|UINT32|0x0000003C
gArmTokenSpaceGuid.PcdHypFvSize|0|UINT32|0x0000003D
# Use ClusterId + CoreId to identify the PrimaryCore
gArmTokenSpaceGuid.PcdArmPrimaryCoreMask|0xF03|UINT32|0x00000031
# The Primary Core is ClusterId[0] & CoreId[0]
gArmTokenSpaceGuid.PcdArmPrimaryCore|0|UINT32|0x00000037
#
# SMBIOS PCDs
#
gArmTokenSpaceGuid.PcdSystemProductName|L""|VOID*|0x30000053
gArmTokenSpaceGuid.PcdSystemVersion|L""|VOID*|0x30000054
gArmTokenSpaceGuid.PcdBaseBoardManufacturer|L""|VOID*|0x30000055
gArmTokenSpaceGuid.PcdBaseBoardProductName|L""|VOID*|0x30000056
gArmTokenSpaceGuid.PcdBaseBoardVersion|L""|VOID*|0x30000057
gArmTokenSpaceGuid.PcdProcessorManufacturer|L""|VOID*|0x30000071
gArmTokenSpaceGuid.PcdProcessorVersion|L""|VOID*|0x30000072
gArmTokenSpaceGuid.PcdProcessorSerialNumber|L""|VOID*|0x30000073
gArmTokenSpaceGuid.PcdProcessorAssetTag|L""|VOID*|0x30000074
gArmTokenSpaceGuid.PcdProcessorPartNumber|L""|VOID*|0x30000075
#
# ARM L2x0 PCDs
#
gArmTokenSpaceGuid.PcdL2x0ControllerBase|0|UINT32|0x0000001B
#
# ARM Normal (or Non Secure) Firmware PCDs
#
gArmTokenSpaceGuid.PcdFdSize|0|UINT32|0x0000002C
gArmTokenSpaceGuid.PcdFvSize|0|UINT32|0x0000002E
#
# Value to add to a host address to obtain a device address, using
# unsigned 64-bit integer arithmetic on both ARM and AArch64. This
# means we can rely on truncation on overflow to specify negative
# offsets.
#
gArmTokenSpaceGuid.PcdArmDmaDeviceOffset|0x0|UINT64|0x0000044
[PcdsFixedAtBuild.common, PcdsPatchableInModule.common]
gArmTokenSpaceGuid.PcdFdBaseAddress|0|UINT64|0x0000002B
gArmTokenSpaceGuid.PcdFvBaseAddress|0|UINT64|0x0000002D
[PcdsFixedAtBuild.ARM]
#
# ARM Security Extension
#
# Secure Configuration Register
# - BIT0 : NS - Non Secure bit
# - BIT1 : IRQ Handler
# - BIT2 : FIQ Handler
# - BIT3 : EA - External Abort
# - BIT4 : FW - F bit writable
# - BIT5 : AW - A bit writable
# - BIT6 : nET - Not Early Termination
# - BIT7 : SCD - Secure Monitor Call Disable
# - BIT8 : HCE - Hyp Call enable
# - BIT9 : SIF - Secure Instruction Fetch
# 0x31 = NS | EA | FW
gArmTokenSpaceGuid.PcdArmScr|0x31|UINT32|0x00000038
# By default we do not do a transition to non-secure mode
gArmTokenSpaceGuid.PcdArmNonSecModeTransition|0x0|UINT32|0x0000003E
# Non Secure Access Control Register
# - BIT15 : NSASEDIS - Disable Non-secure Advanced SIMD functionality
# - BIT14 : NSD32DIS - Disable Non-secure use of D16-D31
# - BIT11 : cp11 - Non-secure access to coprocessor 11 enable
# - BIT10 : cp10 - Non-secure access to coprocessor 10 enable
# 0xC00 = cp10 | cp11
gArmTokenSpaceGuid.PcdArmNsacr|0xC00|UINT32|0x00000039
[PcdsFixedAtBuild.AARCH64]
#
# AArch64 Security Extension
#
# Secure Configuration Register
# - BIT0 : NS - Non Secure bit
# - BIT1 : IRQ Handler
# - BIT2 : FIQ Handler
# - BIT3 : EA - External Abort
# - BIT4 : FW - F bit writable
# - BIT5 : AW - A bit writable
# - BIT6 : nET - Not Early Termination
# - BIT7 : SCD - Secure Monitor Call Disable
# - BIT8 : HCE - Hyp Call enable
# - BIT9 : SIF - Secure Instruction Fetch
# - BIT10: RW - Register width control for lower exception levels
# - BIT11: SIF - Enables Secure EL1 access to EL1 Architectural Timer
# - BIT12: TWI - Trap WFI
# - BIT13: TWE - Trap WFE
# 0x501 = NS | HCE | RW
gArmTokenSpaceGuid.PcdArmScr|0x501|UINT32|0x00000038
# By default we do transition to EL2 non-secure mode with Stack for EL2.
# Mode Description Bits
# NS EL2 SP2 all interrupts disabled = 0x3c9
# NS EL1 SP1 all interrupts disabled = 0x3c5
# Other modes include using SP0 or switching to Aarch32, but these are
# not currently supported.
gArmTokenSpaceGuid.PcdArmNonSecModeTransition|0x3c9|UINT32|0x0000003E
#
# These PCDs are also defined as 'PcdsDynamic' or 'PcdsPatchableInModule' to be
# redefined when using UEFI in a context of virtual machine.
#
[PcdsFixedAtBuild.common, PcdsDynamic.common, PcdsPatchableInModule.common]
# System Memory (DRAM): These PCDs define the region of in-built system memory
# Some platforms can get DRAM extensions, these additional regions may be
# declared to UEFI using separate resource descriptor HOBs
gArmTokenSpaceGuid.PcdSystemMemoryBase|0|UINT64|0x00000029
gArmTokenSpaceGuid.PcdSystemMemorySize|0|UINT64|0x0000002A
gArmTokenSpaceGuid.PcdMmBufferBase|0|UINT64|0x00000045
gArmTokenSpaceGuid.PcdMmBufferSize|0|UINT64|0x00000046
gArmTokenSpaceGuid.PcdSystemBiosRelease|0xFFFF|UINT16|0x30000058
gArmTokenSpaceGuid.PcdEmbeddedControllerFirmwareRelease|0xFFFF|UINT16|0x30000059
[PcdsFixedAtBuild.common, PcdsDynamic.common]
#
# ARM Architectural Timer
#
gArmTokenSpaceGuid.PcdArmArchTimerFreqInHz|0|UINT32|0x00000034
# ARM Architectural Timer Interrupt(GIC PPI) numbers
gArmTokenSpaceGuid.PcdArmArchTimerSecIntrNum|29|UINT32|0x00000035
gArmTokenSpaceGuid.PcdArmArchTimerIntrNum|30|UINT32|0x00000036
gArmTokenSpaceGuid.PcdArmArchTimerHypIntrNum|26|UINT32|0x00000040
gArmTokenSpaceGuid.PcdArmArchTimerVirtIntrNum|27|UINT32|0x00000041
#
# ARM Generic Watchdog
#
gArmTokenSpaceGuid.PcdGenericWatchdogControlBase|0x2A440000|UINT64|0x00000007
gArmTokenSpaceGuid.PcdGenericWatchdogRefreshBase|0x2A450000|UINT64|0x00000008
gArmTokenSpaceGuid.PcdGenericWatchdogEl2IntrNum|93|UINT32|0x00000009
#
# ARM Generic Interrupt Controller
#
gArmTokenSpaceGuid.PcdGicDistributorBase|0|UINT64|0x0000000C
# Base address for the GIC Redistributor region that contains the boot CPU
gArmTokenSpaceGuid.PcdGicRedistributorsBase|0|UINT64|0x0000000E
gArmTokenSpaceGuid.PcdGicInterruptInterfaceBase|0|UINT64|0x0000000D
gArmTokenSpaceGuid.PcdGicSgiIntId|0|UINT32|0x00000025
#
# Bases, sizes and translation offsets of IO and MMIO spaces, respectively.
# Note that "IO" is just another MMIO range that simulates IO space; there
# are no special instructions to access it.
#
# The base addresses PcdPciIoBase, PcdPciMmio32Base and PcdPciMmio64Base are
# specific to their containing address spaces. In order to get the physical
# address for the CPU, for a given access, the respective translation value
# has to be added.
#
# The translations always have to be initialized like this, using UINT64:
#
# UINT64 IoCpuBase; // mapping target in 64-bit cpu-physical space
# UINT64 Mmio32CpuBase; // mapping target in 64-bit cpu-physical space
# UINT64 Mmio64CpuBase; // mapping target in 64-bit cpu-physical space
#
# gEfiMdePkgTokenSpaceGuid.PcdPciIoTranslation = IoCpuBase - PcdPciIoBase;
# gEfiMdePkgTokenSpaceGuid.PcdPciMmio32Translation = Mmio32CpuBase - (UINT64)PcdPciMmio32Base;
# gEfiMdePkgTokenSpaceGuid.PcdPciMmio64Translation = Mmio64CpuBase - PcdPciMmio64Base;
#
# because (a) the target address space (ie. the cpu-physical space) is
# 64-bit, and (b) the translation values are meant as offsets for *modular*
# arithmetic.
#
# Accordingly, the translation itself needs to be implemented as:
#
# UINT64 UntranslatedIoAddress; // input parameter
# UINT32 UntranslatedMmio32Address; // input parameter
# UINT64 UntranslatedMmio64Address; // input parameter
#
# UINT64 TranslatedIoAddress; // output parameter
# UINT64 TranslatedMmio32Address; // output parameter
# UINT64 TranslatedMmio64Address; // output parameter
#
# TranslatedIoAddress = UntranslatedIoAddress +
# gEfiMdePkgTokenSpaceGuid.PcdPciIoTranslation;
# TranslatedMmio32Address = (UINT64)UntranslatedMmio32Address +
# gEfiMdePkgTokenSpaceGuid.PcdPciMmio32Translation;
# TranslatedMmio64Address = UntranslatedMmio64Address +
# gEfiMdePkgTokenSpaceGuid.PcdPciMmio64Translation;
#
# The modular arithmetic performed in UINT64 ensures that the translation
# works correctly regardless of the relation between IoCpuBase and
# PcdPciIoBase, Mmio32CpuBase and PcdPciMmio32Base, and Mmio64CpuBase and
# PcdPciMmio64Base.
#
gArmTokenSpaceGuid.PcdPciIoBase|0x0|UINT64|0x00000050
gArmTokenSpaceGuid.PcdPciIoSize|0x0|UINT64|0x00000051
gArmTokenSpaceGuid.PcdPciMmio32Base|0x0|UINT32|0x00000053
gArmTokenSpaceGuid.PcdPciMmio32Size|0x0|UINT32|0x00000054
gArmTokenSpaceGuid.PcdPciMmio64Base|0x0|UINT64|0x00000056
gArmTokenSpaceGuid.PcdPciMmio64Size|0x0|UINT64|0x00000057
#
# Inclusive range of allowed PCI buses.
#
gArmTokenSpaceGuid.PcdPciBusMin|0x0|UINT32|0x00000059
gArmTokenSpaceGuid.PcdPciBusMax|0x0|UINT32|0x0000005A
[PcdsDynamicEx]
#
# This dynamic PCD hold the GUID of a firmware FFS which contains
# the LinuxBoot payload.
#
gArmTokenSpaceGuid.PcdLinuxBootFileGuid|{0x0}|VOID*|0x0000005C

171
ArmPkg/ArmPkg.dsc Normal file
View File

@ -0,0 +1,171 @@
#/** @file
# ARM processor package.
#
# Copyright (c) 2009 - 2010, Apple Inc. All rights reserved.<BR>
# Copyright (c) 2011 - 2021, Arm Limited. All rights reserved.<BR>
# Copyright (c) 2016, Linaro Ltd. All rights reserved.<BR>
# Copyright (c) Microsoft Corporation.<BR>
# Copyright (c) 2021, Ampere Computing LLC. All rights reserved.
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
#
#**/
################################################################################
#
# Defines Section - statements that will be processed to create a Makefile.
#
################################################################################
[Defines]
PLATFORM_NAME = ArmPkg
PLATFORM_GUID = 5CFBD99E-3C43-4E7F-8054-9CDEAFF7710F
PLATFORM_VERSION = 0.1
DSC_SPECIFICATION = 0x00010005
OUTPUT_DIRECTORY = Build/Arm
SUPPORTED_ARCHITECTURES = ARM|AARCH64
BUILD_TARGETS = DEBUG|RELEASE|NOOPT
SKUID_IDENTIFIER = DEFAULT
[BuildOptions]
RELEASE_*_*_CC_FLAGS = -DMDEPKG_NDEBUG
*_*_*_CC_FLAGS = -DDISABLE_NEW_DEPRECATED_INTERFACES
[PcdsFixedAtBuild]
gEfiMdePkgTokenSpaceGuid.PcdDefaultTerminalType|4
!include MdePkg/MdeLibs.dsc.inc
[LibraryClasses.common]
BaseLib|MdePkg/Library/BaseLib/BaseLib.inf
BaseMemoryLib|MdePkg/Library/BaseMemoryLib/BaseMemoryLib.inf
BootLogoLib|MdeModulePkg/Library/BootLogoLib/BootLogoLib.inf
CacheMaintenanceLib|ArmPkg/Library/ArmCacheMaintenanceLib/ArmCacheMaintenanceLib.inf
CapsuleLib|MdeModulePkg/Library/DxeCapsuleLibNull/DxeCapsuleLibNull.inf
DebugLib|MdePkg/Library/BaseDebugLibNull/BaseDebugLibNull.inf
DxeServicesLib|MdePkg/Library/DxeServicesLib/DxeServicesLib.inf
HobLib|MdePkg/Library/DxeHobLib/DxeHobLib.inf
MemoryAllocationLib|MdePkg/Library/UefiMemoryAllocationLib/UefiMemoryAllocationLib.inf
PcdLib|MdePkg/Library/BasePcdLibNull/BasePcdLibNull.inf
PrintLib|MdePkg/Library/BasePrintLib/BasePrintLib.inf
TimerLib|MdePkg/Library/BaseTimerLibNullTemplate/BaseTimerLibNullTemplate.inf
UefiBootManagerLib|MdeModulePkg/Library/UefiBootManagerLib/UefiBootManagerLib.inf
UefiBootServicesTableLib|MdePkg/Library/UefiBootServicesTableLib/UefiBootServicesTableLib.inf
UefiDriverEntryPoint|MdePkg/Library/UefiDriverEntryPoint/UefiDriverEntryPoint.inf
UefiLib|MdePkg/Library/UefiLib/UefiLib.inf
DevicePathLib|MdePkg/Library/UefiDevicePathLib/UefiDevicePathLib.inf
UefiRuntimeServicesTableLib|MdePkg/Library/UefiRuntimeServicesTableLib/UefiRuntimeServicesTableLib.inf
PeCoffLib|MdePkg/Library/BasePeCoffLib/BasePeCoffLib.inf
PeCoffGetEntryPointLib|MdePkg/Library/BasePeCoffGetEntryPointLib/BasePeCoffGetEntryPointLib.inf
PeCoffExtraActionLib|MdePkg/Library/BasePeCoffExtraActionLibNull/BasePeCoffExtraActionLibNull.inf
UefiHiiServicesLib|MdeModulePkg/Library/UefiHiiServicesLib/UefiHiiServicesLib.inf
HiiLib|MdeModulePkg/Library/UefiHiiLib/UefiHiiLib.inf
SemihostLib|ArmPkg/Library/SemihostLib/SemihostLib.inf
DxeServicesTableLib|MdePkg/Library/DxeServicesTableLib/DxeServicesTableLib.inf
DefaultExceptionHandlerLib|ArmPkg/Library/DefaultExceptionHandlerLib/DefaultExceptionHandlerLib.inf
CpuExceptionHandlerLib|ArmPkg/Library/ArmExceptionLib/ArmExceptionLib.inf
CpuLib|MdePkg/Library/BaseCpuLib/BaseCpuLib.inf
ArmGicLib|ArmPkg/Drivers/ArmGic/ArmGicLib.inf
ArmGicArchLib|ArmPkg/Library/ArmGicArchLib/ArmGicArchLib.inf
ArmGenericTimerCounterLib|ArmPkg/Library/ArmGenericTimerPhyCounterLib/ArmGenericTimerPhyCounterLib.inf
ArmSmcLib|ArmPkg/Library/ArmSmcLib/ArmSmcLib.inf
ArmDisassemblerLib|ArmPkg/Library/ArmDisassemblerLib/ArmDisassemblerLib.inf
OpteeLib|ArmPkg/Library/OpteeLib/OpteeLib.inf
UefiApplicationEntryPoint|MdePkg/Library/UefiApplicationEntryPoint/UefiApplicationEntryPoint.inf
PerformanceLib|MdePkg/Library/BasePerformanceLibNull/BasePerformanceLibNull.inf
SerialPortLib|MdePkg/Library/BaseSerialPortLibNull/BaseSerialPortLibNull.inf
FdtLib|EmbeddedPkg/Library/FdtLib/FdtLib.inf
ShellLib|ShellPkg/Library/UefiShellLib/UefiShellLib.inf
FileHandleLib|MdePkg/Library/UefiFileHandleLib/UefiFileHandleLib.inf
SortLib|MdeModulePkg/Library/UefiSortLib/UefiSortLib.inf
IoLib|MdePkg/Library/BaseIoLibIntrinsic/BaseIoLibIntrinsic.inf
ArmLib|ArmPkg/Library/ArmLib/ArmBaseLib.inf
ArmMmuLib|ArmPkg/Library/ArmMmuLib/ArmMmuBaseLib.inf
ArmMtlLib|ArmPkg/Library/ArmMtlNullLib/ArmMtlNullLib.inf
OemMiscLib|ArmPkg/Universal/Smbios/OemMiscLibNull/OemMiscLibNull.inf
[LibraryClasses.common.PEIM]
HobLib|MdePkg/Library/PeiHobLib/PeiHobLib.inf
PeimEntryPoint|MdePkg/Library/PeimEntryPoint/PeimEntryPoint.inf
MemoryAllocationLib|MdePkg/Library/PeiMemoryAllocationLib/PeiMemoryAllocationLib.inf
PeiServicesLib|MdePkg/Library/PeiServicesLib/PeiServicesLib.inf
PeiServicesTablePointerLib|MdePkg/Library/PeiServicesTablePointerLib/PeiServicesTablePointerLib.inf
[LibraryClasses.ARM, LibraryClasses.AARCH64]
NULL|ArmPkg/Library/CompilerIntrinsicsLib/CompilerIntrinsicsLib.inf
# Add support for GCC stack protector
NULL|MdePkg/Library/BaseStackCheckLib/BaseStackCheckLib.inf
[Components.common]
ArmPkg/Library/ArmCacheMaintenanceLib/ArmCacheMaintenanceLib.inf
ArmPkg/Library/ArmDisassemblerLib/ArmDisassemblerLib.inf
ArmPkg/Library/CompilerIntrinsicsLib/CompilerIntrinsicsLib.inf
ArmPkg/Library/DebugAgentSymbolsBaseLib/DebugAgentSymbolsBaseLib.inf
ArmPkg/Library/DebugPeCoffExtraActionLib/DebugPeCoffExtraActionLib.inf
ArmPkg/Library/DefaultExceptionHandlerLib/DefaultExceptionHandlerLib.inf
ArmPkg/Library/RvdPeCoffExtraActionLib/RvdPeCoffExtraActionLib.inf
ArmPkg/Library/SemiHostingDebugLib/SemiHostingDebugLib.inf
ArmPkg/Library/SemiHostingSerialPortLib/SemiHostingSerialPortLib.inf
ArmPkg/Library/SemihostLib/SemihostLib.inf
ArmPkg/Library/ArmPsciResetSystemLib/ArmPsciResetSystemLib.inf
ArmPkg/Library/ArmExceptionLib/ArmExceptionLib.inf
ArmPkg/Library/ArmExceptionLib/ArmRelocateExceptionLib.inf
ArmPkg/Drivers/CpuDxe/CpuDxe.inf
ArmPkg/Drivers/CpuPei/CpuPei.inf
ArmPkg/Drivers/ArmGic/ArmGicDxe.inf
ArmPkg/Drivers/ArmGic/ArmGicLib.inf
ArmPkg/Drivers/GenericWatchdogDxe/GenericWatchdogDxe.inf
ArmPkg/Drivers/TimerDxe/TimerDxe.inf
ArmPkg/Library/ArmGenericTimerPhyCounterLib/ArmGenericTimerPhyCounterLib.inf
ArmPkg/Library/ArmGenericTimerVirtCounterLib/ArmGenericTimerVirtCounterLib.inf
ArmPkg/Library/ArmTrngLib/ArmTrngLib.inf
ArmPkg/Library/ArmHvcLib/ArmHvcLib.inf
ArmPkg/Library/ArmHvcLibNull/ArmHvcLibNull.inf
ArmPkg/Library/ArmMonitorLib/ArmMonitorLib.inf
ArmPkg/Library/ArmSmcLib/ArmSmcLib.inf
ArmPkg/Library/ArmSmcLibNull/ArmSmcLibNull.inf
ArmPkg/Library/ArmSvcLib/ArmSvcLib.inf
ArmPkg/Library/OpteeLib/OpteeLib.inf
ArmPkg/Filesystem/SemihostFs/SemihostFs.inf
ArmPkg/Library/ArmMmuLib/ArmMmuBaseLib.inf
ArmPkg/Drivers/ArmPciCpuIo2Dxe/ArmPciCpuIo2Dxe.inf
ArmPkg/Library/ArmArchTimerLib/ArmArchTimerLib.inf
ArmPkg/Library/ArmGicArchLib/ArmGicArchLib.inf
ArmPkg/Library/ArmGicArchSecLib/ArmGicArchSecLib.inf
ArmPkg/Library/ArmLib/ArmBaseLib.inf
ArmPkg/Library/ArmMtlNullLib/ArmMtlNullLib.inf
ArmPkg/Library/ArmSoftFloatLib/ArmSoftFloatLib.inf
ArmPkg/Library/ArmSmcPsciResetSystemLib/ArmSmcPsciResetSystemLib.inf
ArmPkg/Library/PeiServicesTablePointerLib/PeiServicesTablePointerLib.inf
ArmPkg/Library/PlatformBootManagerLib/PlatformBootManagerLib.inf
ArmPkg/Library/LinuxBootBootManagerLib/LinuxBootBootManagerLib.inf
ArmPkg/Drivers/ArmCrashDumpDxe/ArmCrashDumpDxe.inf
ArmPkg/Drivers/ArmScmiDxe/ArmScmiDxe.inf
ArmPkg/Universal/Smbios/ProcessorSubClassDxe/ProcessorSubClassDxe.inf
ArmPkg/Universal/Smbios/SmbiosMiscDxe/SmbiosMiscDxe.inf
ArmPkg/Universal/Smbios/OemMiscLibNull/OemMiscLibNull.inf
[Components.AARCH64]
ArmPkg/Drivers/MmCommunicationDxe/MmCommunication.inf
ArmPkg/Library/ArmMmuLib/ArmMmuPeiLib.inf
[Components.AARCH64, Components.ARM]
ArmPkg/Library/StandaloneMmMmuLib/ArmMmuStandaloneMmLib.inf

View File

@ -0,0 +1,34 @@
/** @file
Copyright (c) 2017, Linaro, Ltd. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <PiDxe.h>
#include <Library/DebugLib.h>
#include <Library/DefaultExceptionHandlerLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Protocol/Cpu.h>
STATIC EFI_CPU_ARCH_PROTOCOL *mCpu;
EFI_STATUS
EFIAPI
ArmCrashDumpDxeInitialize (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
Status = gBS->LocateProtocol (&gEfiCpuArchProtocolGuid, NULL, (VOID **)&mCpu);
ASSERT_EFI_ERROR (Status);
return mCpu->RegisterInterruptHandler (
mCpu,
EXCEPT_AARCH64_SYNCHRONOUS_EXCEPTIONS,
&DefaultExceptionHandler
);
}

View File

@ -0,0 +1,50 @@
#/** @file
#
# Copyright (c) 2017, Linaro Ltd. All rights reserved.<BR>
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
#
#**/
################################################################################
#
# Defines Section - statements that will be processed to create a Makefile.
#
################################################################################
[Defines]
PLATFORM_NAME = ArmCrashDumpDxe
PLATFORM_GUID = 8dc3c2f8-988e-4e32-8fb7-0df43f6d0d8a
PLATFORM_VERSION = 0.1
DSC_SPECIFICATION = 0x00010019
OUTPUT_DIRECTORY = Build/ArmCrashDumpDxe
SUPPORTED_ARCHITECTURES = AARCH64
BUILD_TARGETS = DEBUG
SKUID_IDENTIFIER = DEFAULT
[PcdsFixedAtBuild]
gEfiMdePkgTokenSpaceGuid.PcdDebugPrintErrorLevel|0x8000004F
gEfiMdePkgTokenSpaceGuid.PcdDebugPropertyMask|0x27
[LibraryClasses]
ArmDisassemblerLib|ArmPkg/Library/ArmDisassemblerLib/ArmDisassemblerLib.inf
BaseLib|MdePkg/Library/BaseLib/BaseLib.inf
BaseMemoryLib|MdePkg/Library/BaseMemoryLib/BaseMemoryLib.inf
DebugLib|MdePkg/Library/UefiDebugLibConOut/UefiDebugLibConOut.inf
DebugPrintErrorLevelLib|MdePkg/Library/BaseDebugPrintErrorLevelLib/BaseDebugPrintErrorLevelLib.inf
DefaultExceptionHandlerLib|ArmPkg/Library/DefaultExceptionHandlerLib/DefaultExceptionHandlerLib.inf
DevicePathLib|MdePkg/Library/UefiDevicePathLib/UefiDevicePathLib.inf
MemoryAllocationLib|MdePkg/Library/UefiMemoryAllocationLib/UefiMemoryAllocationLib.inf
PcdLib|MdePkg/Library/BasePcdLibNull/BasePcdLibNull.inf
PeCoffGetEntryPointLib|MdePkg/Library/BasePeCoffGetEntryPointLib/BasePeCoffGetEntryPointLib.inf
PrintLib|MdePkg/Library/BasePrintLib/BasePrintLib.inf
SerialPortLib|MdePkg/Library/BaseSerialPortLibNull/BaseSerialPortLibNull.inf
UefiBootServicesTableLib|MdePkg/Library/UefiBootServicesTableLib/UefiBootServicesTableLib.inf
UefiDriverEntryPoint|MdePkg/Library/UefiDriverEntryPoint/UefiDriverEntryPoint.inf
UefiLib|MdePkg/Library/UefiLib/UefiLib.inf
UefiRuntimeServicesTableLib|MdePkg/Library/UefiRuntimeServicesTableLib/UefiRuntimeServicesTableLib.inf
NULL|ArmPkg/Library/CompilerIntrinsicsLib/CompilerIntrinsicsLib.inf
NULL|MdePkg/Library/BaseStackCheckLib/BaseStackCheckLib.inf
[Components.common]
ArmPkg/Drivers/ArmCrashDumpDxe/ArmCrashDumpDxe.inf

View File

@ -0,0 +1,34 @@
#/** @file
#
# Copyright (c) 2017, Linaro, Ltd. All rights reserved.<BR>
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
#
#**/
[Defines]
INF_VERSION = 0x00010018
BASE_NAME = ArmCrashDumpDxe
FILE_GUID = 0bda00b0-05d6-4bb8-bfc7-058ad13615cf
MODULE_TYPE = DXE_DRIVER
VERSION_STRING = 1.0
ENTRY_POINT = ArmCrashDumpDxeInitialize
[Sources]
ArmCrashDumpDxe.c
[Packages]
ArmPkg/ArmPkg.dec
MdePkg/MdePkg.dec
[LibraryClasses]
DebugLib
DefaultExceptionHandlerLib
UefiBootServicesTableLib
UefiDriverEntryPoint
[Protocols]
gEfiCpuArchProtocolGuid
[Depex]
gEfiCpuArchProtocolGuid

View File

@ -0,0 +1,215 @@
/*++
Copyright (c) 2013-2017, ARM Ltd. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
--*/
#include "ArmGicDxe.h"
VOID
EFIAPI
IrqInterruptHandler (
IN EFI_EXCEPTION_TYPE InterruptType,
IN EFI_SYSTEM_CONTEXT SystemContext
);
VOID
EFIAPI
ExitBootServicesEvent (
IN EFI_EVENT Event,
IN VOID *Context
);
// Making this global saves a few bytes in image size
EFI_HANDLE gHardwareInterruptHandle = NULL;
// Notifications
EFI_EVENT EfiExitBootServicesEvent = (EFI_EVENT)NULL;
// Maximum Number of Interrupts
UINTN mGicNumInterrupts = 0;
HARDWARE_INTERRUPT_HANDLER *gRegisteredInterruptHandlers = NULL;
/**
Calculate GICD_ICFGRn base address and corresponding bit
field Int_config[1] of the GIC distributor register.
@param Source Hardware source of the interrupt.
@param RegAddress Corresponding GICD_ICFGRn base address.
@param Config1Bit Bit number of F Int_config[1] bit in the register.
@retval EFI_SUCCESS Source interrupt supported.
@retval EFI_UNSUPPORTED Source interrupt is not supported.
**/
EFI_STATUS
GicGetDistributorIcfgBaseAndBit (
IN HARDWARE_INTERRUPT_SOURCE Source,
OUT UINTN *RegAddress,
OUT UINTN *Config1Bit
)
{
UINTN RegIndex;
UINTN Field;
if (Source >= mGicNumInterrupts) {
ASSERT (Source < mGicNumInterrupts);
return EFI_UNSUPPORTED;
}
RegIndex = Source / ARM_GIC_ICDICFR_F_STRIDE; // NOTE: truncation is significant
Field = Source % ARM_GIC_ICDICFR_F_STRIDE;
*RegAddress = PcdGet64 (PcdGicDistributorBase)
+ ARM_GIC_ICDICFR
+ (ARM_GIC_ICDICFR_BYTES * RegIndex);
*Config1Bit = ((Field * ARM_GIC_ICDICFR_F_WIDTH)
+ ARM_GIC_ICDICFR_F_CONFIG1_BIT);
return EFI_SUCCESS;
}
/**
Register Handler for the specified interrupt source.
@param This Instance pointer for this protocol
@param Source Hardware source of the interrupt
@param Handler Callback for interrupt. NULL to unregister
@retval EFI_SUCCESS Source was updated to support Handler.
@retval EFI_DEVICE_ERROR Hardware could not be programmed.
**/
EFI_STATUS
EFIAPI
RegisterInterruptSource (
IN EFI_HARDWARE_INTERRUPT_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source,
IN HARDWARE_INTERRUPT_HANDLER Handler
)
{
if (Source >= mGicNumInterrupts) {
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
if ((Handler == NULL) && (gRegisteredInterruptHandlers[Source] == NULL)) {
return EFI_INVALID_PARAMETER;
}
if ((Handler != NULL) && (gRegisteredInterruptHandlers[Source] != NULL)) {
return EFI_ALREADY_STARTED;
}
gRegisteredInterruptHandlers[Source] = Handler;
// If the interrupt handler is unregistered then disable the interrupt
if (NULL == Handler) {
return This->DisableInterruptSource (This, Source);
} else {
return This->EnableInterruptSource (This, Source);
}
}
STATIC VOID *mCpuArchProtocolNotifyEventRegistration;
STATIC
VOID
EFIAPI
CpuArchEventProtocolNotify (
IN EFI_EVENT Event,
IN VOID *Context
)
{
EFI_CPU_ARCH_PROTOCOL *Cpu;
EFI_STATUS Status;
// Get the CPU protocol that this driver requires.
Status = gBS->LocateProtocol (&gEfiCpuArchProtocolGuid, NULL, (VOID **)&Cpu);
if (EFI_ERROR (Status)) {
return;
}
// Unregister the default exception handler.
Status = Cpu->RegisterInterruptHandler (Cpu, ARM_ARCH_EXCEPTION_IRQ, NULL);
if (EFI_ERROR (Status)) {
DEBUG ((
DEBUG_ERROR,
"%a: Cpu->RegisterInterruptHandler() - %r\n",
__FUNCTION__,
Status
));
return;
}
// Register to receive interrupts
Status = Cpu->RegisterInterruptHandler (
Cpu,
ARM_ARCH_EXCEPTION_IRQ,
Context
);
if (EFI_ERROR (Status)) {
DEBUG ((
DEBUG_ERROR,
"%a: Cpu->RegisterInterruptHandler() - %r\n",
__FUNCTION__,
Status
));
}
gBS->CloseEvent (Event);
}
EFI_STATUS
InstallAndRegisterInterruptService (
IN EFI_HARDWARE_INTERRUPT_PROTOCOL *InterruptProtocol,
IN EFI_HARDWARE_INTERRUPT2_PROTOCOL *Interrupt2Protocol,
IN EFI_CPU_INTERRUPT_HANDLER InterruptHandler,
IN EFI_EVENT_NOTIFY ExitBootServicesEvent
)
{
EFI_STATUS Status;
CONST UINTN RihArraySize =
(sizeof (HARDWARE_INTERRUPT_HANDLER) * mGicNumInterrupts);
// Initialize the array for the Interrupt Handlers
gRegisteredInterruptHandlers = AllocateZeroPool (RihArraySize);
if (gRegisteredInterruptHandlers == NULL) {
return EFI_OUT_OF_RESOURCES;
}
Status = gBS->InstallMultipleProtocolInterfaces (
&gHardwareInterruptHandle,
&gHardwareInterruptProtocolGuid,
InterruptProtocol,
&gHardwareInterrupt2ProtocolGuid,
Interrupt2Protocol,
NULL
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Install the interrupt handler as soon as the CPU arch protocol appears.
//
EfiCreateProtocolNotifyEvent (
&gEfiCpuArchProtocolGuid,
TPL_CALLBACK,
CpuArchEventProtocolNotify,
InterruptHandler,
&mCpuArchProtocolNotifyEventRegistration
);
// Register for an ExitBootServicesEvent
Status = gBS->CreateEvent (
EVT_SIGNAL_EXIT_BOOT_SERVICES,
TPL_NOTIFY,
ExitBootServicesEvent,
NULL,
&EfiExitBootServicesEvent
);
return Status;
}

View File

@ -0,0 +1,53 @@
/*++
Copyright (c) 2013-2014, ARM Ltd. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
Module Name:
ArmGicDxe.c
Abstract:
Driver implementing the GIC interrupt controller protocol
--*/
#include <PiDxe.h>
#include "ArmGicDxe.h"
/**
Initialize the state information for the CPU Architectural Protocol
@param ImageHandle of the loaded driver
@param SystemTable Pointer to the System Table
@retval EFI_SUCCESS Protocol registered
@retval EFI_OUT_OF_RESOURCES Cannot allocate protocol data structure
@retval EFI_DEVICE_ERROR Hardware problems
@retval EFI_UNSUPPORTED GIC version not supported
**/
EFI_STATUS
InterruptDxeInitialize (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
ARM_GIC_ARCH_REVISION Revision;
Revision = ArmGicGetSupportedArchRevision ();
if (Revision == ARM_GIC_ARCH_REVISION_2) {
Status = GicV2DxeInitialize (ImageHandle, SystemTable);
} else if (Revision == ARM_GIC_ARCH_REVISION_3) {
Status = GicV3DxeInitialize (ImageHandle, SystemTable);
} else {
Status = EFI_UNSUPPORTED;
}
return Status;
}

View File

@ -0,0 +1,78 @@
/*++
Copyright (c) 2013-2017, ARM Ltd. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
--*/
#ifndef ARM_GIC_DXE_H_
#define ARM_GIC_DXE_H_
#include <Library/ArmGicLib.h>
#include <Library/ArmLib.h>
#include <Library/DebugLib.h>
#include <Library/IoLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/UefiLib.h>
#include <Protocol/Cpu.h>
#include <Protocol/HardwareInterrupt.h>
#include <Protocol/HardwareInterrupt2.h>
extern UINTN mGicNumInterrupts;
extern HARDWARE_INTERRUPT_HANDLER *gRegisteredInterruptHandlers;
// Common API
EFI_STATUS
InstallAndRegisterInterruptService (
IN EFI_HARDWARE_INTERRUPT_PROTOCOL *InterruptProtocol,
IN EFI_HARDWARE_INTERRUPT2_PROTOCOL *Interrupt2Protocol,
IN EFI_CPU_INTERRUPT_HANDLER InterruptHandler,
IN EFI_EVENT_NOTIFY ExitBootServicesEvent
);
EFI_STATUS
EFIAPI
RegisterInterruptSource (
IN EFI_HARDWARE_INTERRUPT_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source,
IN HARDWARE_INTERRUPT_HANDLER Handler
);
// GicV2 API
EFI_STATUS
GicV2DxeInitialize (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
);
// GicV3 API
EFI_STATUS
GicV3DxeInitialize (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
);
// Shared code
/**
Calculate GICD_ICFGRn base address and corresponding bit
field Int_config[1] of the GIC distributor register.
@param Source Hardware source of the interrupt.
@param RegAddress Corresponding GICD_ICFGRn base address.
@param Config1Bit Bit number of F Int_config[1] bit in the register.
@retval EFI_SUCCESS Source interrupt supported.
@retval EFI_UNSUPPORTED Source interrupt is not supported.
**/
EFI_STATUS
GicGetDistributorIcfgBaseAndBit (
IN HARDWARE_INTERRUPT_SOURCE Source,
OUT UINTN *RegAddress,
OUT UINTN *Config1Bit
);
#endif // ARM_GIC_DXE_H_

View File

@ -0,0 +1,57 @@
#/** @file
#
# Copyright (c) 2008 - 2010, Apple Inc. All rights reserved.<BR>
# Copyright (c) 2012 - 2017, ARM Ltd. All rights reserved.<BR>
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
#
#**/
[Defines]
INF_VERSION = 0x00010005
BASE_NAME = ArmGicDxe
FILE_GUID = DE371F7C-DEC4-4D21-ADF1-593ABCC15882
MODULE_TYPE = DXE_DRIVER
VERSION_STRING = 1.0
ENTRY_POINT = InterruptDxeInitialize
[Sources.common]
ArmGicDxe.h
ArmGicDxe.c
ArmGicCommonDxe.c
GicV2/ArmGicV2Dxe.c
GicV3/ArmGicV3Dxe.c
[Packages]
MdePkg/MdePkg.dec
EmbeddedPkg/EmbeddedPkg.dec
ArmPkg/ArmPkg.dec
[LibraryClasses]
ArmGicLib
BaseLib
UefiLib
UefiBootServicesTableLib
DebugLib
PrintLib
MemoryAllocationLib
UefiDriverEntryPoint
IoLib
PcdLib
UefiLib
[Protocols]
gHardwareInterruptProtocolGuid ## PRODUCES
gHardwareInterrupt2ProtocolGuid ## PRODUCES
gEfiCpuArchProtocolGuid ## CONSUMES ## NOTIFY
[Pcd.common]
gArmTokenSpaceGuid.PcdGicDistributorBase
gArmTokenSpaceGuid.PcdGicRedistributorsBase
gArmTokenSpaceGuid.PcdGicInterruptInterfaceBase
gArmTokenSpaceGuid.PcdArmGicV3WithV2Legacy
[Depex]
TRUE

View File

@ -0,0 +1,434 @@
/** @file
*
* Copyright (c) 2011-2021, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#include <Base.h>
#include <Library/ArmGicLib.h>
#include <Library/ArmLib.h>
#include <Library/DebugLib.h>
#include <Library/IoLib.h>
#include <Library/PcdLib.h>
// In GICv3, there are 2 x 64KB frames:
// Redistributor control frame + SGI Control & Generation frame
#define GIC_V3_REDISTRIBUTOR_GRANULARITY (ARM_GICR_CTLR_FRAME_SIZE \
+ ARM_GICR_SGI_PPI_FRAME_SIZE)
// In GICv4, there are 2 additional 64KB frames:
// VLPI frame + Reserved page frame
#define GIC_V4_REDISTRIBUTOR_GRANULARITY (GIC_V3_REDISTRIBUTOR_GRANULARITY \
+ ARM_GICR_SGI_VLPI_FRAME_SIZE \
+ ARM_GICR_SGI_RESERVED_FRAME_SIZE)
#define ISENABLER_ADDRESS(base, offset) ((base) +\
ARM_GICR_CTLR_FRAME_SIZE + ARM_GICR_ISENABLER + 4 * (offset))
#define ICENABLER_ADDRESS(base, offset) ((base) +\
ARM_GICR_CTLR_FRAME_SIZE + ARM_GICR_ICENABLER + 4 * (offset))
#define IPRIORITY_ADDRESS(base, offset) ((base) +\
ARM_GICR_CTLR_FRAME_SIZE + ARM_GIC_ICDIPR + 4 * (offset))
/**
*
* Return whether the Source interrupt index refers to a shared interrupt (SPI)
*/
STATIC
BOOLEAN
SourceIsSpi (
IN UINTN Source
)
{
return Source >= 32 && Source < 1020;
}
/**
* Return the base address of the GIC redistributor for the current CPU
*
* @param Revision GIC Revision. The GIC redistributor might have a different
* granularity following the GIC revision.
*
* @retval Base address of the associated GIC Redistributor
*/
STATIC
UINTN
GicGetCpuRedistributorBase (
IN UINTN GicRedistributorBase,
IN ARM_GIC_ARCH_REVISION Revision
)
{
UINTN MpId;
UINTN CpuAffinity;
UINTN Affinity;
UINTN GicCpuRedistributorBase;
UINT64 TypeRegister;
MpId = ArmReadMpidr ();
// Define CPU affinity as:
// Affinity0[0:8], Affinity1[9:15], Affinity2[16:23], Affinity3[24:32]
// whereas Affinity3 is defined at [32:39] in MPIDR
CpuAffinity = (MpId & (ARM_CORE_AFF0 | ARM_CORE_AFF1 | ARM_CORE_AFF2)) |
((MpId & ARM_CORE_AFF3) >> 8);
if (Revision < ARM_GIC_ARCH_REVISION_3) {
ASSERT_EFI_ERROR (EFI_UNSUPPORTED);
return 0;
}
GicCpuRedistributorBase = GicRedistributorBase;
do {
TypeRegister = MmioRead64 (GicCpuRedistributorBase + ARM_GICR_TYPER);
Affinity = ARM_GICR_TYPER_GET_AFFINITY (TypeRegister);
if (Affinity == CpuAffinity) {
return GicCpuRedistributorBase;
}
// Move to the next GIC Redistributor frame.
// The GIC specification does not forbid a mixture of redistributors
// with or without support for virtual LPIs, so we test Virtual LPIs
// Support (VLPIS) bit for each frame to decide the granularity.
// Note: The assumption here is that the redistributors are adjacent
// for all CPUs. However this may not be the case for NUMA systems.
GicCpuRedistributorBase += (((ARM_GICR_TYPER_VLPIS & TypeRegister) != 0)
? GIC_V4_REDISTRIBUTOR_GRANULARITY
: GIC_V3_REDISTRIBUTOR_GRANULARITY);
} while ((TypeRegister & ARM_GICR_TYPER_LAST) == 0);
// The Redistributor has not been found for the current CPU
ASSERT_EFI_ERROR (EFI_NOT_FOUND);
return 0;
}
UINTN
EFIAPI
ArmGicGetInterfaceIdentification (
IN INTN GicInterruptInterfaceBase
)
{
// Read the GIC Identification Register
return MmioRead32 (GicInterruptInterfaceBase + ARM_GIC_ICCIIDR);
}
UINTN
EFIAPI
ArmGicGetMaxNumInterrupts (
IN INTN GicDistributorBase
)
{
UINTN ItLines;
ItLines = MmioRead32 (GicDistributorBase + ARM_GIC_ICDICTR) & 0x1F;
//
// Interrupt ID 1020-1023 are reserved.
//
return (ItLines == 0x1f) ? 1020 : 32 * (ItLines + 1);
}
VOID
EFIAPI
ArmGicSendSgiTo (
IN INTN GicDistributorBase,
IN INTN TargetListFilter,
IN INTN CPUTargetList,
IN INTN SgiId
)
{
MmioWrite32 (
GicDistributorBase + ARM_GIC_ICDSGIR,
((TargetListFilter & 0x3) << 24) | ((CPUTargetList & 0xFF) << 16) | SgiId
);
}
/*
* Acknowledge and return the value of the Interrupt Acknowledge Register
*
* InterruptId is returned separately from the register value because in
* the GICv2 the register value contains the CpuId and InterruptId while
* in the GICv3 the register value is only the InterruptId.
*
* @param GicInterruptInterfaceBase Base Address of the GIC CPU Interface
* @param InterruptId InterruptId read from the Interrupt
* Acknowledge Register
*
* @retval value returned by the Interrupt Acknowledge Register
*
*/
UINTN
EFIAPI
ArmGicAcknowledgeInterrupt (
IN UINTN GicInterruptInterfaceBase,
OUT UINTN *InterruptId
)
{
UINTN Value;
ARM_GIC_ARCH_REVISION Revision;
Revision = ArmGicGetSupportedArchRevision ();
if (Revision == ARM_GIC_ARCH_REVISION_2) {
Value = ArmGicV2AcknowledgeInterrupt (GicInterruptInterfaceBase);
// InterruptId is required for the caller to know if a valid or spurious
// interrupt has been read
ASSERT (InterruptId != NULL);
if (InterruptId != NULL) {
*InterruptId = Value & ARM_GIC_ICCIAR_ACKINTID;
}
} else if (Revision == ARM_GIC_ARCH_REVISION_3) {
Value = ArmGicV3AcknowledgeInterrupt ();
} else {
ASSERT_EFI_ERROR (EFI_UNSUPPORTED);
// Report Spurious interrupt which is what the above controllers would
// return if no interrupt was available
Value = 1023;
}
return Value;
}
VOID
EFIAPI
ArmGicEndOfInterrupt (
IN UINTN GicInterruptInterfaceBase,
IN UINTN Source
)
{
ARM_GIC_ARCH_REVISION Revision;
Revision = ArmGicGetSupportedArchRevision ();
if (Revision == ARM_GIC_ARCH_REVISION_2) {
ArmGicV2EndOfInterrupt (GicInterruptInterfaceBase, Source);
} else if (Revision == ARM_GIC_ARCH_REVISION_3) {
ArmGicV3EndOfInterrupt (Source);
} else {
ASSERT_EFI_ERROR (EFI_UNSUPPORTED);
}
}
VOID
EFIAPI
ArmGicSetInterruptPriority (
IN UINTN GicDistributorBase,
IN UINTN GicRedistributorBase,
IN UINTN Source,
IN UINTN Priority
)
{
UINT32 RegOffset;
UINTN RegShift;
ARM_GIC_ARCH_REVISION Revision;
UINTN GicCpuRedistributorBase;
// Calculate register offset and bit position
RegOffset = Source / 4;
RegShift = (Source % 4) * 8;
Revision = ArmGicGetSupportedArchRevision ();
if ((Revision == ARM_GIC_ARCH_REVISION_2) ||
FeaturePcdGet (PcdArmGicV3WithV2Legacy) ||
SourceIsSpi (Source))
{
MmioAndThenOr32 (
GicDistributorBase + ARM_GIC_ICDIPR + (4 * RegOffset),
~(0xff << RegShift),
Priority << RegShift
);
} else {
GicCpuRedistributorBase = GicGetCpuRedistributorBase (
GicRedistributorBase,
Revision
);
if (GicCpuRedistributorBase == 0) {
return;
}
MmioAndThenOr32 (
IPRIORITY_ADDRESS (GicCpuRedistributorBase, RegOffset),
~(0xff << RegShift),
Priority << RegShift
);
}
}
VOID
EFIAPI
ArmGicEnableInterrupt (
IN UINTN GicDistributorBase,
IN UINTN GicRedistributorBase,
IN UINTN Source
)
{
UINT32 RegOffset;
UINTN RegShift;
ARM_GIC_ARCH_REVISION Revision;
UINTN GicCpuRedistributorBase;
// Calculate enable register offset and bit position
RegOffset = Source / 32;
RegShift = Source % 32;
Revision = ArmGicGetSupportedArchRevision ();
if ((Revision == ARM_GIC_ARCH_REVISION_2) ||
FeaturePcdGet (PcdArmGicV3WithV2Legacy) ||
SourceIsSpi (Source))
{
// Write set-enable register
MmioWrite32 (
GicDistributorBase + ARM_GIC_ICDISER + (4 * RegOffset),
1 << RegShift
);
} else {
GicCpuRedistributorBase = GicGetCpuRedistributorBase (
GicRedistributorBase,
Revision
);
if (GicCpuRedistributorBase == 0) {
ASSERT_EFI_ERROR (EFI_NOT_FOUND);
return;
}
// Write set-enable register
MmioWrite32 (
ISENABLER_ADDRESS (GicCpuRedistributorBase, RegOffset),
1 << RegShift
);
}
}
VOID
EFIAPI
ArmGicDisableInterrupt (
IN UINTN GicDistributorBase,
IN UINTN GicRedistributorBase,
IN UINTN Source
)
{
UINT32 RegOffset;
UINTN RegShift;
ARM_GIC_ARCH_REVISION Revision;
UINTN GicCpuRedistributorBase;
// Calculate enable register offset and bit position
RegOffset = Source / 32;
RegShift = Source % 32;
Revision = ArmGicGetSupportedArchRevision ();
if ((Revision == ARM_GIC_ARCH_REVISION_2) ||
FeaturePcdGet (PcdArmGicV3WithV2Legacy) ||
SourceIsSpi (Source))
{
// Write clear-enable register
MmioWrite32 (
GicDistributorBase + ARM_GIC_ICDICER + (4 * RegOffset),
1 << RegShift
);
} else {
GicCpuRedistributorBase = GicGetCpuRedistributorBase (
GicRedistributorBase,
Revision
);
if (GicCpuRedistributorBase == 0) {
return;
}
// Write clear-enable register
MmioWrite32 (
ICENABLER_ADDRESS (GicCpuRedistributorBase, RegOffset),
1 << RegShift
);
}
}
BOOLEAN
EFIAPI
ArmGicIsInterruptEnabled (
IN UINTN GicDistributorBase,
IN UINTN GicRedistributorBase,
IN UINTN Source
)
{
UINT32 RegOffset;
UINTN RegShift;
ARM_GIC_ARCH_REVISION Revision;
UINTN GicCpuRedistributorBase;
UINT32 Interrupts;
// Calculate enable register offset and bit position
RegOffset = Source / 32;
RegShift = Source % 32;
Revision = ArmGicGetSupportedArchRevision ();
if ((Revision == ARM_GIC_ARCH_REVISION_2) ||
FeaturePcdGet (PcdArmGicV3WithV2Legacy) ||
SourceIsSpi (Source))
{
Interrupts = MmioRead32 (
GicDistributorBase + ARM_GIC_ICDISER + (4 * RegOffset)
);
} else {
GicCpuRedistributorBase = GicGetCpuRedistributorBase (
GicRedistributorBase,
Revision
);
if (GicCpuRedistributorBase == 0) {
return 0;
}
// Read set-enable register
Interrupts = MmioRead32 (
ISENABLER_ADDRESS (GicCpuRedistributorBase, RegOffset)
);
}
return ((Interrupts & (1 << RegShift)) != 0);
}
VOID
EFIAPI
ArmGicDisableDistributor (
IN INTN GicDistributorBase
)
{
// Disable Gic Distributor
MmioWrite32 (GicDistributorBase + ARM_GIC_ICDDCR, 0x0);
}
VOID
EFIAPI
ArmGicEnableInterruptInterface (
IN INTN GicInterruptInterfaceBase
)
{
ARM_GIC_ARCH_REVISION Revision;
Revision = ArmGicGetSupportedArchRevision ();
if (Revision == ARM_GIC_ARCH_REVISION_2) {
ArmGicV2EnableInterruptInterface (GicInterruptInterfaceBase);
} else if (Revision == ARM_GIC_ARCH_REVISION_3) {
ArmGicV3EnableInterruptInterface ();
} else {
ASSERT_EFI_ERROR (EFI_UNSUPPORTED);
}
}
VOID
EFIAPI
ArmGicDisableInterruptInterface (
IN INTN GicInterruptInterfaceBase
)
{
ARM_GIC_ARCH_REVISION Revision;
Revision = ArmGicGetSupportedArchRevision ();
if (Revision == ARM_GIC_ARCH_REVISION_2) {
ArmGicV2DisableInterruptInterface (GicInterruptInterfaceBase);
} else if (Revision == ARM_GIC_ARCH_REVISION_3) {
ArmGicV3DisableInterruptInterface ();
} else {
ASSERT_EFI_ERROR (EFI_UNSUPPORTED);
}
}

View File

@ -0,0 +1,41 @@
#/* @file
# Copyright (c) 2011-2018, ARM Limited. All rights reserved.
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
#
#*/
[Defines]
INF_VERSION = 0x00010005
BASE_NAME = ArmGicLib
FILE_GUID = 03d05ee4-cdeb-458c-9dfc-993f09bdf405
MODULE_TYPE = SEC
VERSION_STRING = 1.0
LIBRARY_CLASS = ArmGicLib
[Sources]
ArmGicLib.c
ArmGicNonSecLib.c
GicV2/ArmGicV2Lib.c
GicV2/ArmGicV2NonSecLib.c
[Sources.ARM]
GicV3/Arm/ArmGicV3.S | GCC
[Sources.AARCH64]
GicV3/AArch64/ArmGicV3.S
[LibraryClasses]
ArmLib
DebugLib
IoLib
ArmGicArchLib
[Packages]
ArmPkg/ArmPkg.dec
ArmPlatformPkg/ArmPlatformPkg.dec
MdePkg/MdePkg.dec
[FeaturePcd]
gArmTokenSpaceGuid.PcdArmGicV3WithV2Legacy

View File

@ -0,0 +1,35 @@
/** @file
*
* Copyright (c) 2011-2015, ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#include <Uefi.h>
#include <Library/IoLib.h>
#include <Library/ArmGicLib.h>
VOID
EFIAPI
ArmGicEnableDistributor (
IN INTN GicDistributorBase
)
{
ARM_GIC_ARCH_REVISION Revision;
/*
* Enable GIC distributor in Non-Secure world.
* Note: The ICDDCR register is banked when Security extensions are implemented
*/
Revision = ArmGicGetSupportedArchRevision ();
if (Revision == ARM_GIC_ARCH_REVISION_2) {
MmioWrite32 (GicDistributorBase + ARM_GIC_ICDDCR, 0x1);
} else {
if (MmioRead32 (GicDistributorBase + ARM_GIC_ICDDCR) & ARM_GIC_ICDDCR_ARE) {
MmioOr32 (GicDistributorBase + ARM_GIC_ICDDCR, 0x2);
} else {
MmioOr32 (GicDistributorBase + ARM_GIC_ICDDCR, 0x1);
}
}
}

View File

@ -0,0 +1,464 @@
/*++
Copyright (c) 2009, Hewlett-Packard Company. All rights reserved.<BR>
Portions copyright (c) 2010, Apple Inc. All rights reserved.<BR>
Portions copyright (c) 2011-2017, ARM Ltd. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
Module Name:
GicV2/ArmGicV2Dxe.c
Abstract:
Driver implementing the GicV2 interrupt controller protocol
--*/
#include <Library/ArmGicLib.h>
#include "ArmGicDxe.h"
#define ARM_GIC_DEFAULT_PRIORITY 0x80
extern EFI_HARDWARE_INTERRUPT_PROTOCOL gHardwareInterruptV2Protocol;
extern EFI_HARDWARE_INTERRUPT2_PROTOCOL gHardwareInterrupt2V2Protocol;
STATIC UINT32 mGicInterruptInterfaceBase;
STATIC UINT32 mGicDistributorBase;
/**
Enable interrupt source Source.
@param This Instance pointer for this protocol
@param Source Hardware source of the interrupt
@retval EFI_SUCCESS Source interrupt enabled.
@retval EFI_UNSUPPORTED Source interrupt is not supported
**/
STATIC
EFI_STATUS
EFIAPI
GicV2EnableInterruptSource (
IN EFI_HARDWARE_INTERRUPT_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source
)
{
if (Source >= mGicNumInterrupts) {
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
ArmGicEnableInterrupt (mGicDistributorBase, 0, Source);
return EFI_SUCCESS;
}
/**
Disable interrupt source Source.
@param This Instance pointer for this protocol
@param Source Hardware source of the interrupt
@retval EFI_SUCCESS Source interrupt disabled.
@retval EFI_UNSUPPORTED Source interrupt is not supported
**/
STATIC
EFI_STATUS
EFIAPI
GicV2DisableInterruptSource (
IN EFI_HARDWARE_INTERRUPT_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source
)
{
if (Source >= mGicNumInterrupts) {
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
ArmGicDisableInterrupt (mGicDistributorBase, 0, Source);
return EFI_SUCCESS;
}
/**
Return current state of interrupt source Source.
@param This Instance pointer for this protocol
@param Source Hardware source of the interrupt
@param InterruptState TRUE: source enabled, FALSE: source disabled.
@retval EFI_SUCCESS InterruptState is valid
@retval EFI_UNSUPPORTED Source interrupt is not supported
**/
STATIC
EFI_STATUS
EFIAPI
GicV2GetInterruptSourceState (
IN EFI_HARDWARE_INTERRUPT_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source,
IN BOOLEAN *InterruptState
)
{
if (Source >= mGicNumInterrupts) {
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
*InterruptState = ArmGicIsInterruptEnabled (mGicDistributorBase, 0, Source);
return EFI_SUCCESS;
}
/**
Signal to the hardware that the End Of Interrupt state
has been reached.
@param This Instance pointer for this protocol
@param Source Hardware source of the interrupt
@retval EFI_SUCCESS Source interrupt ended successfully.
@retval EFI_UNSUPPORTED Source interrupt is not supported
**/
STATIC
EFI_STATUS
EFIAPI
GicV2EndOfInterrupt (
IN EFI_HARDWARE_INTERRUPT_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source
)
{
if (Source >= mGicNumInterrupts) {
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
ArmGicV2EndOfInterrupt (mGicInterruptInterfaceBase, Source);
return EFI_SUCCESS;
}
/**
EFI_CPU_INTERRUPT_HANDLER that is called when a processor interrupt occurs.
@param InterruptType Defines the type of interrupt or exception that
occurred on the processor.This parameter is
processor architecture specific.
@param SystemContext A pointer to the processor context when
the interrupt occurred on the processor.
@return None
**/
STATIC
VOID
EFIAPI
GicV2IrqInterruptHandler (
IN EFI_EXCEPTION_TYPE InterruptType,
IN EFI_SYSTEM_CONTEXT SystemContext
)
{
UINT32 GicInterrupt;
HARDWARE_INTERRUPT_HANDLER InterruptHandler;
GicInterrupt = ArmGicV2AcknowledgeInterrupt (mGicInterruptInterfaceBase);
// Special Interrupts (ID1020-ID1023) have an Interrupt ID greater than the
// number of interrupt (ie: Spurious interrupt).
if ((GicInterrupt & ARM_GIC_ICCIAR_ACKINTID) >= mGicNumInterrupts) {
// The special interrupts do not need to be acknowledged
return;
}
InterruptHandler = gRegisteredInterruptHandlers[GicInterrupt];
if (InterruptHandler != NULL) {
// Call the registered interrupt handler.
InterruptHandler (GicInterrupt, SystemContext);
} else {
DEBUG ((DEBUG_ERROR, "Spurious GIC interrupt: 0x%x\n", GicInterrupt));
GicV2EndOfInterrupt (&gHardwareInterruptV2Protocol, GicInterrupt);
}
}
// The protocol instance produced by this driver
EFI_HARDWARE_INTERRUPT_PROTOCOL gHardwareInterruptV2Protocol = {
RegisterInterruptSource,
GicV2EnableInterruptSource,
GicV2DisableInterruptSource,
GicV2GetInterruptSourceState,
GicV2EndOfInterrupt
};
/**
Get interrupt trigger type of an interrupt
@param This Instance pointer for this protocol
@param Source Hardware source of the interrupt.
@param TriggerType Returns interrupt trigger type.
@retval EFI_SUCCESS Source interrupt supported.
@retval EFI_UNSUPPORTED Source interrupt is not supported.
**/
STATIC
EFI_STATUS
EFIAPI
GicV2GetTriggerType (
IN EFI_HARDWARE_INTERRUPT2_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source,
OUT EFI_HARDWARE_INTERRUPT2_TRIGGER_TYPE *TriggerType
)
{
UINTN RegAddress;
UINTN Config1Bit;
EFI_STATUS Status;
Status = GicGetDistributorIcfgBaseAndBit (
Source,
&RegAddress,
&Config1Bit
);
if (EFI_ERROR (Status)) {
return Status;
}
if ((MmioRead32 (RegAddress) & (1 << Config1Bit)) == 0) {
*TriggerType = EFI_HARDWARE_INTERRUPT2_TRIGGER_LEVEL_HIGH;
} else {
*TriggerType = EFI_HARDWARE_INTERRUPT2_TRIGGER_EDGE_RISING;
}
return EFI_SUCCESS;
}
/**
Set interrupt trigger type of an interrupt
@param This Instance pointer for this protocol
@param Source Hardware source of the interrupt.
@param TriggerType Interrupt trigger type.
@retval EFI_SUCCESS Source interrupt supported.
@retval EFI_UNSUPPORTED Source interrupt is not supported.
**/
STATIC
EFI_STATUS
EFIAPI
GicV2SetTriggerType (
IN EFI_HARDWARE_INTERRUPT2_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source,
IN EFI_HARDWARE_INTERRUPT2_TRIGGER_TYPE TriggerType
)
{
UINTN RegAddress;
UINTN Config1Bit;
UINT32 Value;
EFI_STATUS Status;
BOOLEAN SourceEnabled;
if ( (TriggerType != EFI_HARDWARE_INTERRUPT2_TRIGGER_EDGE_RISING)
&& (TriggerType != EFI_HARDWARE_INTERRUPT2_TRIGGER_LEVEL_HIGH))
{
DEBUG ((
DEBUG_ERROR,
"Invalid interrupt trigger type: %d\n", \
TriggerType
));
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
Status = GicGetDistributorIcfgBaseAndBit (
Source,
&RegAddress,
&Config1Bit
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = GicV2GetInterruptSourceState (
(EFI_HARDWARE_INTERRUPT_PROTOCOL *)This,
Source,
&SourceEnabled
);
if (EFI_ERROR (Status)) {
return Status;
}
Value = (TriggerType == EFI_HARDWARE_INTERRUPT2_TRIGGER_EDGE_RISING)
? ARM_GIC_ICDICFR_EDGE_TRIGGERED
: ARM_GIC_ICDICFR_LEVEL_TRIGGERED;
// Before changing the value, we must disable the interrupt,
// otherwise GIC behavior is UNPREDICTABLE.
if (SourceEnabled) {
GicV2DisableInterruptSource (
(EFI_HARDWARE_INTERRUPT_PROTOCOL *)This,
Source
);
}
MmioAndThenOr32 (
RegAddress,
~(0x1 << Config1Bit),
Value << Config1Bit
);
// Restore interrupt state
if (SourceEnabled) {
GicV2EnableInterruptSource (
(EFI_HARDWARE_INTERRUPT_PROTOCOL *)This,
Source
);
}
return EFI_SUCCESS;
}
EFI_HARDWARE_INTERRUPT2_PROTOCOL gHardwareInterrupt2V2Protocol = {
(HARDWARE_INTERRUPT2_REGISTER)RegisterInterruptSource,
(HARDWARE_INTERRUPT2_ENABLE)GicV2EnableInterruptSource,
(HARDWARE_INTERRUPT2_DISABLE)GicV2DisableInterruptSource,
(HARDWARE_INTERRUPT2_INTERRUPT_STATE)GicV2GetInterruptSourceState,
(HARDWARE_INTERRUPT2_END_OF_INTERRUPT)GicV2EndOfInterrupt,
GicV2GetTriggerType,
GicV2SetTriggerType
};
/**
Shutdown our hardware
DXE Core will disable interrupts and turn off the timer and disable
interrupts after all the event handlers have run.
@param[in] Event The Event that is being processed
@param[in] Context Event Context
**/
STATIC
VOID
EFIAPI
GicV2ExitBootServicesEvent (
IN EFI_EVENT Event,
IN VOID *Context
)
{
UINTN Index;
UINT32 GicInterrupt;
// Disable all the interrupts
for (Index = 0; Index < mGicNumInterrupts; Index++) {
GicV2DisableInterruptSource (&gHardwareInterruptV2Protocol, Index);
}
// Acknowledge all pending interrupts
do {
GicInterrupt = ArmGicV2AcknowledgeInterrupt (mGicInterruptInterfaceBase);
if ((GicInterrupt & ARM_GIC_ICCIAR_ACKINTID) < mGicNumInterrupts) {
GicV2EndOfInterrupt (&gHardwareInterruptV2Protocol, GicInterrupt);
}
} while (!ARM_GIC_IS_SPECIAL_INTERRUPTS (GicInterrupt));
// Disable Gic Interface
ArmGicV2DisableInterruptInterface (mGicInterruptInterfaceBase);
// Disable Gic Distributor
ArmGicDisableDistributor (mGicDistributorBase);
}
/**
Initialize the state information for the CPU Architectural Protocol
@param ImageHandle of the loaded driver
@param SystemTable Pointer to the System Table
@retval EFI_SUCCESS Protocol registered
@retval EFI_OUT_OF_RESOURCES Cannot allocate protocol data structure
@retval EFI_DEVICE_ERROR Hardware problems
**/
EFI_STATUS
GicV2DxeInitialize (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
UINTN Index;
UINT32 RegOffset;
UINTN RegShift;
UINT32 CpuTarget;
// Make sure the Interrupt Controller Protocol is not already installed in
// the system.
ASSERT_PROTOCOL_ALREADY_INSTALLED (NULL, &gHardwareInterruptProtocolGuid);
mGicInterruptInterfaceBase = PcdGet64 (PcdGicInterruptInterfaceBase);
mGicDistributorBase = PcdGet64 (PcdGicDistributorBase);
mGicNumInterrupts = ArmGicGetMaxNumInterrupts (mGicDistributorBase);
for (Index = 0; Index < mGicNumInterrupts; Index++) {
GicV2DisableInterruptSource (&gHardwareInterruptV2Protocol, Index);
// Set Priority
RegOffset = Index / 4;
RegShift = (Index % 4) * 8;
MmioAndThenOr32 (
mGicDistributorBase + ARM_GIC_ICDIPR + (4 * RegOffset),
~(0xff << RegShift),
ARM_GIC_DEFAULT_PRIORITY << RegShift
);
}
// Targets the interrupts to the Primary Cpu
// Only Primary CPU will run this code. We can identify our GIC CPU ID by
// reading the GIC Distributor Target register. The 8 first GICD_ITARGETSRn
// are banked to each connected CPU. These 8 registers hold the CPU targets
// fields for interrupts 0-31. More Info in the GIC Specification about
// "Interrupt Processor Targets Registers"
// Read the first Interrupt Processor Targets Register (that corresponds to
// the 4 first SGIs)
CpuTarget = MmioRead32 (mGicDistributorBase + ARM_GIC_ICDIPTR);
// The CPU target is a bit field mapping each CPU to a GIC CPU Interface.
// This value is 0 when we run on a uniprocessor platform.
if (CpuTarget != 0) {
// The 8 first Interrupt Processor Targets Registers are read-only
for (Index = 8; Index < (mGicNumInterrupts / 4); Index++) {
MmioWrite32 (
mGicDistributorBase + ARM_GIC_ICDIPTR + (Index * 4),
CpuTarget
);
}
}
// Set binary point reg to 0x7 (no preemption)
MmioWrite32 (mGicInterruptInterfaceBase + ARM_GIC_ICCBPR, 0x7);
// Set priority mask reg to 0xff to allow all priorities through
MmioWrite32 (mGicInterruptInterfaceBase + ARM_GIC_ICCPMR, 0xff);
// Enable gic cpu interface
ArmGicEnableInterruptInterface (mGicInterruptInterfaceBase);
// Enable gic distributor
ArmGicEnableDistributor (mGicDistributorBase);
Status = InstallAndRegisterInterruptService (
&gHardwareInterruptV2Protocol,
&gHardwareInterrupt2V2Protocol,
GicV2IrqInterruptHandler,
GicV2ExitBootServicesEvent
);
return Status;
}

View File

@ -0,0 +1,30 @@
/** @file
*
* Copyright (c) 2013-2014, ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#include <Library/ArmGicLib.h>
#include <Library/IoLib.h>
UINTN
EFIAPI
ArmGicV2AcknowledgeInterrupt (
IN UINTN GicInterruptInterfaceBase
)
{
// Read the Interrupt Acknowledge Register
return MmioRead32 (GicInterruptInterfaceBase + ARM_GIC_ICCIAR);
}
VOID
EFIAPI
ArmGicV2EndOfInterrupt (
IN UINTN GicInterruptInterfaceBase,
IN UINTN Source
)
{
MmioWrite32 (GicInterruptInterfaceBase + ARM_GIC_ICCEIOR, Source);
}

View File

@ -0,0 +1,35 @@
/** @file
*
* Copyright (c) 2011-2014, ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#include <Uefi.h>
#include <Library/IoLib.h>
#include <Library/ArmGicLib.h>
VOID
EFIAPI
ArmGicV2EnableInterruptInterface (
IN INTN GicInterruptInterfaceBase
)
{
/*
* Enable the CPU interface in Non-Secure world
* Note: The ICCICR register is banked when Security extensions are implemented
*/
MmioWrite32 (GicInterruptInterfaceBase + ARM_GIC_ICCICR, 0x1);
}
VOID
EFIAPI
ArmGicV2DisableInterruptInterface (
IN INTN GicInterruptInterfaceBase
)
{
// Disable Gic Interface
MmioWrite32 (GicInterruptInterfaceBase + ARM_GIC_ICCICR, 0x0);
MmioWrite32 (GicInterruptInterfaceBase + ARM_GIC_ICCPMR, 0x0);
}

View File

@ -0,0 +1,106 @@
#
# Copyright (c) 2014, ARM Limited. All rights reserved.
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
#
#
#include <AsmMacroIoLibV8.h>
#if !defined(__clang__)
//
// Clang versions before v3.6 do not support the GNU extension that allows
// system registers outside of the IMPLEMENTATION DEFINED range to be specified
// using the generic notation below. However, clang knows these registers by
// their architectural names, so it has no need for these aliases anyway.
//
#define ICC_SRE_EL1 S3_0_C12_C12_5
#define ICC_SRE_EL2 S3_4_C12_C9_5
#define ICC_SRE_EL3 S3_6_C12_C12_5
#define ICC_IGRPEN1_EL1 S3_0_C12_C12_7
#define ICC_EOIR1_EL1 S3_0_C12_C12_1
#define ICC_IAR1_EL1 S3_0_C12_C12_0
#define ICC_PMR_EL1 S3_0_C4_C6_0
#define ICC_BPR1_EL1 S3_0_C12_C12_3
#endif
//UINT32
//EFIAPI
//ArmGicV3GetControlSystemRegisterEnable (
// VOID
// );
ASM_FUNC(ArmGicV3GetControlSystemRegisterEnable)
EL1_OR_EL2_OR_EL3(x1)
1: mrs x0, ICC_SRE_EL1
b 4f
2: mrs x0, ICC_SRE_EL2
b 4f
3: mrs x0, ICC_SRE_EL3
4: ret
//VOID
//EFIAPI
//ArmGicV3SetControlSystemRegisterEnable (
// IN UINT32 ControlSystemRegisterEnable
// );
ASM_FUNC(ArmGicV3SetControlSystemRegisterEnable)
EL1_OR_EL2_OR_EL3(x1)
1: msr ICC_SRE_EL1, x0
b 4f
2: msr ICC_SRE_EL2, x0
b 4f
3: msr ICC_SRE_EL3, x0
4: isb
ret
//VOID
//ArmGicV3EnableInterruptInterface (
// VOID
// );
ASM_FUNC(ArmGicV3EnableInterruptInterface)
mov x0, #1
msr ICC_IGRPEN1_EL1, x0
ret
//VOID
//ArmGicV3DisableInterruptInterface (
// VOID
// );
ASM_FUNC(ArmGicV3DisableInterruptInterface)
mov x0, #0
msr ICC_IGRPEN1_EL1, x0
ret
//VOID
//ArmGicV3EndOfInterrupt (
// IN UINTN InterruptId
// );
ASM_FUNC(ArmGicV3EndOfInterrupt)
msr ICC_EOIR1_EL1, x0
ret
//UINTN
//ArmGicV3AcknowledgeInterrupt (
// VOID
// );
ASM_FUNC(ArmGicV3AcknowledgeInterrupt)
mrs x0, ICC_IAR1_EL1
ret
//VOID
//ArmGicV3SetPriorityMask (
// IN UINTN Priority
// );
ASM_FUNC(ArmGicV3SetPriorityMask)
msr ICC_PMR_EL1, x0
ret
//VOID
//ArmGicV3SetBinaryPointer (
// IN UINTN BinaryPoint
// );
ASM_FUNC(ArmGicV3SetBinaryPointer)
msr ICC_BPR1_EL1, x0
ret

View File

@ -0,0 +1,80 @@
#
# Copyright (c) 2014, ARM Limited. All rights reserved.
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
#
#
#include <AsmMacroIoLib.h>
#include <Library/ArmLib.h>
// For the moment we assume this will run in SVC mode on ARMv7
//UINT32
//EFIAPI
//ArmGicGetControlSystemRegisterEnable (
// VOID
// );
ASM_FUNC(ArmGicV3GetControlSystemRegisterEnable)
mrc p15, 0, r0, c12, c12, 5 // ICC_SRE
bx lr
//VOID
//EFIAPI
//ArmGicSetControlSystemRegisterEnable (
// IN UINT32 ControlSystemRegisterEnable
// );
ASM_FUNC(ArmGicV3SetControlSystemRegisterEnable)
mcr p15, 0, r0, c12, c12, 5 // ICC_SRE
isb
bx lr
//VOID
//ArmGicV3EnableInterruptInterface (
// VOID
// );
ASM_FUNC(ArmGicV3EnableInterruptInterface)
mov r0, #1
mcr p15, 0, r0, c12, c12, 7 // ICC_IGRPEN1
bx lr
//VOID
//ArmGicV3DisableInterruptInterface (
// VOID
// );
ASM_FUNC(ArmGicV3DisableInterruptInterface)
mov r0, #0
mcr p15, 0, r0, c12, c12, 7 // ICC_IGRPEN1
bx lr
//VOID
//ArmGicV3EndOfInterrupt (
// IN UINTN InterruptId
// );
ASM_FUNC(ArmGicV3EndOfInterrupt)
mcr p15, 0, r0, c12, c12, 1 //ICC_EOIR1
bx lr
//UINTN
//ArmGicV3AcknowledgeInterrupt (
// VOID
// );
ASM_FUNC(ArmGicV3AcknowledgeInterrupt)
mrc p15, 0, r0, c12, c12, 0 //ICC_IAR1
bx lr
//VOID
//ArmGicV3SetPriorityMask (
// IN UINTN Priority
// );
ASM_FUNC(ArmGicV3SetPriorityMask)
mcr p15, 0, r0, c4, c6, 0 //ICC_PMR
bx lr
//VOID
//ArmGicV3SetBinaryPointer (
// IN UINTN BinaryPoint
// );
ASM_FUNC(ArmGicV3SetBinaryPointer)
mcr p15, 0, r0, c12, c12, 3 //ICC_BPR1
bx lr

View File

@ -0,0 +1,488 @@
/** @file
*
* Copyright (c) 2011-2018, ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#include <Library/ArmGicLib.h>
#include "ArmGicDxe.h"
#define ARM_GIC_DEFAULT_PRIORITY 0x80
extern EFI_HARDWARE_INTERRUPT_PROTOCOL gHardwareInterruptV3Protocol;
extern EFI_HARDWARE_INTERRUPT2_PROTOCOL gHardwareInterrupt2V3Protocol;
STATIC UINTN mGicDistributorBase;
STATIC UINTN mGicRedistributorsBase;
/**
Enable interrupt source Source.
@param This Instance pointer for this protocol
@param Source Hardware source of the interrupt
@retval EFI_SUCCESS Source interrupt enabled.
@retval EFI_DEVICE_ERROR Hardware could not be programmed.
**/
STATIC
EFI_STATUS
EFIAPI
GicV3EnableInterruptSource (
IN EFI_HARDWARE_INTERRUPT_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source
)
{
if (Source >= mGicNumInterrupts) {
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
ArmGicEnableInterrupt (mGicDistributorBase, mGicRedistributorsBase, Source);
return EFI_SUCCESS;
}
/**
Disable interrupt source Source.
@param This Instance pointer for this protocol
@param Source Hardware source of the interrupt
@retval EFI_SUCCESS Source interrupt disabled.
@retval EFI_DEVICE_ERROR Hardware could not be programmed.
**/
STATIC
EFI_STATUS
EFIAPI
GicV3DisableInterruptSource (
IN EFI_HARDWARE_INTERRUPT_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source
)
{
if (Source >= mGicNumInterrupts) {
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
ArmGicDisableInterrupt (mGicDistributorBase, mGicRedistributorsBase, Source);
return EFI_SUCCESS;
}
/**
Return current state of interrupt source Source.
@param This Instance pointer for this protocol
@param Source Hardware source of the interrupt
@param InterruptState TRUE: source enabled, FALSE: source disabled.
@retval EFI_SUCCESS InterruptState is valid
@retval EFI_DEVICE_ERROR InterruptState is not valid
**/
STATIC
EFI_STATUS
EFIAPI
GicV3GetInterruptSourceState (
IN EFI_HARDWARE_INTERRUPT_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source,
IN BOOLEAN *InterruptState
)
{
if (Source >= mGicNumInterrupts) {
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
*InterruptState = ArmGicIsInterruptEnabled (
mGicDistributorBase,
mGicRedistributorsBase,
Source
);
return EFI_SUCCESS;
}
/**
Signal to the hardware that the End Of Interrupt state
has been reached.
@param This Instance pointer for this protocol
@param Source Hardware source of the interrupt
@retval EFI_SUCCESS Source interrupt ended successfully.
@retval EFI_DEVICE_ERROR Hardware could not be programmed.
**/
STATIC
EFI_STATUS
EFIAPI
GicV3EndOfInterrupt (
IN EFI_HARDWARE_INTERRUPT_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source
)
{
if (Source >= mGicNumInterrupts) {
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
ArmGicV3EndOfInterrupt (Source);
return EFI_SUCCESS;
}
/**
EFI_CPU_INTERRUPT_HANDLER that is called when a processor interrupt occurs.
@param InterruptType Defines the type of interrupt or exception that
occurred on the processor. This parameter is
processor architecture specific.
@param SystemContext A pointer to the processor context when
the interrupt occurred on the processor.
@return None
**/
STATIC
VOID
EFIAPI
GicV3IrqInterruptHandler (
IN EFI_EXCEPTION_TYPE InterruptType,
IN EFI_SYSTEM_CONTEXT SystemContext
)
{
UINT32 GicInterrupt;
HARDWARE_INTERRUPT_HANDLER InterruptHandler;
GicInterrupt = ArmGicV3AcknowledgeInterrupt ();
// Special Interrupts (ID1020-ID1023) have an Interrupt ID greater than the
// number of interrupt (ie: Spurious interrupt).
if ((GicInterrupt & ARM_GIC_ICCIAR_ACKINTID) >= mGicNumInterrupts) {
// The special interrupt do not need to be acknowledge
return;
}
InterruptHandler = gRegisteredInterruptHandlers[GicInterrupt];
if (InterruptHandler != NULL) {
// Call the registered interrupt handler.
InterruptHandler (GicInterrupt, SystemContext);
} else {
DEBUG ((DEBUG_ERROR, "Spurious GIC interrupt: 0x%x\n", GicInterrupt));
GicV3EndOfInterrupt (&gHardwareInterruptV3Protocol, GicInterrupt);
}
}
// The protocol instance produced by this driver
EFI_HARDWARE_INTERRUPT_PROTOCOL gHardwareInterruptV3Protocol = {
RegisterInterruptSource,
GicV3EnableInterruptSource,
GicV3DisableInterruptSource,
GicV3GetInterruptSourceState,
GicV3EndOfInterrupt
};
/**
Get interrupt trigger type of an interrupt
@param This Instance pointer for this protocol
@param Source Hardware source of the interrupt.
@param TriggerType Returns interrupt trigger type.
@retval EFI_SUCCESS Source interrupt supported.
@retval EFI_UNSUPPORTED Source interrupt is not supported.
**/
STATIC
EFI_STATUS
EFIAPI
GicV3GetTriggerType (
IN EFI_HARDWARE_INTERRUPT2_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source,
OUT EFI_HARDWARE_INTERRUPT2_TRIGGER_TYPE *TriggerType
)
{
UINTN RegAddress;
UINTN Config1Bit;
EFI_STATUS Status;
Status = GicGetDistributorIcfgBaseAndBit (
Source,
&RegAddress,
&Config1Bit
);
if (EFI_ERROR (Status)) {
return Status;
}
if ((MmioRead32 (RegAddress) & (1 << Config1Bit)) == 0) {
*TriggerType = EFI_HARDWARE_INTERRUPT2_TRIGGER_LEVEL_HIGH;
} else {
*TriggerType = EFI_HARDWARE_INTERRUPT2_TRIGGER_EDGE_RISING;
}
return EFI_SUCCESS;
}
/**
Set interrupt trigger type of an interrupt
@param This Instance pointer for this protocol
@param Source Hardware source of the interrupt.
@param TriggerType Interrupt trigger type.
@retval EFI_SUCCESS Source interrupt supported.
@retval EFI_UNSUPPORTED Source interrupt is not supported.
**/
STATIC
EFI_STATUS
EFIAPI
GicV3SetTriggerType (
IN EFI_HARDWARE_INTERRUPT2_PROTOCOL *This,
IN HARDWARE_INTERRUPT_SOURCE Source,
IN EFI_HARDWARE_INTERRUPT2_TRIGGER_TYPE TriggerType
)
{
UINTN RegAddress;
UINTN Config1Bit;
UINT32 Value;
EFI_STATUS Status;
BOOLEAN SourceEnabled;
if ( (TriggerType != EFI_HARDWARE_INTERRUPT2_TRIGGER_EDGE_RISING)
&& (TriggerType != EFI_HARDWARE_INTERRUPT2_TRIGGER_LEVEL_HIGH))
{
DEBUG ((
DEBUG_ERROR,
"Invalid interrupt trigger type: %d\n", \
TriggerType
));
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
Status = GicGetDistributorIcfgBaseAndBit (
Source,
&RegAddress,
&Config1Bit
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = GicV3GetInterruptSourceState (
(EFI_HARDWARE_INTERRUPT_PROTOCOL *)This,
Source,
&SourceEnabled
);
if (EFI_ERROR (Status)) {
return Status;
}
Value = (TriggerType == EFI_HARDWARE_INTERRUPT2_TRIGGER_EDGE_RISING)
? ARM_GIC_ICDICFR_EDGE_TRIGGERED
: ARM_GIC_ICDICFR_LEVEL_TRIGGERED;
// Before changing the value, we must disable the interrupt,
// otherwise GIC behavior is UNPREDICTABLE.
if (SourceEnabled) {
GicV3DisableInterruptSource (
(EFI_HARDWARE_INTERRUPT_PROTOCOL *)This,
Source
);
}
MmioAndThenOr32 (
RegAddress,
~(0x1 << Config1Bit),
Value << Config1Bit
);
// Restore interrupt state
if (SourceEnabled) {
GicV3EnableInterruptSource (
(EFI_HARDWARE_INTERRUPT_PROTOCOL *)This,
Source
);
}
return EFI_SUCCESS;
}
EFI_HARDWARE_INTERRUPT2_PROTOCOL gHardwareInterrupt2V3Protocol = {
(HARDWARE_INTERRUPT2_REGISTER)RegisterInterruptSource,
(HARDWARE_INTERRUPT2_ENABLE)GicV3EnableInterruptSource,
(HARDWARE_INTERRUPT2_DISABLE)GicV3DisableInterruptSource,
(HARDWARE_INTERRUPT2_INTERRUPT_STATE)GicV3GetInterruptSourceState,
(HARDWARE_INTERRUPT2_END_OF_INTERRUPT)GicV3EndOfInterrupt,
GicV3GetTriggerType,
GicV3SetTriggerType
};
/**
Shutdown our hardware
DXE Core will disable interrupts and turn off the timer and disable interrupts
after all the event handlers have run.
@param[in] Event The Event that is being processed
@param[in] Context Event Context
**/
VOID
EFIAPI
GicV3ExitBootServicesEvent (
IN EFI_EVENT Event,
IN VOID *Context
)
{
UINTN Index;
// Acknowledge all pending interrupts
for (Index = 0; Index < mGicNumInterrupts; Index++) {
GicV3DisableInterruptSource (&gHardwareInterruptV3Protocol, Index);
}
// Disable Gic Interface
ArmGicV3DisableInterruptInterface ();
// Disable Gic Distributor
ArmGicDisableDistributor (mGicDistributorBase);
}
/**
Initialize the state information for the CPU Architectural Protocol
@param ImageHandle of the loaded driver
@param SystemTable Pointer to the System Table
@retval EFI_SUCCESS Protocol registered
@retval EFI_OUT_OF_RESOURCES Cannot allocate protocol data structure
@retval EFI_DEVICE_ERROR Hardware problems
**/
EFI_STATUS
GicV3DxeInitialize (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
UINTN Index;
UINT64 CpuTarget;
UINT64 MpId;
// Make sure the Interrupt Controller Protocol is not already installed in
// the system.
ASSERT_PROTOCOL_ALREADY_INSTALLED (NULL, &gHardwareInterruptProtocolGuid);
mGicDistributorBase = PcdGet64 (PcdGicDistributorBase);
mGicRedistributorsBase = PcdGet64 (PcdGicRedistributorsBase);
mGicNumInterrupts = ArmGicGetMaxNumInterrupts (mGicDistributorBase);
// We will be driving this GIC in native v3 mode, i.e., with Affinity
// Routing enabled. So ensure that the ARE bit is set.
if (!FeaturePcdGet (PcdArmGicV3WithV2Legacy)) {
MmioOr32 (mGicDistributorBase + ARM_GIC_ICDDCR, ARM_GIC_ICDDCR_ARE);
}
for (Index = 0; Index < mGicNumInterrupts; Index++) {
GicV3DisableInterruptSource (&gHardwareInterruptV3Protocol, Index);
// Set Priority
ArmGicSetInterruptPriority (
mGicDistributorBase,
mGicRedistributorsBase,
Index,
ARM_GIC_DEFAULT_PRIORITY
);
}
// Targets the interrupts to the Primary Cpu
if (FeaturePcdGet (PcdArmGicV3WithV2Legacy)) {
// Only Primary CPU will run this code. We can identify our GIC CPU ID by
// reading the GIC Distributor Target register. The 8 first
// GICD_ITARGETSRn are banked to each connected CPU. These 8 registers
// hold the CPU targets fields for interrupts 0-31. More Info in the GIC
// Specification about "Interrupt Processor Targets Registers"
// Read the first Interrupt Processor Targets Register (that corresponds
// to the 4 first SGIs)
CpuTarget = MmioRead32 (mGicDistributorBase + ARM_GIC_ICDIPTR);
// The CPU target is a bit field mapping each CPU to a GIC CPU Interface.
// This value is 0 when we run on a uniprocessor platform.
if (CpuTarget != 0) {
// The 8 first Interrupt Processor Targets Registers are read-only
for (Index = 8; Index < (mGicNumInterrupts / 4); Index++) {
MmioWrite32 (
mGicDistributorBase + ARM_GIC_ICDIPTR + (Index * 4),
CpuTarget
);
}
}
} else {
MpId = ArmReadMpidr ();
CpuTarget = MpId &
(ARM_CORE_AFF0 | ARM_CORE_AFF1 | ARM_CORE_AFF2 | ARM_CORE_AFF3);
if ((MmioRead32 (
mGicDistributorBase + ARM_GIC_ICDDCR
) & ARM_GIC_ICDDCR_DS) != 0)
{
// If the Disable Security (DS) control bit is set, we are dealing with a
// GIC that has only one security state. In this case, let's assume we are
// executing in non-secure state (which is appropriate for DXE modules)
// and that no other firmware has performed any configuration on the GIC.
// This means we need to reconfigure all interrupts to non-secure Group 1
// first.
MmioWrite32 (
mGicRedistributorsBase + ARM_GICR_CTLR_FRAME_SIZE + ARM_GIC_ICDISR,
0xffffffff
);
for (Index = 32; Index < mGicNumInterrupts; Index += 32) {
MmioWrite32 (
mGicDistributorBase + ARM_GIC_ICDISR + Index / 8,
0xffffffff
);
}
}
// Route the SPIs to the primary CPU. SPIs start at the INTID 32
for (Index = 0; Index < (mGicNumInterrupts - 32); Index++) {
MmioWrite64 (
mGicDistributorBase + ARM_GICD_IROUTER + (Index * 8),
CpuTarget
);
}
}
// Set binary point reg to 0x7 (no preemption)
ArmGicV3SetBinaryPointer (0x7);
// Set priority mask reg to 0xff to allow all priorities through
ArmGicV3SetPriorityMask (0xff);
// Enable gic cpu interface
ArmGicV3EnableInterruptInterface ();
// Enable gic distributor
ArmGicEnableDistributor (mGicDistributorBase);
Status = InstallAndRegisterInterruptService (
&gHardwareInterruptV3Protocol,
&gHardwareInterrupt2V3Protocol,
GicV3IrqInterruptHandler,
GicV3ExitBootServicesEvent
);
return Status;
}

View File

@ -0,0 +1,556 @@
/** @file
Produces the CPU I/O 2 Protocol.
Copyright (c) 2009 - 2012, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2016, Linaro Ltd. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <PiDxe.h>
#include <Protocol/CpuIo2.h>
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/IoLib.h>
#include <Library/PcdLib.h>
#include <Library/UefiBootServicesTableLib.h>
#define MAX_IO_PORT_ADDRESS 0xFFFF
//
// Handle for the CPU I/O 2 Protocol
//
STATIC EFI_HANDLE mHandle = NULL;
//
// Lookup table for increment values based on transfer widths
//
STATIC CONST UINT8 mInStride[] = {
1, // EfiCpuIoWidthUint8
2, // EfiCpuIoWidthUint16
4, // EfiCpuIoWidthUint32
8, // EfiCpuIoWidthUint64
0, // EfiCpuIoWidthFifoUint8
0, // EfiCpuIoWidthFifoUint16
0, // EfiCpuIoWidthFifoUint32
0, // EfiCpuIoWidthFifoUint64
1, // EfiCpuIoWidthFillUint8
2, // EfiCpuIoWidthFillUint16
4, // EfiCpuIoWidthFillUint32
8 // EfiCpuIoWidthFillUint64
};
//
// Lookup table for increment values based on transfer widths
//
STATIC CONST UINT8 mOutStride[] = {
1, // EfiCpuIoWidthUint8
2, // EfiCpuIoWidthUint16
4, // EfiCpuIoWidthUint32
8, // EfiCpuIoWidthUint64
1, // EfiCpuIoWidthFifoUint8
2, // EfiCpuIoWidthFifoUint16
4, // EfiCpuIoWidthFifoUint32
8, // EfiCpuIoWidthFifoUint64
0, // EfiCpuIoWidthFillUint8
0, // EfiCpuIoWidthFillUint16
0, // EfiCpuIoWidthFillUint32
0 // EfiCpuIoWidthFillUint64
};
/**
Check parameters to a CPU I/O 2 Protocol service request.
The I/O operations are carried out exactly as requested. The caller is responsible
for satisfying any alignment and I/O width restrictions that a PI System on a
platform might require. For example on some platforms, width requests of
EfiCpuIoWidthUint64 do not work. Misaligned buffers, on the other hand, will
be handled by the driver.
@param[in] MmioOperation TRUE for an MMIO operation, FALSE for I/O Port operation.
@param[in] Width Signifies the width of the I/O or Memory operation.
@param[in] Address The base address of the I/O operation.
@param[in] Count The number of I/O operations to perform. The number of
bytes moved is Width size * Count, starting at Address.
@param[in] Buffer For read operations, the destination buffer to store the results.
For write operations, the source buffer from which to write data.
@retval EFI_SUCCESS The parameters for this request pass the checks.
@retval EFI_INVALID_PARAMETER Width is invalid for this PI system.
@retval EFI_INVALID_PARAMETER Buffer is NULL.
@retval EFI_UNSUPPORTED The Buffer is not aligned for the given Width.
@retval EFI_UNSUPPORTED The address range specified by Address, Width,
and Count is not valid for this PI system.
**/
STATIC
EFI_STATUS
CpuIoCheckParameter (
IN BOOLEAN MmioOperation,
IN EFI_CPU_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN VOID *Buffer
)
{
UINT64 MaxCount;
UINT64 Limit;
//
// Check to see if Buffer is NULL
//
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
//
// Check to see if Width is in the valid range
//
if ((UINT32)Width >= EfiCpuIoWidthMaximum) {
return EFI_INVALID_PARAMETER;
}
//
// For FIFO type, the target address won't increase during the access,
// so treat Count as 1
//
if ((Width >= EfiCpuIoWidthFifoUint8) && (Width <= EfiCpuIoWidthFifoUint64)) {
Count = 1;
}
//
// Check to see if Width is in the valid range for I/O Port operations
//
Width = (EFI_CPU_IO_PROTOCOL_WIDTH)(Width & 0x03);
if (!MmioOperation && (Width == EfiCpuIoWidthUint64)) {
return EFI_INVALID_PARAMETER;
}
//
// Check to see if Address is aligned
//
if ((Address & (UINT64)(mInStride[Width] - 1)) != 0) {
return EFI_UNSUPPORTED;
}
//
// Check to see if any address associated with this transfer exceeds the maximum
// allowed address. The maximum address implied by the parameters passed in is
// Address + Size * Count. If the following condition is met, then the transfer
// is not supported.
//
// Address + Size * Count > (MmioOperation ? MAX_ADDRESS : MAX_IO_PORT_ADDRESS) + 1
//
// Since MAX_ADDRESS can be the maximum integer value supported by the CPU and Count
// can also be the maximum integer value supported by the CPU, this range
// check must be adjusted to avoid all overflow conditions.
//
// The following form of the range check is equivalent but assumes that
// MAX_ADDRESS and MAX_IO_PORT_ADDRESS are of the form (2^n - 1).
//
Limit = (MmioOperation ? MAX_ADDRESS : MAX_IO_PORT_ADDRESS);
if (Count == 0) {
if (Address > Limit) {
return EFI_UNSUPPORTED;
}
} else {
MaxCount = RShiftU64 (Limit, Width);
if (MaxCount < (Count - 1)) {
return EFI_UNSUPPORTED;
}
if (Address > LShiftU64 (MaxCount - Count + 1, Width)) {
return EFI_UNSUPPORTED;
}
}
//
// Check to see if Buffer is aligned
//
if (((UINTN)Buffer & ((MIN (sizeof (UINTN), mInStride[Width]) - 1))) != 0) {
return EFI_UNSUPPORTED;
}
return EFI_SUCCESS;
}
/**
Reads memory-mapped registers.
The I/O operations are carried out exactly as requested. The caller is responsible
for satisfying any alignment and I/O width restrictions that a PI System on a
platform might require. For example on some platforms, width requests of
EfiCpuIoWidthUint64 do not work. Misaligned buffers, on the other hand, will
be handled by the driver.
If Width is EfiCpuIoWidthUint8, EfiCpuIoWidthUint16, EfiCpuIoWidthUint32,
or EfiCpuIoWidthUint64, then both Address and Buffer are incremented for
each of the Count operations that is performed.
If Width is EfiCpuIoWidthFifoUint8, EfiCpuIoWidthFifoUint16,
EfiCpuIoWidthFifoUint32, or EfiCpuIoWidthFifoUint64, then only Buffer is
incremented for each of the Count operations that is performed. The read or
write operation is performed Count times on the same Address.
If Width is EfiCpuIoWidthFillUint8, EfiCpuIoWidthFillUint16,
EfiCpuIoWidthFillUint32, or EfiCpuIoWidthFillUint64, then only Address is
incremented for each of the Count operations that is performed. The read or
write operation is performed Count times from the first element of Buffer.
@param[in] This A pointer to the EFI_CPU_IO2_PROTOCOL instance.
@param[in] Width Signifies the width of the I/O or Memory operation.
@param[in] Address The base address of the I/O operation.
@param[in] Count The number of I/O operations to perform. The number of
bytes moved is Width size * Count, starting at Address.
@param[out] Buffer For read operations, the destination buffer to store the results.
For write operations, the source buffer from which to write data.
@retval EFI_SUCCESS The data was read from or written to the PI system.
@retval EFI_INVALID_PARAMETER Width is invalid for this PI system.
@retval EFI_INVALID_PARAMETER Buffer is NULL.
@retval EFI_UNSUPPORTED The Buffer is not aligned for the given Width.
@retval EFI_UNSUPPORTED The address range specified by Address, Width,
and Count is not valid for this PI system.
**/
STATIC
EFI_STATUS
EFIAPI
CpuMemoryServiceRead (
IN EFI_CPU_IO2_PROTOCOL *This,
IN EFI_CPU_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
OUT VOID *Buffer
)
{
EFI_STATUS Status;
UINT8 InStride;
UINT8 OutStride;
EFI_CPU_IO_PROTOCOL_WIDTH OperationWidth;
UINT8 *Uint8Buffer;
Status = CpuIoCheckParameter (TRUE, Width, Address, Count, Buffer);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Select loop based on the width of the transfer
//
InStride = mInStride[Width];
OutStride = mOutStride[Width];
OperationWidth = (EFI_CPU_IO_PROTOCOL_WIDTH)(Width & 0x03);
for (Uint8Buffer = Buffer; Count > 0; Address += InStride, Uint8Buffer += OutStride, Count--) {
if (OperationWidth == EfiCpuIoWidthUint8) {
*Uint8Buffer = MmioRead8 ((UINTN)Address);
} else if (OperationWidth == EfiCpuIoWidthUint16) {
*((UINT16 *)Uint8Buffer) = MmioRead16 ((UINTN)Address);
} else if (OperationWidth == EfiCpuIoWidthUint32) {
*((UINT32 *)Uint8Buffer) = MmioRead32 ((UINTN)Address);
} else if (OperationWidth == EfiCpuIoWidthUint64) {
*((UINT64 *)Uint8Buffer) = MmioRead64 ((UINTN)Address);
}
}
return EFI_SUCCESS;
}
/**
Writes memory-mapped registers.
The I/O operations are carried out exactly as requested. The caller is responsible
for satisfying any alignment and I/O width restrictions that a PI System on a
platform might require. For example on some platforms, width requests of
EfiCpuIoWidthUint64 do not work. Misaligned buffers, on the other hand, will
be handled by the driver.
If Width is EfiCpuIoWidthUint8, EfiCpuIoWidthUint16, EfiCpuIoWidthUint32,
or EfiCpuIoWidthUint64, then both Address and Buffer are incremented for
each of the Count operations that is performed.
If Width is EfiCpuIoWidthFifoUint8, EfiCpuIoWidthFifoUint16,
EfiCpuIoWidthFifoUint32, or EfiCpuIoWidthFifoUint64, then only Buffer is
incremented for each of the Count operations that is performed. The read or
write operation is performed Count times on the same Address.
If Width is EfiCpuIoWidthFillUint8, EfiCpuIoWidthFillUint16,
EfiCpuIoWidthFillUint32, or EfiCpuIoWidthFillUint64, then only Address is
incremented for each of the Count operations that is performed. The read or
write operation is performed Count times from the first element of Buffer.
@param[in] This A pointer to the EFI_CPU_IO2_PROTOCOL instance.
@param[in] Width Signifies the width of the I/O or Memory operation.
@param[in] Address The base address of the I/O operation.
@param[in] Count The number of I/O operations to perform. The number of
bytes moved is Width size * Count, starting at Address.
@param[in] Buffer For read operations, the destination buffer to store the results.
For write operations, the source buffer from which to write data.
@retval EFI_SUCCESS The data was read from or written to the PI system.
@retval EFI_INVALID_PARAMETER Width is invalid for this PI system.
@retval EFI_INVALID_PARAMETER Buffer is NULL.
@retval EFI_UNSUPPORTED The Buffer is not aligned for the given Width.
@retval EFI_UNSUPPORTED The address range specified by Address, Width,
and Count is not valid for this PI system.
**/
STATIC
EFI_STATUS
EFIAPI
CpuMemoryServiceWrite (
IN EFI_CPU_IO2_PROTOCOL *This,
IN EFI_CPU_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN VOID *Buffer
)
{
EFI_STATUS Status;
UINT8 InStride;
UINT8 OutStride;
EFI_CPU_IO_PROTOCOL_WIDTH OperationWidth;
UINT8 *Uint8Buffer;
Status = CpuIoCheckParameter (TRUE, Width, Address, Count, Buffer);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Select loop based on the width of the transfer
//
InStride = mInStride[Width];
OutStride = mOutStride[Width];
OperationWidth = (EFI_CPU_IO_PROTOCOL_WIDTH)(Width & 0x03);
for (Uint8Buffer = Buffer; Count > 0; Address += InStride, Uint8Buffer += OutStride, Count--) {
if (OperationWidth == EfiCpuIoWidthUint8) {
MmioWrite8 ((UINTN)Address, *Uint8Buffer);
} else if (OperationWidth == EfiCpuIoWidthUint16) {
MmioWrite16 ((UINTN)Address, *((UINT16 *)Uint8Buffer));
} else if (OperationWidth == EfiCpuIoWidthUint32) {
MmioWrite32 ((UINTN)Address, *((UINT32 *)Uint8Buffer));
} else if (OperationWidth == EfiCpuIoWidthUint64) {
MmioWrite64 ((UINTN)Address, *((UINT64 *)Uint8Buffer));
}
}
return EFI_SUCCESS;
}
/**
Reads I/O registers.
The I/O operations are carried out exactly as requested. The caller is responsible
for satisfying any alignment and I/O width restrictions that a PI System on a
platform might require. For example on some platforms, width requests of
EfiCpuIoWidthUint64 do not work. Misaligned buffers, on the other hand, will
be handled by the driver.
If Width is EfiCpuIoWidthUint8, EfiCpuIoWidthUint16, EfiCpuIoWidthUint32,
or EfiCpuIoWidthUint64, then both Address and Buffer are incremented for
each of the Count operations that is performed.
If Width is EfiCpuIoWidthFifoUint8, EfiCpuIoWidthFifoUint16,
EfiCpuIoWidthFifoUint32, or EfiCpuIoWidthFifoUint64, then only Buffer is
incremented for each of the Count operations that is performed. The read or
write operation is performed Count times on the same Address.
If Width is EfiCpuIoWidthFillUint8, EfiCpuIoWidthFillUint16,
EfiCpuIoWidthFillUint32, or EfiCpuIoWidthFillUint64, then only Address is
incremented for each of the Count operations that is performed. The read or
write operation is performed Count times from the first element of Buffer.
@param[in] This A pointer to the EFI_CPU_IO2_PROTOCOL instance.
@param[in] Width Signifies the width of the I/O or Memory operation.
@param[in] Address The base address of the I/O operation.
@param[in] Count The number of I/O operations to perform. The number of
bytes moved is Width size * Count, starting at Address.
@param[out] Buffer For read operations, the destination buffer to store the results.
For write operations, the source buffer from which to write data.
@retval EFI_SUCCESS The data was read from or written to the PI system.
@retval EFI_INVALID_PARAMETER Width is invalid for this PI system.
@retval EFI_INVALID_PARAMETER Buffer is NULL.
@retval EFI_UNSUPPORTED The Buffer is not aligned for the given Width.
@retval EFI_UNSUPPORTED The address range specified by Address, Width,
and Count is not valid for this PI system.
**/
STATIC
EFI_STATUS
EFIAPI
CpuIoServiceRead (
IN EFI_CPU_IO2_PROTOCOL *This,
IN EFI_CPU_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
OUT VOID *Buffer
)
{
EFI_STATUS Status;
UINT8 InStride;
UINT8 OutStride;
EFI_CPU_IO_PROTOCOL_WIDTH OperationWidth;
UINT8 *Uint8Buffer;
Status = CpuIoCheckParameter (FALSE, Width, Address, Count, Buffer);
if (EFI_ERROR (Status)) {
return Status;
}
Address += PcdGet64 (PcdPciIoTranslation);
//
// Select loop based on the width of the transfer
//
InStride = mInStride[Width];
OutStride = mOutStride[Width];
OperationWidth = (EFI_CPU_IO_PROTOCOL_WIDTH)(Width & 0x03);
for (Uint8Buffer = Buffer; Count > 0; Address += InStride, Uint8Buffer += OutStride, Count--) {
if (OperationWidth == EfiCpuIoWidthUint8) {
*Uint8Buffer = MmioRead8 ((UINTN)Address);
} else if (OperationWidth == EfiCpuIoWidthUint16) {
*((UINT16 *)Uint8Buffer) = MmioRead16 ((UINTN)Address);
} else if (OperationWidth == EfiCpuIoWidthUint32) {
*((UINT32 *)Uint8Buffer) = MmioRead32 ((UINTN)Address);
}
}
return EFI_SUCCESS;
}
/**
Write I/O registers.
The I/O operations are carried out exactly as requested. The caller is responsible
for satisfying any alignment and I/O width restrictions that a PI System on a
platform might require. For example on some platforms, width requests of
EfiCpuIoWidthUint64 do not work. Misaligned buffers, on the other hand, will
be handled by the driver.
If Width is EfiCpuIoWidthUint8, EfiCpuIoWidthUint16, EfiCpuIoWidthUint32,
or EfiCpuIoWidthUint64, then both Address and Buffer are incremented for
each of the Count operations that is performed.
If Width is EfiCpuIoWidthFifoUint8, EfiCpuIoWidthFifoUint16,
EfiCpuIoWidthFifoUint32, or EfiCpuIoWidthFifoUint64, then only Buffer is
incremented for each of the Count operations that is performed. The read or
write operation is performed Count times on the same Address.
If Width is EfiCpuIoWidthFillUint8, EfiCpuIoWidthFillUint16,
EfiCpuIoWidthFillUint32, or EfiCpuIoWidthFillUint64, then only Address is
incremented for each of the Count operations that is performed. The read or
write operation is performed Count times from the first element of Buffer.
@param[in] This A pointer to the EFI_CPU_IO2_PROTOCOL instance.
@param[in] Width Signifies the width of the I/O or Memory operation.
@param[in] Address The base address of the I/O operation.
@param[in] Count The number of I/O operations to perform. The number of
bytes moved is Width size * Count, starting at Address.
@param[in] Buffer For read operations, the destination buffer to store the results.
For write operations, the source buffer from which to write data.
@retval EFI_SUCCESS The data was read from or written to the PI system.
@retval EFI_INVALID_PARAMETER Width is invalid for this PI system.
@retval EFI_INVALID_PARAMETER Buffer is NULL.
@retval EFI_UNSUPPORTED The Buffer is not aligned for the given Width.
@retval EFI_UNSUPPORTED The address range specified by Address, Width,
and Count is not valid for this PI system.
**/
STATIC
EFI_STATUS
EFIAPI
CpuIoServiceWrite (
IN EFI_CPU_IO2_PROTOCOL *This,
IN EFI_CPU_IO_PROTOCOL_WIDTH Width,
IN UINT64 Address,
IN UINTN Count,
IN VOID *Buffer
)
{
EFI_STATUS Status;
UINT8 InStride;
UINT8 OutStride;
EFI_CPU_IO_PROTOCOL_WIDTH OperationWidth;
UINT8 *Uint8Buffer;
//
// Make sure the parameters are valid
//
Status = CpuIoCheckParameter (FALSE, Width, Address, Count, Buffer);
if (EFI_ERROR (Status)) {
return Status;
}
Address += PcdGet64 (PcdPciIoTranslation);
//
// Select loop based on the width of the transfer
//
InStride = mInStride[Width];
OutStride = mOutStride[Width];
OperationWidth = (EFI_CPU_IO_PROTOCOL_WIDTH)(Width & 0x03);
for (Uint8Buffer = (UINT8 *)Buffer; Count > 0; Address += InStride, Uint8Buffer += OutStride, Count--) {
if (OperationWidth == EfiCpuIoWidthUint8) {
MmioWrite8 ((UINTN)Address, *Uint8Buffer);
} else if (OperationWidth == EfiCpuIoWidthUint16) {
MmioWrite16 ((UINTN)Address, *((UINT16 *)Uint8Buffer));
} else if (OperationWidth == EfiCpuIoWidthUint32) {
MmioWrite32 ((UINTN)Address, *((UINT32 *)Uint8Buffer));
}
}
return EFI_SUCCESS;
}
//
// CPU I/O 2 Protocol instance
//
STATIC EFI_CPU_IO2_PROTOCOL mCpuIo2 = {
{
CpuMemoryServiceRead,
CpuMemoryServiceWrite
},
{
CpuIoServiceRead,
CpuIoServiceWrite
}
};
/**
The user Entry Point for module CpuIo2Dxe. The user code starts with this function.
@param[in] ImageHandle The firmware allocated handle for the EFI image.
@param[in] SystemTable A pointer to the EFI System Table.
@retval EFI_SUCCESS The entry point is executed successfully.
@retval other Some error occurs when executing this entry point.
**/
EFI_STATUS
EFIAPI
ArmPciCpuIo2Initialize (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
ASSERT_PROTOCOL_ALREADY_INSTALLED (NULL, &gEfiCpuIo2ProtocolGuid);
Status = gBS->InstallMultipleProtocolInterfaces (
&mHandle,
&gEfiCpuIo2ProtocolGuid,
&mCpuIo2,
NULL
);
ASSERT_EFI_ERROR (Status);
return Status;
}

View File

@ -0,0 +1,47 @@
## @file
# Produces the CPU I/O 2 Protocol by using the services of the I/O Library.
#
# Copyright (c) 2009 - 2014, Intel Corporation. All rights reserved.<BR>
# Copyright (c) 2016, Linaro Ltd. All rights reserved.<BR>
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
#
##
[Defines]
INF_VERSION = 0x00010005
BASE_NAME = ArmPciCpuIo2Dxe
FILE_GUID = 168D1A6E-F4A5-448A-9E95-795661BB3067
MODULE_TYPE = DXE_DRIVER
VERSION_STRING = 1.0
ENTRY_POINT = ArmPciCpuIo2Initialize
#
# The following information is for reference only and not required by the build tools.
#
# VALID_ARCHITECTURES = ARM AARCH64
#
[Sources]
ArmPciCpuIo2Dxe.c
[Packages]
ArmPkg/ArmPkg.dec
MdePkg/MdePkg.dec
[LibraryClasses]
UefiDriverEntryPoint
BaseLib
DebugLib
IoLib
PcdLib
UefiBootServicesTableLib
[Pcd]
gEfiMdePkgTokenSpaceGuid.PcdPciIoTranslation
[Protocols]
gEfiCpuIo2ProtocolGuid ## PRODUCES
[Depex]
TRUE

View File

@ -0,0 +1,40 @@
/** @file
Copyright (c) 2017-2018, Arm Limited. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
System Control and Management Interface V1.0
http://infocenter.arm.com/help/topic/com.arm.doc.den0056a/
DEN0056A_System_Control_and_Management_Interface.pdf
**/
#ifndef ARM_SCMI_BASE_PROTOCOL_PRIVATE_H_
#define ARM_SCMI_BASE_PROTOCOL_PRIVATE_H_
// Return values of BASE_DISCOVER_LIST_PROTOCOLS command.
typedef struct {
UINT32 NumProtocols;
// Array of four protocols in each element
// Total elements = 1 + (NumProtocols-1)/4
// NOTE: Since EDK2 does not allow flexible array member [] we declare
// here array of 1 element length. However below is used as a variable
// length array.
UINT8 Protocols[1];
} BASE_DISCOVER_LIST;
/** Initialize Base protocol and install protocol on a given handle.
@param[in] Handle Handle to install Base protocol.
@retval EFI_SUCCESS Base protocol interface installed
successfully.
**/
EFI_STATUS
ScmiBaseProtocolInit (
IN OUT EFI_HANDLE *Handle
);
#endif /* ARM_SCMI_BASE_PROTOCOL_PRIVATE_H_ */

View File

@ -0,0 +1,84 @@
/** @file
Copyright (c) 2017-2018, Arm Limited. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
System Control and Management Interface V1.0
http://infocenter.arm.com/help/topic/com.arm.doc.den0056a/
DEN0056A_System_Control_and_Management_Interface.pdf
**/
#ifndef ARM_SCMI_CLOCK_PROTOCOL_PRIVATE_H_
#define ARM_SCMI_CLOCK_PROTOCOL_PRIVATE_H_
#pragma pack(1)
// Clock rate in two 32bit words.
typedef struct {
UINT32 Low;
UINT32 High;
} CLOCK_RATE_DWORD;
// Format of the returned rate array. Linear or Non-linear,.RatesFlag Bit[12]
#define RATE_FORMAT_SHIFT 12
#define RATE_FORMAT_MASK 0x0001
#define RATE_FORMAT(RatesFlags) ((RatesFlags >> RATE_FORMAT_SHIFT) \
& RATE_FORMAT_MASK)
// Number of remaining rates after a call to the SCP, RatesFlag Bits[31:16]
#define NUM_REMAIN_RATES_SHIFT 16
#define NUM_REMAIN_RATES(RatesFlags) ((RatesFlags >> NUM_REMAIN_RATES_SHIFT))
// Number of rates that are returned by a call.to the SCP, RatesFlag Bits[11:0]
#define NUM_RATES_MASK 0x0FFF
#define NUM_RATES(RatesFlags) (RatesFlags & NUM_RATES_MASK)
// Return values for the CLOCK_DESCRIBER_RATE command.
typedef struct {
UINT32 NumRatesFlags;
// NOTE: Since EDK2 does not allow flexible array member [] we declare
// here array of 1 element length. However below is used as a variable
// length array.
CLOCK_RATE_DWORD Rates[1];
} CLOCK_DESCRIBE_RATES;
#define CLOCK_SET_DEFAULT_FLAGS 0
// Message parameters for CLOCK_RATE_SET command.
typedef struct {
UINT32 Flags;
UINT32 ClockId;
CLOCK_RATE_DWORD Rate;
} CLOCK_RATE_SET_ATTRIBUTES;
// Message parameters for CLOCK_CONFIG_SET command.
typedef struct {
UINT32 ClockId;
UINT32 Attributes;
} CLOCK_CONFIG_SET_ATTRIBUTES;
// if ClockAttr Bit[0] is set then clock device is enabled.
#define CLOCK_ENABLE_MASK 0x1
#define CLOCK_ENABLED(ClockAttr) ((ClockAttr & CLOCK_ENABLE_MASK) == 1)
typedef struct {
UINT32 Attributes;
UINT8 ClockName[SCMI_MAX_STR_LEN];
} CLOCK_ATTRIBUTES;
#pragma pack()
/** Initialize clock management protocol and install protocol on a given handle.
@param[in] Handle Handle to install clock management protocol.
@retval EFI_SUCCESS Clock protocol interface installed successfully.
**/
EFI_STATUS
ScmiClockProtocolInit (
IN EFI_HANDLE *Handle
);
#endif /* ARM_SCMI_CLOCK_PROTOCOL_PRIVATE_H_ */

View File

@ -0,0 +1,53 @@
#/** @file
#
# Copyright (c) 2017-2021, Arm Limited. All rights reserved.<BR>
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
#
# System Control and Management Interface V1.0
# http://infocenter.arm.com/help/topic/com.arm.doc.den0056a/
# DEN0056A_System_Control_and_Management_Interface.pdf
#**/
[Defines]
INF_VERSION = 0x00010019
BASE_NAME = ArmScmiDxe
FILE_GUID = 9585984C-F027-45E9-AFDF-ADAA6DFAAAC7
MODULE_TYPE = DXE_DRIVER
VERSION_STRING = 1.0
ENTRY_POINT = ArmScmiDxeEntryPoint
[Sources.common]
ArmScmiBaseProtocolPrivate.h
ArmScmiClockProtocolPrivate.h
ArmScmiPerformanceProtocolPrivate.h
ScmiBaseProtocol.c
Scmi.c
ScmiClockProtocol.c
ScmiDxe.c
ScmiDxe.h
ScmiPerformanceProtocol.c
ScmiPrivate.h
[Packages]
ArmPkg/ArmPkg.dec
ArmPlatformPkg/ArmPlatformPkg.dec
MdePkg/MdePkg.dec
[LibraryClasses]
ArmLib
ArmMtlLib
DebugLib
IoLib
UefiBootServicesTableLib
UefiDriverEntryPoint
[Protocols]
gArmScmiBaseProtocolGuid
gArmScmiClockProtocolGuid
gArmScmiClock2ProtocolGuid
gArmScmiPerformanceProtocolGuid
[Depex]
TRUE

View File

@ -0,0 +1,49 @@
/** @file
Copyright (c) 2017-2021, Arm Limited. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
System Control and Management Interface V1.0
http://infocenter.arm.com/help/topic/com.arm.doc.den0056a/
DEN0056A_System_Control_and_Management_Interface.pdf
**/
#ifndef ARM_SCMI_PERFORMANCE_PROTOCOL_PRIVATE_H_
#define ARM_SCMI_PERFORMANCE_PROTOCOL_PRIVATE_H_
#include <Protocol/ArmScmiPerformanceProtocol.h>
// Number of performance levels returned by a call to the SCP, Lvls Bits[11:0]
#define NUM_PERF_LEVELS_MASK 0x0FFF
#define NUM_PERF_LEVELS(Lvls) (Lvls & NUM_PERF_LEVELS_MASK)
// Number of performance levels remaining after a call to the SCP, Lvls Bits[31:16]
#define NUM_REMAIN_PERF_LEVELS_SHIFT 16
#define NUM_REMAIN_PERF_LEVELS(Lvls) (Lvls >> NUM_REMAIN_PERF_LEVELS_SHIFT)
/** Return values for ScmiMessageIdPerformanceDescribeLevels command.
SCMI Spec section 4.5.2.5
**/
typedef struct {
UINT32 NumLevels;
// NOTE: Since EDK2 does not allow flexible array member [] we declare
// here array of 1 element length. However below is used as a variable
// length array.
SCMI_PERFORMANCE_LEVEL PerfLevel[1]; // Offset to array of performance levels
} PERF_DESCRIBE_LEVELS;
/** Initialize performance management protocol and install on a given Handle.
@param[in] Handle Handle to install performance management
protocol.
@retval EFI_SUCCESS Performance protocol installed successfully.
**/
EFI_STATUS
ScmiPerformanceProtocolInit (
IN EFI_HANDLE *Handle
);
#endif /* ARM_SCMI_PERFORMANCE_PROTOCOL_PRIVATE_H_ */

View File

@ -0,0 +1,254 @@
/** @file
Copyright (c) 2017-2021, Arm Limited. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
System Control and Management Interface V1.0
http://infocenter.arm.com/help/topic/com.arm.doc.den0056a/
DEN0056A_System_Control_and_Management_Interface.pdf
**/
#include <Library/ArmMtlLib.h>
#include <Library/DebugLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include "ScmiPrivate.h"
// Arbitrary timeout value 20ms.
#define RESPONSE_TIMEOUT 20000
/** Return a pointer to the message payload.
@param[out] Payload Holds pointer to the message payload.
@retval EFI_SUCCESS Payload holds a valid message payload pointer.
@retval EFI_TIMEOUT Time out error if MTL channel is busy.
@retval EFI_UNSUPPORTED If MTL channel is unsupported.
**/
EFI_STATUS
ScmiCommandGetPayload (
OUT UINT32 **Payload
)
{
EFI_STATUS Status;
MTL_CHANNEL *Channel;
// Get handle to the Channel.
Status = MtlGetChannel (MTL_CHANNEL_TYPE_LOW, &Channel);
if (EFI_ERROR (Status)) {
return Status;
}
// Payload will not be populated until channel is free.
Status = MtlWaitUntilChannelFree (Channel, RESPONSE_TIMEOUT);
if (EFI_ERROR (Status)) {
return Status;
}
// Get the address of the payload.
*Payload = MtlGetChannelPayload (Channel);
return EFI_SUCCESS;
}
/** Execute a SCMI command and receive a response.
This function uses a MTL channel to transfer message to SCP
and waits for a response.
@param[in] Command Pointer to the SCMI command (Protocol ID
and Message ID)
@param[in,out] PayloadLength SCMI command message length.
@param[out] OPTIONAL ReturnValues Pointer to SCMI response.
@retval OUT EFI_SUCCESS Command sent and message received successfully.
@retval OUT EFI_UNSUPPORTED Channel not supported.
@retval OUT EFI_TIMEOUT Timeout on the channel.
@retval OUT EFI_DEVICE_ERROR Channel not ready.
@retval OUT EFI_DEVICE_ERROR Message Header corrupted.
@retval OUT EFI_DEVICE_ERROR SCMI error.
**/
EFI_STATUS
ScmiCommandExecute (
IN SCMI_COMMAND *Command,
IN OUT UINT32 *PayloadLength,
OUT UINT32 **ReturnValues OPTIONAL
)
{
EFI_STATUS Status;
SCMI_MESSAGE_RESPONSE *Response;
UINT32 MessageHeader;
UINT32 ResponseHeader;
MTL_CHANNEL *Channel;
ASSERT (PayloadLength != NULL);
Status = MtlGetChannel (MTL_CHANNEL_TYPE_LOW, &Channel);
if (EFI_ERROR (Status)) {
return Status;
}
// Fill in message header.
MessageHeader = SCMI_MESSAGE_HEADER (
Command->MessageId,
ScmiMessageTypeCommand,
Command->ProtocolId
);
// Send payload using MTL channel.
Status = MtlSendMessage (
Channel,
MessageHeader,
*PayloadLength
);
if (EFI_ERROR (Status)) {
return Status;
}
// Wait for the response on the channel.
Status = MtlReceiveMessage (Channel, &ResponseHeader, PayloadLength);
if (EFI_ERROR (Status)) {
return Status;
}
// SCMI must return MessageHeader unmodified.
if (MessageHeader != ResponseHeader) {
ASSERT (FALSE);
return EFI_DEVICE_ERROR;
}
Response = (SCMI_MESSAGE_RESPONSE *)MtlGetChannelPayload (Channel);
if (Response->Status != ScmiSuccess) {
DEBUG ((
DEBUG_ERROR,
"SCMI error: ProtocolId = 0x%x, MessageId = 0x%x, error = %d\n",
Command->ProtocolId,
Command->MessageId,
Response->Status
));
ASSERT (FALSE);
return EFI_DEVICE_ERROR;
}
if (ReturnValues != NULL) {
*ReturnValues = Response->ReturnValues;
}
return EFI_SUCCESS;
}
/** Internal common function useful for common protocol discovery messages.
@param[in] ProtocolId Protocol Id of the protocol.
@param[in] MessageId Message Id of the message.
@param[out] ReturnValues SCMI response return values.
@retval EFI_SUCCESS Success with valid return values.
@retval EFI_DEVICE_ERROR SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
STATIC
EFI_STATUS
ScmiProtocolDiscoveryCommon (
IN SCMI_PROTOCOL_ID ProtocolId,
IN SCMI_MESSAGE_ID MessageId,
OUT UINT32 **ReturnValues
)
{
SCMI_COMMAND Command;
UINT32 PayloadLength;
PayloadLength = 0;
Command.ProtocolId = ProtocolId;
Command.MessageId = MessageId;
return ScmiCommandExecute (
&Command,
&PayloadLength,
ReturnValues
);
}
/** Return protocol version from SCP for a given protocol ID.
@param[in] Protocol ID Protocol ID.
@param[out] Version Pointer to version of the protocol.
@retval EFI_SUCCESS Version holds a valid version received
from the SCP.
@retval EFI_DEVICE_ERROR SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
EFI_STATUS
ScmiGetProtocolVersion (
IN SCMI_PROTOCOL_ID ProtocolId,
OUT UINT32 *Version
)
{
EFI_STATUS Status;
UINT32 *ProtocolVersion;
Status = ScmiProtocolDiscoveryCommon (
ProtocolId,
ScmiMessageIdProtocolVersion,
(UINT32 **)&ProtocolVersion
);
if (EFI_ERROR (Status)) {
return Status;
}
*Version = *ProtocolVersion;
return EFI_SUCCESS;
}
/** Return protocol attributes from SCP for a given protocol ID.
@param[in] Protocol ID Protocol ID.
@param[out] ReturnValues Pointer to attributes of the protocol.
@retval EFI_SUCCESS ReturnValues points to protocol attributes.
@retval EFI_DEVICE_ERROR SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
EFI_STATUS
ScmiGetProtocolAttributes (
IN SCMI_PROTOCOL_ID ProtocolId,
OUT UINT32 **ReturnValues
)
{
return ScmiProtocolDiscoveryCommon (
ProtocolId,
ScmiMessageIdProtocolAttributes,
ReturnValues
);
}
/** Return protocol message attributes from SCP for a given protocol ID.
@param[in] Protocol ID Protocol ID.
@param[out] Attributes Pointer to attributes of the protocol.
@retval EFI_SUCCESS ReturnValues points to protocol message attributes.
@retval EFI_DEVICE_ERROR SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
EFI_STATUS
ScmiGetProtocolMessageAttributes (
IN SCMI_PROTOCOL_ID ProtocolId,
OUT UINT32 **ReturnValues
)
{
return ScmiProtocolDiscoveryCommon (
ProtocolId,
ScmiMessageIdProtocolMessageAttributes,
ReturnValues
);
}

View File

@ -0,0 +1,311 @@
/** @file
Copyright (c) 2017-2021, Arm Limited. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
System Control and Management Interface V1.0
http://infocenter.arm.com/help/topic/com.arm.doc.den0056a/
DEN0056A_System_Control_and_Management_Interface.pdf
**/
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Protocol/ArmScmiBaseProtocol.h>
#include "ArmScmiBaseProtocolPrivate.h"
#include "ScmiPrivate.h"
/** Return version of the Base protocol supported by SCP firmware.
@param[in] This A Pointer to SCMI_BASE_PROTOCOL Instance.
@param[out] Version Version of the supported SCMI Base protocol.
@retval EFI_SUCCESS The version of the protocol is returned.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
STATIC
EFI_STATUS
BaseGetVersion (
IN SCMI_BASE_PROTOCOL *This,
OUT UINT32 *Version
)
{
return ScmiGetProtocolVersion (ScmiProtocolIdBase, Version);
}
/** Return total number of SCMI protocols supported by the SCP firmware.
@param[in] This A Pointer to SCMI_BASE_PROTOCOL Instance.
@param[out] TotalProtocols Total number of SCMI protocols supported.
@retval EFI_SUCCESS Total number of protocols supported are returned.
@retval EFI_DEVICE_ERROR SCP returns a SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
STATIC
EFI_STATUS
BaseGetTotalProtocols (
IN SCMI_BASE_PROTOCOL *This,
OUT UINT32 *TotalProtocols
)
{
EFI_STATUS Status;
UINT32 *ReturnValues;
Status = ScmiGetProtocolAttributes (ScmiProtocolIdBase, &ReturnValues);
if (EFI_ERROR (Status)) {
return Status;
}
*TotalProtocols = SCMI_TOTAL_PROTOCOLS (ReturnValues[0]);
return EFI_SUCCESS;
}
/** Common function which returns vendor details.
@param[in] MessageId ScmiMessageIdBaseDiscoverVendor
OR
ScmiMessageIdBaseDiscoverSubVendor
@param[out] VendorIdentifier ASCII name of the vendor/subvendor.
@retval EFI_SUCCESS VendorIdentifier is returned.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
STATIC
EFI_STATUS
BaseDiscoverVendorDetails (
IN SCMI_MESSAGE_ID_BASE MessageId,
OUT UINT8 VendorIdentifier[SCMI_MAX_STR_LEN]
)
{
EFI_STATUS Status;
UINT32 *ReturnValues;
SCMI_COMMAND Cmd;
UINT32 PayloadLength;
Cmd.ProtocolId = ScmiProtocolIdBase;
Cmd.MessageId = MessageId;
PayloadLength = 0;
Status = ScmiCommandExecute (
&Cmd,
&PayloadLength,
&ReturnValues
);
if (EFI_ERROR (Status)) {
return Status;
}
AsciiStrCpyS (
(CHAR8 *)VendorIdentifier,
SCMI_MAX_STR_LEN,
(CONST CHAR8 *)ReturnValues
);
return EFI_SUCCESS;
}
/** Return vendor name.
@param[in] This A Pointer to SCMI_BASE_PROTOCOL Instance.
@param[out] VendorIdentifier Null terminated ASCII string of up to
16 bytes with a vendor name.
@retval EFI_SUCCESS VendorIdentifier is returned.
@retval EFI_DEVICE_ERROR SCP returns a SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
STATIC
EFI_STATUS
BaseDiscoverVendor (
IN SCMI_BASE_PROTOCOL *This,
OUT UINT8 VendorIdentifier[SCMI_MAX_STR_LEN]
)
{
return BaseDiscoverVendorDetails (
ScmiMessageIdBaseDiscoverVendor,
VendorIdentifier
);
}
/** Return sub vendor name.
@param[in] This A Pointer to SCMI_BASE_PROTOCOL Instance.
@param[out] VendorIdentifier Null terminated ASCII string of up to
16 bytes with a sub vendor name.
@retval EFI_SUCCESS VendorIdentifier is returned.
@retval EFI_DEVICE_ERROR SCP returns a SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
EFI_STATUS
BaseDiscoverSubVendor (
IN SCMI_BASE_PROTOCOL *This,
OUT UINT8 VendorIdentifier[SCMI_MAX_STR_LEN]
)
{
return BaseDiscoverVendorDetails (
ScmiMessageIdBaseDiscoverSubVendor,
VendorIdentifier
);
}
/** Return implementation version.
@param[in] This A Pointer to SCMI_BASE_PROTOCOL Instance.
@param[out] ImplementationVersion Vendor specific implementation version.
@retval EFI_SUCCESS Implementation version is returned.
@retval EFI_DEVICE_ERROR SCP returns a SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
STATIC
EFI_STATUS
BaseDiscoverImplVersion (
IN SCMI_BASE_PROTOCOL *This,
OUT UINT32 *ImplementationVersion
)
{
EFI_STATUS Status;
UINT32 *ReturnValues;
SCMI_COMMAND Cmd;
UINT32 PayloadLength;
Cmd.ProtocolId = ScmiProtocolIdBase;
Cmd.MessageId = ScmiMessageIdBaseDiscoverImplementationVersion;
PayloadLength = 0;
Status = ScmiCommandExecute (
&Cmd,
&PayloadLength,
&ReturnValues
);
if (EFI_ERROR (Status)) {
return Status;
}
*ImplementationVersion = ReturnValues[0];
return EFI_SUCCESS;
}
/** Return list of protocols.
@param[in] This A Pointer to SCMI_BASE_PROTOCOL Instance.
@param[out] ProtocolListSize Size of the ProtocolList.
@param[out] ProtocolList Protocol list.
@retval EFI_SUCCESS List of protocols is returned.
@retval EFI_BUFFER_TOO_SMALL ProtocolListSize is too small for the result.
It has been updated to the size needed.
@retval EFI_DEVICE_ERROR SCP returns a SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
STATIC
EFI_STATUS
BaseDiscoverListProtocols (
IN SCMI_BASE_PROTOCOL *This,
IN OUT UINT32 *ProtocolListSize,
OUT UINT8 *ProtocolList
)
{
EFI_STATUS Status;
UINT32 TotalProtocols;
UINT32 *MessageParams;
BASE_DISCOVER_LIST *DiscoverList;
UINT32 Skip;
UINT32 Index;
SCMI_COMMAND Cmd;
UINT32 PayloadLength;
UINT32 RequiredSize;
Status = BaseGetTotalProtocols (This, &TotalProtocols);
if (EFI_ERROR (Status)) {
return Status;
}
Status = ScmiCommandGetPayload (&MessageParams);
if (EFI_ERROR (Status)) {
return Status;
}
RequiredSize = sizeof (UINT8) * TotalProtocols;
if (*ProtocolListSize < RequiredSize) {
*ProtocolListSize = RequiredSize;
return EFI_BUFFER_TOO_SMALL;
}
Cmd.ProtocolId = ScmiProtocolIdBase;
Cmd.MessageId = ScmiMessageIdBaseDiscoverListProtocols;
Skip = 0;
while (Skip < TotalProtocols) {
*MessageParams = Skip;
// Note PayloadLength is a IN/OUT parameter.
PayloadLength = sizeof (Skip);
Status = ScmiCommandExecute (
&Cmd,
&PayloadLength,
(UINT32 **)&DiscoverList
);
if (EFI_ERROR (Status)) {
return Status;
}
for (Index = 0; Index < DiscoverList->NumProtocols; Index++) {
ProtocolList[Skip++] = DiscoverList->Protocols[Index];
}
}
*ProtocolListSize = RequiredSize;
return EFI_SUCCESS;
}
// Instance of the SCMI Base protocol.
STATIC CONST SCMI_BASE_PROTOCOL BaseProtocol = {
BaseGetVersion,
BaseGetTotalProtocols,
BaseDiscoverVendor,
BaseDiscoverSubVendor,
BaseDiscoverImplVersion,
BaseDiscoverListProtocols
};
/** Initialize Base protocol and install protocol on a given handle.
@param[in] Handle Handle to install Base protocol.
@retval EFI_SUCCESS Base protocol interface installed
successfully.
**/
EFI_STATUS
ScmiBaseProtocolInit (
IN OUT EFI_HANDLE *Handle
)
{
return gBS->InstallMultipleProtocolInterfaces (
Handle,
&gArmScmiBaseProtocolGuid,
&BaseProtocol,
NULL
);
}

View File

@ -0,0 +1,480 @@
/** @file
Copyright (c) 2017-2021, Arm Limited. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
System Control and Management Interface V1.0
http://infocenter.arm.com/help/topic/com.arm.doc.den0056a/
DEN0056A_System_Control_and_Management_Interface.pdf
**/
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Protocol/ArmScmiClockProtocol.h>
#include <Protocol/ArmScmiClock2Protocol.h>
#include "ArmScmiClockProtocolPrivate.h"
#include "ScmiPrivate.h"
/** Convert to 64 bit value from two 32 bit words.
@param[in] Low Lower 32 bits.
@param[in] High Higher 32 bits.
@retval UINT64 64 bit value.
**/
STATIC
UINT64
ConvertTo64Bit (
IN UINT32 Low,
IN UINT32 High
)
{
return (Low | ((UINT64)High << 32));
}
/** Return version of the clock management protocol supported by SCP firmware.
@param[in] This A Pointer to SCMI_CLOCK_PROTOCOL Instance.
@param[out] Version Version of the supported SCMI Clock management protocol.
@retval EFI_SUCCESS The version is returned.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
STATIC
EFI_STATUS
ClockGetVersion (
IN SCMI_CLOCK_PROTOCOL *This,
OUT UINT32 *Version
)
{
return ScmiGetProtocolVersion (ScmiProtocolIdClock, Version);
}
/** Return total number of clock devices supported by the clock management
protocol.
@param[in] This A Pointer to SCMI_CLOCK_PROTOCOL Instance.
@param[out] TotalClocks Total number of clocks supported.
@retval EFI_SUCCESS Total number of clocks supported is returned.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
STATIC
EFI_STATUS
ClockGetTotalClocks (
IN SCMI_CLOCK_PROTOCOL *This,
OUT UINT32 *TotalClocks
)
{
EFI_STATUS Status;
UINT32 *ReturnValues;
Status = ScmiGetProtocolAttributes (ScmiProtocolIdClock, &ReturnValues);
if (EFI_ERROR (Status)) {
return Status;
}
*TotalClocks = SCMI_CLOCK_PROTOCOL_TOTAL_CLKS (ReturnValues[0]);
return EFI_SUCCESS;
}
/** Return attributes of a clock device.
@param[in] This A Pointer to SCMI_CLOCK_PROTOCOL Instance.
@param[in] ClockId Identifier for the clock device.
@param[out] Enabled If TRUE, the clock device is enabled.
@param[out] ClockAsciiName A NULL terminated ASCII string with the clock
name, of up to 16 bytes.
@retval EFI_SUCCESS Clock device attributes are returned.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
STATIC
EFI_STATUS
ClockGetClockAttributes (
IN SCMI_CLOCK_PROTOCOL *This,
IN UINT32 ClockId,
OUT BOOLEAN *Enabled,
OUT CHAR8 *ClockAsciiName
)
{
EFI_STATUS Status;
UINT32 *MessageParams;
CLOCK_ATTRIBUTES *ClockAttributes;
SCMI_COMMAND Cmd;
UINT32 PayloadLength;
Status = ScmiCommandGetPayload (&MessageParams);
if (EFI_ERROR (Status)) {
return Status;
}
*MessageParams = ClockId;
Cmd.ProtocolId = ScmiProtocolIdClock;
Cmd.MessageId = ScmiMessageIdClockAttributes;
PayloadLength = sizeof (ClockId);
Status = ScmiCommandExecute (
&Cmd,
&PayloadLength,
(UINT32 **)&ClockAttributes
);
if (EFI_ERROR (Status)) {
return Status;
}
// TRUE if bit 0 of ClockAttributes->Attributes is set.
*Enabled = CLOCK_ENABLED (ClockAttributes->Attributes);
AsciiStrCpyS (
ClockAsciiName,
SCMI_MAX_STR_LEN,
(CONST CHAR8 *)ClockAttributes->ClockName
);
return EFI_SUCCESS;
}
/** Return list of rates supported by a given clock device.
@param[in] This A pointer to SCMI_CLOCK_PROTOCOL Instance.
@param[in] ClockId Identifier for the clock device.
@param[out] Format ScmiClockRateFormatDiscrete: Clock device
supports range of clock rates which are non-linear.
ScmiClockRateFormatLinear: Clock device supports
range of linear clock rates from Min to Max in steps.
@param[out] TotalRates Total number of rates.
@param[in,out] RateArraySize Size of the RateArray.
@param[out] RateArray List of clock rates.
@retval EFI_SUCCESS List of clock rates is returned.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval EFI_BUFFER_TOO_SMALL RateArraySize is too small for the result.
It has been updated to the size needed.
@retval !(EFI_SUCCESS) Other errors.
**/
STATIC
EFI_STATUS
ClockDescribeRates (
IN SCMI_CLOCK_PROTOCOL *This,
IN UINT32 ClockId,
OUT SCMI_CLOCK_RATE_FORMAT *Format,
OUT UINT32 *TotalRates,
IN OUT UINT32 *RateArraySize,
OUT SCMI_CLOCK_RATE *RateArray
)
{
EFI_STATUS Status;
UINT32 PayloadLength;
SCMI_COMMAND Cmd;
UINT32 *MessageParams;
CLOCK_DESCRIBE_RATES *DescribeRates;
CLOCK_RATE_DWORD *Rate;
UINT32 RequiredArraySize;
UINT32 RateIndex;
UINT32 RateNo;
UINT32 RateOffset;
*TotalRates = 0;
RequiredArraySize = 0;
RateIndex = 0;
Status = ScmiCommandGetPayload (&MessageParams);
if (EFI_ERROR (Status)) {
return Status;
}
Cmd.ProtocolId = ScmiProtocolIdClock;
Cmd.MessageId = ScmiMessageIdClockDescribeRates;
*MessageParams++ = ClockId;
do {
*MessageParams = RateIndex;
// Set Payload length, note PayloadLength is a IN/OUT parameter.
PayloadLength = sizeof (ClockId) + sizeof (RateIndex);
// Execute and wait for response on a SCMI channel.
Status = ScmiCommandExecute (
&Cmd,
&PayloadLength,
(UINT32 **)&DescribeRates
);
if (EFI_ERROR (Status)) {
return Status;
}
if (*TotalRates == 0) {
// In the first iteration we will get number of returned rates and number
// of remaining rates. With this information calculate required size
// for rate array. If provided RateArraySize is less, return an
// error.
*Format = RATE_FORMAT (DescribeRates->NumRatesFlags);
*TotalRates = NUM_RATES (DescribeRates->NumRatesFlags)
+ NUM_REMAIN_RATES (DescribeRates->NumRatesFlags);
if (*Format == ScmiClockRateFormatDiscrete) {
RequiredArraySize = (*TotalRates) * sizeof (UINT64);
} else {
// We need to return triplet of 64 bit value for each rate
RequiredArraySize = (*TotalRates) * 3 * sizeof (UINT64);
}
if (RequiredArraySize > (*RateArraySize)) {
*RateArraySize = RequiredArraySize;
return EFI_BUFFER_TOO_SMALL;
}
}
RateOffset = 0;
if (*Format == ScmiClockRateFormatDiscrete) {
for (RateNo = 0; RateNo < NUM_RATES (DescribeRates->NumRatesFlags); RateNo++) {
Rate = &DescribeRates->Rates[RateOffset++];
// Non-linear discrete rates.
RateArray[RateIndex++].DiscreteRate.Rate =
ConvertTo64Bit (Rate->Low, Rate->High);
}
} else {
for (RateNo = 0; RateNo < NUM_RATES (DescribeRates->NumRatesFlags); RateNo++) {
// Linear clock rates from minimum to maximum in steps
// Minimum clock rate.
Rate = &DescribeRates->Rates[RateOffset++];
RateArray[RateIndex].ContinuousRate.Min =
ConvertTo64Bit (Rate->Low, Rate->High);
Rate = &DescribeRates->Rates[RateOffset++];
// Maximum clock rate.
RateArray[RateIndex].ContinuousRate.Max =
ConvertTo64Bit (Rate->Low, Rate->High);
Rate = &DescribeRates->Rates[RateOffset++];
// Step.
RateArray[RateIndex++].ContinuousRate.Step =
ConvertTo64Bit (Rate->Low, Rate->High);
}
}
} while (NUM_REMAIN_RATES (DescribeRates->NumRatesFlags) != 0);
// Update RateArraySize with RequiredArraySize.
*RateArraySize = RequiredArraySize;
return EFI_SUCCESS;
}
/** Get clock rate.
@param[in] This A Pointer to SCMI_CLOCK_PROTOCOL Instance.
@param[in] ClockId Identifier for the clock device.
@param[out] Rate Clock rate.
@retval EFI_SUCCESS Clock rate is returned.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
STATIC
EFI_STATUS
ClockRateGet (
IN SCMI_CLOCK_PROTOCOL *This,
IN UINT32 ClockId,
OUT UINT64 *Rate
)
{
EFI_STATUS Status;
UINT32 *MessageParams;
CLOCK_RATE_DWORD *ClockRate;
SCMI_COMMAND Cmd;
UINT32 PayloadLength;
Status = ScmiCommandGetPayload (&MessageParams);
if (EFI_ERROR (Status)) {
return Status;
}
// Fill arguments for clock protocol command.
*MessageParams = ClockId;
Cmd.ProtocolId = ScmiProtocolIdClock;
Cmd.MessageId = ScmiMessageIdClockRateGet;
PayloadLength = sizeof (ClockId);
// Execute and wait for response on a SCMI channel.
Status = ScmiCommandExecute (
&Cmd,
&PayloadLength,
(UINT32 **)&ClockRate
);
if (EFI_ERROR (Status)) {
return Status;
}
*Rate = ConvertTo64Bit (ClockRate->Low, ClockRate->High);
return EFI_SUCCESS;
}
/** Set clock rate.
@param[in] This A Pointer to SCMI_CLOCK_PROTOCOL Instance.
@param[in] ClockId Identifier for the clock device.
@param[in] Rate Clock rate.
@retval EFI_SUCCESS Clock rate set success.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
STATIC
EFI_STATUS
ClockRateSet (
IN SCMI_CLOCK_PROTOCOL *This,
IN UINT32 ClockId,
IN UINT64 Rate
)
{
EFI_STATUS Status;
CLOCK_RATE_SET_ATTRIBUTES *ClockRateSetAttributes;
SCMI_COMMAND Cmd;
UINT32 PayloadLength;
Status = ScmiCommandGetPayload ((UINT32 **)&ClockRateSetAttributes);
if (EFI_ERROR (Status)) {
return Status;
}
// Fill arguments for clock protocol command.
ClockRateSetAttributes->ClockId = ClockId;
ClockRateSetAttributes->Flags = CLOCK_SET_DEFAULT_FLAGS;
ClockRateSetAttributes->Rate.Low = (UINT32)Rate;
ClockRateSetAttributes->Rate.High = (UINT32)(Rate >> 32);
Cmd.ProtocolId = ScmiProtocolIdClock;
Cmd.MessageId = ScmiMessageIdClockRateSet;
PayloadLength = sizeof (CLOCK_RATE_SET_ATTRIBUTES);
// Execute and wait for response on a SCMI channel.
Status = ScmiCommandExecute (
&Cmd,
&PayloadLength,
NULL
);
return Status;
}
/** Enable/Disable specified clock.
@param[in] This A Pointer to SCMI_CLOCK_PROTOCOL Instance.
@param[in] ClockId Identifier for the clock device.
@param[in] Enable TRUE to enable, FALSE to disable.
@retval EFI_SUCCESS Clock enable/disable successful.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
STATIC
EFI_STATUS
ClockEnable (
IN SCMI_CLOCK2_PROTOCOL *This,
IN UINT32 ClockId,
IN BOOLEAN Enable
)
{
EFI_STATUS Status;
CLOCK_CONFIG_SET_ATTRIBUTES *ClockConfigSetAttributes;
SCMI_COMMAND Cmd;
UINT32 PayloadLength;
Status = ScmiCommandGetPayload ((UINT32 **)&ClockConfigSetAttributes);
if (EFI_ERROR (Status)) {
return Status;
}
// Fill arguments for clock protocol command.
ClockConfigSetAttributes->ClockId = ClockId;
ClockConfigSetAttributes->Attributes = Enable ? BIT0 : 0;
Cmd.ProtocolId = ScmiProtocolIdClock;
Cmd.MessageId = ScmiMessageIdClockConfigSet;
PayloadLength = sizeof (CLOCK_CONFIG_SET_ATTRIBUTES);
// Execute and wait for response on a SCMI channel.
Status = ScmiCommandExecute (
&Cmd,
&PayloadLength,
NULL
);
return Status;
}
// Instance of the SCMI clock management protocol.
STATIC CONST SCMI_CLOCK_PROTOCOL ScmiClockProtocol = {
ClockGetVersion,
ClockGetTotalClocks,
ClockGetClockAttributes,
ClockDescribeRates,
ClockRateGet,
ClockRateSet
};
// Instance of the SCMI clock management protocol.
STATIC CONST SCMI_CLOCK2_PROTOCOL ScmiClock2Protocol = {
(SCMI_CLOCK2_GET_VERSION)ClockGetVersion,
(SCMI_CLOCK2_GET_TOTAL_CLOCKS)ClockGetTotalClocks,
(SCMI_CLOCK2_GET_CLOCK_ATTRIBUTES)ClockGetClockAttributes,
(SCMI_CLOCK2_DESCRIBE_RATES)ClockDescribeRates,
(SCMI_CLOCK2_RATE_GET)ClockRateGet,
(SCMI_CLOCK2_RATE_SET)ClockRateSet,
SCMI_CLOCK2_PROTOCOL_VERSION,
ClockEnable
};
/** Initialize clock management protocol and install protocol on a given handle.
@param[in] Handle Handle to install clock management protocol.
@retval EFI_SUCCESS Clock protocol interface installed successfully.
**/
EFI_STATUS
ScmiClockProtocolInit (
IN EFI_HANDLE *Handle
)
{
return gBS->InstallMultipleProtocolInterfaces (
Handle,
&gArmScmiClockProtocolGuid,
&ScmiClockProtocol,
&gArmScmiClock2ProtocolGuid,
&ScmiClock2Protocol,
NULL
);
}

View File

@ -0,0 +1,152 @@
/** @file
Copyright (c) 2017-2021, Arm Limited. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
@par Specification Reference:
- Arm System Control and Management Interface - Platform Design Document
(https://developer.arm.com/documentation/den0056/)
**/
#include <Base.h>
#include <Library/DebugLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Protocol/ArmScmiBaseProtocol.h>
#include <Protocol/ArmScmiClockProtocol.h>
#include <Protocol/ArmScmiPerformanceProtocol.h>
#include "ArmScmiBaseProtocolPrivate.h"
#include "ArmScmiClockProtocolPrivate.h"
#include "ArmScmiPerformanceProtocolPrivate.h"
#include "ScmiDxe.h"
#include "ScmiPrivate.h"
STATIC CONST SCMI_PROTOCOL_ENTRY Protocols[] = {
{ ScmiProtocolIdBase, ScmiBaseProtocolInit },
{ ScmiProtocolIdPerformance, ScmiPerformanceProtocolInit },
{ ScmiProtocolIdClock, ScmiClockProtocolInit }
};
/** ARM SCMI driver entry point function.
This function installs the SCMI Base protocol and a list of other
protocols is queried using the Base protocol. If protocol is supported,
driver will call each protocol init function to install the protocol on
the ImageHandle.
@param[in] ImageHandle Handle to this EFI Image which will be used to
install Base, Clock and Performance protocols.
@param[in] SystemTable A pointer to boot time system table.
@retval EFI_SUCCESS Driver initalized successfully.
@retval EFI_UNSUPPORTED If SCMI base protocol version is not supported.
@retval !(EFI_SUCCESS) Other errors.
**/
EFI_STATUS
EFIAPI
ArmScmiDxeEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
SCMI_BASE_PROTOCOL *BaseProtocol;
UINT32 Version;
UINT32 Index;
UINT32 NumProtocols;
UINT32 ProtocolIndex;
UINT8 *SupportedList;
UINT32 SupportedListSize;
// Every SCMI implementation must implement the base protocol.
ASSERT (Protocols[0].Id == ScmiProtocolIdBase);
Status = ScmiBaseProtocolInit (&ImageHandle);
if (EFI_ERROR (Status)) {
ASSERT (FALSE);
return Status;
}
Status = gBS->LocateProtocol (
&gArmScmiBaseProtocolGuid,
NULL,
(VOID **)&BaseProtocol
);
if (EFI_ERROR (Status)) {
ASSERT (FALSE);
return Status;
}
// Get SCMI Base protocol version.
Status = BaseProtocol->GetVersion (BaseProtocol, &Version);
if (EFI_ERROR (Status)) {
ASSERT (FALSE);
return Status;
}
// Accept any version between SCMI v1.0 and SCMI v2.0
if ((Version < BASE_PROTOCOL_VERSION_V1) ||
(Version > BASE_PROTOCOL_VERSION_V2))
{
ASSERT (FALSE);
return EFI_UNSUPPORTED;
}
// Apart from Base protocol, SCMI may implement various other protocols,
// query total protocols implemented by the SCP firmware.
NumProtocols = 0;
Status = BaseProtocol->GetTotalProtocols (BaseProtocol, &NumProtocols);
if (EFI_ERROR (Status)) {
ASSERT (FALSE);
return Status;
}
ASSERT (NumProtocols != 0);
SupportedListSize = (NumProtocols * sizeof (*SupportedList));
Status = gBS->AllocatePool (
EfiBootServicesData,
SupportedListSize,
(VOID **)&SupportedList
);
if (EFI_ERROR (Status)) {
ASSERT (FALSE);
return Status;
}
// Get the list of protocols supported by SCP firmware on the platform.
Status = BaseProtocol->DiscoverListProtocols (
BaseProtocol,
&SupportedListSize,
SupportedList
);
if (EFI_ERROR (Status)) {
gBS->FreePool (SupportedList);
ASSERT (FALSE);
return Status;
}
// Install supported protocol on ImageHandle.
for (ProtocolIndex = 1; ProtocolIndex < ARRAY_SIZE (Protocols);
ProtocolIndex++)
{
for (Index = 0; Index < NumProtocols; Index++) {
if (Protocols[ProtocolIndex].Id == SupportedList[Index]) {
Status = Protocols[ProtocolIndex].InitFn (&ImageHandle);
if (EFI_ERROR (Status)) {
ASSERT_EFI_ERROR (Status);
return Status;
}
break;
}
}
}
gBS->FreePool (SupportedList);
return EFI_SUCCESS;
}

View File

@ -0,0 +1,37 @@
/** @file
Copyright (c) 2017-2018, Arm Limited. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
System Control and Management Interface V1.0
http://infocenter.arm.com/help/topic/com.arm.doc.den0056a/
DEN0056A_System_Control_and_Management_Interface.pdf
**/
#ifndef SCMI_DXE_H_
#define SCMI_DXE_H_
#include "ScmiPrivate.h"
#define MAX_VENDOR_LEN SCMI_MAX_STR_LEN
/** Pointer to protocol initialization function.
@param[in] Handle A pointer to the EFI_HANDLE on which the protocol
interface is to be installed.
@retval EFI_SUCCESS Protocol interface installed successfully.
**/
typedef
EFI_STATUS
(EFIAPI *SCMI_PROTOCOL_INIT_FXN)(
IN EFI_HANDLE *Handle
);
typedef struct {
SCMI_PROTOCOL_ID Id; // Protocol Id.
SCMI_PROTOCOL_INIT_FXN InitFn; // Protocol init function.
} SCMI_PROTOCOL_ENTRY;
#endif /* SCMI_DXE_H_ */

View File

@ -0,0 +1,449 @@
/** @file
Copyright (c) 2017-2021, Arm Limited. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
System Control and Management Interface V1.0
http://infocenter.arm.com/help/topic/com.arm.doc.den0056a/
DEN0056A_System_Control_and_Management_Interface.pdf
**/
#include <Library/BaseMemoryLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Protocol/ArmScmiPerformanceProtocol.h>
#include "ArmScmiPerformanceProtocolPrivate.h"
#include "ScmiPrivate.h"
/** Return version of the performance management protocol supported by SCP.
firmware.
@param[in] This A Pointer to SCMI_PERFORMANCE_PROTOCOL Instance.
@param[out] Version Version of the supported SCMI performance management
protocol.
@retval EFI_SUCCESS The version is returned.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
STATIC
EFI_STATUS
PerformanceGetVersion (
IN SCMI_PERFORMANCE_PROTOCOL *This,
OUT UINT32 *Version
)
{
return ScmiGetProtocolVersion (ScmiProtocolIdPerformance, Version);
}
/** Return protocol attributes of the performance management protocol.
@param[in] This A Pointer to SCMI_PERFORMANCE_PROTOCOL Instance.
@param[out] Attributes Protocol attributes.
@retval EFI_SUCCESS Protocol attributes are returned.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
STATIC
EFI_STATUS
PerformanceGetAttributes (
IN SCMI_PERFORMANCE_PROTOCOL *This,
OUT SCMI_PERFORMANCE_PROTOCOL_ATTRIBUTES *Attributes
)
{
EFI_STATUS Status;
UINT32 *ReturnValues;
Status = ScmiGetProtocolAttributes (
ScmiProtocolIdPerformance,
&ReturnValues
);
if (EFI_ERROR (Status)) {
return Status;
}
CopyMem (
Attributes,
ReturnValues,
sizeof (SCMI_PERFORMANCE_PROTOCOL_ATTRIBUTES)
);
return EFI_SUCCESS;
}
/** Return performance domain attributes.
@param[in] This A Pointer to SCMI_PERFORMANCE_PROTOCOL Instance.
@param[in] DomainId Identifier for the performance domain.
@param[out] Attributes Performance domain attributes.
@retval EFI_SUCCESS Domain attributes are returned.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
STATIC
EFI_STATUS
PerformanceDomainAttributes (
IN SCMI_PERFORMANCE_PROTOCOL *This,
IN UINT32 DomainId,
OUT SCMI_PERFORMANCE_DOMAIN_ATTRIBUTES *DomainAttributes
)
{
EFI_STATUS Status;
UINT32 *MessageParams;
UINT32 *ReturnValues;
UINT32 PayloadLength;
SCMI_COMMAND Cmd;
Status = ScmiCommandGetPayload (&MessageParams);
if (EFI_ERROR (Status)) {
return Status;
}
*MessageParams = DomainId;
Cmd.ProtocolId = ScmiProtocolIdPerformance;
Cmd.MessageId = ScmiMessageIdPerformanceDomainAttributes;
PayloadLength = sizeof (DomainId);
Status = ScmiCommandExecute (
&Cmd,
&PayloadLength,
&ReturnValues
);
if (EFI_ERROR (Status)) {
return Status;
}
CopyMem (
DomainAttributes,
ReturnValues,
sizeof (SCMI_PERFORMANCE_DOMAIN_ATTRIBUTES)
);
return EFI_SUCCESS;
}
/** Return list of performance domain levels of a given domain.
@param[in] This A Pointer to SCMI_PERFORMANCE_PROTOCOL Instance.
@param[in] DomainId Identifier for the performance domain.
@param[out] NumLevels Total number of levels a domain can support.
@param[in,out] LevelArraySize Size of the performance level array.
@param[out] LevelArray Array of the performance levels.
@retval EFI_SUCCESS Domain levels are returned.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval EFI_BUFFER_TOO_SMALL LevelArraySize is too small for the result.
It has been updated to the size needed.
@retval !(EFI_SUCCESS) Other errors.
**/
STATIC
EFI_STATUS
PerformanceDescribeLevels (
IN SCMI_PERFORMANCE_PROTOCOL *This,
IN UINT32 DomainId,
OUT UINT32 *NumLevels,
IN OUT UINT32 *LevelArraySize,
OUT SCMI_PERFORMANCE_LEVEL *LevelArray
)
{
EFI_STATUS Status;
UINT32 PayloadLength;
SCMI_COMMAND Cmd;
UINT32 *MessageParams;
UINT32 LevelIndex;
UINT32 RequiredSize;
UINT32 LevelNo;
UINT32 ReturnNumLevels;
UINT32 ReturnRemainNumLevels;
PERF_DESCRIBE_LEVELS *Levels;
Status = ScmiCommandGetPayload (&MessageParams);
if (EFI_ERROR (Status)) {
return Status;
}
LevelIndex = 0;
RequiredSize = 0;
*MessageParams++ = DomainId;
Cmd.ProtocolId = ScmiProtocolIdPerformance;
Cmd.MessageId = ScmiMessageIdPerformanceDescribeLevels;
do {
*MessageParams = LevelIndex;
// Note, PayloadLength is an IN/OUT parameter.
PayloadLength = sizeof (DomainId) + sizeof (LevelIndex);
Status = ScmiCommandExecute (
&Cmd,
&PayloadLength,
(UINT32 **)&Levels
);
if (EFI_ERROR (Status)) {
return Status;
}
ReturnNumLevels = NUM_PERF_LEVELS (Levels->NumLevels);
ReturnRemainNumLevels = NUM_REMAIN_PERF_LEVELS (Levels->NumLevels);
if (RequiredSize == 0) {
*NumLevels = ReturnNumLevels + ReturnRemainNumLevels;
RequiredSize = (*NumLevels) * sizeof (SCMI_PERFORMANCE_LEVEL);
if (RequiredSize > (*LevelArraySize)) {
// Update LevelArraySize with required size.
*LevelArraySize = RequiredSize;
return EFI_BUFFER_TOO_SMALL;
}
}
for (LevelNo = 0; LevelNo < ReturnNumLevels; LevelNo++) {
CopyMem (
&LevelArray[LevelIndex++],
&Levels->PerfLevel[LevelNo],
sizeof (SCMI_PERFORMANCE_LEVEL)
);
}
} while (ReturnRemainNumLevels != 0);
*LevelArraySize = RequiredSize;
return EFI_SUCCESS;
}
/** Set performance limits of a domain.
@param[in] This A Pointer to SCMI_PERFORMANCE_PROTOCOL Instance.
@param[in] DomainId Identifier for the performance domain.
@param[in] Limit Performance limit to set.
@retval EFI_SUCCESS Performance limits set successfully.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
EFI_STATUS
PerformanceLimitsSet (
IN SCMI_PERFORMANCE_PROTOCOL *This,
IN UINT32 DomainId,
IN SCMI_PERFORMANCE_LIMITS *Limits
)
{
EFI_STATUS Status;
UINT32 PayloadLength;
SCMI_COMMAND Cmd;
UINT32 *MessageParams;
Status = ScmiCommandGetPayload (&MessageParams);
if (EFI_ERROR (Status)) {
return Status;
}
*MessageParams++ = DomainId;
*MessageParams++ = Limits->RangeMax;
*MessageParams = Limits->RangeMin;
Cmd.ProtocolId = ScmiProtocolIdPerformance;
Cmd.MessageId = ScmiMessageIdPerformanceLimitsSet;
PayloadLength = sizeof (DomainId) + sizeof (SCMI_PERFORMANCE_LIMITS);
Status = ScmiCommandExecute (
&Cmd,
&PayloadLength,
NULL
);
return Status;
}
/** Get performance limits of a domain.
@param[in] This A Pointer to SCMI_PERFORMANCE_PROTOCOL Instance.
@param[in] DomainId Identifier for the performance domain.
@param[out] Limit Performance Limits of the domain.
@retval EFI_SUCCESS Performance limits are returned.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
EFI_STATUS
PerformanceLimitsGet (
SCMI_PERFORMANCE_PROTOCOL *This,
UINT32 DomainId,
SCMI_PERFORMANCE_LIMITS *Limits
)
{
EFI_STATUS Status;
UINT32 PayloadLength;
SCMI_COMMAND Cmd;
UINT32 *MessageParams;
SCMI_PERFORMANCE_LIMITS *ReturnValues;
Status = ScmiCommandGetPayload (&MessageParams);
if (EFI_ERROR (Status)) {
return Status;
}
*MessageParams = DomainId;
Cmd.ProtocolId = ScmiProtocolIdPerformance;
Cmd.MessageId = ScmiMessageIdPerformanceLimitsGet;
PayloadLength = sizeof (DomainId);
Status = ScmiCommandExecute (
&Cmd,
&PayloadLength,
(UINT32 **)&ReturnValues
);
if (EFI_ERROR (Status)) {
return Status;
}
Limits->RangeMax = ReturnValues->RangeMax;
Limits->RangeMin = ReturnValues->RangeMin;
return EFI_SUCCESS;
}
/** Set performance level of a domain.
@param[in] This A Pointer to SCMI_PERFORMANCE_PROTOCOL Instance.
@param[in] DomainId Identifier for the performance domain.
@param[in] Level Performance level of the domain.
@retval EFI_SUCCESS Performance level set successfully.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
EFI_STATUS
PerformanceLevelSet (
IN SCMI_PERFORMANCE_PROTOCOL *This,
IN UINT32 DomainId,
IN UINT32 Level
)
{
EFI_STATUS Status;
UINT32 PayloadLength;
SCMI_COMMAND Cmd;
UINT32 *MessageParams;
Status = ScmiCommandGetPayload (&MessageParams);
if (EFI_ERROR (Status)) {
return Status;
}
*MessageParams++ = DomainId;
*MessageParams = Level;
Cmd.ProtocolId = ScmiProtocolIdPerformance;
Cmd.MessageId = ScmiMessageIdPerformanceLevelSet;
PayloadLength = sizeof (DomainId) + sizeof (Level);
Status = ScmiCommandExecute (
&Cmd,
&PayloadLength,
NULL
);
return Status;
}
/** Get performance level of a domain.
@param[in] This A Pointer to SCMI_PERFORMANCE_PROTOCOL Instance.
@param[in] DomainId Identifier for the performance domain.
@param[out] Level Performance level of the domain.
@retval EFI_SUCCESS Performance level got successfully.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
EFI_STATUS
PerformanceLevelGet (
IN SCMI_PERFORMANCE_PROTOCOL *This,
IN UINT32 DomainId,
OUT UINT32 *Level
)
{
EFI_STATUS Status;
UINT32 PayloadLength;
SCMI_COMMAND Cmd;
UINT32 *ReturnValues;
UINT32 *MessageParams;
Status = ScmiCommandGetPayload (&MessageParams);
if (EFI_ERROR (Status)) {
return Status;
}
*MessageParams = DomainId;
Cmd.ProtocolId = ScmiProtocolIdPerformance;
Cmd.MessageId = ScmiMessageIdPerformanceLevelGet;
PayloadLength = sizeof (DomainId);
Status = ScmiCommandExecute (
&Cmd,
&PayloadLength,
&ReturnValues
);
if (EFI_ERROR (Status)) {
return Status;
}
*Level = *ReturnValues;
return EFI_SUCCESS;
}
// Instance of the SCMI performance management protocol.
STATIC CONST SCMI_PERFORMANCE_PROTOCOL PerformanceProtocol = {
PerformanceGetVersion,
PerformanceGetAttributes,
PerformanceDomainAttributes,
PerformanceDescribeLevels,
PerformanceLimitsSet,
PerformanceLimitsGet,
PerformanceLevelSet,
PerformanceLevelGet
};
/** Initialize performance management protocol and install on a given Handle.
@param[in] Handle Handle to install performance management
protocol.
@retval EFI_SUCCESS Performance protocol installed successfully.
**/
EFI_STATUS
ScmiPerformanceProtocolInit (
IN EFI_HANDLE *Handle
)
{
return gBS->InstallMultipleProtocolInterfaces (
Handle,
&gArmScmiPerformanceProtocolGuid,
&PerformanceProtocol,
NULL
);
}

View File

@ -0,0 +1,169 @@
/** @file
Copyright (c) 2017-2021, Arm Limited. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
System Control and Management Interface V1.0
http://infocenter.arm.com/help/topic/com.arm.doc.den0056a/
DEN0056A_System_Control_and_Management_Interface.pdf
**/
#ifndef SCMI_PRIVATE_H_
#define SCMI_PRIVATE_H_
// SCMI protocol IDs.
typedef enum {
ScmiProtocolIdBase = 0x10,
ScmiProtocolIdPowerDomain = 0x11,
ScmiProtocolIdSystemPower = 0x12,
ScmiProtocolIdPerformance = 0x13,
ScmiProtocolIdClock = 0x14,
ScmiProtocolIdSensor = 0x15
} SCMI_PROTOCOL_ID;
// SCMI message types.
typedef enum {
ScmiMessageTypeCommand = 0,
ScmiMessageTypeDelayedResponse = 2, // Skipping 1 is deliberate.
ScmiMessageTypeNotification = 3
} SCMI_MESSAGE_TYPE;
// SCMI response error codes.
typedef enum {
ScmiSuccess = 0,
ScmiNotSupported = -1,
ScmiInvalidParameters = -2,
ScmiDenied = -3,
ScmiNotFound = -4,
ScmiOutOfRange = -5,
ScmiBusy = -6,
ScmiCommsError = -7,
ScmiGenericError = -8,
ScmiHardwareError = -9,
ScmiProtocolError = -10
} SCMI_STATUS;
// SCMI message IDs common to all protocols.
typedef enum {
ScmiMessageIdProtocolVersion = 0x0,
ScmiMessageIdProtocolAttributes = 0x1,
ScmiMessageIdProtocolMessageAttributes = 0x2
} SCMI_MESSAGE_ID;
// Not defined in SCMI specification but will help to identify a message.
typedef struct {
SCMI_PROTOCOL_ID ProtocolId;
UINT32 MessageId;
} SCMI_COMMAND;
#pragma pack(1)
// Response to a SCMI command.
typedef struct {
INT32 Status;
UINT32 ReturnValues[];
} SCMI_MESSAGE_RESPONSE;
// Message header. MsgId[7:0], MsgType[9:8], ProtocolId[17:10]
#define MESSAGE_TYPE_SHIFT 8
#define PROTOCOL_ID_SHIFT 10
#define SCMI_MESSAGE_HEADER(MsgId, MsgType, ProtocolId) ( \
MsgType << MESSAGE_TYPE_SHIFT | \
ProtocolId << PROTOCOL_ID_SHIFT | \
MsgId \
)
// SCMI message header.
typedef struct {
UINT32 MessageHeader;
} SCMI_MESSAGE_HEADER;
#pragma pack()
/** Return a pointer to the message payload.
@param[out] Payload Holds pointer to the message payload.
@retval EFI_SUCCESS Payload holds a valid message payload pointer.
@retval EFI_TIMEOUT Time out error if MTL channel is busy.
@retval EFI_UNSUPPORTED If MTL channel is unsupported.
**/
EFI_STATUS
ScmiCommandGetPayload (
OUT UINT32 **Payload
);
/** Execute a SCMI command and receive a response.
This function uses a MTL channel to transfer message to SCP
and waits for a response.
@param[in] Command Pointer to the SCMI command (Protocol ID
and Message ID)
@param[in,out] PayloadLength SCMI command message length.
@param[out] OPTIONAL ReturnValues Pointer to SCMI response.
@retval OUT EFI_SUCCESS Command sent and message received successfully.
@retval OUT EFI_UNSUPPORTED Channel not supported.
@retval OUT EFI_TIMEOUT Timeout on the channel.
@retval OUT EFI_DEVICE_ERROR Channel not ready.
@retval OUT EFI_DEVICE_ERROR Message Header corrupted.
@retval OUT EFI_DEVICE_ERROR SCMI error.
**/
EFI_STATUS
ScmiCommandExecute (
IN SCMI_COMMAND *Command,
IN OUT UINT32 *PayloadLength,
OUT UINT32 **ReturnValues OPTIONAL
);
/** Return protocol version from SCP for a given protocol ID.
@param[in] Protocol ID Protocol ID.
@param[out] Version Pointer to version of the protocol.
@retval EFI_SUCCESS Version holds a valid version received
from the SCP.
@retval EFI_DEVICE_ERROR SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
EFI_STATUS
ScmiGetProtocolVersion (
IN SCMI_PROTOCOL_ID ProtocolId,
OUT UINT32 *Version
);
/** Return protocol attributes from SCP for a given protocol ID.
@param[in] Protocol ID Protocol ID.
@param[out] ReturnValues Pointer to attributes of the protocol.
@retval EFI_SUCCESS ReturnValues points to protocol attributes.
@retval EFI_DEVICE_ERROR SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
EFI_STATUS
ScmiGetProtocolAttributes (
IN SCMI_PROTOCOL_ID ProtocolId,
OUT UINT32 **ReturnValues
);
/** Return protocol message attributes from SCP for a given protocol ID.
@param[in] Protocol ID Protocol ID.
@param[out] Attributes Pointer to attributes of the protocol.
@retval EFI_SUCCESS ReturnValues points to protocol message attributes.
@retval EFI_DEVICE_ERROR SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
EFI_STATUS
ScmiGetProtocolMessageAttributes (
IN SCMI_PROTOCOL_ID ProtocolId,
OUT UINT32 **ReturnValues
);
#endif /* SCMI_PRIVATE_H_ */

View File

@ -0,0 +1,433 @@
/*++
Copyright (c) 2009, Hewlett-Packard Company. All rights reserved.<BR>
Portions copyright (c) 2010, Apple Inc. All rights reserved.<BR>
Portions copyright (c) 2011-2021, Arm Limited. All rights reserved.<BR>
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
--*/
#include <Library/MemoryAllocationLib.h>
#include "CpuDxe.h"
#define INVALID_ENTRY ((UINT32)~0)
#define MIN_T0SZ 16
#define BITS_PER_LEVEL 9
STATIC
VOID
GetRootTranslationTableInfo (
IN UINTN T0SZ,
OUT UINTN *RootTableLevel,
OUT UINTN *RootTableEntryCount
)
{
*RootTableLevel = (T0SZ - MIN_T0SZ) / BITS_PER_LEVEL;
*RootTableEntryCount = TT_ENTRY_COUNT >> (T0SZ - MIN_T0SZ) % BITS_PER_LEVEL;
}
STATIC
UINT64
PageAttributeToGcdAttribute (
IN UINT64 PageAttributes
)
{
UINT64 GcdAttributes;
switch (PageAttributes & TT_ATTR_INDX_MASK) {
case TT_ATTR_INDX_DEVICE_MEMORY:
GcdAttributes = EFI_MEMORY_UC;
break;
case TT_ATTR_INDX_MEMORY_NON_CACHEABLE:
GcdAttributes = EFI_MEMORY_WC;
break;
case TT_ATTR_INDX_MEMORY_WRITE_THROUGH:
GcdAttributes = EFI_MEMORY_WT;
break;
case TT_ATTR_INDX_MEMORY_WRITE_BACK:
GcdAttributes = EFI_MEMORY_WB;
break;
default:
DEBUG ((
DEBUG_ERROR,
"PageAttributeToGcdAttribute: PageAttributes:0x%lX not supported.\n",
PageAttributes
));
ASSERT (0);
// The Global Coherency Domain (GCD) value is defined as a bit set.
// Returning 0 means no attribute has been set.
GcdAttributes = 0;
}
// Determine protection attributes
if (((PageAttributes & TT_AP_MASK) == TT_AP_NO_RO) ||
((PageAttributes & TT_AP_MASK) == TT_AP_RO_RO))
{
// Read only cases map to write-protect
GcdAttributes |= EFI_MEMORY_RO;
}
// Process eXecute Never attribute
if ((PageAttributes & (TT_PXN_MASK | TT_UXN_MASK)) != 0) {
GcdAttributes |= EFI_MEMORY_XP;
}
return GcdAttributes;
}
STATIC
UINT64
GetFirstPageAttribute (
IN UINT64 *FirstLevelTableAddress,
IN UINTN TableLevel
)
{
UINT64 FirstEntry;
// Get the first entry of the table
FirstEntry = *FirstLevelTableAddress;
if ((TableLevel != 3) && ((FirstEntry & TT_TYPE_MASK) == TT_TYPE_TABLE_ENTRY)) {
// Only valid for Levels 0, 1 and 2
// Get the attribute of the subsequent table
return GetFirstPageAttribute ((UINT64 *)(FirstEntry & TT_ADDRESS_MASK_DESCRIPTION_TABLE), TableLevel + 1);
} else if (((FirstEntry & TT_TYPE_MASK) == TT_TYPE_BLOCK_ENTRY) ||
((TableLevel == 3) && ((FirstEntry & TT_TYPE_MASK) == TT_TYPE_BLOCK_ENTRY_LEVEL3)))
{
return FirstEntry & TT_ATTR_INDX_MASK;
} else {
return INVALID_ENTRY;
}
}
STATIC
UINT64
GetNextEntryAttribute (
IN UINT64 *TableAddress,
IN UINTN EntryCount,
IN UINTN TableLevel,
IN UINT64 BaseAddress,
IN OUT UINT32 *PrevEntryAttribute,
IN OUT UINT64 *StartGcdRegion
)
{
UINTN Index;
UINT64 Entry;
UINT32 EntryAttribute;
UINT32 EntryType;
EFI_STATUS Status;
UINTN NumberOfDescriptors;
EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap;
// Get the memory space map from GCD
MemorySpaceMap = NULL;
Status = gDS->GetMemorySpaceMap (&NumberOfDescriptors, &MemorySpaceMap);
ASSERT_EFI_ERROR (Status);
// We cannot get more than 3-level page table
ASSERT (TableLevel <= 3);
// While the top level table might not contain TT_ENTRY_COUNT entries;
// the subsequent ones should be filled up
for (Index = 0; Index < EntryCount; Index++) {
Entry = TableAddress[Index];
EntryType = Entry & TT_TYPE_MASK;
EntryAttribute = Entry & TT_ATTR_INDX_MASK;
// If Entry is a Table Descriptor type entry then go through the sub-level table
if ((EntryType == TT_TYPE_BLOCK_ENTRY) ||
((TableLevel == 3) && (EntryType == TT_TYPE_BLOCK_ENTRY_LEVEL3)))
{
if ((*PrevEntryAttribute == INVALID_ENTRY) || (EntryAttribute != *PrevEntryAttribute)) {
if (*PrevEntryAttribute != INVALID_ENTRY) {
// Update GCD with the last region
SetGcdMemorySpaceAttributes (
MemorySpaceMap,
NumberOfDescriptors,
*StartGcdRegion,
(BaseAddress + (Index * TT_ADDRESS_AT_LEVEL (TableLevel))) - *StartGcdRegion,
PageAttributeToGcdAttribute (*PrevEntryAttribute)
);
}
// Start of the new region
*StartGcdRegion = BaseAddress + (Index * TT_ADDRESS_AT_LEVEL (TableLevel));
*PrevEntryAttribute = EntryAttribute;
} else {
continue;
}
} else if (EntryType == TT_TYPE_TABLE_ENTRY) {
// Table Entry type is only valid for Level 0, 1, 2
ASSERT (TableLevel < 3);
// Increase the level number and scan the sub-level table
GetNextEntryAttribute (
(UINT64 *)(Entry & TT_ADDRESS_MASK_DESCRIPTION_TABLE),
TT_ENTRY_COUNT,
TableLevel + 1,
(BaseAddress + (Index * TT_ADDRESS_AT_LEVEL (TableLevel))),
PrevEntryAttribute,
StartGcdRegion
);
} else {
if (*PrevEntryAttribute != INVALID_ENTRY) {
// Update GCD with the last region
SetGcdMemorySpaceAttributes (
MemorySpaceMap,
NumberOfDescriptors,
*StartGcdRegion,
(BaseAddress + (Index * TT_ADDRESS_AT_LEVEL (TableLevel))) - *StartGcdRegion,
PageAttributeToGcdAttribute (*PrevEntryAttribute)
);
// Start of the new region
*StartGcdRegion = BaseAddress + (Index * TT_ADDRESS_AT_LEVEL (TableLevel));
*PrevEntryAttribute = INVALID_ENTRY;
}
}
}
FreePool (MemorySpaceMap);
return BaseAddress + (EntryCount * TT_ADDRESS_AT_LEVEL (TableLevel));
}
EFI_STATUS
SyncCacheConfig (
IN EFI_CPU_ARCH_PROTOCOL *CpuProtocol
)
{
EFI_STATUS Status;
UINT32 PageAttribute;
UINT64 *FirstLevelTableAddress;
UINTN TableLevel;
UINTN TableCount;
UINTN NumberOfDescriptors;
EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap;
UINTN Tcr;
UINTN T0SZ;
UINT64 BaseAddressGcdRegion;
UINT64 EndAddressGcdRegion;
// This code assumes MMU is enabled and filed with section translations
ASSERT (ArmMmuEnabled ());
//
// Get the memory space map from GCD
//
MemorySpaceMap = NULL;
Status = gDS->GetMemorySpaceMap (&NumberOfDescriptors, &MemorySpaceMap);
ASSERT_EFI_ERROR (Status);
// The GCD implementation maintains its own copy of the state of memory space attributes. GCD needs
// to know what the initial memory space attributes are. The CPU Arch. Protocol does not provide a
// GetMemoryAttributes function for GCD to get this so we must resort to calling GCD (as if we were
// a client) to update its copy of the attributes. This is bad architecture and should be replaced
// with a way for GCD to query the CPU Arch. driver of the existing memory space attributes instead.
// Obtain page table base
FirstLevelTableAddress = (UINT64 *)(ArmGetTTBR0BaseAddress ());
// Get Translation Control Register value
Tcr = ArmGetTCR ();
// Get Address Region Size
T0SZ = Tcr & TCR_T0SZ_MASK;
// Get the level of the first table for the indicated Address Region Size
GetRootTranslationTableInfo (T0SZ, &TableLevel, &TableCount);
// First Attribute of the Page Tables
PageAttribute = GetFirstPageAttribute (FirstLevelTableAddress, TableLevel);
// We scan from the start of the memory map (ie: at the address 0x0)
BaseAddressGcdRegion = 0x0;
EndAddressGcdRegion = GetNextEntryAttribute (
FirstLevelTableAddress,
TableCount,
TableLevel,
BaseAddressGcdRegion,
&PageAttribute,
&BaseAddressGcdRegion
);
// Update GCD with the last region if valid
if (PageAttribute != INVALID_ENTRY) {
SetGcdMemorySpaceAttributes (
MemorySpaceMap,
NumberOfDescriptors,
BaseAddressGcdRegion,
EndAddressGcdRegion - BaseAddressGcdRegion,
PageAttributeToGcdAttribute (PageAttribute)
);
}
FreePool (MemorySpaceMap);
return EFI_SUCCESS;
}
UINT64
EfiAttributeToArmAttribute (
IN UINT64 EfiAttributes
)
{
UINT64 ArmAttributes;
switch (EfiAttributes & EFI_MEMORY_CACHETYPE_MASK) {
case EFI_MEMORY_UC:
if (ArmReadCurrentEL () == AARCH64_EL2) {
ArmAttributes = TT_ATTR_INDX_DEVICE_MEMORY | TT_XN_MASK;
} else {
ArmAttributes = TT_ATTR_INDX_DEVICE_MEMORY | TT_UXN_MASK | TT_PXN_MASK;
}
break;
case EFI_MEMORY_WC:
ArmAttributes = TT_ATTR_INDX_MEMORY_NON_CACHEABLE;
break;
case EFI_MEMORY_WT:
ArmAttributes = TT_ATTR_INDX_MEMORY_WRITE_THROUGH | TT_SH_INNER_SHAREABLE;
break;
case EFI_MEMORY_WB:
ArmAttributes = TT_ATTR_INDX_MEMORY_WRITE_BACK | TT_SH_INNER_SHAREABLE;
break;
default:
ArmAttributes = TT_ATTR_INDX_MASK;
}
// Set the access flag to match the block attributes
ArmAttributes |= TT_AF;
// Determine protection attributes
if ((EfiAttributes & EFI_MEMORY_RO) != 0) {
ArmAttributes |= TT_AP_NO_RO;
}
// Process eXecute Never attribute
if ((EfiAttributes & EFI_MEMORY_XP) != 0) {
ArmAttributes |= TT_PXN_MASK;
}
return ArmAttributes;
}
// This function will recursively go down the page table to find the first block address linked to 'BaseAddress'.
// And then the function will identify the size of the region that has the same page table attribute.
EFI_STATUS
GetMemoryRegionRec (
IN UINT64 *TranslationTable,
IN UINTN TableLevel,
IN UINT64 *LastBlockEntry,
IN OUT UINTN *BaseAddress,
OUT UINTN *RegionLength,
OUT UINTN *RegionAttributes
)
{
EFI_STATUS Status;
UINT64 *NextTranslationTable;
UINT64 *BlockEntry;
UINT64 BlockEntryType;
UINT64 EntryType;
if (TableLevel != 3) {
BlockEntryType = TT_TYPE_BLOCK_ENTRY;
} else {
BlockEntryType = TT_TYPE_BLOCK_ENTRY_LEVEL3;
}
// Find the block entry linked to the Base Address
BlockEntry = (UINT64 *)TT_GET_ENTRY_FOR_ADDRESS (TranslationTable, TableLevel, *BaseAddress);
EntryType = *BlockEntry & TT_TYPE_MASK;
if ((TableLevel < 3) && (EntryType == TT_TYPE_TABLE_ENTRY)) {
NextTranslationTable = (UINT64 *)(*BlockEntry & TT_ADDRESS_MASK_DESCRIPTION_TABLE);
// The entry is a page table, so we go to the next level
Status = GetMemoryRegionRec (
NextTranslationTable, // Address of the next level page table
TableLevel + 1, // Next Page Table level
(UINTN *)TT_LAST_BLOCK_ADDRESS (NextTranslationTable, TT_ENTRY_COUNT),
BaseAddress,
RegionLength,
RegionAttributes
);
// In case of 'Success', it means the end of the block region has been found into the upper
// level translation table
if (!EFI_ERROR (Status)) {
return EFI_SUCCESS;
}
// Now we processed the table move to the next entry
BlockEntry++;
} else if (EntryType == BlockEntryType) {
// We have found the BlockEntry attached to the address. We save its start address (the start
// address might be before the 'BaseAddress') and attributes
*BaseAddress = *BaseAddress & ~(TT_ADDRESS_AT_LEVEL (TableLevel) - 1);
*RegionLength = 0;
*RegionAttributes = *BlockEntry & TT_ATTRIBUTES_MASK;
} else {
// We have an 'Invalid' entry
return EFI_UNSUPPORTED;
}
while (BlockEntry <= LastBlockEntry) {
if ((*BlockEntry & TT_ATTRIBUTES_MASK) == *RegionAttributes) {
*RegionLength = *RegionLength + TT_BLOCK_ENTRY_SIZE_AT_LEVEL (TableLevel);
} else {
// In case we have found the end of the region we return success
return EFI_SUCCESS;
}
BlockEntry++;
}
// If we have reached the end of the TranslationTable and we have not found the end of the region then
// we return EFI_NOT_FOUND.
// The caller will continue to look for the memory region at its level
return EFI_NOT_FOUND;
}
EFI_STATUS
GetMemoryRegion (
IN OUT UINTN *BaseAddress,
OUT UINTN *RegionLength,
OUT UINTN *RegionAttributes
)
{
EFI_STATUS Status;
UINT64 *TranslationTable;
UINTN TableLevel;
UINTN EntryCount;
UINTN T0SZ;
ASSERT ((BaseAddress != NULL) && (RegionLength != NULL) && (RegionAttributes != NULL));
TranslationTable = ArmGetTTBR0BaseAddress ();
T0SZ = ArmGetTCR () & TCR_T0SZ_MASK;
// Get the Table info from T0SZ
GetRootTranslationTableInfo (T0SZ, &TableLevel, &EntryCount);
Status = GetMemoryRegionRec (
TranslationTable,
TableLevel,
(UINTN *)TT_LAST_BLOCK_ADDRESS (TranslationTable, EntryCount),
BaseAddress,
RegionLength,
RegionAttributes
);
// If the region continues up to the end of the root table then GetMemoryRegionRec()
// will return EFI_NOT_FOUND
if (Status == EFI_NOT_FOUND) {
return EFI_SUCCESS;
} else {
return Status;
}
}

View File

@ -0,0 +1,518 @@
/*++
Copyright (c) 2009, Hewlett-Packard Company. All rights reserved.<BR>
Portions copyright (c) 2010, Apple Inc. All rights reserved.<BR>
Portions copyright (c) 2013-2021, Arm Limited. All rights reserved.<BR>
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
--*/
#include <Library/MemoryAllocationLib.h>
#include "CpuDxe.h"
EFI_STATUS
SectionToGcdAttributes (
IN UINT32 SectionAttributes,
OUT UINT64 *GcdAttributes
)
{
*GcdAttributes = 0;
// determine cacheability attributes
switch (SectionAttributes & TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK) {
case TT_DESCRIPTOR_SECTION_CACHE_POLICY_STRONGLY_ORDERED:
*GcdAttributes |= EFI_MEMORY_UC;
break;
case TT_DESCRIPTOR_SECTION_CACHE_POLICY_SHAREABLE_DEVICE:
*GcdAttributes |= EFI_MEMORY_UC;
break;
case TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_THROUGH_NO_ALLOC:
*GcdAttributes |= EFI_MEMORY_WT;
break;
case TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_BACK_NO_ALLOC:
*GcdAttributes |= EFI_MEMORY_WB;
break;
case TT_DESCRIPTOR_SECTION_CACHE_POLICY_NON_CACHEABLE:
*GcdAttributes |= EFI_MEMORY_WC;
break;
case TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_BACK_ALLOC:
*GcdAttributes |= EFI_MEMORY_WB;
break;
case TT_DESCRIPTOR_SECTION_CACHE_POLICY_NON_SHAREABLE_DEVICE:
*GcdAttributes |= EFI_MEMORY_UC;
break;
default:
return EFI_UNSUPPORTED;
}
// determine protection attributes
switch (SectionAttributes & TT_DESCRIPTOR_SECTION_AP_MASK) {
case TT_DESCRIPTOR_SECTION_AP_NO_NO: // no read, no write
// *GcdAttributes |= EFI_MEMORY_RO | EFI_MEMORY_RP;
break;
case TT_DESCRIPTOR_SECTION_AP_RW_NO:
case TT_DESCRIPTOR_SECTION_AP_RW_RW:
// normal read/write access, do not add additional attributes
break;
// read only cases map to write-protect
case TT_DESCRIPTOR_SECTION_AP_RO_NO:
case TT_DESCRIPTOR_SECTION_AP_RO_RO:
*GcdAttributes |= EFI_MEMORY_RO;
break;
default:
return EFI_UNSUPPORTED;
}
// now process eXectue Never attribute
if ((SectionAttributes & TT_DESCRIPTOR_SECTION_XN_MASK) != 0 ) {
*GcdAttributes |= EFI_MEMORY_XP;
}
return EFI_SUCCESS;
}
EFI_STATUS
PageToGcdAttributes (
IN UINT32 PageAttributes,
OUT UINT64 *GcdAttributes
)
{
*GcdAttributes = 0;
// determine cacheability attributes
switch (PageAttributes & TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK) {
case TT_DESCRIPTOR_PAGE_CACHE_POLICY_STRONGLY_ORDERED:
*GcdAttributes |= EFI_MEMORY_UC;
break;
case TT_DESCRIPTOR_PAGE_CACHE_POLICY_SHAREABLE_DEVICE:
*GcdAttributes |= EFI_MEMORY_UC;
break;
case TT_DESCRIPTOR_PAGE_CACHE_POLICY_WRITE_THROUGH_NO_ALLOC:
*GcdAttributes |= EFI_MEMORY_WT;
break;
case TT_DESCRIPTOR_PAGE_CACHE_POLICY_WRITE_BACK_NO_ALLOC:
*GcdAttributes |= EFI_MEMORY_WB;
break;
case TT_DESCRIPTOR_PAGE_CACHE_POLICY_NON_CACHEABLE:
*GcdAttributes |= EFI_MEMORY_WC;
break;
case TT_DESCRIPTOR_PAGE_CACHE_POLICY_WRITE_BACK_ALLOC:
*GcdAttributes |= EFI_MEMORY_WB;
break;
case TT_DESCRIPTOR_PAGE_CACHE_POLICY_NON_SHAREABLE_DEVICE:
*GcdAttributes |= EFI_MEMORY_UC;
break;
default:
return EFI_UNSUPPORTED;
}
// determine protection attributes
switch (PageAttributes & TT_DESCRIPTOR_PAGE_AP_MASK) {
case TT_DESCRIPTOR_PAGE_AP_NO_NO: // no read, no write
// *GcdAttributes |= EFI_MEMORY_RO | EFI_MEMORY_RP;
break;
case TT_DESCRIPTOR_PAGE_AP_RW_NO:
case TT_DESCRIPTOR_PAGE_AP_RW_RW:
// normal read/write access, do not add additional attributes
break;
// read only cases map to write-protect
case TT_DESCRIPTOR_PAGE_AP_RO_NO:
case TT_DESCRIPTOR_PAGE_AP_RO_RO:
*GcdAttributes |= EFI_MEMORY_RO;
break;
default:
return EFI_UNSUPPORTED;
}
// now process eXectue Never attribute
if ((PageAttributes & TT_DESCRIPTOR_PAGE_XN_MASK) != 0 ) {
*GcdAttributes |= EFI_MEMORY_XP;
}
return EFI_SUCCESS;
}
EFI_STATUS
SyncCacheConfigPage (
IN UINT32 SectionIndex,
IN UINT32 FirstLevelDescriptor,
IN UINTN NumberOfDescriptors,
IN EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap,
IN OUT EFI_PHYSICAL_ADDRESS *NextRegionBase,
IN OUT UINT64 *NextRegionLength,
IN OUT UINT32 *NextSectionAttributes
)
{
EFI_STATUS Status;
UINT32 i;
volatile ARM_PAGE_TABLE_ENTRY *SecondLevelTable;
UINT32 NextPageAttributes;
UINT32 PageAttributes;
UINT32 BaseAddress;
UINT64 GcdAttributes;
// Get the Base Address from FirstLevelDescriptor;
BaseAddress = TT_DESCRIPTOR_PAGE_BASE_ADDRESS (SectionIndex << TT_DESCRIPTOR_SECTION_BASE_SHIFT);
// Convert SectionAttributes into PageAttributes
NextPageAttributes =
TT_DESCRIPTOR_CONVERT_TO_PAGE_CACHE_POLICY (*NextSectionAttributes, 0) |
TT_DESCRIPTOR_CONVERT_TO_PAGE_AP (*NextSectionAttributes);
// obtain page table base
SecondLevelTable = (ARM_PAGE_TABLE_ENTRY *)(FirstLevelDescriptor & TT_DESCRIPTOR_SECTION_PAGETABLE_ADDRESS_MASK);
for (i = 0; i < TRANSLATION_TABLE_PAGE_COUNT; i++) {
if ((SecondLevelTable[i] & TT_DESCRIPTOR_PAGE_TYPE_MASK) == TT_DESCRIPTOR_PAGE_TYPE_PAGE) {
// extract attributes (cacheability and permissions)
PageAttributes = SecondLevelTable[i] & (TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK | TT_DESCRIPTOR_PAGE_AP_MASK);
if (NextPageAttributes == 0) {
// start on a new region
*NextRegionLength = 0;
*NextRegionBase = BaseAddress | (i << TT_DESCRIPTOR_PAGE_BASE_SHIFT);
NextPageAttributes = PageAttributes;
} else if (PageAttributes != NextPageAttributes) {
// Convert Section Attributes into GCD Attributes
Status = PageToGcdAttributes (NextPageAttributes, &GcdAttributes);
ASSERT_EFI_ERROR (Status);
// update GCD with these changes (this will recurse into our own CpuSetMemoryAttributes below which is OK)
SetGcdMemorySpaceAttributes (MemorySpaceMap, NumberOfDescriptors, *NextRegionBase, *NextRegionLength, GcdAttributes);
// start on a new region
*NextRegionLength = 0;
*NextRegionBase = BaseAddress | (i << TT_DESCRIPTOR_PAGE_BASE_SHIFT);
NextPageAttributes = PageAttributes;
}
} else if (NextPageAttributes != 0) {
// Convert Page Attributes into GCD Attributes
Status = PageToGcdAttributes (NextPageAttributes, &GcdAttributes);
ASSERT_EFI_ERROR (Status);
// update GCD with these changes (this will recurse into our own CpuSetMemoryAttributes below which is OK)
SetGcdMemorySpaceAttributes (MemorySpaceMap, NumberOfDescriptors, *NextRegionBase, *NextRegionLength, GcdAttributes);
*NextRegionLength = 0;
*NextRegionBase = BaseAddress | (i << TT_DESCRIPTOR_PAGE_BASE_SHIFT);
NextPageAttributes = 0;
}
*NextRegionLength += TT_DESCRIPTOR_PAGE_SIZE;
}
// Convert back PageAttributes into SectionAttributes
*NextSectionAttributes =
TT_DESCRIPTOR_CONVERT_TO_SECTION_CACHE_POLICY (NextPageAttributes, 0) |
TT_DESCRIPTOR_CONVERT_TO_SECTION_AP (NextPageAttributes);
return EFI_SUCCESS;
}
EFI_STATUS
SyncCacheConfig (
IN EFI_CPU_ARCH_PROTOCOL *CpuProtocol
)
{
EFI_STATUS Status;
UINT32 i;
EFI_PHYSICAL_ADDRESS NextRegionBase;
UINT64 NextRegionLength;
UINT32 NextSectionAttributes;
UINT32 SectionAttributes;
UINT64 GcdAttributes;
volatile ARM_FIRST_LEVEL_DESCRIPTOR *FirstLevelTable;
UINTN NumberOfDescriptors;
EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap;
DEBUG ((DEBUG_PAGE, "SyncCacheConfig()\n"));
// This code assumes MMU is enabled and filed with section translations
ASSERT (ArmMmuEnabled ());
//
// Get the memory space map from GCD
//
MemorySpaceMap = NULL;
Status = gDS->GetMemorySpaceMap (&NumberOfDescriptors, &MemorySpaceMap);
ASSERT_EFI_ERROR (Status);
// The GCD implementation maintains its own copy of the state of memory space attributes. GCD needs
// to know what the initial memory space attributes are. The CPU Arch. Protocol does not provide a
// GetMemoryAttributes function for GCD to get this so we must resort to calling GCD (as if we were
// a client) to update its copy of the attributes. This is bad architecture and should be replaced
// with a way for GCD to query the CPU Arch. driver of the existing memory space attributes instead.
// obtain page table base
FirstLevelTable = (ARM_FIRST_LEVEL_DESCRIPTOR *)(ArmGetTTBR0BaseAddress ());
// Get the first region
NextSectionAttributes = FirstLevelTable[0] & (TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK | TT_DESCRIPTOR_SECTION_AP_MASK);
// iterate through each 1MB descriptor
NextRegionBase = NextRegionLength = 0;
for (i = 0; i < TRANSLATION_TABLE_SECTION_COUNT; i++) {
if ((FirstLevelTable[i] & TT_DESCRIPTOR_SECTION_TYPE_MASK) == TT_DESCRIPTOR_SECTION_TYPE_SECTION) {
// extract attributes (cacheability and permissions)
SectionAttributes = FirstLevelTable[i] & (TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK | TT_DESCRIPTOR_SECTION_AP_MASK);
if (NextSectionAttributes == 0) {
// start on a new region
NextRegionLength = 0;
NextRegionBase = TT_DESCRIPTOR_SECTION_BASE_ADDRESS (i << TT_DESCRIPTOR_SECTION_BASE_SHIFT);
NextSectionAttributes = SectionAttributes;
} else if (SectionAttributes != NextSectionAttributes) {
// Convert Section Attributes into GCD Attributes
Status = SectionToGcdAttributes (NextSectionAttributes, &GcdAttributes);
ASSERT_EFI_ERROR (Status);
// update GCD with these changes (this will recurse into our own CpuSetMemoryAttributes below which is OK)
SetGcdMemorySpaceAttributes (MemorySpaceMap, NumberOfDescriptors, NextRegionBase, NextRegionLength, GcdAttributes);
// start on a new region
NextRegionLength = 0;
NextRegionBase = TT_DESCRIPTOR_SECTION_BASE_ADDRESS (i << TT_DESCRIPTOR_SECTION_BASE_SHIFT);
NextSectionAttributes = SectionAttributes;
}
NextRegionLength += TT_DESCRIPTOR_SECTION_SIZE;
} else if (TT_DESCRIPTOR_SECTION_TYPE_IS_PAGE_TABLE (FirstLevelTable[i])) {
// In this case any bits set in the 'NextSectionAttributes' are garbage and were set from
// bits that are actually part of the pagetable address. We clear it out to zero so that
// the SyncCacheConfigPage will use the page attributes instead of trying to convert the
// section attributes into page attributes
NextSectionAttributes = 0;
Status = SyncCacheConfigPage (
i,
FirstLevelTable[i],
NumberOfDescriptors,
MemorySpaceMap,
&NextRegionBase,
&NextRegionLength,
&NextSectionAttributes
);
ASSERT_EFI_ERROR (Status);
} else {
// We do not support yet 16MB sections
ASSERT ((FirstLevelTable[i] & TT_DESCRIPTOR_SECTION_TYPE_MASK) != TT_DESCRIPTOR_SECTION_TYPE_SUPERSECTION);
// start on a new region
if (NextSectionAttributes != 0) {
// Convert Section Attributes into GCD Attributes
Status = SectionToGcdAttributes (NextSectionAttributes, &GcdAttributes);
ASSERT_EFI_ERROR (Status);
// update GCD with these changes (this will recurse into our own CpuSetMemoryAttributes below which is OK)
SetGcdMemorySpaceAttributes (MemorySpaceMap, NumberOfDescriptors, NextRegionBase, NextRegionLength, GcdAttributes);
NextRegionLength = 0;
NextRegionBase = TT_DESCRIPTOR_SECTION_BASE_ADDRESS (i << TT_DESCRIPTOR_SECTION_BASE_SHIFT);
NextSectionAttributes = 0;
}
NextRegionLength += TT_DESCRIPTOR_SECTION_SIZE;
}
} // section entry loop
if (NextSectionAttributes != 0) {
// Convert Section Attributes into GCD Attributes
Status = SectionToGcdAttributes (NextSectionAttributes, &GcdAttributes);
ASSERT_EFI_ERROR (Status);
// update GCD with these changes (this will recurse into our own CpuSetMemoryAttributes below which is OK)
SetGcdMemorySpaceAttributes (MemorySpaceMap, NumberOfDescriptors, NextRegionBase, NextRegionLength, GcdAttributes);
}
FreePool (MemorySpaceMap);
return EFI_SUCCESS;
}
UINT64
EfiAttributeToArmAttribute (
IN UINT64 EfiAttributes
)
{
UINT64 ArmAttributes;
switch (EfiAttributes & EFI_MEMORY_CACHETYPE_MASK) {
case EFI_MEMORY_UC:
// Map to strongly ordered
ArmAttributes = TT_DESCRIPTOR_SECTION_CACHE_POLICY_STRONGLY_ORDERED; // TEX[2:0] = 0, C=0, B=0
break;
case EFI_MEMORY_WC:
// Map to normal non-cacheable
ArmAttributes = TT_DESCRIPTOR_SECTION_CACHE_POLICY_NON_CACHEABLE; // TEX [2:0]= 001 = 0x2, B=0, C=0
break;
case EFI_MEMORY_WT:
// Write through with no-allocate
ArmAttributes = TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_THROUGH_NO_ALLOC; // TEX [2:0] = 0, C=1, B=0
break;
case EFI_MEMORY_WB:
// Write back (with allocate)
ArmAttributes = TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_BACK_ALLOC; // TEX [2:0] = 001, C=1, B=1
break;
case EFI_MEMORY_UCE:
default:
ArmAttributes = TT_DESCRIPTOR_SECTION_TYPE_FAULT;
break;
}
// Determine protection attributes
if ((EfiAttributes & EFI_MEMORY_RO) != 0) {
ArmAttributes |= TT_DESCRIPTOR_SECTION_AP_RO_RO;
} else {
ArmAttributes |= TT_DESCRIPTOR_SECTION_AP_RW_RW;
}
// Determine eXecute Never attribute
if ((EfiAttributes & EFI_MEMORY_XP) != 0) {
ArmAttributes |= TT_DESCRIPTOR_SECTION_XN_MASK;
}
return ArmAttributes;
}
EFI_STATUS
GetMemoryRegionPage (
IN UINT32 *PageTable,
IN OUT UINTN *BaseAddress,
OUT UINTN *RegionLength,
OUT UINTN *RegionAttributes
)
{
UINT32 PageAttributes;
UINT32 TableIndex;
UINT32 PageDescriptor;
// Convert the section attributes into page attributes
PageAttributes = ConvertSectionAttributesToPageAttributes (*RegionAttributes, 0);
// Calculate index into first level translation table for start of modification
TableIndex = ((*BaseAddress) & TT_DESCRIPTOR_PAGE_INDEX_MASK) >> TT_DESCRIPTOR_PAGE_BASE_SHIFT;
ASSERT (TableIndex < TRANSLATION_TABLE_PAGE_COUNT);
// Go through the page table to find the end of the section
for ( ; TableIndex < TRANSLATION_TABLE_PAGE_COUNT; TableIndex++) {
// Get the section at the given index
PageDescriptor = PageTable[TableIndex];
if ((PageDescriptor & TT_DESCRIPTOR_PAGE_TYPE_MASK) == TT_DESCRIPTOR_PAGE_TYPE_FAULT) {
// Case: End of the boundary of the region
return EFI_SUCCESS;
} else if ((PageDescriptor & TT_DESCRIPTOR_PAGE_TYPE_PAGE) == TT_DESCRIPTOR_PAGE_TYPE_PAGE) {
if ((PageDescriptor & TT_DESCRIPTOR_PAGE_ATTRIBUTE_MASK) == PageAttributes) {
*RegionLength = *RegionLength + TT_DESCRIPTOR_PAGE_SIZE;
} else {
// Case: End of the boundary of the region
return EFI_SUCCESS;
}
} else {
// We do not support Large Page yet. We return EFI_SUCCESS that means end of the region.
ASSERT (0);
return EFI_SUCCESS;
}
}
return EFI_NOT_FOUND;
}
EFI_STATUS
GetMemoryRegion (
IN OUT UINTN *BaseAddress,
OUT UINTN *RegionLength,
OUT UINTN *RegionAttributes
)
{
EFI_STATUS Status;
UINT32 TableIndex;
UINT32 PageAttributes;
UINT32 PageTableIndex;
UINT32 SectionDescriptor;
ARM_FIRST_LEVEL_DESCRIPTOR *FirstLevelTable;
UINT32 *PageTable;
// Initialize the arguments
*RegionLength = 0;
// Obtain page table base
FirstLevelTable = (ARM_FIRST_LEVEL_DESCRIPTOR *)ArmGetTTBR0BaseAddress ();
// Calculate index into first level translation table for start of modification
TableIndex = TT_DESCRIPTOR_SECTION_BASE_ADDRESS (*BaseAddress) >> TT_DESCRIPTOR_SECTION_BASE_SHIFT;
ASSERT (TableIndex < TRANSLATION_TABLE_SECTION_COUNT);
// Get the section at the given index
SectionDescriptor = FirstLevelTable[TableIndex];
if (!SectionDescriptor) {
return EFI_NOT_FOUND;
}
// If 'BaseAddress' belongs to the section then round it to the section boundary
if (((SectionDescriptor & TT_DESCRIPTOR_SECTION_TYPE_MASK) == TT_DESCRIPTOR_SECTION_TYPE_SECTION) ||
((SectionDescriptor & TT_DESCRIPTOR_SECTION_TYPE_MASK) == TT_DESCRIPTOR_SECTION_TYPE_SUPERSECTION))
{
*BaseAddress = (*BaseAddress) & TT_DESCRIPTOR_SECTION_BASE_ADDRESS_MASK;
*RegionAttributes = SectionDescriptor & TT_DESCRIPTOR_SECTION_ATTRIBUTE_MASK;
} else {
// Otherwise, we round it to the page boundary
*BaseAddress = (*BaseAddress) & TT_DESCRIPTOR_PAGE_BASE_ADDRESS_MASK;
// Get the attribute at the page table level (Level 2)
PageTable = (UINT32 *)(SectionDescriptor & TT_DESCRIPTOR_SECTION_PAGETABLE_ADDRESS_MASK);
// Calculate index into first level translation table for start of modification
PageTableIndex = ((*BaseAddress) & TT_DESCRIPTOR_PAGE_INDEX_MASK) >> TT_DESCRIPTOR_PAGE_BASE_SHIFT;
ASSERT (PageTableIndex < TRANSLATION_TABLE_PAGE_COUNT);
PageAttributes = PageTable[PageTableIndex] & TT_DESCRIPTOR_PAGE_ATTRIBUTE_MASK;
*RegionAttributes = TT_DESCRIPTOR_CONVERT_TO_SECTION_CACHE_POLICY (PageAttributes, 0) |
TT_DESCRIPTOR_CONVERT_TO_SECTION_AP (PageAttributes);
}
for ( ; TableIndex < TRANSLATION_TABLE_SECTION_COUNT; TableIndex++) {
// Get the section at the given index
SectionDescriptor = FirstLevelTable[TableIndex];
// If the entry is a level-2 page table then we scan it to find the end of the region
if (TT_DESCRIPTOR_SECTION_TYPE_IS_PAGE_TABLE (SectionDescriptor)) {
// Extract the page table location from the descriptor
PageTable = (UINT32 *)(SectionDescriptor & TT_DESCRIPTOR_SECTION_PAGETABLE_ADDRESS_MASK);
// Scan the page table to find the end of the region.
Status = GetMemoryRegionPage (PageTable, BaseAddress, RegionLength, RegionAttributes);
// If we have found the end of the region (Status == EFI_SUCCESS) then we exit the for-loop
if (Status == EFI_SUCCESS) {
break;
}
} else if (((SectionDescriptor & TT_DESCRIPTOR_SECTION_TYPE_MASK) == TT_DESCRIPTOR_SECTION_TYPE_SECTION) ||
((SectionDescriptor & TT_DESCRIPTOR_SECTION_TYPE_MASK) == TT_DESCRIPTOR_SECTION_TYPE_SUPERSECTION))
{
if ((SectionDescriptor & TT_DESCRIPTOR_SECTION_ATTRIBUTE_MASK) != *RegionAttributes) {
// If the attributes of the section differ from the one targeted then we exit the loop
break;
} else {
*RegionLength = *RegionLength + TT_DESCRIPTOR_SECTION_SIZE;
}
} else {
// If we are on an invalid section then it means it is the end of our section.
break;
}
}
return EFI_SUCCESS;
}

View File

@ -0,0 +1,273 @@
/** @file
Copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>
Copyright (c) 2011, ARM Limited. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "CpuDxe.h"
#include <Guid/IdleLoopEvent.h>
BOOLEAN mIsFlushingGCD;
/**
This function flushes the range of addresses from Start to Start+Length
from the processor's data cache. If Start is not aligned to a cache line
boundary, then the bytes before Start to the preceding cache line boundary
are also flushed. If Start+Length is not aligned to a cache line boundary,
then the bytes past Start+Length to the end of the next cache line boundary
are also flushed. The FlushType of EfiCpuFlushTypeWriteBackInvalidate must be
supported. If the data cache is fully coherent with all DMA operations, then
this function can just return EFI_SUCCESS. If the processor does not support
flushing a range of the data cache, then the entire data cache can be flushed.
@param This The EFI_CPU_ARCH_PROTOCOL instance.
@param Start The beginning physical address to flush from the processor's data
cache.
@param Length The number of bytes to flush from the processor's data cache. This
function may flush more bytes than Length specifies depending upon
the granularity of the flush operation that the processor supports.
@param FlushType Specifies the type of flush operation to perform.
@retval EFI_SUCCESS The address range from Start to Start+Length was flushed from
the processor's data cache.
@retval EFI_UNSUPPORTED The processor does not support the cache flush type specified
by FlushType.
@retval EFI_DEVICE_ERROR The address range from Start to Start+Length could not be flushed
from the processor's data cache.
**/
EFI_STATUS
EFIAPI
CpuFlushCpuDataCache (
IN EFI_CPU_ARCH_PROTOCOL *This,
IN EFI_PHYSICAL_ADDRESS Start,
IN UINT64 Length,
IN EFI_CPU_FLUSH_TYPE FlushType
)
{
switch (FlushType) {
case EfiCpuFlushTypeWriteBack:
WriteBackDataCacheRange ((VOID *)(UINTN)Start, (UINTN)Length);
break;
case EfiCpuFlushTypeInvalidate:
InvalidateDataCacheRange ((VOID *)(UINTN)Start, (UINTN)Length);
break;
case EfiCpuFlushTypeWriteBackInvalidate:
WriteBackInvalidateDataCacheRange ((VOID *)(UINTN)Start, (UINTN)Length);
break;
default:
return EFI_INVALID_PARAMETER;
}
return EFI_SUCCESS;
}
/**
This function enables interrupt processing by the processor.
@param This The EFI_CPU_ARCH_PROTOCOL instance.
@retval EFI_SUCCESS Interrupts are enabled on the processor.
@retval EFI_DEVICE_ERROR Interrupts could not be enabled on the processor.
**/
EFI_STATUS
EFIAPI
CpuEnableInterrupt (
IN EFI_CPU_ARCH_PROTOCOL *This
)
{
ArmEnableInterrupts ();
return EFI_SUCCESS;
}
/**
This function disables interrupt processing by the processor.
@param This The EFI_CPU_ARCH_PROTOCOL instance.
@retval EFI_SUCCESS Interrupts are disabled on the processor.
@retval EFI_DEVICE_ERROR Interrupts could not be disabled on the processor.
**/
EFI_STATUS
EFIAPI
CpuDisableInterrupt (
IN EFI_CPU_ARCH_PROTOCOL *This
)
{
ArmDisableInterrupts ();
return EFI_SUCCESS;
}
/**
This function retrieves the processor's current interrupt state a returns it in
State. If interrupts are currently enabled, then TRUE is returned. If interrupts
are currently disabled, then FALSE is returned.
@param This The EFI_CPU_ARCH_PROTOCOL instance.
@param State A pointer to the processor's current interrupt state. Set to TRUE if
interrupts are enabled and FALSE if interrupts are disabled.
@retval EFI_SUCCESS The processor's current interrupt state was returned in State.
@retval EFI_INVALID_PARAMETER State is NULL.
**/
EFI_STATUS
EFIAPI
CpuGetInterruptState (
IN EFI_CPU_ARCH_PROTOCOL *This,
OUT BOOLEAN *State
)
{
if (State == NULL) {
return EFI_INVALID_PARAMETER;
}
*State = ArmGetInterruptState ();
return EFI_SUCCESS;
}
/**
This function generates an INIT on the processor. If this function succeeds, then the
processor will be reset, and control will not be returned to the caller. If InitType is
not supported by this processor, or the processor cannot programmatically generate an
INIT without help from external hardware, then EFI_UNSUPPORTED is returned. If an error
occurs attempting to generate an INIT, then EFI_DEVICE_ERROR is returned.
@param This The EFI_CPU_ARCH_PROTOCOL instance.
@param InitType The type of processor INIT to perform.
@retval EFI_SUCCESS The processor INIT was performed. This return code should never be seen.
@retval EFI_UNSUPPORTED The processor INIT operation specified by InitType is not supported
by this processor.
@retval EFI_DEVICE_ERROR The processor INIT failed.
**/
EFI_STATUS
EFIAPI
CpuInit (
IN EFI_CPU_ARCH_PROTOCOL *This,
IN EFI_CPU_INIT_TYPE InitType
)
{
return EFI_UNSUPPORTED;
}
EFI_STATUS
EFIAPI
CpuRegisterInterruptHandler (
IN EFI_CPU_ARCH_PROTOCOL *This,
IN EFI_EXCEPTION_TYPE InterruptType,
IN EFI_CPU_INTERRUPT_HANDLER InterruptHandler
)
{
return RegisterInterruptHandler (InterruptType, InterruptHandler);
}
EFI_STATUS
EFIAPI
CpuGetTimerValue (
IN EFI_CPU_ARCH_PROTOCOL *This,
IN UINT32 TimerIndex,
OUT UINT64 *TimerValue,
OUT UINT64 *TimerPeriod OPTIONAL
)
{
return EFI_UNSUPPORTED;
}
/**
Callback function for idle events.
@param Event Event whose notification function is being invoked.
@param Context The pointer to the notification function's context,
which is implementation-dependent.
**/
VOID
EFIAPI
IdleLoopEventCallback (
IN EFI_EVENT Event,
IN VOID *Context
)
{
CpuSleep ();
}
//
// Globals used to initialize the protocol
//
EFI_HANDLE mCpuHandle = NULL;
EFI_CPU_ARCH_PROTOCOL mCpu = {
CpuFlushCpuDataCache,
CpuEnableInterrupt,
CpuDisableInterrupt,
CpuGetInterruptState,
CpuInit,
CpuRegisterInterruptHandler,
CpuGetTimerValue,
CpuSetMemoryAttributes,
0, // NumberOfTimers
2048, // DmaBufferAlignment
};
STATIC
VOID
InitializeDma (
IN OUT EFI_CPU_ARCH_PROTOCOL *CpuArchProtocol
)
{
CpuArchProtocol->DmaBufferAlignment = ArmCacheWritebackGranule ();
}
EFI_STATUS
CpuDxeInitialize (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
EFI_EVENT IdleLoopEvent;
InitializeExceptions (&mCpu);
InitializeDma (&mCpu);
Status = gBS->InstallMultipleProtocolInterfaces (
&mCpuHandle,
&gEfiCpuArchProtocolGuid,
&mCpu,
NULL
);
//
// Make sure GCD and MMU settings match. This API calls gDS->SetMemorySpaceAttributes ()
// and that calls EFI_CPU_ARCH_PROTOCOL.SetMemoryAttributes, so this code needs to go
// after the protocol is installed
//
mIsFlushingGCD = TRUE;
SyncCacheConfig (&mCpu);
mIsFlushingGCD = FALSE;
//
// Setup a callback for idle events
//
Status = gBS->CreateEventEx (
EVT_NOTIFY_SIGNAL,
TPL_NOTIFY,
IdleLoopEventCallback,
NULL,
&gIdleLoopEventGuid,
&IdleLoopEvent
);
ASSERT_EFI_ERROR (Status);
return Status;
}

View File

@ -0,0 +1,129 @@
/** @file
Copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>
Copyright (c) 2011 - 2013, ARM Ltd. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef CPU_DXE_H_
#define CPU_DXE_H_
#include <Uefi.h>
#include <Library/ArmLib.h>
#include <Library/ArmMmuLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/DebugLib.h>
#include <Library/PcdLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/DxeServicesTableLib.h>
#include <Library/CacheMaintenanceLib.h>
#include <Library/PeCoffGetEntryPointLib.h>
#include <Library/UefiLib.h>
#include <Library/CpuLib.h>
#include <Library/DefaultExceptionHandlerLib.h>
#include <Library/DebugLib.h>
#include <Guid/DebugImageInfoTable.h>
#include <Protocol/Cpu.h>
#include <Protocol/DebugSupport.h>
#include <Protocol/LoadedImage.h>
extern BOOLEAN mIsFlushingGCD;
/**
This function registers and enables the handler specified by InterruptHandler for a processor
interrupt or exception type specified by InterruptType. If InterruptHandler is NULL, then the
handler for the processor interrupt or exception type specified by InterruptType is uninstalled.
The installed handler is called once for each processor interrupt or exception.
@param InterruptType A pointer to the processor's current interrupt state. Set to TRUE if interrupts
are enabled and FALSE if interrupts are disabled.
@param InterruptHandler A pointer to a function of type EFI_CPU_INTERRUPT_HANDLER that is called
when a processor interrupt occurs. If this parameter is NULL, then the handler
will be uninstalled.
@retval EFI_SUCCESS The handler for the processor interrupt was successfully installed or uninstalled.
@retval EFI_ALREADY_STARTED InterruptHandler is not NULL, and a handler for InterruptType was
previously installed.
@retval EFI_INVALID_PARAMETER InterruptHandler is NULL, and a handler for InterruptType was not
previously installed.
@retval EFI_UNSUPPORTED The interrupt specified by InterruptType is not supported.
**/
EFI_STATUS
RegisterInterruptHandler (
IN EFI_EXCEPTION_TYPE InterruptType,
IN EFI_CPU_INTERRUPT_HANDLER InterruptHandler
);
/**
This function registers and enables the handler specified by InterruptHandler for a processor
interrupt or exception type specified by InterruptType. If InterruptHandler is NULL, then the
handler for the processor interrupt or exception type specified by InterruptType is uninstalled.
The installed handler is called once for each processor interrupt or exception.
@param InterruptType A pointer to the processor's current interrupt state. Set to TRUE if interrupts
are enabled and FALSE if interrupts are disabled.
@param InterruptHandler A pointer to a function of type EFI_CPU_INTERRUPT_HANDLER that is called
when a processor interrupt occurs. If this parameter is NULL, then the handler
will be uninstalled.
@retval EFI_SUCCESS The handler for the processor interrupt was successfully installed or uninstalled.
@retval EFI_ALREADY_STARTED InterruptHandler is not NULL, and a handler for InterruptType was
previously installed.
@retval EFI_INVALID_PARAMETER InterruptHandler is NULL, and a handler for InterruptType was not
previously installed.
@retval EFI_UNSUPPORTED The interrupt specified by InterruptType is not supported.
**/
EFI_STATUS
RegisterDebuggerInterruptHandler (
IN EFI_EXCEPTION_TYPE InterruptType,
IN EFI_CPU_INTERRUPT_HANDLER InterruptHandler
);
EFI_STATUS
EFIAPI
CpuSetMemoryAttributes (
IN EFI_CPU_ARCH_PROTOCOL *This,
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Attributes
);
EFI_STATUS
InitializeExceptions (
IN EFI_CPU_ARCH_PROTOCOL *Cpu
);
EFI_STATUS
SyncCacheConfig (
IN EFI_CPU_ARCH_PROTOCOL *CpuProtocol
);
// The ARM Attributes might be defined on 64-bit (case of the long format description table)
UINT64
EfiAttributeToArmAttribute (
IN UINT64 EfiAttributes
);
EFI_STATUS
GetMemoryRegion (
IN OUT UINTN *BaseAddress,
OUT UINTN *RegionLength,
OUT UINTN *RegionAttributes
);
EFI_STATUS
SetGcdMemorySpaceAttributes (
IN EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap,
IN UINTN NumberOfDescriptors,
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Attributes
);
#endif // CPU_DXE_H_

View File

@ -0,0 +1,70 @@
#/** @file
#
# DXE CPU driver
#
# Copyright (c) 2009, Apple Inc. All rights reserved.<BR>
# Copyright (c) 2011-2013, ARM Limited. All rights reserved.
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
#
#**/
[Defines]
INF_VERSION = 0x00010005
BASE_NAME = ArmCpuDxe
FILE_GUID = B8D9777E-D72A-451F-9BDB-BAFB52A68415
MODULE_TYPE = DXE_DRIVER
VERSION_STRING = 1.0
ENTRY_POINT = CpuDxeInitialize
[Sources.Common]
CpuDxe.c
CpuDxe.h
CpuMmuCommon.c
Exception.c
[Sources.ARM]
Arm/Mmu.c
[Sources.AARCH64]
AArch64/Mmu.c
[Packages]
ArmPkg/ArmPkg.dec
EmbeddedPkg/EmbeddedPkg.dec
MdePkg/MdePkg.dec
MdeModulePkg/MdeModulePkg.dec
[LibraryClasses]
ArmLib
ArmMmuLib
BaseMemoryLib
CacheMaintenanceLib
CpuLib
CpuExceptionHandlerLib
DebugLib
DefaultExceptionHandlerLib
DxeServicesTableLib
HobLib
PeCoffGetEntryPointLib
UefiDriverEntryPoint
UefiLib
[Protocols]
gEfiCpuArchProtocolGuid
[Guids]
gEfiDebugImageInfoTableGuid
gArmMpCoreInfoGuid
gIdleLoopEventGuid
gEfiVectorHandoffTableGuid
[Pcd.common]
gArmTokenSpaceGuid.PcdVFPEnabled
[FeaturePcd.common]
gArmTokenSpaceGuid.PcdDebuggerExceptionSupport
[Depex]
gHardwareInterruptProtocolGuid OR gHardwareInterrupt2ProtocolGuid

View File

@ -0,0 +1,224 @@
/** @file
*
* Copyright (c) 2013, ARM Limited. All rights reserved.
* Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#include "CpuDxe.h"
/**
Searches memory descriptors covered by given memory range.
This function searches into the Gcd Memory Space for descriptors
(from StartIndex to EndIndex) that contains the memory range
specified by BaseAddress and Length.
@param MemorySpaceMap Gcd Memory Space Map as array.
@param NumberOfDescriptors Number of descriptors in map.
@param BaseAddress BaseAddress for the requested range.
@param Length Length for the requested range.
@param StartIndex Start index into the Gcd Memory Space Map.
@param EndIndex End index into the Gcd Memory Space Map.
@retval EFI_SUCCESS Search successfully.
@retval EFI_NOT_FOUND The requested descriptors does not exist.
**/
EFI_STATUS
SearchGcdMemorySpaces (
IN EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap,
IN UINTN NumberOfDescriptors,
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
OUT UINTN *StartIndex,
OUT UINTN *EndIndex
)
{
UINTN Index;
*StartIndex = 0;
*EndIndex = 0;
for (Index = 0; Index < NumberOfDescriptors; Index++) {
if ((BaseAddress >= MemorySpaceMap[Index].BaseAddress) &&
(BaseAddress < (MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length)))
{
*StartIndex = Index;
}
if (((BaseAddress + Length - 1) >= MemorySpaceMap[Index].BaseAddress) &&
((BaseAddress + Length - 1) < (MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length)))
{
*EndIndex = Index;
return EFI_SUCCESS;
}
}
return EFI_NOT_FOUND;
}
/**
Sets the attributes for a specified range in Gcd Memory Space Map.
This function sets the attributes for a specified range in
Gcd Memory Space Map.
@param MemorySpaceMap Gcd Memory Space Map as array
@param NumberOfDescriptors Number of descriptors in map
@param BaseAddress BaseAddress for the range
@param Length Length for the range
@param Attributes Attributes to set
@retval EFI_SUCCESS Memory attributes set successfully
@retval EFI_NOT_FOUND The specified range does not exist in Gcd Memory Space
**/
EFI_STATUS
SetGcdMemorySpaceAttributes (
IN EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap,
IN UINTN NumberOfDescriptors,
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Attributes
)
{
EFI_STATUS Status;
UINTN Index;
UINTN StartIndex;
UINTN EndIndex;
EFI_PHYSICAL_ADDRESS RegionStart;
UINT64 RegionLength;
DEBUG ((
DEBUG_GCD,
"SetGcdMemorySpaceAttributes[0x%lX; 0x%lX] = 0x%lX\n",
BaseAddress,
BaseAddress + Length,
Attributes
));
// We do not support a smaller granularity than 4KB on ARM Architecture
if ((Length & EFI_PAGE_MASK) != 0) {
DEBUG ((
DEBUG_WARN,
"Warning: We do not support smaller granularity than 4KB on ARM Architecture (passed length: 0x%lX).\n",
Length
));
}
//
// Get all memory descriptors covered by the memory range
//
Status = SearchGcdMemorySpaces (
MemorySpaceMap,
NumberOfDescriptors,
BaseAddress,
Length,
&StartIndex,
&EndIndex
);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Go through all related descriptors and set attributes accordingly
//
for (Index = StartIndex; Index <= EndIndex; Index++) {
if (MemorySpaceMap[Index].GcdMemoryType == EfiGcdMemoryTypeNonExistent) {
continue;
}
//
// Calculate the start and end address of the overlapping range
//
if (BaseAddress >= MemorySpaceMap[Index].BaseAddress) {
RegionStart = BaseAddress;
} else {
RegionStart = MemorySpaceMap[Index].BaseAddress;
}
if ((BaseAddress + Length - 1) < (MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length)) {
RegionLength = BaseAddress + Length - RegionStart;
} else {
RegionLength = MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length - RegionStart;
}
//
// Set memory attributes according to MTRR attribute and the original attribute of descriptor
//
gDS->SetMemorySpaceAttributes (
RegionStart,
RegionLength,
(MemorySpaceMap[Index].Attributes & ~EFI_MEMORY_CACHETYPE_MASK) | (MemorySpaceMap[Index].Capabilities & Attributes)
);
}
return EFI_SUCCESS;
}
/**
This function modifies the attributes for the memory region specified by BaseAddress and
Length from their current attributes to the attributes specified by Attributes.
@param This The EFI_CPU_ARCH_PROTOCOL instance.
@param BaseAddress The physical address that is the start address of a memory region.
@param Length The size in bytes of the memory region.
@param Attributes The bit mask of attributes to set for the memory region.
@retval EFI_SUCCESS The attributes were set for the memory region.
@retval EFI_ACCESS_DENIED The attributes for the memory resource range specified by
BaseAddress and Length cannot be modified.
@retval EFI_INVALID_PARAMETER Length is zero.
@retval EFI_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of
the memory resource range.
@retval EFI_UNSUPPORTED The processor does not support one or more bytes of the memory
resource range specified by BaseAddress and Length.
The bit mask of attributes is not support for the memory resource
range specified by BaseAddress and Length.
**/
EFI_STATUS
EFIAPI
CpuSetMemoryAttributes (
IN EFI_CPU_ARCH_PROTOCOL *This,
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 EfiAttributes
)
{
EFI_STATUS Status;
UINTN ArmAttributes;
UINTN RegionBaseAddress;
UINTN RegionLength;
UINTN RegionArmAttributes;
if (mIsFlushingGCD) {
return EFI_SUCCESS;
}
if ((BaseAddress & (SIZE_4KB - 1)) != 0) {
// Minimum granularity is SIZE_4KB (4KB on ARM)
DEBUG ((DEBUG_PAGE, "CpuSetMemoryAttributes(%lx, %lx, %lx): Minimum granularity is SIZE_4KB\n", BaseAddress, Length, EfiAttributes));
return EFI_UNSUPPORTED;
}
// Convert the 'Attribute' into ARM Attribute
ArmAttributes = EfiAttributeToArmAttribute (EfiAttributes);
// Get the region starting from 'BaseAddress' and its 'Attribute'
RegionBaseAddress = BaseAddress;
Status = GetMemoryRegion (&RegionBaseAddress, &RegionLength, &RegionArmAttributes);
// Data & Instruction Caches are flushed when we set new memory attributes.
// So, we only set the attributes if the new region is different.
if (EFI_ERROR (Status) || (RegionArmAttributes != ArmAttributes) ||
((BaseAddress + Length) > (RegionBaseAddress + RegionLength)))
{
return ArmSetMemoryAttributes (BaseAddress, Length, EfiAttributes);
} else {
return EFI_SUCCESS;
}
}

View File

@ -0,0 +1,100 @@
/** @file
Copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>
Portions Copyright (c) 2011 - 2021, Arm Limited. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "CpuDxe.h"
#include <Library/CpuExceptionHandlerLib.h>
#include <Guid/VectorHandoffTable.h>
EFI_STATUS
InitializeExceptions (
IN EFI_CPU_ARCH_PROTOCOL *Cpu
)
{
EFI_STATUS Status;
EFI_VECTOR_HANDOFF_INFO *VectorInfoList;
EFI_VECTOR_HANDOFF_INFO *VectorInfo;
BOOLEAN IrqEnabled;
BOOLEAN FiqEnabled;
VectorInfo = (EFI_VECTOR_HANDOFF_INFO *)NULL;
Status = EfiGetSystemConfigurationTable (&gEfiVectorHandoffTableGuid, (VOID **)&VectorInfoList);
if ((Status == EFI_SUCCESS) && (VectorInfoList != NULL)) {
VectorInfo = VectorInfoList;
}
// initialize the CpuExceptionHandlerLib so we take over the exception vector table from the DXE Core
InitializeCpuExceptionHandlers (VectorInfo);
Status = EFI_SUCCESS;
//
// Disable interrupts
//
Cpu->GetInterruptState (Cpu, &IrqEnabled);
Cpu->DisableInterrupt (Cpu);
//
// EFI does not use the FIQ, but a debugger might so we must disable
// as we take over the exception vectors.
//
FiqEnabled = ArmGetFiqState ();
ArmDisableFiq ();
if (FiqEnabled) {
ArmEnableFiq ();
}
if (IrqEnabled) {
//
// Restore interrupt state
//
Status = Cpu->EnableInterrupt (Cpu);
}
//
// On a DEBUG build, unmask SErrors so they are delivered right away rather
// than when the OS unmasks them. This gives us a better chance of figuring
// out the cause.
//
DEBUG_CODE (
ArmEnableAsynchronousAbort ();
);
return Status;
}
/**
This function registers and enables the handler specified by InterruptHandler for a processor
interrupt or exception type specified by InterruptType. If InterruptHandler is NULL, then the
handler for the processor interrupt or exception type specified by InterruptType is uninstalled.
The installed handler is called once for each processor interrupt or exception.
@param InterruptType A pointer to the processor's current interrupt state. Set to TRUE if interrupts
are enabled and FALSE if interrupts are disabled.
@param InterruptHandler A pointer to a function of type EFI_CPU_INTERRUPT_HANDLER that is called
when a processor interrupt occurs. If this parameter is NULL, then the handler
will be uninstalled.
@retval EFI_SUCCESS The handler for the processor interrupt was successfully installed or uninstalled.
@retval EFI_ALREADY_STARTED InterruptHandler is not NULL, and a handler for InterruptType was
previously installed.
@retval EFI_INVALID_PARAMETER InterruptHandler is NULL, and a handler for InterruptType was not
previously installed.
@retval EFI_UNSUPPORTED The interrupt specified by InterruptType is not supported.
**/
EFI_STATUS
RegisterInterruptHandler (
IN EFI_EXCEPTION_TYPE InterruptType,
IN EFI_CPU_INTERRUPT_HANDLER InterruptHandler
)
{
// pass down to CpuExceptionHandlerLib
return (EFI_STATUS)RegisterCpuInterruptHandler (InterruptType, InterruptHandler);
}

View File

@ -0,0 +1,83 @@
/**@file
Copyright (c) 2006, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2011 Hewlett Packard Corporation. All rights reserved.<BR>
Copyright (c) 2011-2013, ARM Limited. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
Module Name:
MemoryInit.c
Abstract:
PEIM to provide fake memory init
**/
//
// The package level header files this module uses
//
#include <PiPei.h>
//
// The protocols, PPI and GUID definitions for this module
//
#include <Ppi/ArmMpCoreInfo.h>
//
// The Library classes this module consumes
//
#include <Library/DebugLib.h>
#include <Library/PeimEntryPoint.h>
#include <Library/PeiServicesLib.h>
#include <Library/PcdLib.h>
#include <Library/HobLib.h>
#include <Library/ArmLib.h>
/*++
Routine Description:
Arguments:
FileHandle - Handle of the file being invoked.
PeiServices - Describes the list of possible PEI Services.
Returns:
Status - EFI_SUCCESS if the boot mode could be set
--*/
EFI_STATUS
EFIAPI
InitializeCpuPeim (
IN EFI_PEI_FILE_HANDLE FileHandle,
IN CONST EFI_PEI_SERVICES **PeiServices
)
{
EFI_STATUS Status;
ARM_MP_CORE_INFO_PPI *ArmMpCoreInfoPpi;
UINTN ArmCoreCount;
ARM_CORE_INFO *ArmCoreInfoTable;
// Enable program flow prediction, if supported.
ArmEnableBranchPrediction ();
// Publish the CPU memory and io spaces sizes
BuildCpuHob (ArmGetPhysicalAddressBits (), PcdGet8 (PcdPrePiCpuIoSize));
// Only MP Core platform need to produce gArmMpCoreInfoPpiGuid
Status = PeiServicesLocatePpi (&gArmMpCoreInfoPpiGuid, 0, NULL, (VOID **)&ArmMpCoreInfoPpi);
if (!EFI_ERROR (Status)) {
// Build the MP Core Info Table
ArmCoreCount = 0;
Status = ArmMpCoreInfoPpi->GetMpCoreInfo (&ArmCoreCount, &ArmCoreInfoTable);
if (!EFI_ERROR (Status) && (ArmCoreCount > 0)) {
// Build MPCore Info HOB
BuildGuidDataHob (&gArmMpCoreInfoGuid, ArmCoreInfoTable, sizeof (ARM_CORE_INFO) * ArmCoreCount);
}
}
return EFI_SUCCESS;
}

View File

@ -0,0 +1,52 @@
## @file
# Component description file for BootMode module
#
# This module provides platform specific function to detect boot mode.
# Copyright (c) 2006 - 2010, Intel Corporation. All rights reserved.<BR>
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
#
#
##
[Defines]
INF_VERSION = 0x00010005
BASE_NAME = CpuPei
FILE_GUID = 2FD8B7AD-F8FA-4021-9FC0-0AA572147CDC
MODULE_TYPE = PEIM
VERSION_STRING = 1.0
ENTRY_POINT = InitializeCpuPeim
#
# The following information is for reference only and not required by the build tools.
#
# VALID_ARCHITECTURES = ARM
#
[Sources]
CpuPei.c
[Packages]
MdePkg/MdePkg.dec
EmbeddedPkg/EmbeddedPkg.dec
ArmPkg/ArmPkg.dec
[LibraryClasses]
PeimEntryPoint
DebugLib
HobLib
ArmLib
[Ppis]
gArmMpCoreInfoPpiGuid
[Guids]
gArmMpCoreInfoGuid
[FixedPcd]
gEmbeddedTokenSpaceGuid.PcdPrePiCpuIoSize
[Depex]
gEfiPeiMemoryDiscoveredPpiGuid

View File

@ -0,0 +1,25 @@
/** @file
*
* Copyright (c) 2013-2017, ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#ifndef GENERIC_WATCHDOG_H_
#define GENERIC_WATCHDOG_H_
// Refresh Frame:
#define GENERIC_WDOG_REFRESH_REG ((UINTN)FixedPcdGet64 (PcdGenericWatchdogRefreshBase) + 0x000)
// Control Frame:
#define GENERIC_WDOG_CONTROL_STATUS_REG ((UINTN)FixedPcdGet64 (PcdGenericWatchdogControlBase) + 0x000)
#define GENERIC_WDOG_OFFSET_REG ((UINTN)FixedPcdGet64 (PcdGenericWatchdogControlBase) + 0x008)
#define GENERIC_WDOG_COMPARE_VALUE_REG_LOW ((UINTN)FixedPcdGet64 (PcdGenericWatchdogControlBase) + 0x010)
#define GENERIC_WDOG_COMPARE_VALUE_REG_HIGH ((UINTN)FixedPcdGet64 (PcdGenericWatchdogControlBase) + 0x014)
// Values of bit 0 of the Control/Status Register
#define GENERIC_WDOG_ENABLED 1
#define GENERIC_WDOG_DISABLED 0
#endif // GENERIC_WATCHDOG_H_

View File

@ -0,0 +1,383 @@
/** @file
*
* Copyright (c) 2013-2018, ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#include <PiDxe.h>
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/DebugLib.h>
#include <Library/IoLib.h>
#include <Library/PcdLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/UefiRuntimeServicesTableLib.h>
#include <Library/UefiLib.h>
#include <Library/ArmGenericTimerCounterLib.h>
#include <Protocol/HardwareInterrupt2.h>
#include <Protocol/WatchdogTimer.h>
#include "GenericWatchdog.h"
/* The number of 100ns periods (the unit of time passed to these functions)
in a second */
#define TIME_UNITS_PER_SECOND 10000000
// Tick frequency of the generic timer basis of the generic watchdog.
STATIC UINTN mTimerFrequencyHz = 0;
/* In cases where the compare register was set manually, information about
how long the watchdog was asked to wait cannot be retrieved from hardware.
It is therefore stored here. 0 means the timer is not running. */
STATIC UINT64 mNumTimerTicks = 0;
STATIC EFI_HARDWARE_INTERRUPT2_PROTOCOL *mInterruptProtocol;
STATIC EFI_WATCHDOG_TIMER_NOTIFY mWatchdogNotify;
STATIC
VOID
WatchdogWriteOffsetRegister (
UINT32 Value
)
{
MmioWrite32 (GENERIC_WDOG_OFFSET_REG, Value);
}
STATIC
VOID
WatchdogWriteCompareRegister (
UINT64 Value
)
{
MmioWrite32 (GENERIC_WDOG_COMPARE_VALUE_REG_LOW, Value & MAX_UINT32);
MmioWrite32 (GENERIC_WDOG_COMPARE_VALUE_REG_HIGH, (Value >> 32) & MAX_UINT32);
}
STATIC
VOID
WatchdogEnable (
VOID
)
{
MmioWrite32 (GENERIC_WDOG_CONTROL_STATUS_REG, GENERIC_WDOG_ENABLED);
}
STATIC
VOID
WatchdogDisable (
VOID
)
{
MmioWrite32 (GENERIC_WDOG_CONTROL_STATUS_REG, GENERIC_WDOG_DISABLED);
}
/** On exiting boot services we must make sure the Watchdog Timer
is stopped.
**/
STATIC
VOID
EFIAPI
WatchdogExitBootServicesEvent (
IN EFI_EVENT Event,
IN VOID *Context
)
{
WatchdogDisable ();
mNumTimerTicks = 0;
}
/* This function is called when the watchdog's first signal (WS0) goes high.
It uses the ResetSystem Runtime Service to reset the board.
*/
STATIC
VOID
EFIAPI
WatchdogInterruptHandler (
IN HARDWARE_INTERRUPT_SOURCE Source,
IN EFI_SYSTEM_CONTEXT SystemContext
)
{
STATIC CONST CHAR16 ResetString[] = L"The generic watchdog timer ran out.";
UINT64 TimerPeriod;
WatchdogDisable ();
mInterruptProtocol->EndOfInterrupt (mInterruptProtocol, Source);
//
// The notify function should be called with the elapsed number of ticks
// since the watchdog was armed, which should exceed the timer period.
// We don't actually know the elapsed number of ticks, so let's return
// the timer period plus 1.
//
if (mWatchdogNotify != NULL) {
TimerPeriod = ((TIME_UNITS_PER_SECOND / mTimerFrequencyHz) * mNumTimerTicks);
mWatchdogNotify (TimerPeriod + 1);
}
gRT->ResetSystem (
EfiResetCold,
EFI_TIMEOUT,
StrSize (ResetString),
(CHAR16 *)ResetString
);
// If we got here then the reset didn't work
ASSERT (FALSE);
}
/**
This function registers the handler NotifyFunction so it is called every time
the watchdog timer expires. It also passes the amount of time since the last
handler call to the NotifyFunction.
If NotifyFunction is not NULL and a handler is not already registered,
then the new handler is registered and EFI_SUCCESS is returned.
If NotifyFunction is NULL, and a handler is already registered,
then that handler is unregistered.
If an attempt is made to register a handler when a handler is already
registered, then EFI_ALREADY_STARTED is returned.
If an attempt is made to unregister a handler when a handler is not
registered, then EFI_INVALID_PARAMETER is returned.
@param This The EFI_TIMER_ARCH_PROTOCOL instance.
@param NotifyFunction The function to call when a timer interrupt fires.
This function executes at TPL_HIGH_LEVEL. The DXE
Core will register a handler for the timer interrupt,
so it can know how much time has passed. This
information is used to signal timer based events.
NULL will unregister the handler.
@retval EFI_UNSUPPORTED The code does not support NotifyFunction.
**/
STATIC
EFI_STATUS
EFIAPI
WatchdogRegisterHandler (
IN EFI_WATCHDOG_TIMER_ARCH_PROTOCOL *This,
IN EFI_WATCHDOG_TIMER_NOTIFY NotifyFunction
)
{
if ((mWatchdogNotify == NULL) && (NotifyFunction == NULL)) {
return EFI_INVALID_PARAMETER;
}
if ((mWatchdogNotify != NULL) && (NotifyFunction != NULL)) {
return EFI_ALREADY_STARTED;
}
mWatchdogNotify = NotifyFunction;
return EFI_SUCCESS;
}
/**
This function sets the amount of time to wait before firing the watchdog
timer to TimerPeriod 100ns units. If TimerPeriod is 0, then the watchdog
timer is disabled.
@param This The EFI_WATCHDOG_TIMER_ARCH_PROTOCOL instance.
@param TimerPeriod The amount of time in 100ns units to wait before
the watchdog timer is fired. If TimerPeriod is zero,
then the watchdog timer is disabled.
@retval EFI_SUCCESS The watchdog timer has been programmed to fire
in TimerPeriod 100ns units.
**/
STATIC
EFI_STATUS
EFIAPI
WatchdogSetTimerPeriod (
IN EFI_WATCHDOG_TIMER_ARCH_PROTOCOL *This,
IN UINT64 TimerPeriod // In 100ns units
)
{
UINTN SystemCount;
// if TimerPeriod is 0, this is a request to stop the watchdog.
if (TimerPeriod == 0) {
mNumTimerTicks = 0;
WatchdogDisable ();
return EFI_SUCCESS;
}
// Work out how many timer ticks will equate to TimerPeriod
mNumTimerTicks = (mTimerFrequencyHz * TimerPeriod) / TIME_UNITS_PER_SECOND;
/* If the number of required ticks is greater than the max the watchdog's
offset register (WOR) can hold, we need to manually compute and set
the compare register (WCV) */
if (mNumTimerTicks > MAX_UINT32) {
/* We need to enable the watchdog *before* writing to the compare register,
because enabling the watchdog causes an "explicit refresh", which
clobbers the compare register (WCV). In order to make sure this doesn't
trigger an interrupt, set the offset to max. */
WatchdogWriteOffsetRegister (MAX_UINT32);
WatchdogEnable ();
SystemCount = ArmGenericTimerGetSystemCount ();
WatchdogWriteCompareRegister (SystemCount + mNumTimerTicks);
} else {
WatchdogWriteOffsetRegister ((UINT32)mNumTimerTicks);
WatchdogEnable ();
}
return EFI_SUCCESS;
}
/**
This function retrieves the period of timer interrupts in 100ns units,
returns that value in TimerPeriod, and returns EFI_SUCCESS. If TimerPeriod
is NULL, then EFI_INVALID_PARAMETER is returned. If a TimerPeriod of 0 is
returned, then the timer is currently disabled.
@param This The EFI_TIMER_ARCH_PROTOCOL instance.
@param TimerPeriod A pointer to the timer period to retrieve in
100ns units. If 0 is returned, then the timer is
currently disabled.
@retval EFI_SUCCESS The timer period was returned in TimerPeriod.
@retval EFI_INVALID_PARAMETER TimerPeriod is NULL.
**/
STATIC
EFI_STATUS
EFIAPI
WatchdogGetTimerPeriod (
IN EFI_WATCHDOG_TIMER_ARCH_PROTOCOL *This,
OUT UINT64 *TimerPeriod
)
{
if (TimerPeriod == NULL) {
return EFI_INVALID_PARAMETER;
}
*TimerPeriod = ((TIME_UNITS_PER_SECOND / mTimerFrequencyHz) * mNumTimerTicks);
return EFI_SUCCESS;
}
/**
Interface structure for the Watchdog Architectural Protocol.
@par Protocol Description:
This protocol provides a service to set the amount of time to wait
before firing the watchdog timer, and it also provides a service to
register a handler that is invoked when the watchdog timer fires.
@par When the watchdog timer fires, control will be passed to a handler
if one has been registered. If no handler has been registered,
or the registered handler returns, then the system will be
reset by calling the Runtime Service ResetSystem().
@param RegisterHandler
Registers a handler that will be called each time the
watchdogtimer interrupt fires. TimerPeriod defines the minimum
time between timer interrupts, so TimerPeriod will also
be the minimum time between calls to the registered
handler.
NOTE: If the watchdog resets the system in hardware, then
this function will not have any chance of executing.
@param SetTimerPeriod
Sets the period of the timer interrupt in 100ns units.
This function is optional, and may return EFI_UNSUPPORTED.
If this function is supported, then the timer period will
be rounded up to the nearest supported timer period.
@param GetTimerPeriod
Retrieves the period of the timer interrupt in 100ns units.
**/
STATIC EFI_WATCHDOG_TIMER_ARCH_PROTOCOL mWatchdogTimer = {
WatchdogRegisterHandler,
WatchdogSetTimerPeriod,
WatchdogGetTimerPeriod
};
STATIC EFI_EVENT mEfiExitBootServicesEvent;
EFI_STATUS
EFIAPI
GenericWatchdogEntry (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
EFI_HANDLE Handle;
Status = gBS->LocateProtocol (
&gHardwareInterrupt2ProtocolGuid,
NULL,
(VOID **)&mInterruptProtocol
);
ASSERT_EFI_ERROR (Status);
/* Make sure the Watchdog Timer Architectural Protocol has not been installed
in the system yet.
This will avoid conflicts with the universal watchdog */
ASSERT_PROTOCOL_ALREADY_INSTALLED (NULL, &gEfiWatchdogTimerArchProtocolGuid);
mTimerFrequencyHz = ArmGenericTimerGetTimerFreq ();
ASSERT (mTimerFrequencyHz != 0);
// Install interrupt handler
Status = mInterruptProtocol->RegisterInterruptSource (
mInterruptProtocol,
FixedPcdGet32 (PcdGenericWatchdogEl2IntrNum),
WatchdogInterruptHandler
);
if (EFI_ERROR (Status)) {
return Status;
}
Status = mInterruptProtocol->SetTriggerType (
mInterruptProtocol,
FixedPcdGet32 (PcdGenericWatchdogEl2IntrNum),
EFI_HARDWARE_INTERRUPT2_TRIGGER_EDGE_RISING
);
if (EFI_ERROR (Status)) {
goto UnregisterHandler;
}
// Install the Timer Architectural Protocol onto a new handle
Handle = NULL;
Status = gBS->InstallMultipleProtocolInterfaces (
&Handle,
&gEfiWatchdogTimerArchProtocolGuid,
&mWatchdogTimer,
NULL
);
if (EFI_ERROR (Status)) {
goto UnregisterHandler;
}
// Register for an ExitBootServicesEvent
Status = gBS->CreateEvent (
EVT_SIGNAL_EXIT_BOOT_SERVICES,
TPL_NOTIFY,
WatchdogExitBootServicesEvent,
NULL,
&mEfiExitBootServicesEvent
);
ASSERT_EFI_ERROR (Status);
mNumTimerTicks = 0;
WatchdogDisable ();
return EFI_SUCCESS;
UnregisterHandler:
// Unregister the handler
mInterruptProtocol->RegisterInterruptSource (
mInterruptProtocol,
FixedPcdGet32 (PcdGenericWatchdogEl2IntrNum),
NULL
);
return Status;
}

View File

@ -0,0 +1,47 @@
#
# Copyright (c) 2013-2021, Arm Limited. All rights reserved.<BR>
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
#
[Defines]
INF_VERSION = 0x00010016
BASE_NAME = GenericWatchdogDxe
FILE_GUID = 0619f5c2-4858-4caa-a86a-73a21a18df6b
MODULE_TYPE = DXE_DRIVER
VERSION_STRING = 1.0
ENTRY_POINT = GenericWatchdogEntry
[Sources.common]
GenericWatchdog.h
GenericWatchdogDxe.c
[Packages]
ArmPkg/ArmPkg.dec
ArmPlatformPkg/ArmPlatformPkg.dec
EmbeddedPkg/EmbeddedPkg.dec
MdePkg/MdePkg.dec
[LibraryClasses]
ArmGenericTimerCounterLib
BaseLib
BaseMemoryLib
DebugLib
IoLib
PcdLib
UefiLib
UefiBootServicesTableLib
UefiDriverEntryPoint
UefiRuntimeServicesTableLib
[Pcd.common]
gArmTokenSpaceGuid.PcdGenericWatchdogControlBase
gArmTokenSpaceGuid.PcdGenericWatchdogRefreshBase
gArmTokenSpaceGuid.PcdGenericWatchdogEl2IntrNum
[Protocols]
gEfiWatchdogTimerArchProtocolGuid ## ALWAYS_PRODUCES
gHardwareInterrupt2ProtocolGuid ## ALWAYS_CONSUMES
[Depex]
gHardwareInterrupt2ProtocolGuid

View File

@ -0,0 +1,22 @@
/** @file
Copyright (c) 2016-2021, Arm Limited. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef MM_COMMUNICATE_H_
#define MM_COMMUNICATE_H_
#define MM_MAJOR_VER_MASK 0xEFFF0000
#define MM_MINOR_VER_MASK 0x0000FFFF
#define MM_MAJOR_VER_SHIFT 16
#define MM_MAJOR_VER(x) (((x) & MM_MAJOR_VER_MASK) >> MM_MAJOR_VER_SHIFT)
#define MM_MINOR_VER(x) ((x) & MM_MINOR_VER_MASK)
#define MM_CALLER_MAJOR_VER 0x1UL
#define MM_CALLER_MINOR_VER 0x0
#endif /* MM_COMMUNICATE_H_ */

View File

@ -0,0 +1,458 @@
/** @file
Copyright (c) 2016-2021, Arm Limited. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Library/ArmLib.h>
#include <Library/ArmSmcLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/DebugLib.h>
#include <Library/DxeServicesTableLib.h>
#include <Library/HobLib.h>
#include <Library/PcdLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/UefiRuntimeServicesTableLib.h>
#include <Protocol/MmCommunication2.h>
#include <IndustryStandard/ArmStdSmc.h>
#include "MmCommunicate.h"
//
// Address, Length of the pre-allocated buffer for communication with the secure
// world.
//
STATIC ARM_MEMORY_REGION_DESCRIPTOR mNsCommBuffMemRegion;
// Notification event when virtual address map is set.
STATIC EFI_EVENT mSetVirtualAddressMapEvent;
//
// Handle to install the MM Communication Protocol
//
STATIC EFI_HANDLE mMmCommunicateHandle;
/**
Communicates with a registered handler.
This function provides a service to send and receive messages from a registered UEFI service.
@param[in] This The EFI_MM_COMMUNICATION_PROTOCOL instance.
@param[in, out] CommBufferPhysical Physical address of the MM communication buffer
@param[in, out] CommBufferVirtual Virtual address of the MM communication buffer
@param[in, out] CommSize The size of the data buffer being passed in. On input,
when not omitted, the buffer should cover EFI_MM_COMMUNICATE_HEADER
and the value of MessageLength field. On exit, the size
of data being returned. Zero if the handler does not
wish to reply with any data. This parameter is optional
and may be NULL.
@retval EFI_SUCCESS The message was successfully posted.
@retval EFI_INVALID_PARAMETER CommBufferPhysical or CommBufferVirtual was NULL, or
integer value pointed by CommSize does not cover
EFI_MM_COMMUNICATE_HEADER and the value of MessageLength
field.
@retval EFI_BAD_BUFFER_SIZE The buffer is too large for the MM implementation.
If this error is returned, the MessageLength field
in the CommBuffer header or the integer pointed by
CommSize, are updated to reflect the maximum payload
size the implementation can accommodate.
@retval EFI_ACCESS_DENIED The CommunicateBuffer parameter or CommSize parameter,
if not omitted, are in address range that cannot be
accessed by the MM environment.
**/
EFI_STATUS
EFIAPI
MmCommunication2Communicate (
IN CONST EFI_MM_COMMUNICATION2_PROTOCOL *This,
IN OUT VOID *CommBufferPhysical,
IN OUT VOID *CommBufferVirtual,
IN OUT UINTN *CommSize OPTIONAL
)
{
EFI_MM_COMMUNICATE_HEADER *CommunicateHeader;
ARM_SMC_ARGS CommunicateSmcArgs;
EFI_STATUS Status;
UINTN BufferSize;
Status = EFI_ACCESS_DENIED;
BufferSize = 0;
ZeroMem (&CommunicateSmcArgs, sizeof (ARM_SMC_ARGS));
//
// Check parameters
//
if ((CommBufferVirtual == NULL) || (CommBufferPhysical == NULL)) {
return EFI_INVALID_PARAMETER;
}
Status = EFI_SUCCESS;
CommunicateHeader = CommBufferVirtual;
// CommBuffer is a mandatory parameter. Hence, Rely on
// MessageLength + Header to ascertain the
// total size of the communication payload rather than
// rely on optional CommSize parameter
BufferSize = CommunicateHeader->MessageLength +
sizeof (CommunicateHeader->HeaderGuid) +
sizeof (CommunicateHeader->MessageLength);
// If CommSize is not omitted, perform size inspection before proceeding.
if (CommSize != NULL) {
// This case can be used by the consumer of this driver to find out the
// max size that can be used for allocating CommBuffer.
if ((*CommSize == 0) ||
(*CommSize > mNsCommBuffMemRegion.Length))
{
*CommSize = mNsCommBuffMemRegion.Length;
Status = EFI_BAD_BUFFER_SIZE;
}
//
// CommSize should cover at least MessageLength + sizeof (EFI_MM_COMMUNICATE_HEADER);
//
if (*CommSize < BufferSize) {
Status = EFI_INVALID_PARAMETER;
}
}
//
// If the message length is 0 or greater than what can be tolerated by the MM
// environment then return the expected size.
//
if ((CommunicateHeader->MessageLength == 0) ||
(BufferSize > mNsCommBuffMemRegion.Length))
{
CommunicateHeader->MessageLength = mNsCommBuffMemRegion.Length -
sizeof (CommunicateHeader->HeaderGuid) -
sizeof (CommunicateHeader->MessageLength);
Status = EFI_BAD_BUFFER_SIZE;
}
// MessageLength or CommSize check has failed, return here.
if (EFI_ERROR (Status)) {
return Status;
}
// SMC Function ID
CommunicateSmcArgs.Arg0 = ARM_SMC_ID_MM_COMMUNICATE_AARCH64;
// Cookie
CommunicateSmcArgs.Arg1 = 0;
// Copy Communication Payload
CopyMem ((VOID *)mNsCommBuffMemRegion.VirtualBase, CommBufferVirtual, BufferSize);
// comm_buffer_address (64-bit physical address)
CommunicateSmcArgs.Arg2 = (UINTN)mNsCommBuffMemRegion.PhysicalBase;
// comm_size_address (not used, indicated by setting to zero)
CommunicateSmcArgs.Arg3 = 0;
// Call the Standalone MM environment.
ArmCallSmc (&CommunicateSmcArgs);
switch (CommunicateSmcArgs.Arg0) {
case ARM_SMC_MM_RET_SUCCESS:
ZeroMem (CommBufferVirtual, BufferSize);
// On successful return, the size of data being returned is inferred from
// MessageLength + Header.
CommunicateHeader = (EFI_MM_COMMUNICATE_HEADER *)mNsCommBuffMemRegion.VirtualBase;
BufferSize = CommunicateHeader->MessageLength +
sizeof (CommunicateHeader->HeaderGuid) +
sizeof (CommunicateHeader->MessageLength);
CopyMem (
CommBufferVirtual,
(VOID *)mNsCommBuffMemRegion.VirtualBase,
BufferSize
);
Status = EFI_SUCCESS;
break;
case ARM_SMC_MM_RET_INVALID_PARAMS:
Status = EFI_INVALID_PARAMETER;
break;
case ARM_SMC_MM_RET_DENIED:
Status = EFI_ACCESS_DENIED;
break;
case ARM_SMC_MM_RET_NO_MEMORY:
// Unexpected error since the CommSize was checked for zero length
// prior to issuing the SMC
Status = EFI_OUT_OF_RESOURCES;
ASSERT (0);
break;
default:
Status = EFI_ACCESS_DENIED;
ASSERT (0);
}
return Status;
}
//
// MM Communication Protocol instance
//
STATIC EFI_MM_COMMUNICATION2_PROTOCOL mMmCommunication2 = {
MmCommunication2Communicate
};
/**
Notification callback on SetVirtualAddressMap event.
This function notifies the MM communication protocol interface on
SetVirtualAddressMap event and converts pointers used in this driver
from physical to virtual address.
@param Event SetVirtualAddressMap event.
@param Context A context when the SetVirtualAddressMap triggered.
@retval EFI_SUCCESS The function executed successfully.
@retval Other Some error occurred when executing this function.
**/
STATIC
VOID
EFIAPI
NotifySetVirtualAddressMap (
IN EFI_EVENT Event,
IN VOID *Context
)
{
EFI_STATUS Status;
Status = gRT->ConvertPointer (
EFI_OPTIONAL_PTR,
(VOID **)&mNsCommBuffMemRegion.VirtualBase
);
if (EFI_ERROR (Status)) {
DEBUG ((
DEBUG_ERROR,
"NotifySetVirtualAddressMap():"
" Unable to convert MM runtime pointer. Status:0x%r\n",
Status
));
}
}
STATIC
EFI_STATUS
GetMmCompatibility (
)
{
EFI_STATUS Status;
UINT32 MmVersion;
ARM_SMC_ARGS MmVersionArgs;
// MM_VERSION uses SMC32 calling conventions
MmVersionArgs.Arg0 = ARM_SMC_ID_MM_VERSION_AARCH32;
ArmCallSmc (&MmVersionArgs);
MmVersion = MmVersionArgs.Arg0;
if ((MM_MAJOR_VER (MmVersion) == MM_CALLER_MAJOR_VER) &&
(MM_MINOR_VER (MmVersion) >= MM_CALLER_MINOR_VER))
{
DEBUG ((
DEBUG_INFO,
"MM Version: Major=0x%x, Minor=0x%x\n",
MM_MAJOR_VER (MmVersion),
MM_MINOR_VER (MmVersion)
));
Status = EFI_SUCCESS;
} else {
DEBUG ((
DEBUG_ERROR,
"Incompatible MM Versions.\n Current Version: Major=0x%x, Minor=0x%x.\n Expected: Major=0x%x, Minor>=0x%x.\n",
MM_MAJOR_VER (MmVersion),
MM_MINOR_VER (MmVersion),
MM_CALLER_MAJOR_VER,
MM_CALLER_MINOR_VER
));
Status = EFI_UNSUPPORTED;
}
return Status;
}
STATIC EFI_GUID *CONST mGuidedEventGuid[] = {
&gEfiEndOfDxeEventGroupGuid,
&gEfiEventExitBootServicesGuid,
&gEfiEventReadyToBootGuid,
};
STATIC EFI_EVENT mGuidedEvent[ARRAY_SIZE (mGuidedEventGuid)];
/**
Event notification that is fired when GUIDed Event Group is signaled.
@param Event The Event that is being processed, not used.
@param Context Event Context, not used.
**/
STATIC
VOID
EFIAPI
MmGuidedEventNotify (
IN EFI_EVENT Event,
IN VOID *Context
)
{
EFI_MM_COMMUNICATE_HEADER Header;
UINTN Size;
//
// Use Guid to initialize EFI_SMM_COMMUNICATE_HEADER structure
//
CopyGuid (&Header.HeaderGuid, Context);
Header.MessageLength = 1;
Header.Data[0] = 0;
Size = sizeof (Header);
MmCommunication2Communicate (&mMmCommunication2, &Header, &Header, &Size);
}
/**
The Entry Point for MM Communication
This function installs the MM communication protocol interface and finds out
what type of buffer management will be required prior to invoking the
communication SMC.
@param ImageHandle The firmware allocated handle for the EFI image.
@param SystemTable A pointer to the EFI System Table.
@retval EFI_SUCCESS The entry point is executed successfully.
@retval Other Some error occurred when executing this entry point.
**/
EFI_STATUS
EFIAPI
MmCommunication2Initialize (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_STATUS Status;
UINTN Index;
// Check if we can make the MM call
Status = GetMmCompatibility ();
if (EFI_ERROR (Status)) {
goto ReturnErrorStatus;
}
mNsCommBuffMemRegion.PhysicalBase = PcdGet64 (PcdMmBufferBase);
// During boot , Virtual and Physical are same
mNsCommBuffMemRegion.VirtualBase = mNsCommBuffMemRegion.PhysicalBase;
mNsCommBuffMemRegion.Length = PcdGet64 (PcdMmBufferSize);
ASSERT (mNsCommBuffMemRegion.PhysicalBase != 0);
ASSERT (mNsCommBuffMemRegion.Length != 0);
Status = gDS->AddMemorySpace (
EfiGcdMemoryTypeReserved,
mNsCommBuffMemRegion.PhysicalBase,
mNsCommBuffMemRegion.Length,
EFI_MEMORY_WB |
EFI_MEMORY_XP |
EFI_MEMORY_RUNTIME
);
if (EFI_ERROR (Status)) {
DEBUG ((
DEBUG_ERROR,
"MmCommunicateInitialize: "
"Failed to add MM-NS Buffer Memory Space\n"
));
goto ReturnErrorStatus;
}
Status = gDS->SetMemorySpaceAttributes (
mNsCommBuffMemRegion.PhysicalBase,
mNsCommBuffMemRegion.Length,
EFI_MEMORY_WB | EFI_MEMORY_XP | EFI_MEMORY_RUNTIME
);
if (EFI_ERROR (Status)) {
DEBUG ((
DEBUG_ERROR,
"MmCommunicateInitialize: "
"Failed to set MM-NS Buffer Memory attributes\n"
));
goto CleanAddedMemorySpace;
}
// Install the communication protocol
Status = gBS->InstallProtocolInterface (
&mMmCommunicateHandle,
&gEfiMmCommunication2ProtocolGuid,
EFI_NATIVE_INTERFACE,
&mMmCommunication2
);
if (EFI_ERROR (Status)) {
DEBUG ((
DEBUG_ERROR,
"MmCommunicationInitialize: "
"Failed to install MM communication protocol\n"
));
goto CleanAddedMemorySpace;
}
// Register notification callback when virtual address is associated
// with the physical address.
// Create a Set Virtual Address Map event.
Status = gBS->CreateEvent (
EVT_SIGNAL_VIRTUAL_ADDRESS_CHANGE,
TPL_NOTIFY,
NotifySetVirtualAddressMap,
NULL,
&mSetVirtualAddressMapEvent
);
ASSERT_EFI_ERROR (Status);
for (Index = 0; Index < ARRAY_SIZE (mGuidedEventGuid); Index++) {
Status = gBS->CreateEventEx (
EVT_NOTIFY_SIGNAL,
TPL_CALLBACK,
MmGuidedEventNotify,
mGuidedEventGuid[Index],
mGuidedEventGuid[Index],
&mGuidedEvent[Index]
);
ASSERT_EFI_ERROR (Status);
if (EFI_ERROR (Status)) {
while (Index-- > 0) {
gBS->CloseEvent (mGuidedEvent[Index]);
}
goto UninstallProtocol;
}
}
return EFI_SUCCESS;
UninstallProtocol:
gBS->UninstallProtocolInterface (
mMmCommunicateHandle,
&gEfiMmCommunication2ProtocolGuid,
&mMmCommunication2
);
CleanAddedMemorySpace:
gDS->RemoveMemorySpace (
mNsCommBuffMemRegion.PhysicalBase,
mNsCommBuffMemRegion.Length
);
ReturnErrorStatus:
return EFI_INVALID_PARAMETER;
}

View File

@ -0,0 +1,56 @@
#/** @file
#
# DXE MM Communicate driver
#
# Copyright (c) 2016 - 2021, Arm Limited. All rights reserved.<BR>
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
#
#**/
[Defines]
INF_VERSION = 0x0001001A
BASE_NAME = ArmMmCommunication
FILE_GUID = 09EE81D3-F15E-43F4-85B4-CB9873DA5D6B
MODULE_TYPE = DXE_RUNTIME_DRIVER
VERSION_STRING = 1.0
ENTRY_POINT = MmCommunication2Initialize
#
# The following is for reference only and not required by
# build tools
#
# VALID_ARCHITECTURES = AARCH64
#
[Sources.AARCH64]
MmCommunicate.h
MmCommunication.c
[Packages]
ArmPkg/ArmPkg.dec
MdePkg/MdePkg.dec
[LibraryClasses]
ArmLib
ArmSmcLib
BaseMemoryLib
DebugLib
DxeServicesTableLib
HobLib
UefiDriverEntryPoint
[Protocols]
gEfiMmCommunication2ProtocolGuid ## PRODUCES
[Guids]
gEfiEndOfDxeEventGroupGuid
gEfiEventExitBootServicesGuid
gEfiEventReadyToBootGuid
[Pcd.common]
gArmTokenSpaceGuid.PcdMmBufferBase
gArmTokenSpaceGuid.PcdMmBufferSize
[Depex]
gEfiCpuArchProtocolGuid

View File

@ -0,0 +1,427 @@
/** @file
Timer Architecture Protocol driver of the ARM flavor
Copyright (c) 2011-2021, Arm Limited. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <PiDxe.h>
#include <Library/ArmLib.h>
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/UefiLib.h>
#include <Library/PcdLib.h>
#include <Library/IoLib.h>
#include <Library/ArmGenericTimerCounterLib.h>
#include <Protocol/Timer.h>
#include <Protocol/HardwareInterrupt.h>
// The notification function to call on every timer interrupt.
EFI_TIMER_NOTIFY mTimerNotifyFunction = (EFI_TIMER_NOTIFY)NULL;
EFI_EVENT EfiExitBootServicesEvent = (EFI_EVENT)NULL;
// The current period of the timer interrupt
UINT64 mTimerPeriod = 0;
// The latest Timer Tick calculated for mTimerPeriod
UINT64 mTimerTicks = 0;
// Number of elapsed period since the last Timer interrupt
UINT64 mElapsedPeriod = 1;
// Cached copy of the Hardware Interrupt protocol instance
EFI_HARDWARE_INTERRUPT_PROTOCOL *gInterrupt = NULL;
/**
This function registers the handler NotifyFunction so it is called every time
the timer interrupt fires. It also passes the amount of time since the last
handler call to the NotifyFunction. If NotifyFunction is NULL, then the
handler is unregistered. If the handler is registered, then EFI_SUCCESS is
returned. If the CPU does not support registering a timer interrupt handler,
then EFI_UNSUPPORTED is returned. If an attempt is made to register a handler
when a handler is already registered, then EFI_ALREADY_STARTED is returned.
If an attempt is made to unregister a handler when a handler is not registered,
then EFI_INVALID_PARAMETER is returned. If an error occurs attempting to
register the NotifyFunction with the timer interrupt, then EFI_DEVICE_ERROR
is returned.
@param This The EFI_TIMER_ARCH_PROTOCOL instance.
@param NotifyFunction The function to call when a timer interrupt fires. This
function executes at TPL_HIGH_LEVEL. The DXE Core will
register a handler for the timer interrupt, so it can know
how much time has passed. This information is used to
signal timer based events. NULL will unregister the handler.
@retval EFI_SUCCESS The timer handler was registered.
@retval EFI_UNSUPPORTED The platform does not support timer interrupts.
@retval EFI_ALREADY_STARTED NotifyFunction is not NULL, and a handler is already
registered.
@retval EFI_INVALID_PARAMETER NotifyFunction is NULL, and a handler was not
previously registered.
@retval EFI_DEVICE_ERROR The timer handler could not be registered.
**/
EFI_STATUS
EFIAPI
TimerDriverRegisterHandler (
IN EFI_TIMER_ARCH_PROTOCOL *This,
IN EFI_TIMER_NOTIFY NotifyFunction
)
{
if ((NotifyFunction == NULL) && (mTimerNotifyFunction == NULL)) {
return EFI_INVALID_PARAMETER;
}
if ((NotifyFunction != NULL) && (mTimerNotifyFunction != NULL)) {
return EFI_ALREADY_STARTED;
}
mTimerNotifyFunction = NotifyFunction;
return EFI_SUCCESS;
}
/**
Disable the timer
**/
VOID
EFIAPI
ExitBootServicesEvent (
IN EFI_EVENT Event,
IN VOID *Context
)
{
ArmGenericTimerDisableTimer ();
}
/**
This function adjusts the period of timer interrupts to the value specified
by TimerPeriod. If the timer period is updated, then the selected timer
period is stored in EFI_TIMER.TimerPeriod, and EFI_SUCCESS is returned. If
the timer hardware is not programmable, then EFI_UNSUPPORTED is returned.
If an error occurs while attempting to update the timer period, then the
timer hardware will be put back in its state prior to this call, and
EFI_DEVICE_ERROR is returned. If TimerPeriod is 0, then the timer interrupt
is disabled. This is not the same as disabling the CPU's interrupts.
Instead, it must either turn off the timer hardware, or it must adjust the
interrupt controller so that a CPU interrupt is not generated when the timer
interrupt fires.
@param This The EFI_TIMER_ARCH_PROTOCOL instance.
@param TimerPeriod The rate to program the timer interrupt in 100 nS units. If
the timer hardware is not programmable, then EFI_UNSUPPORTED is
returned. If the timer is programmable, then the timer period
will be rounded up to the nearest timer period that is supported
by the timer hardware. If TimerPeriod is set to 0, then the
timer interrupts will be disabled.
@retval EFI_SUCCESS The timer period was changed.
@retval EFI_UNSUPPORTED The platform cannot change the period of the timer interrupt.
@retval EFI_DEVICE_ERROR The timer period could not be changed due to a device error.
**/
EFI_STATUS
EFIAPI
TimerDriverSetTimerPeriod (
IN EFI_TIMER_ARCH_PROTOCOL *This,
IN UINT64 TimerPeriod
)
{
UINT64 CounterValue;
UINT64 TimerTicks;
EFI_TPL OriginalTPL;
// Always disable the timer
ArmGenericTimerDisableTimer ();
if (TimerPeriod != 0) {
// mTimerTicks = TimerPeriod in 1ms unit x Frequency.10^-3
// = TimerPeriod.10^-4 x Frequency.10^-3
// = (TimerPeriod x Frequency) x 10^-7
TimerTicks = MultU64x32 (TimerPeriod, ArmGenericTimerGetTimerFreq ());
TimerTicks = DivU64x32 (TimerTicks, 10000000U);
// Raise TPL to update the mTimerTicks and mTimerPeriod to ensure these values
// are coherent in the interrupt handler
OriginalTPL = gBS->RaiseTPL (TPL_HIGH_LEVEL);
mTimerTicks = TimerTicks;
mTimerPeriod = TimerPeriod;
mElapsedPeriod = 1;
gBS->RestoreTPL (OriginalTPL);
// Get value of the current timer
CounterValue = ArmGenericTimerGetSystemCount ();
// Set the interrupt in Current Time + mTimerTick
ArmGenericTimerSetCompareVal (CounterValue + mTimerTicks);
// Enable the timer
ArmGenericTimerEnableTimer ();
} else {
// Save the new timer period
mTimerPeriod = TimerPeriod;
// Reset the elapsed period
mElapsedPeriod = 1;
}
return EFI_SUCCESS;
}
/**
This function retrieves the period of timer interrupts in 100 ns units,
returns that value in TimerPeriod, and returns EFI_SUCCESS. If TimerPeriod
is NULL, then EFI_INVALID_PARAMETER is returned. If a TimerPeriod of 0 is
returned, then the timer is currently disabled.
@param This The EFI_TIMER_ARCH_PROTOCOL instance.
@param TimerPeriod A pointer to the timer period to retrieve in 100 ns units. If
0 is returned, then the timer is currently disabled.
@retval EFI_SUCCESS The timer period was returned in TimerPeriod.
@retval EFI_INVALID_PARAMETER TimerPeriod is NULL.
**/
EFI_STATUS
EFIAPI
TimerDriverGetTimerPeriod (
IN EFI_TIMER_ARCH_PROTOCOL *This,
OUT UINT64 *TimerPeriod
)
{
if (TimerPeriod == NULL) {
return EFI_INVALID_PARAMETER;
}
*TimerPeriod = mTimerPeriod;
return EFI_SUCCESS;
}
/**
This function generates a soft timer interrupt. If the platform does not support soft
timer interrupts, then EFI_UNSUPPORTED is returned. Otherwise, EFI_SUCCESS is returned.
If a handler has been registered through the EFI_TIMER_ARCH_PROTOCOL.RegisterHandler()
service, then a soft timer interrupt will be generated. If the timer interrupt is
enabled when this service is called, then the registered handler will be invoked. The
registered handler should not be able to distinguish a hardware-generated timer
interrupt from a software-generated timer interrupt.
@param This The EFI_TIMER_ARCH_PROTOCOL instance.
@retval EFI_SUCCESS The soft timer interrupt was generated.
@retval EFI_UNSUPPORTED The platform does not support the generation of soft timer interrupts.
**/
EFI_STATUS
EFIAPI
TimerDriverGenerateSoftInterrupt (
IN EFI_TIMER_ARCH_PROTOCOL *This
)
{
return EFI_UNSUPPORTED;
}
/**
Interface structure for the Timer Architectural Protocol.
@par Protocol Description:
This protocol provides the services to initialize a periodic timer
interrupt, and to register a handler that is called each time the timer
interrupt fires. It may also provide a service to adjust the rate of the
periodic timer interrupt. When a timer interrupt occurs, the handler is
passed the amount of time that has passed since the previous timer
interrupt.
@param RegisterHandler
Registers a handler that will be called each time the
timer interrupt fires. TimerPeriod defines the minimum
time between timer interrupts, so TimerPeriod will also
be the minimum time between calls to the registered
handler.
@param SetTimerPeriod
Sets the period of the timer interrupt in 100 nS units.
This function is optional, and may return EFI_UNSUPPORTED.
If this function is supported, then the timer period will
be rounded up to the nearest supported timer period.
@param GetTimerPeriod
Retrieves the period of the timer interrupt in 100 nS units.
@param GenerateSoftInterrupt
Generates a soft timer interrupt that simulates the firing of
the timer interrupt. This service can be used to invoke the registered handler if the timer interrupt has been masked for
a period of time.
**/
EFI_TIMER_ARCH_PROTOCOL gTimer = {
TimerDriverRegisterHandler,
TimerDriverSetTimerPeriod,
TimerDriverGetTimerPeriod,
TimerDriverGenerateSoftInterrupt
};
/**
C Interrupt Handler called in the interrupt context when Source interrupt is active.
@param Source Source of the interrupt. Hardware routing off a specific platform defines
what source means.
@param SystemContext Pointer to system register context. Mostly used by debuggers and will
update the system context after the return from the interrupt if
modified. Don't change these values unless you know what you are doing
**/
VOID
EFIAPI
TimerInterruptHandler (
IN HARDWARE_INTERRUPT_SOURCE Source,
IN EFI_SYSTEM_CONTEXT SystemContext
)
{
EFI_TPL OriginalTPL;
UINT64 CurrentValue;
UINT64 CompareValue;
//
// DXE core uses this callback for the EFI timer tick. The DXE core uses locks
// that raise to TPL_HIGH and then restore back to current level. Thus we need
// to make sure TPL level is set to TPL_HIGH while we are handling the timer tick.
//
OriginalTPL = gBS->RaiseTPL (TPL_HIGH_LEVEL);
// Signal end of interrupt early to help avoid losing subsequent ticks
// from long duration handlers
gInterrupt->EndOfInterrupt (gInterrupt, Source);
// Check if the timer interrupt is active
if ((ArmGenericTimerGetTimerCtrlReg ()) & ARM_ARCH_TIMER_ISTATUS) {
if (mTimerNotifyFunction != 0) {
mTimerNotifyFunction (mTimerPeriod * mElapsedPeriod);
}
//
// Reload the Timer
//
// Get current counter value
CurrentValue = ArmGenericTimerGetSystemCount ();
// Get the counter value to compare with
CompareValue = ArmGenericTimerGetCompareVal ();
// This loop is needed in case we missed interrupts (eg: case when the interrupt handling
// has taken longer than mTickPeriod).
// Note: Physical Counter is counting up
mElapsedPeriod = 0;
do {
CompareValue += mTimerTicks;
mElapsedPeriod++;
} while (CompareValue < CurrentValue);
// Set next compare value
ArmGenericTimerSetCompareVal (CompareValue);
ArmGenericTimerReenableTimer ();
ArmInstructionSynchronizationBarrier ();
}
gBS->RestoreTPL (OriginalTPL);
}
/**
Initialize the state information for the Timer Architectural Protocol and
the Timer Debug support protocol that allows the debugger to break into a
running program.
@param ImageHandle of the loaded driver
@param SystemTable Pointer to the System Table
@retval EFI_SUCCESS Protocol registered
@retval EFI_OUT_OF_RESOURCES Cannot allocate protocol data structure
@retval EFI_DEVICE_ERROR Hardware problems
**/
EFI_STATUS
EFIAPI
TimerInitialize (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
EFI_HANDLE Handle;
EFI_STATUS Status;
UINTN TimerCtrlReg;
UINT32 TimerHypIntrNum;
if (ArmIsArchTimerImplemented () == 0) {
DEBUG ((DEBUG_ERROR, "ARM Architectural Timer is not available in the CPU, hence can't use this Driver \n"));
ASSERT (0);
}
// Find the interrupt controller protocol. ASSERT if not found.
Status = gBS->LocateProtocol (&gHardwareInterruptProtocolGuid, NULL, (VOID **)&gInterrupt);
ASSERT_EFI_ERROR (Status);
// Disable the timer
TimerCtrlReg = ArmGenericTimerGetTimerCtrlReg ();
TimerCtrlReg |= ARM_ARCH_TIMER_IMASK;
TimerCtrlReg &= ~ARM_ARCH_TIMER_ENABLE;
ArmGenericTimerSetTimerCtrlReg (TimerCtrlReg);
Status = TimerDriverSetTimerPeriod (&gTimer, 0);
ASSERT_EFI_ERROR (Status);
// Install secure and Non-secure interrupt handlers
// Note: Because it is not possible to determine the security state of the
// CPU dynamically, we just install interrupt handler for both sec and non-sec
// timer PPI
Status = gInterrupt->RegisterInterruptSource (gInterrupt, PcdGet32 (PcdArmArchTimerVirtIntrNum), TimerInterruptHandler);
ASSERT_EFI_ERROR (Status);
//
// The hypervisor timer interrupt may be omitted by implementations that
// execute under virtualization.
//
TimerHypIntrNum = PcdGet32 (PcdArmArchTimerHypIntrNum);
if (TimerHypIntrNum != 0) {
Status = gInterrupt->RegisterInterruptSource (gInterrupt, TimerHypIntrNum, TimerInterruptHandler);
ASSERT_EFI_ERROR (Status);
}
Status = gInterrupt->RegisterInterruptSource (gInterrupt, PcdGet32 (PcdArmArchTimerSecIntrNum), TimerInterruptHandler);
ASSERT_EFI_ERROR (Status);
Status = gInterrupt->RegisterInterruptSource (gInterrupt, PcdGet32 (PcdArmArchTimerIntrNum), TimerInterruptHandler);
ASSERT_EFI_ERROR (Status);
// Set up default timer
Status = TimerDriverSetTimerPeriod (&gTimer, FixedPcdGet32 (PcdTimerPeriod)); // TIMER_DEFAULT_PERIOD
ASSERT_EFI_ERROR (Status);
Handle = NULL;
// Install the Timer Architectural Protocol onto a new handle
Status = gBS->InstallMultipleProtocolInterfaces (
&Handle,
&gEfiTimerArchProtocolGuid,
&gTimer,
NULL
);
ASSERT_EFI_ERROR (Status);
// Everything is ready, unmask and enable timer interrupts
TimerCtrlReg = ARM_ARCH_TIMER_ENABLE;
ArmGenericTimerSetTimerCtrlReg (TimerCtrlReg);
// Register for an ExitBootServicesEvent
Status = gBS->CreateEvent (EVT_SIGNAL_EXIT_BOOT_SERVICES, TPL_NOTIFY, ExitBootServicesEvent, NULL, &EfiExitBootServicesEvent);
ASSERT_EFI_ERROR (Status);
return Status;
}

View File

@ -0,0 +1,54 @@
#/** @file
#
# Component description file for Timer DXE module
#
# Copyright (c) 2009 - 2010, Apple Inc. All rights reserved.<BR>
# SPDX-License-Identifier: BSD-2-Clause-Patent
#
#**/
[Defines]
INF_VERSION = 0x00010005
BASE_NAME = ArmTimerDxe
FILE_GUID = 49ea041e-6752-42ca-b0b1-7344fe2546b7
MODULE_TYPE = DXE_DRIVER
VERSION_STRING = 1.0
ENTRY_POINT = TimerInitialize
[Sources.common]
TimerDxe.c
[Packages]
MdePkg/MdePkg.dec
EmbeddedPkg/EmbeddedPkg.dec
ArmPkg/ArmPkg.dec
ArmPlatformPkg/ArmPlatformPkg.dec
[LibraryClasses]
ArmLib
BaseLib
UefiRuntimeServicesTableLib
UefiLib
UefiBootServicesTableLib
BaseMemoryLib
DebugLib
UefiDriverEntryPoint
IoLib
ArmGenericTimerCounterLib
[Guids]
[Protocols]
gEfiTimerArchProtocolGuid
gHardwareInterruptProtocolGuid
[Pcd.common]
gEmbeddedTokenSpaceGuid.PcdTimerPeriod
gArmTokenSpaceGuid.PcdArmArchTimerSecIntrNum
gArmTokenSpaceGuid.PcdArmArchTimerIntrNum
gArmTokenSpaceGuid.PcdArmArchTimerVirtIntrNum
gArmTokenSpaceGuid.PcdArmArchTimerHypIntrNum
[Depex]
gHardwareInterruptProtocolGuid

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,245 @@
/** @file
Support a Semi Host file system over a debuggers JTAG
Copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef SEMIHOST_FS_H_
#define SEMIHOST_FS_H_
EFI_STATUS
VolumeOpen (
IN EFI_SIMPLE_FILE_SYSTEM_PROTOCOL *This,
OUT EFI_FILE **Root
);
/**
Open a file on the host system by means of the semihosting interface.
@param[in] This A pointer to the EFI_FILE_PROTOCOL instance that is
the file handle to source location.
@param[out] NewHandle A pointer to the location to return the opened
handle for the new file.
@param[in] FileName The Null-terminated string of the name of the file
to be opened.
@param[in] OpenMode The mode to open the file : Read or Read/Write or
Read/Write/Create
@param[in] Attributes Only valid for EFI_FILE_MODE_CREATE, in which case these
are the attribute bits for the newly created file. The
mnemonics of the attribute bits are : EFI_FILE_READ_ONLY,
EFI_FILE_HIDDEN, EFI_FILE_SYSTEM, EFI_FILE_RESERVED,
EFI_FILE_DIRECTORY and EFI_FILE_ARCHIVE.
@retval EFI_SUCCESS The file was open.
@retval EFI_NOT_FOUND The specified file could not be found.
@retval EFI_DEVICE_ERROR The last issued semi-hosting operation failed.
@retval EFI_WRITE_PROTECTED Attempt to create a directory. This is not possible
with the semi-hosting interface.
@retval EFI_OUT_OF_RESOURCES Not enough resources were available to open the file.
@retval EFI_INVALID_PARAMETER At least one of the parameters is invalid.
**/
EFI_STATUS
FileOpen (
IN EFI_FILE *This,
OUT EFI_FILE **NewHandle,
IN CHAR16 *FileName,
IN UINT64 OpenMode,
IN UINT64 Attributes
);
/**
Close a specified file handle.
@param[in] This A pointer to the EFI_FILE_PROTOCOL instance that is the file
handle to close.
@retval EFI_SUCCESS The file was closed.
@retval EFI_INVALID_PARAMETER The parameter "This" is NULL.
**/
EFI_STATUS
FileClose (
IN EFI_FILE *This
);
/**
Close and delete a file.
@param[in] This A pointer to the EFI_FILE_PROTOCOL instance that is the file
handle to delete.
@retval EFI_SUCCESS The file was closed and deleted.
@retval EFI_WARN_DELETE_FAILURE The handle was closed, but the file was not deleted.
@retval EFI_INVALID_PARAMETER The parameter "This" is NULL.
**/
EFI_STATUS
FileDelete (
IN EFI_FILE *This
);
/**
Read data from an open file.
@param[in] This A pointer to the EFI_FILE_PROTOCOL instance that
is the file handle to read data from.
@param[in out] BufferSize On input, the size of the Buffer. On output, the
amount of data returned in Buffer. In both cases,
the size is measured in bytes.
@param[out] Buffer The buffer into which the data is read.
@retval EFI_SUCCESS The data was read.
@retval EFI_DEVICE_ERROR On entry, the current file position is
beyond the end of the file, or the semi-hosting
interface reported an error while performing the
read operation.
@retval EFI_INVALID_PARAMETER The parameter "This" or the parameter "Buffer"
is NULL.
**/
EFI_STATUS
FileRead (
IN EFI_FILE *This,
IN OUT UINTN *BufferSize,
OUT VOID *Buffer
);
/**
Write data to an open file.
@param[in] This A pointer to the EFI_FILE_PROTOCOL instance that
is the file handle to write data to.
@param[in out] BufferSize On input, the size of the Buffer. On output, the
size of the data actually written. In both cases,
the size is measured in bytes.
@param[in] Buffer The buffer of data to write.
@retval EFI_SUCCESS The data was written.
@retval EFI_ACCESS_DENIED Attempt to write into a read only file or
in a file opened in read only mode.
@retval EFI_DEVICE_ERROR The last issued semi-hosting operation failed.
@retval EFI_INVALID_PARAMETER The parameter "This" or the parameter "Buffer"
is NULL.
**/
EFI_STATUS
FileWrite (
IN EFI_FILE *This,
IN OUT UINTN *BufferSize,
IN VOID *Buffer
);
/**
Return a file's current position.
@param[in] This A pointer to the EFI_FILE_PROTOCOL instance that is
the file handle to get the current position on.
@param[out] Position The address to return the file's current position value.
@retval EFI_SUCCESS The position was returned.
@retval EFI_INVALID_PARAMETER Position is a NULL pointer.
**/
EFI_STATUS
FileGetPosition (
IN EFI_FILE *File,
OUT UINT64 *Position
);
/**
Set a file's current position.
@param[in] This A pointer to the EFI_FILE_PROTOCOL instance that is
the file handle to set the requested position on.
@param[in] Position The byte position from the start of the file to set.
@retval EFI_SUCCESS The position was set.
@retval EFI_DEVICE_ERROR The semi-hosting positioning operation failed.
@retval EFI_UNSUPPORTED The seek request for nonzero is not valid on open
directories.
**/
EFI_STATUS
FileSetPosition (
IN EFI_FILE *File,
IN UINT64 Position
);
/**
Return information about a file or a file system.
@param[in] This A pointer to the EFI_FILE_PROTOCOL instance that
is the file handle the requested information is for.
@param[in] InformationType The type identifier for the information being requested :
EFI_FILE_INFO_ID or EFI_FILE_SYSTEM_INFO_ID or
EFI_FILE_SYSTEM_VOLUME_LABEL_ID
@param[in out] BufferSize The size, in bytes, of Buffer.
@param[out] Buffer A pointer to the data buffer to return. The type of the
data inside the buffer is indicated by InformationType.
@retval EFI_SUCCESS The information was returned.
@retval EFI_UNSUPPORTED The InformationType is not known.
@retval EFI_BUFFER_TOO_SMALL The BufferSize is too small to return the information.
BufferSize has been updated with the size needed to
complete the request.
@retval EFI_INVALID_PARAMETER The parameter "This" or the parameter "Buffer"
is NULL.
**/
EFI_STATUS
FileGetInfo (
IN EFI_FILE *This,
IN EFI_GUID *InformationType,
IN OUT UINTN *BufferSize,
OUT VOID *Buffer
);
/**
Set information about a file or a file system.
@param[in] This A pointer to the EFI_FILE_PROTOCOL instance that
is the file handle the information is for.
@param[in] InformationType The type identifier for the information being set :
EFI_FILE_INFO_ID or EFI_FILE_SYSTEM_INFO_ID or
EFI_FILE_SYSTEM_VOLUME_LABEL_ID
@param[in] BufferSize The size, in bytes, of Buffer.
@param[in] Buffer A pointer to the data buffer to write. The type of the
data inside the buffer is indicated by InformationType.
@retval EFI_SUCCESS The information was set.
@retval EFI_UNSUPPORTED The InformationType is not known.
@retval EFI_DEVICE_ERROR The last issued semi-hosting operation failed.
@retval EFI_ACCESS_DENIED An attempt is being made to change the
EFI_FILE_DIRECTORY Attribute.
@retval EFI_ACCESS_DENIED InformationType is EFI_FILE_INFO_ID and
the file is a read-only file or has been
opened in read-only mode and an attempt is
being made to modify a field other than
Attribute.
@retval EFI_ACCESS_DENIED An attempt is made to change the name of a file
to a file that is already present.
@retval EFI_WRITE_PROTECTED An attempt is being made to modify a
read-only attribute.
@retval EFI_BAD_BUFFER_SIZE The size of the buffer is lower than that indicated by
the data inside the buffer.
@retval EFI_OUT_OF_RESOURCES An allocation needed to process the request failed.
@retval EFI_INVALID_PARAMETER At least one of the parameters is invalid.
**/
EFI_STATUS
FileSetInfo (
IN EFI_FILE *This,
IN EFI_GUID *InformationType,
IN UINTN BufferSize,
IN VOID *Buffer
);
EFI_STATUS
FileFlush (
IN EFI_FILE *File
);
#endif // SEMIHOST_FS_H_

View File

@ -0,0 +1,42 @@
#/** @file
# Support a Semi Host file system over a debuggers JTAG
#
# Copyright (c) 2009, Apple Inc. All rights reserved.<BR>
# Portions copyright (c) 2011 - 2013, ARM Ltd. All rights reserved.
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
#
#**/
[Defines]
INF_VERSION = 0x00010005
BASE_NAME = SemihostFs
FILE_GUID = C5B9C74A-6D72-4719-99AB-C59F199091EB
MODULE_TYPE = UEFI_DRIVER
VERSION_STRING = 1.0
ENTRY_POINT = SemihostFsEntryPoint
[Sources.ARM, Sources.AARCH64]
Arm/SemihostFs.c
[Packages]
MdePkg/MdePkg.dec
ArmPkg/ArmPkg.dec
[LibraryClasses]
BaseLib
MemoryAllocationLib
SemihostLib
UefiDriverEntryPoint
UefiLib
[Guids]
gEfiFileSystemInfoGuid
gEfiFileInfoGuid
gEfiFileSystemVolumeLabelInfoIdGuid
[Protocols]
gEfiSimpleFileSystemProtocolGuid
gEfiDevicePathProtocolGuid

View File

@ -0,0 +1,38 @@
/** @file
Macros to work around lack of Apple support for LDR register, =expr
Copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>
Copyright (c) 2011-2012, ARM Ltd. All rights reserved.<BR>
Copyright (c) 2016, Linaro Ltd. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef ASM_MACRO_IO_LIB_H_
#define ASM_MACRO_IO_LIB_H_
#define _ASM_FUNC(Name, Section) \
.global Name ; \
.section #Section, "ax" ; \
.type Name, %function ; \
.p2align 2 ; \
Name:
#define ASM_FUNC(Name) _ASM_FUNC(ASM_PFX(Name), .text. ## Name)
#define MOV32(Reg, Val) \
movw Reg, #(Val) & 0xffff ; \
movt Reg, #(Val) >> 16
#define ADRL(Reg, Sym) \
movw Reg, #:lower16:(Sym) - (. + 16) ; \
movt Reg, #:upper16:(Sym) - (. + 12) ; \
add Reg, Reg, pc
#define LDRL(Reg, Sym) \
movw Reg, #:lower16:(Sym) - (. + 16) ; \
movt Reg, #:upper16:(Sym) - (. + 12) ; \
ldr Reg, [pc, Reg]
#endif // ASM_MACRO_IO_LIB_H_

View File

@ -0,0 +1,33 @@
;%HEADER%
;/** @file
; Macros to work around lack of Apple support for LDR register, =expr
;
; Copyright (c) 2009, Apple Inc. All rights reserved.<BR>
; Copyright (c) 2011-2012, ARM Ltd. All rights reserved.<BR>
;
; SPDX-License-Identifier: BSD-2-Clause-Patent
;
;**/
MACRO
adrll $Reg, $Symbol
add $Reg, pc, #-8
RELOC R_ARM_ALU_PC_G0_NC, $Symbol
add $Reg, $Reg, #-4
RELOC R_ARM_ALU_PC_G1_NC, $Symbol
add $Reg, $Reg, #0
RELOC R_ARM_ALU_PC_G2, $Symbol
MEND
MACRO
ldrl $Reg, $Symbol
add $Reg, pc, #-8
RELOC R_ARM_ALU_PC_G0_NC, $Symbol
add $Reg, $Reg, #-4
RELOC R_ARM_ALU_PC_G1_NC, $Symbol
ldr $Reg, [$Reg, #0]
RELOC R_ARM_LDR_PC_G2, $Symbol
MEND
END

View File

@ -0,0 +1,55 @@
/** @file
Macros to work around lack of Clang support for LDR register, =expr
Copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>
Portions copyright (c) 2011 - 2014, ARM Ltd. All rights reserved.<BR>
Copyright (c) 2016, Linaro Ltd. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef ASM_MACRO_IO_LIBV8_H_
#define ASM_MACRO_IO_LIBV8_H_
// CurrentEL : 0xC = EL3; 8 = EL2; 4 = EL1
// This only selects between EL1 and EL2, else we die.
// Provide the Macro with a safe temp xreg to use.
#define EL1_OR_EL2(SAFE_XREG) \
mrs SAFE_XREG, CurrentEL ;\
cmp SAFE_XREG, #0x8 ;\
b.gt . ;\
b.eq 2f ;\
cbnz SAFE_XREG, 1f ;\
b . ;// We should never get here
// CurrentEL : 0xC = EL3; 8 = EL2; 4 = EL1
// This only selects between EL1 and EL2 and EL3, else we die.
// Provide the Macro with a safe temp xreg to use.
#define EL1_OR_EL2_OR_EL3(SAFE_XREG) \
mrs SAFE_XREG, CurrentEL ;\
cmp SAFE_XREG, #0x8 ;\
b.gt 3f ;\
b.eq 2f ;\
cbnz SAFE_XREG, 1f ;\
b . ;// We should never get here
#define _ASM_FUNC(Name, Section) \
.global Name ; \
.section #Section, "ax" ; \
.type Name, %function ; \
Name:
#define ASM_FUNC(Name) _ASM_FUNC(ASM_PFX(Name), .text. ## Name)
#define MOV32(Reg, Val) \
movz Reg, (Val) >> 16, lsl #16 ; \
movk Reg, (Val) & 0xffff
#define MOV64(Reg, Val) \
movz Reg, (Val) >> 48, lsl #48 ; \
movk Reg, ((Val) >> 32) & 0xffff, lsl #32 ; \
movk Reg, ((Val) >> 16) & 0xffff, lsl #16 ; \
movk Reg, (Val) & 0xffff
#endif // ASM_MACRO_IO_LIBV8_H_

View File

@ -0,0 +1,241 @@
/** @file
Copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>
Copyright (c) 2011 - 2021, Arm Limited. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef AARCH64_H_
#define AARCH64_H_
#include <Chipset/AArch64Mmu.h>
// ARM Interrupt ID in Exception Table
#define ARM_ARCH_EXCEPTION_IRQ EXCEPT_AARCH64_IRQ
// CPACR - Coprocessor Access Control Register definitions
#define CPACR_TTA_EN (1UL << 28)
#define CPACR_FPEN_EL1 (1UL << 20)
#define CPACR_FPEN_FULL (3UL << 20)
#define CPACR_CP_FULL_ACCESS 0x300000
// Coprocessor Trap Register (CPTR)
#define AARCH64_CPTR_TFP (1 << 10)
// ID_AA64PFR0 - AArch64 Processor Feature Register 0 definitions
#define AARCH64_PFR0_FP (0xF << 16)
#define AARCH64_PFR0_GIC (0xF << 24)
// SCR - Secure Configuration Register definitions
#define SCR_NS (1 << 0)
#define SCR_IRQ (1 << 1)
#define SCR_FIQ (1 << 2)
#define SCR_EA (1 << 3)
#define SCR_FW (1 << 4)
#define SCR_AW (1 << 5)
// MIDR - Main ID Register definitions
#define ARM_CPU_TYPE_SHIFT 4
#define ARM_CPU_TYPE_MASK 0xFFF
#define ARM_CPU_TYPE_AEMV8 0xD0F
#define ARM_CPU_TYPE_A53 0xD03
#define ARM_CPU_TYPE_A57 0xD07
#define ARM_CPU_TYPE_A72 0xD08
#define ARM_CPU_TYPE_A15 0xC0F
#define ARM_CPU_TYPE_A9 0xC09
#define ARM_CPU_TYPE_A7 0xC07
#define ARM_CPU_TYPE_A5 0xC05
#define ARM_CPU_REV_MASK ((0xF << 20) | (0xF) )
#define ARM_CPU_REV(rn, pn) ((((rn) & 0xF) << 20) | ((pn) & 0xF))
// Hypervisor Configuration Register
#define ARM_HCR_FMO BIT3
#define ARM_HCR_IMO BIT4
#define ARM_HCR_AMO BIT5
#define ARM_HCR_TSC BIT19
#define ARM_HCR_TGE BIT27
// Exception Syndrome Register
#define AARCH64_ESR_EC(Ecr) ((0x3F << 26) & (Ecr))
#define AARCH64_ESR_ISS(Ecr) ((0x1FFFFFF) & (Ecr))
#define AARCH64_ESR_EC_SMC32 (0x13 << 26)
#define AARCH64_ESR_EC_SMC64 (0x17 << 26)
// AArch64 Exception Level
#define AARCH64_EL3 0xC
#define AARCH64_EL2 0x8
#define AARCH64_EL1 0x4
// Saved Program Status Register definitions
#define SPSR_A BIT8
#define SPSR_I BIT7
#define SPSR_F BIT6
#define SPSR_AARCH32 BIT4
#define SPSR_AARCH32_MODE_USER 0x0
#define SPSR_AARCH32_MODE_FIQ 0x1
#define SPSR_AARCH32_MODE_IRQ 0x2
#define SPSR_AARCH32_MODE_SVC 0x3
#define SPSR_AARCH32_MODE_ABORT 0x7
#define SPSR_AARCH32_MODE_UNDEF 0xB
#define SPSR_AARCH32_MODE_SYS 0xF
// Counter-timer Hypervisor Control register definitions
#define CNTHCTL_EL2_EL1PCTEN BIT0
#define CNTHCTL_EL2_EL1PCEN BIT1
#define ARM_VECTOR_TABLE_ALIGNMENT ((1 << 11)-1)
// Vector table offset definitions
#define ARM_VECTOR_CUR_SP0_SYNC 0x000
#define ARM_VECTOR_CUR_SP0_IRQ 0x080
#define ARM_VECTOR_CUR_SP0_FIQ 0x100
#define ARM_VECTOR_CUR_SP0_SERR 0x180
#define ARM_VECTOR_CUR_SPX_SYNC 0x200
#define ARM_VECTOR_CUR_SPX_IRQ 0x280
#define ARM_VECTOR_CUR_SPX_FIQ 0x300
#define ARM_VECTOR_CUR_SPX_SERR 0x380
#define ARM_VECTOR_LOW_A64_SYNC 0x400
#define ARM_VECTOR_LOW_A64_IRQ 0x480
#define ARM_VECTOR_LOW_A64_FIQ 0x500
#define ARM_VECTOR_LOW_A64_SERR 0x580
#define ARM_VECTOR_LOW_A32_SYNC 0x600
#define ARM_VECTOR_LOW_A32_IRQ 0x680
#define ARM_VECTOR_LOW_A32_FIQ 0x700
#define ARM_VECTOR_LOW_A32_SERR 0x780
// The ID_AA64MMFR2_EL1 register was added in ARMv8.2. Since we
// build for ARMv8.0, we need to define the register here.
#define ID_AA64MMFR2_EL1 S3_0_C0_C7_2
#define VECTOR_BASE(tbl) \
.section .text.##tbl##,"ax"; \
.align 11; \
.org 0x0; \
GCC_ASM_EXPORT(tbl); \
ASM_PFX(tbl): \
#define VECTOR_ENTRY(tbl, off) \
.org off
#define VECTOR_END(tbl) \
.org 0x800; \
.previous
VOID
EFIAPI
ArmEnableSWPInstruction (
VOID
);
UINTN
EFIAPI
ArmReadCbar (
VOID
);
UINTN
EFIAPI
ArmReadTpidrurw (
VOID
);
VOID
EFIAPI
ArmWriteTpidrurw (
UINTN Value
);
UINTN
EFIAPI
ArmGetTCR (
VOID
);
VOID
EFIAPI
ArmSetTCR (
UINTN Value
);
UINTN
EFIAPI
ArmGetMAIR (
VOID
);
VOID
EFIAPI
ArmSetMAIR (
UINTN Value
);
VOID
EFIAPI
ArmDisableAlignmentCheck (
VOID
);
VOID
EFIAPI
ArmEnableAlignmentCheck (
VOID
);
VOID
EFIAPI
ArmDisableStackAlignmentCheck (
VOID
);
VOID
EFIAPI
ArmEnableStackAlignmentCheck (
VOID
);
VOID
EFIAPI
ArmDisableAllExceptions (
VOID
);
VOID
ArmWriteHcr (
IN UINTN Hcr
);
UINTN
ArmReadHcr (
VOID
);
UINTN
ArmReadCurrentEL (
VOID
);
UINTN
ArmWriteCptr (
IN UINT64 Cptr
);
UINT32
ArmReadCntHctl (
VOID
);
VOID
ArmWriteCntHctl (
IN UINT32 CntHctl
);
#endif // AARCH64_H_

View File

@ -0,0 +1,195 @@
/** @file
*
* Copyright (c) 2011-2021, Arm Limited. All rights reserved.<BR>
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#ifndef AARCH64_MMU_H_
#define AARCH64_MMU_H_
//
// Memory Attribute Indirection register Definitions
//
#define MAIR_ATTR_DEVICE_MEMORY 0x0ULL
#define MAIR_ATTR_NORMAL_MEMORY_NON_CACHEABLE 0x44ULL
#define MAIR_ATTR_NORMAL_MEMORY_WRITE_THROUGH 0xBBULL
#define MAIR_ATTR_NORMAL_MEMORY_WRITE_BACK 0xFFULL
#define MAIR_ATTR(n, value) ((value) << (((n) >> 2)*8))
//
// Long-descriptor Translation Table format
//
// Return the smallest offset from the table level.
// The first offset starts at 12bit. There are 4 levels of 9-bit address range from level 3 to level 0
#define TT_ADDRESS_OFFSET_AT_LEVEL(TableLevel) (12 + ((3 - (TableLevel)) * 9))
#define TT_BLOCK_ENTRY_SIZE_AT_LEVEL(Level) (1ULL << TT_ADDRESS_OFFSET_AT_LEVEL(Level))
// Get the associated entry in the given Translation Table
#define TT_GET_ENTRY_FOR_ADDRESS(TranslationTable, Level, Address) \
((UINTN)(TranslationTable) + ((((UINTN)(Address) >> TT_ADDRESS_OFFSET_AT_LEVEL(Level)) & (BIT9-1)) * sizeof(UINT64)))
// Return the smallest address granularity from the table level.
// The first offset starts at 12bit. There are 4 levels of 9-bit address range from level 3 to level 0
#define TT_ADDRESS_AT_LEVEL(TableLevel) (1ULL << TT_ADDRESS_OFFSET_AT_LEVEL(TableLevel))
#define TT_LAST_BLOCK_ADDRESS(TranslationTable, EntryCount) \
((UINT64*)((EFI_PHYSICAL_ADDRESS)(TranslationTable) + (((EntryCount) - 1) * sizeof(UINT64))))
// There are 512 entries per table when 4K Granularity
#define TT_ENTRY_COUNT 512
#define TT_ALIGNMENT_BLOCK_ENTRY BIT12
#define TT_ALIGNMENT_DESCRIPTION_TABLE BIT12
#define TT_ADDRESS_MASK_BLOCK_ENTRY (0xFFFFFFFFFULL << 12)
#define TT_ADDRESS_MASK_DESCRIPTION_TABLE (0xFFFFFFFFFULL << 12)
#define TT_TYPE_MASK 0x3
#define TT_TYPE_TABLE_ENTRY 0x3
#define TT_TYPE_BLOCK_ENTRY 0x1
#define TT_TYPE_BLOCK_ENTRY_LEVEL3 0x3
#define TT_ATTR_INDX_MASK (0x7 << 2)
#define TT_ATTR_INDX_DEVICE_MEMORY (0x0 << 2)
#define TT_ATTR_INDX_MEMORY_NON_CACHEABLE (0x1 << 2)
#define TT_ATTR_INDX_MEMORY_WRITE_THROUGH (0x2 << 2)
#define TT_ATTR_INDX_MEMORY_WRITE_BACK (0x3 << 2)
#define TT_AP_MASK (0x3UL << 6)
#define TT_AP_NO_RW (0x0UL << 6)
#define TT_AP_RW_RW (0x1UL << 6)
#define TT_AP_NO_RO (0x2UL << 6)
#define TT_AP_RO_RO (0x3UL << 6)
#define TT_NS BIT5
#define TT_AF BIT10
#define TT_SH_NON_SHAREABLE (0x0 << 8)
#define TT_SH_OUTER_SHAREABLE (0x2 << 8)
#define TT_SH_INNER_SHAREABLE (0x3 << 8)
#define TT_SH_MASK (0x3 << 8)
#define TT_PXN_MASK BIT53
#define TT_UXN_MASK BIT54 // EL1&0
#define TT_XN_MASK BIT54 // EL2 / EL3
#define TT_ATTRIBUTES_MASK ((0xFFFULL << 52) | (0x3FFULL << 2))
#define TT_TABLE_PXN BIT59
#define TT_TABLE_UXN BIT60 // EL1&0
#define TT_TABLE_XN BIT60 // EL2 / EL3
#define TT_TABLE_NS BIT63
#define TT_TABLE_AP_MASK (BIT62 | BIT61)
#define TT_TABLE_AP_NO_PERMISSION (0x0ULL << 61)
#define TT_TABLE_AP_EL0_NO_ACCESS (0x1ULL << 61)
#define TT_TABLE_AP_NO_WRITE_ACCESS (0x2ULL << 61)
//
// Translation Control Register
//
#define TCR_T0SZ_MASK 0x3FUL
#define TCR_PS_4GB (0UL << 16)
#define TCR_PS_64GB (1UL << 16)
#define TCR_PS_1TB (2UL << 16)
#define TCR_PS_4TB (3UL << 16)
#define TCR_PS_16TB (4UL << 16)
#define TCR_PS_256TB (5UL << 16)
#define TCR_TG0_4KB (0UL << 14)
#define TCR_TG1_4KB (2UL << 30)
#define TCR_IPS_4GB (0ULL << 32)
#define TCR_IPS_64GB (1ULL << 32)
#define TCR_IPS_1TB (2ULL << 32)
#define TCR_IPS_4TB (3ULL << 32)
#define TCR_IPS_16TB (4ULL << 32)
#define TCR_IPS_256TB (5ULL << 32)
#define TCR_EPD1 (1UL << 23)
#define TTBR_ASID_FIELD (48)
#define TTBR_ASID_MASK (0xFF << TTBR_ASID_FIELD)
#define TTBR_BADDR_MASK (0xFFFFFFFFFFFF ) // The width of this field depends on the values in TxSZ. Addr occupies bottom 48bits
#define TCR_EL1_T0SZ_FIELD (0)
#define TCR_EL1_EPD0_FIELD (7)
#define TCR_EL1_IRGN0_FIELD (8)
#define TCR_EL1_ORGN0_FIELD (10)
#define TCR_EL1_SH0_FIELD (12)
#define TCR_EL1_TG0_FIELD (14)
#define TCR_EL1_T1SZ_FIELD (16)
#define TCR_EL1_A1_FIELD (22)
#define TCR_EL1_EPD1_FIELD (23)
#define TCR_EL1_IRGN1_FIELD (24)
#define TCR_EL1_ORGN1_FIELD (26)
#define TCR_EL1_SH1_FIELD (28)
#define TCR_EL1_TG1_FIELD (30)
#define TCR_EL1_IPS_FIELD (32)
#define TCR_EL1_AS_FIELD (36)
#define TCR_EL1_TBI0_FIELD (37)
#define TCR_EL1_TBI1_FIELD (38)
#define TCR_EL1_T0SZ_MASK (0x1FUL << TCR_EL1_T0SZ_FIELD)
#define TCR_EL1_EPD0_MASK (0x01UL << TCR_EL1_EPD0_FIELD)
#define TCR_EL1_IRGN0_MASK (0x03UL << TCR_EL1_IRGN0_FIELD)
#define TCR_EL1_ORGN0_MASK (0x03UL << TCR_EL1_ORGN0_FIELD)
#define TCR_EL1_SH0_MASK (0x03UL << TCR_EL1_SH0_FIELD)
#define TCR_EL1_TG0_MASK (0x01UL << TCR_EL1_TG0_FIELD)
#define TCR_EL1_T1SZ_MASK (0x1FUL << TCR_EL1_T1SZ_FIELD)
#define TCR_EL1_A1_MASK (0x01UL << TCR_EL1_A1_FIELD)
#define TCR_EL1_EPD1_MASK (0x01UL << TCR_EL1_EPD1_FIELD)
#define TCR_EL1_IRGN1_MASK (0x03UL << TCR_EL1_IRGN1_FIELD)
#define TCR_EL1_ORGN1_MASK (0x03UL << TCR_EL1_ORGN1_FIELD)
#define TCR_EL1_SH1_MASK (0x03UL << TCR_EL1_SH1_FIELD)
#define TCR_EL1_TG1_MASK (0x01UL << TCR_EL1_TG1_FIELD)
#define TCR_EL1_IPS_MASK (0x07UL << TCR_EL1_IPS_FIELD)
#define TCR_EL1_AS_MASK (0x01UL << TCR_EL1_AS_FIELD)
#define TCR_EL1_TBI0_MASK (0x01UL << TCR_EL1_TBI0_FIELD)
#define TCR_EL1_TBI1_MASK (0x01UL << TCR_EL1_TBI1_FIELD)
#define TCR_EL23_T0SZ_FIELD (0)
#define TCR_EL23_IRGN0_FIELD (8)
#define TCR_EL23_ORGN0_FIELD (10)
#define TCR_EL23_SH0_FIELD (12)
#define TCR_EL23_TG0_FIELD (14)
#define TCR_EL23_PS_FIELD (16)
#define TCR_EL23_T0SZ_MASK (0x1FUL << TCR_EL23_T0SZ_FIELD)
#define TCR_EL23_IRGN0_MASK (0x03UL << TCR_EL23_IRGN0_FIELD)
#define TCR_EL23_ORGN0_MASK (0x03UL << TCR_EL23_ORGN0_FIELD)
#define TCR_EL23_SH0_MASK (0x03UL << TCR_EL23_SH0_FIELD)
#define TCR_EL23_TG0_MASK (0x01UL << TCR_EL23_TG0_FIELD)
#define TCR_EL23_PS_MASK (0x07UL << TCR_EL23_PS_FIELD)
#define TCR_RGN_OUTER_NON_CACHEABLE (0x0UL << 10)
#define TCR_RGN_OUTER_WRITE_BACK_ALLOC (0x1UL << 10)
#define TCR_RGN_OUTER_WRITE_THROUGH (0x2UL << 10)
#define TCR_RGN_OUTER_WRITE_BACK_NO_ALLOC (0x3UL << 10)
#define TCR_RGN_INNER_NON_CACHEABLE (0x0UL << 8)
#define TCR_RGN_INNER_WRITE_BACK_ALLOC (0x1UL << 8)
#define TCR_RGN_INNER_WRITE_THROUGH (0x2UL << 8)
#define TCR_RGN_INNER_WRITE_BACK_NO_ALLOC (0x3UL << 8)
#define TCR_SH_NON_SHAREABLE (0x0UL << 12)
#define TCR_SH_OUTER_SHAREABLE (0x2UL << 12)
#define TCR_SH_INNER_SHAREABLE (0x3UL << 12)
#define TCR_PASZ_32BITS_4GB (0x0UL)
#define TCR_PASZ_36BITS_64GB (0x1UL)
#define TCR_PASZ_40BITS_1TB (0x2UL)
#define TCR_PASZ_42BITS_4TB (0x3UL)
#define TCR_PASZ_44BITS_16TB (0x4UL)
#define TCR_PASZ_48BITS_256TB (0x5UL)
// The value written to the T*SZ fields are defined as 2^(64-T*SZ). So a 39Bit
// Virtual address range for 512GB of virtual space sets T*SZ to 25
#define INPUT_ADDRESS_SIZE_TO_TXSZ(a) (64 - a)
// Uses LPAE Page Table format
#endif // AARCH64_MMU_H_

View File

@ -0,0 +1,44 @@
/** @file
Copyright (c) 2012 - 2021, Arm Limited. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef ARM_CORTEX_A5X_H_
#define ARM_CORTEX_A5X_H_
//
// Cortex A5x feature bit definitions
//
#define A5X_FEATURE_SMP (1 << 6)
//
// Helper functions to access CPU Extended Control Register
//
UINT64
EFIAPI
ArmReadCpuExCr (
VOID
);
VOID
EFIAPI
ArmWriteCpuExCr (
IN UINT64 Val
);
VOID
EFIAPI
ArmSetCpuExCrBit (
IN UINT64 Bits
);
VOID
EFIAPI
ArmUnsetCpuExCrBit (
IN UINT64 Bits
);
#endif // ARM_CORTEX_A5X_H_

View File

@ -0,0 +1,57 @@
/** @file
Copyright (c) 2011, ARM Limited. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef ARM_CORTEX_A9_H_
#define ARM_CORTEX_A9_H_
#include <Chipset/ArmV7.h>
//
// Cortex A9 feature bit definitions
//
#define A9_FEATURE_PARITY (1<<9)
#define A9_FEATURE_AOW (1<<8)
#define A9_FEATURE_EXCL (1<<7)
#define A9_FEATURE_SMP (1<<6)
#define A9_FEATURE_FOZ (1<<3)
#define A9_FEATURE_DPREF (1<<2)
#define A9_FEATURE_HINT (1<<1)
#define A9_FEATURE_FWD (1<<0)
//
// Cortex A9 Watchdog
//
#define ARM_A9_WATCHDOG_REGION 0x600
#define ARM_A9_WATCHDOG_LOAD_REGISTER 0x20
#define ARM_A9_WATCHDOG_CONTROL_REGISTER 0x28
#define ARM_A9_WATCHDOG_WATCHDOG_MODE (1 << 3)
#define ARM_A9_WATCHDOG_TIMER_MODE (0 << 3)
#define ARM_A9_WATCHDOG_SINGLE_SHOT (0 << 1)
#define ARM_A9_WATCHDOG_AUTORELOAD (1 << 1)
#define ARM_A9_WATCHDOG_ENABLE 1
//
// SCU register offsets & masks
//
#define A9_SCU_CONTROL_OFFSET 0x0
#define A9_SCU_CONFIG_OFFSET 0x4
#define A9_SCU_INVALL_OFFSET 0xC
#define A9_SCU_FILT_START_OFFSET 0x40
#define A9_SCU_FILT_END_OFFSET 0x44
#define A9_SCU_SACR_OFFSET 0x50
#define A9_SCU_SSACR_OFFSET 0x54
UINTN
EFIAPI
ArmGetScuBaseAddress (
VOID
);
#endif // ARM_CORTEX_A9_H_

View File

@ -0,0 +1,122 @@
/** @file
Copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>
Copyright (c) 2011-2021, Arm Limited. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef ARM_V7_H_
#define ARM_V7_H_
#include <Chipset/ArmV7Mmu.h>
// ARM Interrupt ID in Exception Table
#define ARM_ARCH_EXCEPTION_IRQ EXCEPT_ARM_IRQ
// ID_PFR1 - ARM Processor Feature Register 1 definitions
#define ARM_PFR1_SEC (0xFUL << 4)
#define ARM_PFR1_TIMER (0xFUL << 16)
#define ARM_PFR1_GIC (0xFUL << 28)
// Domain Access Control Register
#define DOMAIN_ACCESS_CONTROL_MASK(a) (3UL << (2 * (a)))
#define DOMAIN_ACCESS_CONTROL_NONE(a) (0UL << (2 * (a)))
#define DOMAIN_ACCESS_CONTROL_CLIENT(a) (1UL << (2 * (a)))
#define DOMAIN_ACCESS_CONTROL_RESERVED(a) (2UL << (2 * (a)))
#define DOMAIN_ACCESS_CONTROL_MANAGER(a) (3UL << (2 * (a)))
// CPSR - Coprocessor Status Register definitions
#define CPSR_MODE_USER 0x10
#define CPSR_MODE_FIQ 0x11
#define CPSR_MODE_IRQ 0x12
#define CPSR_MODE_SVC 0x13
#define CPSR_MODE_ABORT 0x17
#define CPSR_MODE_HYP 0x1A
#define CPSR_MODE_UNDEFINED 0x1B
#define CPSR_MODE_SYSTEM 0x1F
#define CPSR_MODE_MASK 0x1F
#define CPSR_ASYNC_ABORT (1 << 8)
#define CPSR_IRQ (1 << 7)
#define CPSR_FIQ (1 << 6)
// CPACR - Coprocessor Access Control Register definitions
#define CPACR_CP_DENIED(cp) 0x00
#define CPACR_CP_PRIV(cp) ((0x1 << ((cp) << 1)) & 0x0FFFFFFF)
#define CPACR_CP_FULL(cp) ((0x3 << ((cp) << 1)) & 0x0FFFFFFF)
#define CPACR_ASEDIS (1 << 31)
#define CPACR_D32DIS (1 << 30)
#define CPACR_CP_FULL_ACCESS 0x0FFFFFFF
// NSACR - Non-Secure Access Control Register definitions
#define NSACR_CP(cp) ((1 << (cp)) & 0x3FFF)
#define NSACR_NSD32DIS (1 << 14)
#define NSACR_NSASEDIS (1 << 15)
#define NSACR_PLE (1 << 16)
#define NSACR_TL (1 << 17)
#define NSACR_NS_SMP (1 << 18)
#define NSACR_RFR (1 << 19)
// SCR - Secure Configuration Register definitions
#define SCR_NS (1 << 0)
#define SCR_IRQ (1 << 1)
#define SCR_FIQ (1 << 2)
#define SCR_EA (1 << 3)
#define SCR_FW (1 << 4)
#define SCR_AW (1 << 5)
// MIDR - Main ID Register definitions
#define ARM_CPU_TYPE_SHIFT 4
#define ARM_CPU_TYPE_MASK 0xFFF
#define ARM_CPU_TYPE_AEMV8 0xD0F
#define ARM_CPU_TYPE_A53 0xD03
#define ARM_CPU_TYPE_A57 0xD07
#define ARM_CPU_TYPE_A15 0xC0F
#define ARM_CPU_TYPE_A12 0xC0D
#define ARM_CPU_TYPE_A9 0xC09
#define ARM_CPU_TYPE_A7 0xC07
#define ARM_CPU_TYPE_A5 0xC05
#define ARM_CPU_REV_MASK ((0xF << 20) | (0xF) )
#define ARM_CPU_REV(rn, pn) ((((rn) & 0xF) << 20) | ((pn) & 0xF))
#define ARM_VECTOR_TABLE_ALIGNMENT ((1 << 5)-1)
VOID
EFIAPI
ArmEnableSWPInstruction (
VOID
);
UINTN
EFIAPI
ArmReadCbar (
VOID
);
UINTN
EFIAPI
ArmReadTpidrurw (
VOID
);
VOID
EFIAPI
ArmWriteTpidrurw (
UINTN Value
);
UINT32
EFIAPI
ArmReadNsacr (
VOID
);
VOID
EFIAPI
ArmWriteNsacr (
IN UINT32 Nsacr
);
#endif // ARM_V7_H_

View File

@ -0,0 +1,237 @@
/** @file
*
* Copyright (c) 2011-2013, ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#ifndef ARMV7_MMU_H_
#define ARMV7_MMU_H_
#define TTBR_NOT_OUTER_SHAREABLE BIT5
#define TTBR_RGN_OUTER_NON_CACHEABLE 0
#define TTBR_RGN_OUTER_WRITE_BACK_ALLOC BIT3
#define TTBR_RGN_OUTER_WRITE_THROUGH BIT4
#define TTBR_RGN_OUTER_WRITE_BACK_NO_ALLOC (BIT3|BIT4)
#define TTBR_SHAREABLE BIT1
#define TTBR_NON_SHAREABLE 0
#define TTBR_INNER_CACHEABLE BIT0
#define TTBR_INNER_NON_CACHEABLE 0
#define TTBR_RGN_INNER_NON_CACHEABLE 0
#define TTBR_RGN_INNER_WRITE_BACK_ALLOC BIT6
#define TTBR_RGN_INNER_WRITE_THROUGH BIT0
#define TTBR_RGN_INNER_WRITE_BACK_NO_ALLOC (BIT0|BIT6)
#define TTBR_WRITE_THROUGH ( TTBR_RGN_OUTER_WRITE_THROUGH | TTBR_INNER_CACHEABLE | TTBR_SHAREABLE)
#define TTBR_WRITE_BACK_NO_ALLOC ( TTBR_RGN_OUTER_WRITE_BACK_NO_ALLOC | TTBR_INNER_CACHEABLE | TTBR_SHAREABLE)
#define TTBR_NON_CACHEABLE ( TTBR_RGN_OUTER_NON_CACHEABLE | TTBR_INNER_NON_CACHEABLE )
#define TTBR_WRITE_BACK_ALLOC ( TTBR_RGN_OUTER_WRITE_BACK_ALLOC | TTBR_INNER_CACHEABLE | TTBR_SHAREABLE)
#define TTBR_MP_WRITE_THROUGH ( TTBR_RGN_OUTER_WRITE_THROUGH | TTBR_RGN_INNER_WRITE_THROUGH | TTBR_SHAREABLE)
#define TTBR_MP_WRITE_BACK_NO_ALLOC ( TTBR_RGN_OUTER_WRITE_BACK_NO_ALLOC | TTBR_RGN_INNER_WRITE_BACK_NO_ALLOC | TTBR_SHAREABLE)
#define TTBR_MP_NON_CACHEABLE ( TTBR_RGN_OUTER_NON_CACHEABLE | TTBR_RGN_INNER_NON_CACHEABLE )
#define TTBR_MP_WRITE_BACK_ALLOC ( TTBR_RGN_OUTER_WRITE_BACK_ALLOC | TTBR_RGN_INNER_WRITE_BACK_ALLOC | TTBR_SHAREABLE)
#define TRANSLATION_TABLE_SECTION_COUNT 4096
#define TRANSLATION_TABLE_SECTION_SIZE (sizeof(UINT32) * TRANSLATION_TABLE_SECTION_COUNT)
#define TRANSLATION_TABLE_SECTION_ALIGNMENT (sizeof(UINT32) * TRANSLATION_TABLE_SECTION_COUNT)
#define TRANSLATION_TABLE_SECTION_ALIGNMENT_MASK (TRANSLATION_TABLE_SECTION_ALIGNMENT - 1)
#define TRANSLATION_TABLE_PAGE_COUNT 256
#define TRANSLATION_TABLE_PAGE_SIZE (sizeof(UINT32) * TRANSLATION_TABLE_PAGE_COUNT)
#define TRANSLATION_TABLE_PAGE_ALIGNMENT (sizeof(UINT32) * TRANSLATION_TABLE_PAGE_COUNT)
#define TRANSLATION_TABLE_PAGE_ALIGNMENT_MASK (TRANSLATION_TABLE_PAGE_ALIGNMENT - 1)
#define TRANSLATION_TABLE_ENTRY_FOR_VIRTUAL_ADDRESS(table, address) ((UINT32 *)(table) + (((UINTN)(address)) >> 20))
// Translation table descriptor types
#define TT_DESCRIPTOR_SECTION_TYPE_MASK ((1UL << 18) | (3UL << 0))
#define TT_DESCRIPTOR_SECTION_TYPE_FAULT (0UL << 0)
#define TT_DESCRIPTOR_SECTION_TYPE_PAGE_TABLE (1UL << 0)
#define TT_DESCRIPTOR_SECTION_TYPE_SECTION ((0UL << 18) | (2UL << 0))
#define TT_DESCRIPTOR_SECTION_TYPE_SUPERSECTION ((1UL << 18) | (2UL << 0))
#define TT_DESCRIPTOR_SECTION_TYPE_IS_PAGE_TABLE(Desc) (((Desc) & 3UL) == TT_DESCRIPTOR_SECTION_TYPE_PAGE_TABLE)
// Translation table descriptor types
#define TT_DESCRIPTOR_PAGE_TYPE_MASK (3UL << 0)
#define TT_DESCRIPTOR_PAGE_TYPE_FAULT (0UL << 0)
#define TT_DESCRIPTOR_PAGE_TYPE_PAGE (2UL << 0)
#define TT_DESCRIPTOR_PAGE_TYPE_PAGE_XN (3UL << 0)
#define TT_DESCRIPTOR_PAGE_TYPE_LARGEPAGE (1UL << 0)
// Section descriptor definitions
#define TT_DESCRIPTOR_SECTION_SIZE (0x00100000)
#define TT_DESCRIPTOR_SECTION_NS_MASK (1UL << 19)
#define TT_DESCRIPTOR_SECTION_NS (1UL << 19)
#define TT_DESCRIPTOR_SECTION_NG_MASK (1UL << 17)
#define TT_DESCRIPTOR_SECTION_NG_GLOBAL (0UL << 17)
#define TT_DESCRIPTOR_SECTION_NG_LOCAL (1UL << 17)
#define TT_DESCRIPTOR_PAGE_NG_MASK (1UL << 11)
#define TT_DESCRIPTOR_PAGE_NG_GLOBAL (0UL << 11)
#define TT_DESCRIPTOR_PAGE_NG_LOCAL (1UL << 11)
#define TT_DESCRIPTOR_SECTION_S_MASK (1UL << 16)
#define TT_DESCRIPTOR_SECTION_S_NOT_SHARED (0UL << 16)
#define TT_DESCRIPTOR_SECTION_S_SHARED (1UL << 16)
#define TT_DESCRIPTOR_PAGE_S_MASK (1UL << 10)
#define TT_DESCRIPTOR_PAGE_S_NOT_SHARED (0UL << 10)
#define TT_DESCRIPTOR_PAGE_S_SHARED (1UL << 10)
#define TT_DESCRIPTOR_SECTION_AP_MASK ((1UL << 15) | (3UL << 10))
#define TT_DESCRIPTOR_SECTION_AP_NO_NO ((0UL << 15) | (0UL << 10))
#define TT_DESCRIPTOR_SECTION_AP_RW_NO ((0UL << 15) | (1UL << 10))
#define TT_DESCRIPTOR_SECTION_AP_RW_RO ((0UL << 15) | (2UL << 10))
#define TT_DESCRIPTOR_SECTION_AP_RW_RW ((0UL << 15) | (3UL << 10))
#define TT_DESCRIPTOR_SECTION_AP_RO_NO ((1UL << 15) | (1UL << 10))
#define TT_DESCRIPTOR_SECTION_AP_RO_RO ((1UL << 15) | (3UL << 10))
#define TT_DESCRIPTOR_PAGE_AP_MASK ((1UL << 9) | (3UL << 4))
#define TT_DESCRIPTOR_PAGE_AP_NO_NO ((0UL << 9) | (0UL << 4))
#define TT_DESCRIPTOR_PAGE_AP_RW_NO ((0UL << 9) | (1UL << 4))
#define TT_DESCRIPTOR_PAGE_AP_RW_RO ((0UL << 9) | (2UL << 4))
#define TT_DESCRIPTOR_PAGE_AP_RW_RW ((0UL << 9) | (3UL << 4))
#define TT_DESCRIPTOR_PAGE_AP_RO_NO ((1UL << 9) | (1UL << 4))
#define TT_DESCRIPTOR_PAGE_AP_RO_RO ((1UL << 9) | (3UL << 4))
#define TT_DESCRIPTOR_SECTION_XN_MASK (0x1UL << 4)
#define TT_DESCRIPTOR_PAGE_XN_MASK (0x1UL << 0)
#define TT_DESCRIPTOR_LARGEPAGE_XN_MASK (0x1UL << 15)
#define TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK ((3UL << 12) | (1UL << 3) | (1UL << 2))
#define TT_DESCRIPTOR_SECTION_CACHEABLE_MASK (1UL << 3)
#define TT_DESCRIPTOR_SECTION_CACHE_POLICY_STRONGLY_ORDERED ((0UL << 12) | (0UL << 3) | (0UL << 2))
#define TT_DESCRIPTOR_SECTION_CACHE_POLICY_SHAREABLE_DEVICE ((0UL << 12) | (0UL << 3) | (1UL << 2))
#define TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_THROUGH_NO_ALLOC ((0UL << 12) | (1UL << 3) | (0UL << 2))
#define TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_BACK_NO_ALLOC ((0UL << 12) | (1UL << 3) | (1UL << 2))
#define TT_DESCRIPTOR_SECTION_CACHE_POLICY_NON_CACHEABLE ((1UL << 12) | (0UL << 3) | (0UL << 2))
#define TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_BACK_ALLOC ((1UL << 12) | (1UL << 3) | (1UL << 2))
#define TT_DESCRIPTOR_SECTION_CACHE_POLICY_NON_SHAREABLE_DEVICE ((2UL << 12) | (0UL << 3) | (0UL << 2))
#define TT_DESCRIPTOR_PAGE_SIZE (0x00001000)
#define TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK ((3UL << 6) | (1UL << 3) | (1UL << 2))
#define TT_DESCRIPTOR_PAGE_CACHEABLE_MASK (1UL << 3)
#define TT_DESCRIPTOR_PAGE_CACHE_POLICY_STRONGLY_ORDERED ((0UL << 6) | (0UL << 3) | (0UL << 2))
#define TT_DESCRIPTOR_PAGE_CACHE_POLICY_SHAREABLE_DEVICE ((0UL << 6) | (0UL << 3) | (1UL << 2))
#define TT_DESCRIPTOR_PAGE_CACHE_POLICY_WRITE_THROUGH_NO_ALLOC ((0UL << 6) | (1UL << 3) | (0UL << 2))
#define TT_DESCRIPTOR_PAGE_CACHE_POLICY_WRITE_BACK_NO_ALLOC ((0UL << 6) | (1UL << 3) | (1UL << 2))
#define TT_DESCRIPTOR_PAGE_CACHE_POLICY_NON_CACHEABLE ((1UL << 6) | (0UL << 3) | (0UL << 2))
#define TT_DESCRIPTOR_PAGE_CACHE_POLICY_WRITE_BACK_ALLOC ((1UL << 6) | (1UL << 3) | (1UL << 2))
#define TT_DESCRIPTOR_PAGE_CACHE_POLICY_NON_SHAREABLE_DEVICE ((2UL << 6) | (0UL << 3) | (0UL << 2))
#define TT_DESCRIPTOR_LARGEPAGE_CACHE_POLICY_MASK ((3UL << 12) | (1UL << 3) | (1UL << 2))
#define TT_DESCRIPTOR_LARGEPAGE_CACHE_POLICY_STRONGLY_ORDERED ((0UL << 12) | (0UL << 3) | (0UL << 2))
#define TT_DESCRIPTOR_LARGEPAGE_CACHE_POLICY_SHAREABLE_DEVICE ((0UL << 12) | (0UL << 3) | (1UL << 2))
#define TT_DESCRIPTOR_LARGEPAGE_CACHE_POLICY_WRITE_THROUGH_NO_ALLOC ((0UL << 12) | (1UL << 3) | (0UL << 2))
#define TT_DESCRIPTOR_LARGEPAGE_CACHE_POLICY_WRITE_BACK_NO_ALLOC ((0UL << 12) | (1UL << 3) | (1UL << 2))
#define TT_DESCRIPTOR_LARGEPAGE_CACHE_POLICY_NON_CACHEABLE ((1UL << 12) | (0UL << 3) | (0UL << 2))
#define TT_DESCRIPTOR_LARGEPAGE_CACHE_POLICY_WRITE_BACK_ALLOC ((1UL << 12) | (1UL << 3) | (1UL << 2))
#define TT_DESCRIPTOR_LARGEPAGE_CACHE_POLICY_NON_SHAREABLE_DEVICE ((2UL << 12) | (0UL << 3) | (0UL << 2))
#define TT_DESCRIPTOR_CONVERT_TO_PAGE_AP(Desc) ((((Desc) & TT_DESCRIPTOR_SECTION_AP_MASK) >> 6) & TT_DESCRIPTOR_PAGE_AP_MASK)
#define TT_DESCRIPTOR_CONVERT_TO_PAGE_NG(Desc) ((((Desc) & TT_DESCRIPTOR_SECTION_NG_MASK) >> 6) & TT_DESCRIPTOR_PAGE_NG_MASK)
#define TT_DESCRIPTOR_CONVERT_TO_PAGE_S(Desc) ((((Desc) & TT_DESCRIPTOR_SECTION_S_MASK) >> 6) & TT_DESCRIPTOR_PAGE_S_MASK)
#define TT_DESCRIPTOR_CONVERT_TO_PAGE_XN(Desc, IsLargePage) ((IsLargePage)?\
((((Desc) & TT_DESCRIPTOR_SECTION_XN_MASK) << 11) & TT_DESCRIPTOR_LARGEPAGE_XN_MASK): \
((((Desc) & TT_DESCRIPTOR_SECTION_XN_MASK) >> 4) & TT_DESCRIPTOR_PAGE_XN_MASK))
#define TT_DESCRIPTOR_CONVERT_TO_PAGE_CACHE_POLICY(Desc, IsLargePage) (IsLargePage? \
(((Desc) & TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK) & TT_DESCRIPTOR_LARGEPAGE_CACHE_POLICY_MASK): \
(((((Desc) & (0x3 << 12)) >> 6) | (Desc & (0x3 << 2)))))
#define TT_DESCRIPTOR_CONVERT_TO_SECTION_AP(Desc) ((((Desc) & TT_DESCRIPTOR_PAGE_AP_MASK) << 6) & TT_DESCRIPTOR_SECTION_AP_MASK)
#define TT_DESCRIPTOR_CONVERT_TO_SECTION_CACHE_POLICY(Desc, IsLargePage) (IsLargePage? \
(((Desc) & TT_DESCRIPTOR_LARGEPAGE_CACHE_POLICY_MASK) & TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK): \
(((((Desc) & (0x3 << 6)) << 6) | (Desc & (0x3 << 2)))))
#define TT_DESCRIPTOR_SECTION_ATTRIBUTE_MASK (TT_DESCRIPTOR_SECTION_NS_MASK | TT_DESCRIPTOR_SECTION_NG_MASK | \
TT_DESCRIPTOR_SECTION_S_MASK | TT_DESCRIPTOR_SECTION_AP_MASK | \
TT_DESCRIPTOR_SECTION_XN_MASK | TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK)
#define TT_DESCRIPTOR_PAGE_ATTRIBUTE_MASK (TT_DESCRIPTOR_PAGE_NG_MASK | TT_DESCRIPTOR_PAGE_S_MASK | \
TT_DESCRIPTOR_PAGE_AP_MASK | TT_DESCRIPTOR_PAGE_XN_MASK | \
TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK)
#define TT_DESCRIPTOR_SECTION_DOMAIN_MASK (0x0FUL << 5)
#define TT_DESCRIPTOR_SECTION_DOMAIN(a) (((a) & 0x0FUL) << 5)
#define TT_DESCRIPTOR_SECTION_BASE_ADDRESS_MASK (0xFFF00000)
#define TT_DESCRIPTOR_SECTION_PAGETABLE_ADDRESS_MASK (0xFFFFFC00)
#define TT_DESCRIPTOR_SECTION_BASE_ADDRESS(a) ((a) & TT_DESCRIPTOR_SECTION_BASE_ADDRESS_MASK)
#define TT_DESCRIPTOR_SECTION_BASE_SHIFT 20
#define TT_DESCRIPTOR_PAGE_BASE_ADDRESS_MASK (0xFFFFF000)
#define TT_DESCRIPTOR_PAGE_INDEX_MASK (0x000FF000)
#define TT_DESCRIPTOR_PAGE_BASE_ADDRESS(a) ((a) & TT_DESCRIPTOR_PAGE_BASE_ADDRESS_MASK)
#define TT_DESCRIPTOR_PAGE_BASE_SHIFT 12
#define TT_DESCRIPTOR_SECTION_WRITE_BACK(NonSecure) (TT_DESCRIPTOR_SECTION_TYPE_SECTION | \
((NonSecure) ? TT_DESCRIPTOR_SECTION_NS : 0) | \
TT_DESCRIPTOR_SECTION_NG_GLOBAL | \
TT_DESCRIPTOR_SECTION_S_SHARED | \
TT_DESCRIPTOR_SECTION_DOMAIN(0) | \
TT_DESCRIPTOR_SECTION_AP_RW_RW | \
TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_BACK_ALLOC)
#define TT_DESCRIPTOR_SECTION_WRITE_THROUGH(NonSecure) (TT_DESCRIPTOR_SECTION_TYPE_SECTION | \
((NonSecure) ? TT_DESCRIPTOR_SECTION_NS : 0) | \
TT_DESCRIPTOR_SECTION_NG_GLOBAL | \
TT_DESCRIPTOR_SECTION_S_SHARED | \
TT_DESCRIPTOR_SECTION_DOMAIN(0) | \
TT_DESCRIPTOR_SECTION_AP_RW_RW | \
TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_THROUGH_NO_ALLOC)
#define TT_DESCRIPTOR_SECTION_DEVICE(NonSecure) (TT_DESCRIPTOR_SECTION_TYPE_SECTION | \
((NonSecure) ? TT_DESCRIPTOR_SECTION_NS : 0) | \
TT_DESCRIPTOR_SECTION_NG_GLOBAL | \
TT_DESCRIPTOR_SECTION_S_NOT_SHARED | \
TT_DESCRIPTOR_SECTION_DOMAIN(0) | \
TT_DESCRIPTOR_SECTION_AP_RW_RW | \
TT_DESCRIPTOR_SECTION_XN_MASK | \
TT_DESCRIPTOR_SECTION_CACHE_POLICY_SHAREABLE_DEVICE)
#define TT_DESCRIPTOR_SECTION_UNCACHED(NonSecure) (TT_DESCRIPTOR_SECTION_TYPE_SECTION | \
((NonSecure) ? TT_DESCRIPTOR_SECTION_NS : 0) | \
TT_DESCRIPTOR_SECTION_NG_GLOBAL | \
TT_DESCRIPTOR_SECTION_S_NOT_SHARED | \
TT_DESCRIPTOR_SECTION_DOMAIN(0) | \
TT_DESCRIPTOR_SECTION_AP_RW_RW | \
TT_DESCRIPTOR_SECTION_CACHE_POLICY_NON_CACHEABLE)
#define TT_DESCRIPTOR_PAGE_WRITE_BACK (TT_DESCRIPTOR_PAGE_TYPE_PAGE | \
TT_DESCRIPTOR_PAGE_NG_GLOBAL | \
TT_DESCRIPTOR_PAGE_S_SHARED | \
TT_DESCRIPTOR_PAGE_AP_RW_RW | \
TT_DESCRIPTOR_PAGE_CACHE_POLICY_WRITE_BACK_ALLOC)
#define TT_DESCRIPTOR_PAGE_WRITE_THROUGH (TT_DESCRIPTOR_PAGE_TYPE_PAGE | \
TT_DESCRIPTOR_PAGE_NG_GLOBAL | \
TT_DESCRIPTOR_PAGE_S_SHARED | \
TT_DESCRIPTOR_PAGE_AP_RW_RW | \
TT_DESCRIPTOR_PAGE_CACHE_POLICY_WRITE_THROUGH_NO_ALLOC)
#define TT_DESCRIPTOR_PAGE_DEVICE (TT_DESCRIPTOR_PAGE_TYPE_PAGE | \
TT_DESCRIPTOR_PAGE_NG_GLOBAL | \
TT_DESCRIPTOR_PAGE_S_NOT_SHARED | \
TT_DESCRIPTOR_PAGE_AP_RW_RW | \
TT_DESCRIPTOR_PAGE_XN_MASK | \
TT_DESCRIPTOR_PAGE_CACHE_POLICY_SHAREABLE_DEVICE)
#define TT_DESCRIPTOR_PAGE_UNCACHED (TT_DESCRIPTOR_PAGE_TYPE_PAGE | \
TT_DESCRIPTOR_PAGE_NG_GLOBAL | \
TT_DESCRIPTOR_PAGE_S_NOT_SHARED | \
TT_DESCRIPTOR_PAGE_AP_RW_RW | \
TT_DESCRIPTOR_PAGE_CACHE_POLICY_NON_CACHEABLE)
// First Level Descriptors
typedef UINT32 ARM_FIRST_LEVEL_DESCRIPTOR;
// Second Level Descriptors
typedef UINT32 ARM_PAGE_TABLE_ENTRY;
UINT32
ConvertSectionAttributesToPageAttributes (
IN UINT32 SectionAttributes,
IN BOOLEAN IsLargePage
);
#endif // ARMV7_MMU_H_

View File

@ -0,0 +1,31 @@
/** @file
*
* Copyright (c) 2011, ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#ifndef ARM_MP_CORE_INFO_GUID_H_
#define ARM_MP_CORE_INFO_GUID_H_
#define MAX_CPUS_PER_MPCORE_SYSTEM 0x04
#define SCU_CONFIG_REG_OFFSET 0x04
#define MPIDR_U_BIT_MASK 0x40000000
typedef struct {
UINT64 Mpidr;
// MP Core Mailbox
EFI_PHYSICAL_ADDRESS MailboxSetAddress;
EFI_PHYSICAL_ADDRESS MailboxGetAddress;
EFI_PHYSICAL_ADDRESS MailboxClearAddress;
UINT64 MailboxClearValue;
} ARM_CORE_INFO;
#define ARM_MP_CORE_INFO_GUID \
{ 0xa4ee0728, 0xe5d7, 0x4ac5, {0xb2, 0x1e, 0x65, 0x8e, 0xd8, 0x57, 0xe8, 0x34} }
extern EFI_GUID gArmMpCoreInfoGuid;
#endif /* ARM_MP_CORE_INFO_GUID_H_ */

View File

@ -0,0 +1,111 @@
/** @file
Copyright (c) 2020 - 2021, NUVIA Inc. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef ARM_CACHE_H_
#define ARM_CACHE_H_
#include <Uefi/UefiBaseType.h>
// The ARM Architecture Reference Manual for ARMv8-A defines up
// to 7 levels of cache, L1 through L7.
#define MAX_ARM_CACHE_LEVEL 7
/// Defines the structure of the CSSELR (Cache Size Selection) register
typedef union {
struct {
UINT32 InD : 1; ///< Instruction not Data bit
UINT32 Level : 3; ///< Cache level (zero based)
UINT32 TnD : 1; ///< Allocation not Data bit
UINT32 Reserved : 27; ///< Reserved, RES0
} Bits; ///< Bitfield definition of the register
UINT32 Data; ///< The entire 32-bit value
} CSSELR_DATA;
/// The cache type values for the InD field of the CSSELR register
typedef enum {
/// Select the data or unified cache
CsselrCacheTypeDataOrUnified = 0,
/// Select the instruction cache
CsselrCacheTypeInstruction,
CsselrCacheTypeMax
} CSSELR_CACHE_TYPE;
/// Defines the structure of the CCSIDR (Current Cache Size ID) register
typedef union {
struct {
UINT64 LineSize : 3; ///< Line size (Log2(Num bytes in cache) - 4)
UINT64 Associativity : 10; ///< Associativity - 1
UINT64 NumSets : 15; ///< Number of sets in the cache -1
UINT64 Unknown : 4; ///< Reserved, UNKNOWN
UINT64 Reserved : 32; ///< Reserved, RES0
} BitsNonCcidx; ///< Bitfield definition of the register when FEAT_CCIDX is not supported.
struct {
UINT64 LineSize : 3; ///< Line size (Log2(Num bytes in cache) - 4)
UINT64 Associativity : 21; ///< Associativity - 1
UINT64 Reserved1 : 8; ///< Reserved, RES0
UINT64 NumSets : 24; ///< Number of sets in the cache -1
UINT64 Reserved2 : 8; ///< Reserved, RES0
} BitsCcidxAA64; ///< Bitfield definition of the register when FEAT_IDX is supported.
struct {
UINT64 LineSize : 3;
UINT64 Associativity : 21;
UINT64 Reserved : 8;
UINT64 Unallocated : 32;
} BitsCcidxAA32;
UINT64 Data; ///< The entire 64-bit value
} CCSIDR_DATA;
/// Defines the structure of the AARCH32 CCSIDR2 register.
typedef union {
struct {
UINT32 NumSets : 24; ///< Number of sets in the cache - 1
UINT32 Reserved : 8; ///< Reserved, RES0
} Bits; ///< Bitfield definition of the register
UINT32 Data; ///< The entire 32-bit value
} CCSIDR2_DATA;
/** Defines the structure of the CLIDR (Cache Level ID) register.
*
* The lower 32 bits are the same for both AARCH32 and AARCH64
* so we can use the same structure for both.
**/
typedef union {
struct {
UINT32 Ctype1 : 3; ///< Level 1 cache type
UINT32 Ctype2 : 3; ///< Level 2 cache type
UINT32 Ctype3 : 3; ///< Level 3 cache type
UINT32 Ctype4 : 3; ///< Level 4 cache type
UINT32 Ctype5 : 3; ///< Level 5 cache type
UINT32 Ctype6 : 3; ///< Level 6 cache type
UINT32 Ctype7 : 3; ///< Level 7 cache type
UINT32 LoUIS : 3; ///< Level of Unification Inner Shareable
UINT32 LoC : 3; ///< Level of Coherency
UINT32 LoUU : 3; ///< Level of Unification Uniprocessor
UINT32 Icb : 3; ///< Inner Cache Boundary
} Bits; ///< Bitfield definition of the register
UINT32 Data; ///< The entire 32-bit value
} CLIDR_DATA;
/// The cache types reported in the CLIDR register.
typedef enum {
/// No cache is present
ClidrCacheTypeNone = 0,
/// There is only an instruction cache
ClidrCacheTypeInstructionOnly,
/// There is only a data cache
ClidrCacheTypeDataOnly,
/// There are separate data and instruction caches
ClidrCacheTypeSeparate,
/// There is a unified cache
ClidrCacheTypeUnified,
ClidrCacheTypeMax
} CLIDR_CACHE_TYPE;
#define CLIDR_GET_CACHE_TYPE(x, level) ((x >> (3 * (level))) & 0b111)
#endif /* ARM_CACHE_H_ */

View File

@ -0,0 +1,56 @@
/** @file
Header file for FF-A ABI's that will be used for
communication between S-EL0 and the Secure Partition
Manager(SPM)
Copyright (c) 2020, ARM Limited. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
@par Revision Reference:
- FF-A Version 1.0
**/
#ifndef ARM_FFA_SVC_H_
#define ARM_FFA_SVC_H_
#define ARM_SVC_ID_FFA_VERSION_AARCH32 0x84000063
#define ARM_SVC_ID_FFA_MSG_SEND_DIRECT_REQ_AARCH32 0x8400006F
#define ARM_SVC_ID_FFA_MSG_SEND_DIRECT_RESP_AARCH32 0x84000070
#define ARM_SVC_ID_FFA_MSG_SEND_DIRECT_REQ_AARCH64 0xC400006F
#define ARM_SVC_ID_FFA_MSG_SEND_DIRECT_RESP_AARCH64 0xC4000070
/* Generic IDs when using AArch32 or AArch64 execution state */
#ifdef MDE_CPU_AARCH64
#define ARM_SVC_ID_FFA_MSG_SEND_DIRECT_REQ ARM_SVC_ID_FFA_MSG_SEND_DIRECT_REQ_AARCH64
#define ARM_SVC_ID_FFA_MSG_SEND_DIRECT_RESP ARM_SVC_ID_FFA_MSG_SEND_DIRECT_RESP_AARCH64
#endif
#ifdef MDE_CPU_ARM
#define ARM_SVC_ID_FFA_MSG_SEND_DIRECT_REQ ARM_SVC_ID_FFA_MSG_SEND_DIRECT_REQ_AARCH32
#define ARM_SVC_ID_FFA_MSG_SEND_DIRECT_RESP ARM_SVC_ID_FFA_MSG_SEND_DIRECT_RESP_AARCH32
#endif
#define SPM_MAJOR_VERSION_FFA 1
#define SPM_MINOR_VERSION_FFA 0
#define ARM_FFA_SPM_RET_SUCCESS 0
#define ARM_FFA_SPM_RET_NOT_SUPPORTED -1
#define ARM_FFA_SPM_RET_INVALID_PARAMETERS -2
#define ARM_FFA_SPM_RET_NO_MEMORY -3
#define ARM_FFA_SPM_RET_BUSY -4
#define ARM_FFA_SPM_RET_INTERRUPTED -5
#define ARM_FFA_SPM_RET_DENIED -6
#define ARM_FFA_SPM_RET_RETRY -7
#define ARM_FFA_SPM_RET_ABORTED -8
// For now, the destination id to be used in the FF-A calls
// is being hard-coded. Subsequently, support will be added
// to get the endpoint id's dynamically
// This is the endpoint id used by the optee os's implementation
// of the spmc.
// https://github.com/OP-TEE/optee_os/blob/master/core/arch/arm/kernel/stmm_sp.c#L66
#define ARM_FFA_DESTINATION_ENDPOINT_ID 3
#endif // ARM_FFA_SVC_H_

View File

@ -0,0 +1,62 @@
/** @file
*
* Copyright (c) 2012-2017, ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#ifndef ARM_MM_SVC_H_
#define ARM_MM_SVC_H_
/*
* SVC IDs to allow the MM secure partition to initialise itself, handle
* delegated events and request the Secure partition manager to perform
* privileged operations on its behalf.
*/
#define ARM_SVC_ID_SPM_VERSION_AARCH32 0x84000060
#define ARM_SVC_ID_SP_EVENT_COMPLETE_AARCH32 0x84000061
#define ARM_SVC_ID_SP_GET_MEM_ATTRIBUTES_AARCH32 0x84000064
#define ARM_SVC_ID_SP_SET_MEM_ATTRIBUTES_AARCH32 0x84000065
#define ARM_SVC_ID_SP_EVENT_COMPLETE_AARCH64 0xC4000061
#define ARM_SVC_ID_SP_GET_MEM_ATTRIBUTES_AARCH64 0xC4000064
#define ARM_SVC_ID_SP_SET_MEM_ATTRIBUTES_AARCH64 0xC4000065
/* Generic IDs when using AArch32 or AArch64 execution state */
#ifdef MDE_CPU_AARCH64
#define ARM_SVC_ID_SP_EVENT_COMPLETE ARM_SVC_ID_SP_EVENT_COMPLETE_AARCH64
#define ARM_SVC_ID_SP_GET_MEM_ATTRIBUTES ARM_SVC_ID_SP_GET_MEM_ATTRIBUTES_AARCH64
#define ARM_SVC_ID_SP_SET_MEM_ATTRIBUTES ARM_SVC_ID_SP_SET_MEM_ATTRIBUTES_AARCH64
#endif
#ifdef MDE_CPU_ARM
#define ARM_SVC_ID_SP_EVENT_COMPLETE ARM_SVC_ID_SP_EVENT_COMPLETE_AARCH32
#define ARM_SVC_ID_SP_GET_MEM_ATTRIBUTES ARM_SVC_ID_SP_GET_MEM_ATTRIBUTES_AARCH32
#define ARM_SVC_ID_SP_SET_MEM_ATTRIBUTES ARM_SVC_ID_SP_SET_MEM_ATTRIBUTES_AARCH32
#endif
#define SET_MEM_ATTR_DATA_PERM_MASK 0x3
#define SET_MEM_ATTR_DATA_PERM_SHIFT 0
#define SET_MEM_ATTR_DATA_PERM_NO_ACCESS 0
#define SET_MEM_ATTR_DATA_PERM_RW 1
#define SET_MEM_ATTR_DATA_PERM_RO 3
#define SET_MEM_ATTR_CODE_PERM_MASK 0x1
#define SET_MEM_ATTR_CODE_PERM_SHIFT 2
#define SET_MEM_ATTR_CODE_PERM_X 0
#define SET_MEM_ATTR_CODE_PERM_XN 1
#define SET_MEM_ATTR_MAKE_PERM_REQUEST(d_perm, c_perm) \
((((c_perm) & SET_MEM_ATTR_CODE_PERM_MASK) << SET_MEM_ATTR_CODE_PERM_SHIFT) | \
(( (d_perm) & SET_MEM_ATTR_DATA_PERM_MASK) << SET_MEM_ATTR_DATA_PERM_SHIFT))
/* MM SVC Return error codes */
#define ARM_SVC_SPM_RET_SUCCESS 0
#define ARM_SVC_SPM_RET_NOT_SUPPORTED -1
#define ARM_SVC_SPM_RET_INVALID_PARAMS -2
#define ARM_SVC_SPM_RET_DENIED -3
#define ARM_SVC_SPM_RET_NO_MEMORY -5
#define SPM_MAJOR_VERSION 0
#define SPM_MINOR_VERSION 1
#endif // ARM_MM_SVC_H_

View File

@ -0,0 +1,247 @@
/** @file
*
* Copyright (c) 2020, NUVIA Inc. All rights reserved.<BR>
* Copyright (c) 2012 - 2022, Arm Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
* @par Revision Reference:
* - [1] SMC Calling Convention version 1.2
* (https://developer.arm.com/documentation/den0028/c/?lang=en)
* - [2] Arm True Random Number Generator Firmware, Interface 1.0,
* Platform Design Document.
* (https://developer.arm.com/documentation/den0098/latest/)
*
* @par Glossary:
* - TRNG - True Random Number Generator
*
**/
#ifndef ARM_STD_SMC_H_
#define ARM_STD_SMC_H_
/*
* SMC function IDs for Standard Service queries
*/
#define ARM_SMC_ID_STD_CALL_COUNT 0x8400ff00
#define ARM_SMC_ID_STD_UID 0x8400ff01
/* 0x8400ff02 is reserved */
#define ARM_SMC_ID_STD_REVISION 0x8400ff03
/*
* The 'Standard Service Call UID' is supposed to return the Standard
* Service UUID. This is a 128-bit value.
*/
#define ARM_SMC_STD_UUID0 0x108d905b
#define ARM_SMC_STD_UUID1 0x47e8f863
#define ARM_SMC_STD_UUID2 0xfbc02dae
#define ARM_SMC_STD_UUID3 0xe2f64156
/*
* ARM Standard Service Calls revision numbers
* The current revision is: 0.1
*/
#define ARM_SMC_STD_REVISION_MAJOR 0x0
#define ARM_SMC_STD_REVISION_MINOR 0x1
/*
* Management Mode (MM) calls cover a subset of the Standard Service Call range.
* The list below is not exhaustive.
*/
#define ARM_SMC_ID_MM_VERSION_AARCH32 0x84000040
#define ARM_SMC_ID_MM_VERSION_AARCH64 0xC4000040
// Request service from secure standalone MM environment
#define ARM_SMC_ID_MM_COMMUNICATE_AARCH32 0x84000041
#define ARM_SMC_ID_MM_COMMUNICATE_AARCH64 0xC4000041
/* Generic ID when using AArch32 or AArch64 execution state */
#ifdef MDE_CPU_AARCH64
#define ARM_SMC_ID_MM_COMMUNICATE ARM_SMC_ID_MM_COMMUNICATE_AARCH64
#endif
#ifdef MDE_CPU_ARM
#define ARM_SMC_ID_MM_COMMUNICATE ARM_SMC_ID_MM_COMMUNICATE_AARCH32
#endif
/* MM return error codes */
#define ARM_SMC_MM_RET_SUCCESS 0
#define ARM_SMC_MM_RET_NOT_SUPPORTED -1
#define ARM_SMC_MM_RET_INVALID_PARAMS -2
#define ARM_SMC_MM_RET_DENIED -3
#define ARM_SMC_MM_RET_NO_MEMORY -4
// ARM Architecture Calls
#define SMCCC_VERSION 0x80000000
#define SMCCC_ARCH_FEATURES 0x80000001
#define SMCCC_ARCH_SOC_ID 0x80000002
#define SMCCC_ARCH_WORKAROUND_1 0x80008000
#define SMCCC_ARCH_WORKAROUND_2 0x80007FFF
#define SMC_ARCH_CALL_SUCCESS 0
#define SMC_ARCH_CALL_NOT_SUPPORTED -1
#define SMC_ARCH_CALL_NOT_REQUIRED -2
#define SMC_ARCH_CALL_INVALID_PARAMETER -3
/*
* Power State Coordination Interface (PSCI) calls cover a subset of the
* Standard Service Call range.
* The list below is not exhaustive.
*/
#define ARM_SMC_ID_PSCI_VERSION 0x84000000
#define ARM_SMC_ID_PSCI_CPU_SUSPEND_AARCH64 0xc4000001
#define ARM_SMC_ID_PSCI_CPU_SUSPEND_AARCH32 0x84000001
#define ARM_SMC_ID_PSCI_CPU_OFF 0x84000002
#define ARM_SMC_ID_PSCI_CPU_ON_AARCH64 0xc4000003
#define ARM_SMC_ID_PSCI_CPU_ON_AARCH32 0x84000003
#define ARM_SMC_ID_PSCI_AFFINITY_INFO_AARCH64 0xc4000004
#define ARM_SMC_ID_PSCI_AFFINITY_INFO_AARCH32 0x84000004
#define ARM_SMC_ID_PSCI_MIGRATE_AARCH64 0xc4000005
#define ARM_SMC_ID_PSCI_MIGRATE_AARCH32 0x84000005
#define ARM_SMC_ID_PSCI_SYSTEM_OFF 0x84000008
#define ARM_SMC_ID_PSCI_SYSTEM_RESET 0x84000009
#define ARM_SMC_ID_PSCI_FEATURES 0x8400000A
#define ARM_SMC_ID_PSCI_SYSTEM_RESET2_AARCH64 0xC4000012
/* The current PSCI version is: 0.2 */
#define ARM_SMC_PSCI_VERSION_MAJOR 0
#define ARM_SMC_PSCI_VERSION_MINOR 2
#define ARM_SMC_PSCI_VERSION \
((ARM_SMC_PSCI_VERSION_MAJOR << 16) | ARM_SMC_PSCI_VERSION_MINOR)
/* PSCI return error codes */
#define ARM_SMC_PSCI_RET_SUCCESS 0
#define ARM_SMC_PSCI_RET_NOT_SUPPORTED -1
#define ARM_SMC_PSCI_RET_INVALID_PARAMS -2
#define ARM_SMC_PSCI_RET_DENIED -3
#define ARM_SMC_PSCI_RET_ALREADY_ON -4
#define ARM_SMC_PSCI_RET_ON_PENDING -5
#define ARM_SMC_PSCI_RET_INTERN_FAIL -6
#define ARM_SMC_PSCI_RET_NOT_PRESENT -7
#define ARM_SMC_PSCI_RET_DISABLED -8
#define ARM_SMC_PSCI_TARGET_CPU32(Aff2, Aff1, Aff0) \
((((Aff2) & 0xFF) << 16) | (((Aff1) & 0xFF) << 8) | ((Aff0) & 0xFF))
#define ARM_SMC_PSCI_TARGET_CPU64(Aff3, Aff2, Aff1, Aff0) \
((((Aff3) & 0xFFULL) << 32) | (((Aff2) & 0xFF) << 16) | (((Aff1) & 0xFF) << 8) | ((Aff0) & 0xFF))
#define ARM_SMC_PSCI_TARGET_GET_AFF0(TargetId) ((TargetId) & 0xFF)
#define ARM_SMC_PSCI_TARGET_GET_AFF1(TargetId) (((TargetId) >> 8) & 0xFF)
#define ARM_SMC_ID_PSCI_AFFINITY_LEVEL_0 0
#define ARM_SMC_ID_PSCI_AFFINITY_LEVEL_1 1
#define ARM_SMC_ID_PSCI_AFFINITY_LEVEL_2 2
#define ARM_SMC_ID_PSCI_AFFINITY_LEVEL_3 3
#define ARM_SMC_ID_PSCI_AFFINITY_INFO_ON 0
#define ARM_SMC_ID_PSCI_AFFINITY_INFO_OFF 1
#define ARM_SMC_ID_PSCI_AFFINITY_INFO_ON_PENDING 2
/*
* SMC function IDs for Trusted OS Service queries
*/
#define ARM_SMC_ID_TOS_CALL_COUNT 0xbf00ff00
#define ARM_SMC_ID_TOS_UID 0xbf00ff01
/* 0xbf00ff02 is reserved */
#define ARM_SMC_ID_TOS_REVISION 0xbf00ff03
// Firmware TRNG interface Function IDs
/*
SMC/HVC call to get the version of the TRNG backend,
Cf. [2], 2.1 TRNG_VERSION
Input values:
W0 0x8400_0050
W1-W7 Reserved (MBZ)
Return values:
Success (W0 > 0) W0[31] MBZ
W0[30:16] Major revision
W0[15:0] Minor revision
W1 - W3 Reserved (MBZ)
Error (W0 < 0)
NOT_SUPPORTED Function not implemented
*/
#define ARM_SMC_ID_TRNG_VERSION 0x84000050
/*
SMC/HVC call to check if a TRNG function ID is implemented by the backend,
Cf. [2], Section 2.2 TRNG_FEATURES
Input Values
W0 0x8400_0051
W1 trng_func_id
W2-W7 Reserved (MBZ)
Return values:
Success (W0 >= 0):
SUCCESS Function is implemented.
> 0 Function is implemented and
has specific capabilities,
see function definition.
Error (W0 < 0)
NOT_SUPPORTED Function with FID=trng_func_id
is not implemented
*/
#define ARM_SMC_ID_TRNG_FEATURES 0x84000051
/*
SMC/HVC call to get the UUID of the TRNG backend,
Cf. [2], Section 2.3 TRNG_GET_UUID
Input Values:
W0 0x8400_0052
W1-W7 Reserved (MBZ)
Return Values:
Success (W0 != -1)
W0 UUID[31:0]
W1 UUID[63:32]
W2 UUID[95:64]
W3 UUID[127:96]
Error (W0 = -1)
W0 NOT_SUPPORTED
*/
#define ARM_SMC_ID_TRNG_GET_UUID 0x84000052
/*
AARCH32 SMC/HVC call to get entropy bits, Cf. [2], Section 2.4 TRNG_RND.
Input values:
W0 0x8400_0053
W2-W7 Reserved (MBZ)
Return values:
Success (W0 = 0):
W0 MBZ
W1 Entropy[95:64]
W2 Entropy[63:32]
W3 Entropy[31:0]
Error (W0 < 0)
W0 NOT_SUPPORTED
NO_ENTROPY
INVALID_PARAMETERS
W1 - W3 Reserved (MBZ)
*/
#define ARM_SMC_ID_TRNG_RND_AARCH32 0x84000053
/*
AARCH64 SMC/HVC call to get entropy bits, Cf. [2], Section 2.4 TRNG_RND.
Input values:
X0 0xC400_0053
X2-X7 Reserved (MBZ)
Return values:
Success (X0 = 0):
X0 MBZ
X1 Entropy[191:128]
X2 Entropy[127:64]
X3 Entropy[63:0]
Error (X0 < 0)
X0 NOT_SUPPORTED
NO_ENTROPY
INVALID_PARAMETERS
X1 - X3 Reserved (MBZ)
*/
#define ARM_SMC_ID_TRNG_RND_AARCH64 0xC4000053
// Firmware TRNG status codes
#define TRNG_STATUS_SUCCESS (INT32)(0)
#define TRNG_STATUS_NOT_SUPPORTED (INT32)(-1)
#define TRNG_STATUS_INVALID_PARAMETER (INT32)(-2)
#define TRNG_STATUS_NO_ENTROPY (INT32)(-3)
#endif // ARM_STD_SMC_H_

View File

@ -0,0 +1,37 @@
/** @file
Copyright (c) 2008 - 2010, Apple Inc. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef ARM_DISASSEMBLER_LIB_H_
#define ARM_DISASSEMBLER_LIB_H_
/**
Place a disassembly of **OpCodePtr into buffer, and update OpCodePtr to
point to next instruction.
We cheat and only decode instructions that access
memory. If the instruction is not found we dump the instruction in hex.
@param OpCodePtrPtr Pointer to pointer of ARM Thumb instruction to disassemble.
@param Thumb TRUE for Thumb(2), FALSE for ARM instruction stream
@param Extended TRUE dump hex for instruction too.
@param ItBlock Size of IT Block
@param Buf Buffer to sprintf disassembly into.
@param Size Size of Buf in bytes.
**/
VOID
DisassembleInstruction (
IN UINT8 **OpCodePtr,
IN BOOLEAN Thumb,
IN BOOLEAN Extended,
IN OUT UINT32 *ItBlock,
OUT CHAR8 *Buf,
OUT UINTN Size
);
#endif // ARM_DISASSEMBLER_LIB_H_

View File

@ -0,0 +1,85 @@
/** @file
Copyright (c) 2011 - 2014, ARM Ltd. All rights reserved.<BR>
Copyright (c) 2014, Linaro Ltd. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef ARM_GENERIC_TIMER_COUNTER_LIB_H_
#define ARM_GENERIC_TIMER_COUNTER_LIB_H_
VOID
EFIAPI
ArmGenericTimerEnableTimer (
VOID
);
VOID
EFIAPI
ArmGenericTimerReenableTimer (
VOID
);
VOID
EFIAPI
ArmGenericTimerDisableTimer (
VOID
);
VOID
EFIAPI
ArmGenericTimerSetTimerFreq (
IN UINTN FreqInHz
);
UINTN
EFIAPI
ArmGenericTimerGetTimerFreq (
VOID
);
VOID
EFIAPI
ArmGenericTimerSetTimerVal (
IN UINTN Value
);
UINTN
EFIAPI
ArmGenericTimerGetTimerVal (
VOID
);
UINT64
EFIAPI
ArmGenericTimerGetSystemCount (
VOID
);
UINTN
EFIAPI
ArmGenericTimerGetTimerCtrlReg (
VOID
);
VOID
EFIAPI
ArmGenericTimerSetTimerCtrlReg (
UINTN Value
);
UINT64
EFIAPI
ArmGenericTimerGetCompareVal (
VOID
);
VOID
EFIAPI
ArmGenericTimerSetCompareVal (
IN UINT64 Value
);
#endif // ARM_GENERIC_TIMER_COUNTER_LIB_H_

View File

@ -0,0 +1,26 @@
/** @file
*
* Copyright (c) 2015, Linaro Ltd. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#ifndef ARM_GIC_ARCH_LIB_H_
#define ARM_GIC_ARCH_LIB_H_
//
// GIC definitions
//
typedef enum {
ARM_GIC_ARCH_REVISION_2,
ARM_GIC_ARCH_REVISION_3
} ARM_GIC_ARCH_REVISION;
ARM_GIC_ARCH_REVISION
EFIAPI
ArmGicGetSupportedArchRevision (
VOID
);
#endif // ARM_GIC_ARCH_LIB_H_

View File

@ -0,0 +1,335 @@
/** @file
*
* Copyright (c) 2011-2021, Arm Limited. All rights reserved.<BR>
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#ifndef ARMGIC_H_
#define ARMGIC_H_
#include <Library/ArmGicArchLib.h>
// GIC Distributor
#define ARM_GIC_ICDDCR 0x000 // Distributor Control Register
#define ARM_GIC_ICDICTR 0x004 // Interrupt Controller Type Register
#define ARM_GIC_ICDIIDR 0x008 // Implementer Identification Register
// Each reg base below repeats for Number of interrupts / 4 (see GIC spec)
#define ARM_GIC_ICDISR 0x080 // Interrupt Security Registers
#define ARM_GIC_ICDISER 0x100 // Interrupt Set-Enable Registers
#define ARM_GIC_ICDICER 0x180 // Interrupt Clear-Enable Registers
#define ARM_GIC_ICDSPR 0x200 // Interrupt Set-Pending Registers
#define ARM_GIC_ICDICPR 0x280 // Interrupt Clear-Pending Registers
#define ARM_GIC_ICDABR 0x300 // Active Bit Registers
// Each reg base below repeats for Number of interrupts / 4
#define ARM_GIC_ICDIPR 0x400 // Interrupt Priority Registers
// Each reg base below repeats for Number of interrupts
#define ARM_GIC_ICDIPTR 0x800 // Interrupt Processor Target Registers
#define ARM_GIC_ICDICFR 0xC00 // Interrupt Configuration Registers
#define ARM_GIC_ICDPPISR 0xD00 // PPI Status register
// just one of these
#define ARM_GIC_ICDSGIR 0xF00 // Software Generated Interrupt Register
// GICv3 specific registers
#define ARM_GICD_IROUTER 0x6100 // Interrupt Routing Registers
// GICD_CTLR bits
#define ARM_GIC_ICDDCR_ARE (1 << 4) // Affinity Routing Enable (ARE)
#define ARM_GIC_ICDDCR_DS (1 << 6) // Disable Security (DS)
// GICD_ICDICFR bits
#define ARM_GIC_ICDICFR_WIDTH 32 // ICDICFR is a 32 bit register
#define ARM_GIC_ICDICFR_BYTES (ARM_GIC_ICDICFR_WIDTH / 8)
#define ARM_GIC_ICDICFR_F_WIDTH 2 // Each F field is 2 bits
#define ARM_GIC_ICDICFR_F_STRIDE 16 // (32/2) F fields per register
#define ARM_GIC_ICDICFR_F_CONFIG1_BIT 1 // Bit number within F field
#define ARM_GIC_ICDICFR_LEVEL_TRIGGERED 0x0 // Level triggered interrupt
#define ARM_GIC_ICDICFR_EDGE_TRIGGERED 0x1 // Edge triggered interrupt
// GIC Redistributor
#define ARM_GICR_CTLR_FRAME_SIZE SIZE_64KB
#define ARM_GICR_SGI_PPI_FRAME_SIZE SIZE_64KB
#define ARM_GICR_SGI_VLPI_FRAME_SIZE SIZE_64KB
#define ARM_GICR_SGI_RESERVED_FRAME_SIZE SIZE_64KB
// GIC Redistributor Control frame
#define ARM_GICR_TYPER 0x0008 // Redistributor Type Register
// GIC Redistributor TYPER bit assignments
#define ARM_GICR_TYPER_PLPIS (1 << 0) // Physical LPIs
#define ARM_GICR_TYPER_VLPIS (1 << 1) // Virtual LPIs
#define ARM_GICR_TYPER_DIRECTLPI (1 << 3) // Direct LPIs
#define ARM_GICR_TYPER_LAST (1 << 4) // Last Redistributor in series
#define ARM_GICR_TYPER_DPGS (1 << 5) // Disable Processor Group
// Selection Support
#define ARM_GICR_TYPER_PROCNO (0xFFFF << 8) // Processor Number
#define ARM_GICR_TYPER_COMMONLPIAFF (0x3 << 24) // Common LPI Affinity
#define ARM_GICR_TYPER_AFFINITY (0xFFFFFFFFULL << 32) // Redistributor Affinity
#define ARM_GICR_TYPER_GET_AFFINITY(TypeReg) (((TypeReg) & \
ARM_GICR_TYPER_AFFINITY) >> 32)
// GIC SGI & PPI Redistributor frame
#define ARM_GICR_ISENABLER 0x0100 // Interrupt Set-Enable Registers
#define ARM_GICR_ICENABLER 0x0180 // Interrupt Clear-Enable Registers
// GIC Cpu interface
#define ARM_GIC_ICCICR 0x00 // CPU Interface Control Register
#define ARM_GIC_ICCPMR 0x04 // Interrupt Priority Mask Register
#define ARM_GIC_ICCBPR 0x08 // Binary Point Register
#define ARM_GIC_ICCIAR 0x0C // Interrupt Acknowledge Register
#define ARM_GIC_ICCEIOR 0x10 // End Of Interrupt Register
#define ARM_GIC_ICCRPR 0x14 // Running Priority Register
#define ARM_GIC_ICCPIR 0x18 // Highest Pending Interrupt Register
#define ARM_GIC_ICCABPR 0x1C // Aliased Binary Point Register
#define ARM_GIC_ICCIIDR 0xFC // Identification Register
#define ARM_GIC_ICDSGIR_FILTER_TARGETLIST 0x0
#define ARM_GIC_ICDSGIR_FILTER_EVERYONEELSE 0x1
#define ARM_GIC_ICDSGIR_FILTER_ITSELF 0x2
// Bit-masks to configure the CPU Interface Control register
#define ARM_GIC_ICCICR_ENABLE_SECURE 0x01
#define ARM_GIC_ICCICR_ENABLE_NS 0x02
#define ARM_GIC_ICCICR_ACK_CTL 0x04
#define ARM_GIC_ICCICR_SIGNAL_SECURE_TO_FIQ 0x08
#define ARM_GIC_ICCICR_USE_SBPR 0x10
// Bit Mask for GICC_IIDR
#define ARM_GIC_ICCIIDR_GET_PRODUCT_ID(IccIidr) (((IccIidr) >> 20) & 0xFFF)
#define ARM_GIC_ICCIIDR_GET_ARCH_VERSION(IccIidr) (((IccIidr) >> 16) & 0xF)
#define ARM_GIC_ICCIIDR_GET_REVISION(IccIidr) (((IccIidr) >> 12) & 0xF)
#define ARM_GIC_ICCIIDR_GET_IMPLEMENTER(IccIidr) ((IccIidr) & 0xFFF)
// Bit Mask for
#define ARM_GIC_ICCIAR_ACKINTID 0x3FF
UINTN
EFIAPI
ArmGicGetInterfaceIdentification (
IN INTN GicInterruptInterfaceBase
);
// GIC Secure interfaces
VOID
EFIAPI
ArmGicSetupNonSecure (
IN UINTN MpId,
IN INTN GicDistributorBase,
IN INTN GicInterruptInterfaceBase
);
VOID
EFIAPI
ArmGicSetSecureInterrupts (
IN UINTN GicDistributorBase,
IN UINTN *GicSecureInterruptMask,
IN UINTN GicSecureInterruptMaskSize
);
VOID
EFIAPI
ArmGicEnableInterruptInterface (
IN INTN GicInterruptInterfaceBase
);
VOID
EFIAPI
ArmGicDisableInterruptInterface (
IN INTN GicInterruptInterfaceBase
);
VOID
EFIAPI
ArmGicEnableDistributor (
IN INTN GicDistributorBase
);
VOID
EFIAPI
ArmGicDisableDistributor (
IN INTN GicDistributorBase
);
UINTN
EFIAPI
ArmGicGetMaxNumInterrupts (
IN INTN GicDistributorBase
);
VOID
EFIAPI
ArmGicSendSgiTo (
IN INTN GicDistributorBase,
IN INTN TargetListFilter,
IN INTN CPUTargetList,
IN INTN SgiId
);
/*
* Acknowledge and return the value of the Interrupt Acknowledge Register
*
* InterruptId is returned separately from the register value because in
* the GICv2 the register value contains the CpuId and InterruptId while
* in the GICv3 the register value is only the InterruptId.
*
* @param GicInterruptInterfaceBase Base Address of the GIC CPU Interface
* @param InterruptId InterruptId read from the Interrupt
* Acknowledge Register
*
* @retval value returned by the Interrupt Acknowledge Register
*
*/
UINTN
EFIAPI
ArmGicAcknowledgeInterrupt (
IN UINTN GicInterruptInterfaceBase,
OUT UINTN *InterruptId
);
VOID
EFIAPI
ArmGicEndOfInterrupt (
IN UINTN GicInterruptInterfaceBase,
IN UINTN Source
);
UINTN
EFIAPI
ArmGicSetPriorityMask (
IN INTN GicInterruptInterfaceBase,
IN INTN PriorityMask
);
VOID
EFIAPI
ArmGicSetInterruptPriority (
IN UINTN GicDistributorBase,
IN UINTN GicRedistributorBase,
IN UINTN Source,
IN UINTN Priority
);
VOID
EFIAPI
ArmGicEnableInterrupt (
IN UINTN GicDistributorBase,
IN UINTN GicRedistributorBase,
IN UINTN Source
);
VOID
EFIAPI
ArmGicDisableInterrupt (
IN UINTN GicDistributorBase,
IN UINTN GicRedistributorBase,
IN UINTN Source
);
BOOLEAN
EFIAPI
ArmGicIsInterruptEnabled (
IN UINTN GicDistributorBase,
IN UINTN GicRedistributorBase,
IN UINTN Source
);
// GIC revision 2 specific declarations
// Interrupts from 1020 to 1023 are considered as special interrupts
// (eg: spurious interrupts)
#define ARM_GIC_IS_SPECIAL_INTERRUPTS(Interrupt) \
(((Interrupt) >= 1020) && ((Interrupt) <= 1023))
VOID
EFIAPI
ArmGicV2SetupNonSecure (
IN UINTN MpId,
IN INTN GicDistributorBase,
IN INTN GicInterruptInterfaceBase
);
VOID
EFIAPI
ArmGicV2EnableInterruptInterface (
IN INTN GicInterruptInterfaceBase
);
VOID
EFIAPI
ArmGicV2DisableInterruptInterface (
IN INTN GicInterruptInterfaceBase
);
UINTN
EFIAPI
ArmGicV2AcknowledgeInterrupt (
IN UINTN GicInterruptInterfaceBase
);
VOID
EFIAPI
ArmGicV2EndOfInterrupt (
IN UINTN GicInterruptInterfaceBase,
IN UINTN Source
);
// GIC revision 3 specific declarations
#define ICC_SRE_EL2_SRE (1 << 0)
#define ARM_GICD_IROUTER_IRM BIT31
UINT32
EFIAPI
ArmGicV3GetControlSystemRegisterEnable (
VOID
);
VOID
EFIAPI
ArmGicV3SetControlSystemRegisterEnable (
IN UINT32 ControlSystemRegisterEnable
);
VOID
EFIAPI
ArmGicV3EnableInterruptInterface (
VOID
);
VOID
EFIAPI
ArmGicV3DisableInterruptInterface (
VOID
);
UINTN
EFIAPI
ArmGicV3AcknowledgeInterrupt (
VOID
);
VOID
EFIAPI
ArmGicV3EndOfInterrupt (
IN UINTN Source
);
VOID
ArmGicV3SetBinaryPointer (
IN UINTN BinaryPoint
);
VOID
ArmGicV3SetPriorityMask (
IN UINTN Priority
);
#endif // ARMGIC_H_

View File

@ -0,0 +1,40 @@
/** @file
*
* Copyright (c) 2012-2014, ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#ifndef ARM_HVC_LIB_H_
#define ARM_HVC_LIB_H_
/**
* The size of the HVC arguments are different between AArch64 and AArch32.
* The native size is used for the arguments.
*/
typedef struct {
UINTN Arg0;
UINTN Arg1;
UINTN Arg2;
UINTN Arg3;
UINTN Arg4;
UINTN Arg5;
UINTN Arg6;
UINTN Arg7;
} ARM_HVC_ARGS;
/**
Trigger an HVC call
HVC calls can take up to 8 arguments and return up to 4 return values.
Therefore, the 4 first fields in the ARM_HVC_ARGS structure are used
for both input and output values.
**/
VOID
ArmCallHvc (
IN OUT ARM_HVC_ARGS *Args
);
#endif // ARM_HVC_LIB_H_

View File

@ -0,0 +1,791 @@
/** @file
Copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>
Copyright (c) 2011 - 2016, ARM Ltd. All rights reserved.<BR>
Copyright (c) 2020 - 2021, NUVIA Inc. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef ARM_LIB_H_
#define ARM_LIB_H_
#include <Uefi/UefiBaseType.h>
#ifdef MDE_CPU_ARM
#include <Chipset/ArmV7.h>
#elif defined (MDE_CPU_AARCH64)
#include <Chipset/AArch64.h>
#else
#error "Unknown chipset."
#endif
#define EFI_MEMORY_CACHETYPE_MASK (EFI_MEMORY_UC | EFI_MEMORY_WC | \
EFI_MEMORY_WT | EFI_MEMORY_WB | \
EFI_MEMORY_UCE)
/**
* The UEFI firmware must not use the ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_* attributes.
*
* The Non Secure memory attribute (ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_*) should only
* be used in Secure World to distinguished Secure to Non-Secure memory.
*/
typedef enum {
ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED = 0,
ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_UNCACHED_UNBUFFERED,
ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK,
ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK,
// On some platforms, memory mapped flash region is designed as not supporting
// shareable attribute, so WRITE_BACK_NONSHAREABLE is added for such special
// need.
// Do NOT use below two attributes if you are not sure.
ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK_NONSHAREABLE,
ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK_NONSHAREABLE,
ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH,
ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_THROUGH,
ARM_MEMORY_REGION_ATTRIBUTE_DEVICE,
ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_DEVICE
} ARM_MEMORY_REGION_ATTRIBUTES;
#define IS_ARM_MEMORY_REGION_ATTRIBUTES_SECURE(attr) ((UINT32)(attr) & 1)
typedef struct {
EFI_PHYSICAL_ADDRESS PhysicalBase;
EFI_VIRTUAL_ADDRESS VirtualBase;
UINT64 Length;
ARM_MEMORY_REGION_ATTRIBUTES Attributes;
} ARM_MEMORY_REGION_DESCRIPTOR;
typedef VOID (*CACHE_OPERATION)(
VOID
);
typedef VOID (*LINE_OPERATION)(
UINTN
);
//
// ARM Processor Mode
//
typedef enum {
ARM_PROCESSOR_MODE_USER = 0x10,
ARM_PROCESSOR_MODE_FIQ = 0x11,
ARM_PROCESSOR_MODE_IRQ = 0x12,
ARM_PROCESSOR_MODE_SUPERVISOR = 0x13,
ARM_PROCESSOR_MODE_ABORT = 0x17,
ARM_PROCESSOR_MODE_HYP = 0x1A,
ARM_PROCESSOR_MODE_UNDEFINED = 0x1B,
ARM_PROCESSOR_MODE_SYSTEM = 0x1F,
ARM_PROCESSOR_MODE_MASK = 0x1F
} ARM_PROCESSOR_MODE;
//
// ARM Cpu IDs
//
#define ARM_CPU_IMPLEMENTER_MASK (0xFFU << 24)
#define ARM_CPU_IMPLEMENTER_ARMLTD (0x41U << 24)
#define ARM_CPU_IMPLEMENTER_DEC (0x44U << 24)
#define ARM_CPU_IMPLEMENTER_MOT (0x4DU << 24)
#define ARM_CPU_IMPLEMENTER_QUALCOMM (0x51U << 24)
#define ARM_CPU_IMPLEMENTER_MARVELL (0x56U << 24)
#define ARM_CPU_PRIMARY_PART_MASK (0xFFF << 4)
#define ARM_CPU_PRIMARY_PART_CORTEXA5 (0xC05 << 4)
#define ARM_CPU_PRIMARY_PART_CORTEXA7 (0xC07 << 4)
#define ARM_CPU_PRIMARY_PART_CORTEXA8 (0xC08 << 4)
#define ARM_CPU_PRIMARY_PART_CORTEXA9 (0xC09 << 4)
#define ARM_CPU_PRIMARY_PART_CORTEXA15 (0xC0F << 4)
//
// ARM MP Core IDs
//
#define ARM_CORE_AFF0 0xFF
#define ARM_CORE_AFF1 (0xFF << 8)
#define ARM_CORE_AFF2 (0xFF << 16)
#define ARM_CORE_AFF3 (0xFFULL << 32)
#define ARM_CORE_MASK ARM_CORE_AFF0
#define ARM_CLUSTER_MASK ARM_CORE_AFF1
#define GET_CORE_ID(MpId) ((MpId) & ARM_CORE_MASK)
#define GET_CLUSTER_ID(MpId) (((MpId) & ARM_CLUSTER_MASK) >> 8)
#define GET_MPID(ClusterId, CoreId) (((ClusterId) << 8) | (CoreId))
#define GET_MPIDR_AFF0(MpId) ((MpId) & ARM_CORE_AFF0)
#define GET_MPIDR_AFF1(MpId) (((MpId) & ARM_CORE_AFF1) >> 8)
#define GET_MPIDR_AFF2(MpId) (((MpId) & ARM_CORE_AFF2) >> 16)
#define GET_MPIDR_AFF3(MpId) (((MpId) & ARM_CORE_AFF3) >> 32)
#define PRIMARY_CORE_ID (PcdGet32(PcdArmPrimaryCore) & ARM_CORE_MASK)
/** Reads the CCSIDR register for the specified cache.
@param CSSELR The CSSELR cache selection register value.
@return The contents of the CCSIDR_EL1 register for the specified cache, when in AARCH64 mode.
Returns the contents of the CCSIDR register in AARCH32 mode.
**/
UINTN
ReadCCSIDR (
IN UINT32 CSSELR
);
/** Reads the CCSIDR2 for the specified cache.
@param CSSELR The CSSELR cache selection register value
@return The contents of the CCSIDR2 register for the specified cache.
**/
UINT32
ReadCCSIDR2 (
IN UINT32 CSSELR
);
/** Reads the Cache Level ID (CLIDR) register.
@return The contents of the CLIDR_EL1 register.
**/
UINT32
ReadCLIDR (
VOID
);
UINTN
EFIAPI
ArmDataCacheLineLength (
VOID
);
UINTN
EFIAPI
ArmInstructionCacheLineLength (
VOID
);
UINTN
EFIAPI
ArmCacheWritebackGranule (
VOID
);
UINTN
EFIAPI
ArmIsArchTimerImplemented (
VOID
);
UINTN
EFIAPI
ArmCacheInfo (
VOID
);
BOOLEAN
EFIAPI
ArmIsMpCore (
VOID
);
VOID
EFIAPI
ArmInvalidateDataCache (
VOID
);
VOID
EFIAPI
ArmCleanInvalidateDataCache (
VOID
);
VOID
EFIAPI
ArmCleanDataCache (
VOID
);
VOID
EFIAPI
ArmInvalidateInstructionCache (
VOID
);
VOID
EFIAPI
ArmInvalidateDataCacheEntryByMVA (
IN UINTN Address
);
VOID
EFIAPI
ArmCleanDataCacheEntryToPoUByMVA (
IN UINTN Address
);
VOID
EFIAPI
ArmInvalidateInstructionCacheEntryToPoUByMVA (
IN UINTN Address
);
VOID
EFIAPI
ArmCleanDataCacheEntryByMVA (
IN UINTN Address
);
VOID
EFIAPI
ArmCleanInvalidateDataCacheEntryByMVA (
IN UINTN Address
);
VOID
EFIAPI
ArmEnableDataCache (
VOID
);
VOID
EFIAPI
ArmDisableDataCache (
VOID
);
VOID
EFIAPI
ArmEnableInstructionCache (
VOID
);
VOID
EFIAPI
ArmDisableInstructionCache (
VOID
);
VOID
EFIAPI
ArmEnableMmu (
VOID
);
VOID
EFIAPI
ArmDisableMmu (
VOID
);
VOID
EFIAPI
ArmEnableCachesAndMmu (
VOID
);
VOID
EFIAPI
ArmDisableCachesAndMmu (
VOID
);
VOID
EFIAPI
ArmEnableInterrupts (
VOID
);
UINTN
EFIAPI
ArmDisableInterrupts (
VOID
);
BOOLEAN
EFIAPI
ArmGetInterruptState (
VOID
);
VOID
EFIAPI
ArmEnableAsynchronousAbort (
VOID
);
UINTN
EFIAPI
ArmDisableAsynchronousAbort (
VOID
);
VOID
EFIAPI
ArmEnableIrq (
VOID
);
UINTN
EFIAPI
ArmDisableIrq (
VOID
);
VOID
EFIAPI
ArmEnableFiq (
VOID
);
UINTN
EFIAPI
ArmDisableFiq (
VOID
);
BOOLEAN
EFIAPI
ArmGetFiqState (
VOID
);
/**
* Invalidate Data and Instruction TLBs
*/
VOID
EFIAPI
ArmInvalidateTlb (
VOID
);
VOID
EFIAPI
ArmUpdateTranslationTableEntry (
IN VOID *TranslationTableEntry,
IN VOID *Mva
);
VOID
EFIAPI
ArmSetDomainAccessControl (
IN UINT32 Domain
);
VOID
EFIAPI
ArmSetTTBR0 (
IN VOID *TranslationTableBase
);
VOID
EFIAPI
ArmSetTTBCR (
IN UINT32 Bits
);
VOID *
EFIAPI
ArmGetTTBR0BaseAddress (
VOID
);
BOOLEAN
EFIAPI
ArmMmuEnabled (
VOID
);
VOID
EFIAPI
ArmEnableBranchPrediction (
VOID
);
VOID
EFIAPI
ArmDisableBranchPrediction (
VOID
);
VOID
EFIAPI
ArmSetLowVectors (
VOID
);
VOID
EFIAPI
ArmSetHighVectors (
VOID
);
VOID
EFIAPI
ArmDataMemoryBarrier (
VOID
);
VOID
EFIAPI
ArmDataSynchronizationBarrier (
VOID
);
VOID
EFIAPI
ArmInstructionSynchronizationBarrier (
VOID
);
VOID
EFIAPI
ArmWriteVBar (
IN UINTN VectorBase
);
UINTN
EFIAPI
ArmReadVBar (
VOID
);
VOID
EFIAPI
ArmWriteAuxCr (
IN UINT32 Bit
);
UINT32
EFIAPI
ArmReadAuxCr (
VOID
);
VOID
EFIAPI
ArmSetAuxCrBit (
IN UINT32 Bits
);
VOID
EFIAPI
ArmUnsetAuxCrBit (
IN UINT32 Bits
);
VOID
EFIAPI
ArmCallSEV (
VOID
);
VOID
EFIAPI
ArmCallWFE (
VOID
);
VOID
EFIAPI
ArmCallWFI (
VOID
);
UINTN
EFIAPI
ArmReadMpidr (
VOID
);
UINTN
EFIAPI
ArmReadMidr (
VOID
);
UINT32
EFIAPI
ArmReadCpacr (
VOID
);
VOID
EFIAPI
ArmWriteCpacr (
IN UINT32 Access
);
VOID
EFIAPI
ArmEnableVFP (
VOID
);
/**
Get the Secure Configuration Register value
@return Value read from the Secure Configuration Register
**/
UINT32
EFIAPI
ArmReadScr (
VOID
);
/**
Set the Secure Configuration Register
@param Value Value to write to the Secure Configuration Register
**/
VOID
EFIAPI
ArmWriteScr (
IN UINT32 Value
);
UINT32
EFIAPI
ArmReadMVBar (
VOID
);
VOID
EFIAPI
ArmWriteMVBar (
IN UINT32 VectorMonitorBase
);
UINT32
EFIAPI
ArmReadSctlr (
VOID
);
VOID
EFIAPI
ArmWriteSctlr (
IN UINT32 Value
);
UINTN
EFIAPI
ArmReadHVBar (
VOID
);
VOID
EFIAPI
ArmWriteHVBar (
IN UINTN HypModeVectorBase
);
//
// Helper functions for accessing CPU ACTLR
//
UINTN
EFIAPI
ArmReadCpuActlr (
VOID
);
VOID
EFIAPI
ArmWriteCpuActlr (
IN UINTN Val
);
VOID
EFIAPI
ArmSetCpuActlrBit (
IN UINTN Bits
);
VOID
EFIAPI
ArmUnsetCpuActlrBit (
IN UINTN Bits
);
//
// Accessors for the architected generic timer registers
//
#define ARM_ARCH_TIMER_ENABLE (1 << 0)
#define ARM_ARCH_TIMER_IMASK (1 << 1)
#define ARM_ARCH_TIMER_ISTATUS (1 << 2)
UINTN
EFIAPI
ArmReadCntFrq (
VOID
);
VOID
EFIAPI
ArmWriteCntFrq (
UINTN FreqInHz
);
UINT64
EFIAPI
ArmReadCntPct (
VOID
);
UINTN
EFIAPI
ArmReadCntkCtl (
VOID
);
VOID
EFIAPI
ArmWriteCntkCtl (
UINTN Val
);
UINTN
EFIAPI
ArmReadCntpTval (
VOID
);
VOID
EFIAPI
ArmWriteCntpTval (
UINTN Val
);
UINTN
EFIAPI
ArmReadCntpCtl (
VOID
);
VOID
EFIAPI
ArmWriteCntpCtl (
UINTN Val
);
UINTN
EFIAPI
ArmReadCntvTval (
VOID
);
VOID
EFIAPI
ArmWriteCntvTval (
UINTN Val
);
UINTN
EFIAPI
ArmReadCntvCtl (
VOID
);
VOID
EFIAPI
ArmWriteCntvCtl (
UINTN Val
);
UINT64
EFIAPI
ArmReadCntvCt (
VOID
);
UINT64
EFIAPI
ArmReadCntpCval (
VOID
);
VOID
EFIAPI
ArmWriteCntpCval (
UINT64 Val
);
UINT64
EFIAPI
ArmReadCntvCval (
VOID
);
VOID
EFIAPI
ArmWriteCntvCval (
UINT64 Val
);
UINT64
EFIAPI
ArmReadCntvOff (
VOID
);
VOID
EFIAPI
ArmWriteCntvOff (
UINT64 Val
);
UINTN
EFIAPI
ArmGetPhysicalAddressBits (
VOID
);
///
/// ID Register Helper functions
///
/**
Check whether the CPU supports the GIC system register interface (any version)
@return Whether GIC System Register Interface is supported
**/
BOOLEAN
EFIAPI
ArmHasGicSystemRegisters (
VOID
);
/** Checks if CCIDX is implemented.
@retval TRUE CCIDX is implemented.
@retval FALSE CCIDX is not implemented.
**/
BOOLEAN
EFIAPI
ArmHasCcidx (
VOID
);
#ifdef MDE_CPU_ARM
///
/// AArch32-only ID Register Helper functions
///
/**
Check whether the CPU supports the Security extensions
@return Whether the Security extensions are implemented
**/
BOOLEAN
EFIAPI
ArmHasSecurityExtensions (
VOID
);
#endif // MDE_CPU_ARM
#endif // ARM_LIB_H_

View File

@ -0,0 +1,68 @@
/** @file
Copyright (c) 2015 - 2016, Linaro Ltd. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef ARM_MMU_LIB_H_
#define ARM_MMU_LIB_H_
#include <Uefi/UefiBaseType.h>
#include <Library/ArmLib.h>
EFI_STATUS
EFIAPI
ArmConfigureMmu (
IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryTable,
OUT VOID **TranslationTableBase OPTIONAL,
OUT UINTN *TranslationTableSize OPTIONAL
);
EFI_STATUS
EFIAPI
ArmSetMemoryRegionNoExec (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
);
EFI_STATUS
EFIAPI
ArmClearMemoryRegionNoExec (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
);
EFI_STATUS
EFIAPI
ArmSetMemoryRegionReadOnly (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
);
EFI_STATUS
EFIAPI
ArmClearMemoryRegionReadOnly (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
);
VOID
EFIAPI
ArmReplaceLiveTranslationEntry (
IN UINT64 *Entry,
IN UINT64 Value,
IN UINT64 RegionStart,
IN BOOLEAN DisableMmu
);
EFI_STATUS
ArmSetMemoryAttributes (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT64 Attributes
);
#endif // ARM_MMU_LIB_H_

View File

@ -0,0 +1,42 @@
/** @file
Copyright (c) 2022, Arm Limited. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef ARM_MONITOR_LIB_H_
#define ARM_MONITOR_LIB_H_
/** The size of the SMC arguments is different between AArch64 and AArch32.
The native size is used for the arguments.
It will be casted to either HVC or SMC args.
*/
typedef struct {
UINTN Arg0;
UINTN Arg1;
UINTN Arg2;
UINTN Arg3;
UINTN Arg4;
UINTN Arg5;
UINTN Arg6;
UINTN Arg7;
} ARM_MONITOR_ARGS;
/** Monitor call.
An HyperVisor Call (HVC) or System Monitor Call (SMC) will be issued
depending on the default conduit. PcdMonitorConduitHvc determines the type
of the call: if true, do an HVC.
@param [in,out] Args Arguments for the HVC/SMC.
**/
VOID
EFIAPI
ArmMonitorCall (
IN OUT ARM_MONITOR_ARGS *Args
);
#endif // ARM_MONITOR_LIB_H_

View File

@ -0,0 +1,130 @@
/** @file
Copyright (c) 2017-2018, Arm Limited. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
System Control and Management Interface V1.0
http://infocenter.arm.com/help/topic/com.arm.doc.den0056a/
DEN0056A_System_Control_and_Management_Interface.pdf
**/
#ifndef ARM_MTL_LIB_H_
#define ARM_MTL_LIB_H_
#include <Uefi/UefiBaseType.h>
// Ideally we don't need packed struct. However we can't rely on compilers.
#pragma pack(1)
typedef struct {
UINT32 Reserved1;
UINT32 ChannelStatus;
UINT64 Reserved2;
UINT32 Flags;
UINT32 Length;
UINT32 MessageHeader;
// NOTE: Since EDK2 does not allow flexible array member [] we declare
// here array of 1 element length. However below is used as a variable
// length array.
UINT32 Payload[1]; // size less object gives offset to payload.
} MTL_MAILBOX;
#pragma pack()
// Channel Type, Low-priority, and High-priority
typedef enum {
MTL_CHANNEL_TYPE_LOW = 0,
MTL_CHANNEL_TYPE_HIGH = 1
} MTL_CHANNEL_TYPE;
typedef struct {
UINT64 PhysicalAddress;
UINT32 ModifyMask;
UINT32 PreserveMask;
} MTL_DOORBELL;
typedef struct {
MTL_CHANNEL_TYPE ChannelType;
MTL_MAILBOX *CONST MailBox;
MTL_DOORBELL DoorBell;
} MTL_CHANNEL;
/** Wait until channel is free.
@param[in] Channel Pointer to a channel.
@param[in] TimeOutInMicroSeconds Time out in micro seconds.
@retval EFI_SUCCESS Channel is free.
@retval EFI_TIMEOUT Time out error.
**/
EFI_STATUS
MtlWaitUntilChannelFree (
IN MTL_CHANNEL *Channel,
IN UINTN TimeOutInMicroSeconds
);
/** Return the address of the message payload.
@param[in] Channel Pointer to a channel.
@retval UINT32* Pointer to the payload.
**/
UINT32 *
MtlGetChannelPayload (
IN MTL_CHANNEL *Channel
);
/** Return pointer to a channel for the requested channel type.
@param[in] ChannelType ChannelType, Low or High priority channel.
MTL_CHANNEL_TYPE_LOW or
MTL_CHANNEL_TYPE_HIGH
@param[out] Channel Holds pointer to the channel.
@retval EFI_SUCCESS Pointer to channel is returned.
@retval EFI_UNSUPPORTED Requested channel type not supported.
**/
EFI_STATUS
MtlGetChannel (
IN MTL_CHANNEL_TYPE ChannelType,
OUT MTL_CHANNEL **Channel
);
/** Mark the channel busy and ring the doorbell.
@param[in] Channel Pointer to a channel.
@param[in] MessageHeader Message header.
@param[out] PayloadLength Message length.
@retval EFI_SUCCESS Message sent successfully.
@retval EFI_DEVICE_ERROR Channel is busy.
**/
EFI_STATUS
MtlSendMessage (
IN MTL_CHANNEL *Channel,
IN UINT32 MessageHeader,
OUT UINT32 PayloadLength
);
/** Wait for a response on a channel.
If channel is free after sending message, it implies SCP responded
with a response on the channel.
@param[in] Channel Pointer to a channel.
@retval EFI_SUCCESS Message received successfully.
@retval EFI_TIMEOUT Time out error.
**/
EFI_STATUS
MtlReceiveMessage (
IN MTL_CHANNEL *Channel,
OUT UINT32 *MessageHeader,
OUT UINT32 *PayloadLength
);
#endif /* ARM_MTL_LIB_H_ */

View File

@ -0,0 +1,113 @@
/** @file
*
* Copyright (c) 2021, NUVIA Inc. All rights reserved.<BR>
* Copyright (c) 2012-2014, ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#ifndef ARM_SMC_LIB_H_
#define ARM_SMC_LIB_H_
/**
* The size of the SMC arguments are different between AArch64 and AArch32.
* The native size is used for the arguments.
*/
typedef struct {
UINTN Arg0;
UINTN Arg1;
UINTN Arg2;
UINTN Arg3;
UINTN Arg4;
UINTN Arg5;
UINTN Arg6;
UINTN Arg7;
} ARM_SMC_ARGS;
/**
Trigger an SMC call
SMC calls can take up to 7 arguments and return up to 4 return values.
Therefore, the 4 first fields in the ARM_SMC_ARGS structure are used
for both input and output values.
**/
VOID
ArmCallSmc (
IN OUT ARM_SMC_ARGS *Args
);
/** Trigger an SMC call with 3 arguments.
@param Function The SMC function.
@param Arg1 Argument/result.
@param Arg2 Argument/result.
@param Arg3 Argument/result.
@return The SMC error code.
**/
UINTN
ArmCallSmc3 (
IN UINTN Function,
IN OUT UINTN *Arg1 OPTIONAL,
IN OUT UINTN *Arg2 OPTIONAL,
IN OUT UINTN *Arg3 OPTIONAL
);
/** Trigger an SMC call with 2 arguments.
@param Function The SMC function.
@param Arg1 Argument/result.
@param Arg2 Argument/result.
@param Arg3 Result.
@return The SMC error code.
**/
UINTN
ArmCallSmc2 (
IN UINTN Function,
IN OUT UINTN *Arg1 OPTIONAL,
IN OUT UINTN *Arg2 OPTIONAL,
OUT UINTN *Arg3 OPTIONAL
);
/** Trigger an SMC call with 1 argument.
@param Function The SMC function.
@param Arg1 Argument/result.
@param Arg2 Result.
@param Arg3 Result.
@return The SMC error code.
**/
UINTN
ArmCallSmc1 (
IN UINTN Function,
IN OUT UINTN *Arg1 OPTIONAL,
OUT UINTN *Arg2 OPTIONAL,
OUT UINTN *Arg3 OPTIONAL
);
/** Trigger an SMC call with 0 arguments.
@param Function The SMC function.
@param Arg1 Result.
@param Arg2 Result.
@param Arg3 Result.
@return The SMC error code.
**/
UINTN
ArmCallSmc0 (
IN UINTN Function,
OUT UINTN *Arg1 OPTIONAL,
OUT UINTN *Arg2 OPTIONAL,
OUT UINTN *Arg3 OPTIONAL
);
#endif // ARM_SMC_LIB_H_

View File

@ -0,0 +1,46 @@
/** @file
*
* Copyright (c) 2016 - 2017, ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#ifndef ARM_SVC_LIB_H_
#define ARM_SVC_LIB_H_
/**
* The size of the SVC arguments are different between AArch64 and AArch32.
* The native size is used for the arguments.
*/
typedef struct {
UINTN Arg0;
UINTN Arg1;
UINTN Arg2;
UINTN Arg3;
UINTN Arg4;
UINTN Arg5;
UINTN Arg6;
UINTN Arg7;
} ARM_SVC_ARGS;
/**
Trigger an SVC call
SVC calls can take up to 8 arguments and return up to 8 return values.
Therefore, the 8 first fields in the ARM_SVC_ARGS structure are used
for both input and output values.
@param[in, out] Args Arguments to be passed as part of the SVC call
The return values of the SVC call are also placed
in the same structure
@retval None
**/
VOID
ArmCallSvc (
IN OUT ARM_SVC_ARGS *Args
);
#endif // ARM_SVC_LIB_H_

View File

@ -0,0 +1,25 @@
/** @file
Copyright (c) 2008 - 2010, Apple Inc. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef DEFAULT_EXCEPTION_HANDLER_LIB_H_
#define DEFAULT_EXCEPTION_HANDLER_LIB_H_
/**
This is the default action to take on an unexpected exception
@param ExceptionType Type of the exception
@param SystemContext Register state at the time of the Exception
**/
VOID
DefaultExceptionHandler (
IN EFI_EXCEPTION_TYPE ExceptionType,
IN OUT EFI_SYSTEM_CONTEXT SystemContext
);
#endif // DEFAULT_EXCEPTION_HANDLER_LIB_H_

View File

@ -0,0 +1,271 @@
/** @file
*
* Copyright (c) 2022, Ampere Computing LLC. All rights reserved.
* Copyright (c) 2021, NUVIA Inc. All rights reserved.
* Copyright (c) 2015, Hisilicon Limited. All rights reserved.
* Copyright (c) 2015, Linaro Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#ifndef OEM_MISC_LIB_H_
#define OEM_MISC_LIB_H_
#include <Uefi.h>
#include <IndustryStandard/SmBios.h>
typedef enum {
CpuCacheL1 = 1,
CpuCacheL2,
CpuCacheL3,
CpuCacheL4,
CpuCacheL5,
CpuCacheL6,
CpuCacheL7,
CpuCacheLevelMax
} OEM_MISC_CPU_CACHE_LEVEL;
typedef struct {
UINT8 Voltage; ///< Processor voltage
UINT16 CurrentSpeed; ///< Current clock speed in MHz
UINT16 MaxSpeed; ///< Maximum clock speed in MHz
UINT16 ExternalClock; ///< External clock speed in MHz
UINT16 CoreCount; ///< Number of cores available
UINT16 CoresEnabled; ///< Number of cores enabled
UINT16 ThreadCount; ///< Number of threads per processor
} OEM_MISC_PROCESSOR_DATA;
typedef enum {
BiosVersionType00,
ProductNameType01,
SerialNumType01,
UuidType01,
SystemManufacturerType01,
VersionType01,
SkuNumberType01,
FamilyType01,
AssetTagType02,
SerialNumberType02,
BoardManufacturerType02,
ProductNameType02,
VersionType02,
SkuNumberType02,
ChassisLocationType02,
AssetTagType03,
SerialNumberType03,
VersionType03,
ChassisTypeType03,
ManufacturerType03,
SkuNumberType03,
ProcessorPartNumType04,
ProcessorSerialNumType04,
ProcessorVersionType04,
SmbiosHiiStringFieldMax
} OEM_MISC_SMBIOS_HII_STRING_FIELD;
/*
* The following are functions that the each platform needs to
* implement in its OemMiscLib library.
*/
/** Gets the CPU frequency of the specified processor.
@param ProcessorIndex Index of the processor to get the frequency for.
@return CPU frequency in Hz
**/
UINTN
EFIAPI
OemGetCpuFreq (
IN UINT8 ProcessorIndex
);
/** Gets information about the specified processor and stores it in
the structures provided.
@param ProcessorIndex Index of the processor to get the information for.
@param ProcessorStatus Processor status.
@param ProcessorCharacteristics Processor characteritics.
@param MiscProcessorData Miscellaneous processor information.
@return TRUE on success, FALSE on failure.
**/
BOOLEAN
EFIAPI
OemGetProcessorInformation (
IN UINTN ProcessorIndex,
IN OUT PROCESSOR_STATUS_DATA *ProcessorStatus,
IN OUT PROCESSOR_CHARACTERISTIC_FLAGS *ProcessorCharacteristics,
IN OUT OEM_MISC_PROCESSOR_DATA *MiscProcessorData
);
/** Gets information about the cache at the specified cache level.
@param ProcessorIndex The processor to get information for.
@param CacheLevel The cache level to get information for.
@param DataCache Whether the cache is a data cache.
@param UnifiedCache Whether the cache is a unified cache.
@param SmbiosCacheTable The SMBIOS Type7 cache information structure.
@return TRUE on success, FALSE on failure.
**/
BOOLEAN
EFIAPI
OemGetCacheInformation (
IN UINT8 ProcessorIndex,
IN UINT8 CacheLevel,
IN BOOLEAN DataCache,
IN BOOLEAN UnifiedCache,
IN OUT SMBIOS_TABLE_TYPE7 *SmbiosCacheTable
);
/** Gets the maximum number of processors supported by the platform.
@return The maximum number of processors.
**/
UINT8
EFIAPI
OemGetMaxProcessors (
VOID
);
/** Gets the type of chassis for the system.
@retval The type of the chassis.
**/
MISC_CHASSIS_TYPE
EFIAPI
OemGetChassisType (
VOID
);
/** Returns whether the specified processor is present or not.
@param ProcessIndex The processor index to check.
@return TRUE is the processor is present, FALSE otherwise.
**/
BOOLEAN
EFIAPI
OemIsProcessorPresent (
IN UINTN ProcessorIndex
);
/** Updates the HII string for the specified field.
@param HiiHandle The HII handle.
@param TokenToUpdate The string to update.
@param Field The field to get information about.
**/
VOID
EFIAPI
OemUpdateSmbiosInfo (
IN EFI_HII_HANDLE HiiHandle,
IN EFI_STRING_ID TokenToUpdate,
IN OEM_MISC_SMBIOS_HII_STRING_FIELD Field
);
/** Fetches the Type 32 boot information status.
@return Boot status.
**/
MISC_BOOT_INFORMATION_STATUS_DATA_TYPE
EFIAPI
OemGetBootStatus (
VOID
);
/** Fetches the chassis status when it was last booted.
@return Chassis status.
**/
MISC_CHASSIS_STATE
EFIAPI
OemGetChassisBootupState (
VOID
);
/** Fetches the chassis power supply/supplies status when last booted.
@return Chassis power supply/supplies status.
**/
MISC_CHASSIS_STATE
EFIAPI
OemGetChassisPowerSupplyState (
VOID
);
/** Fetches the chassis thermal status when last booted.
@return Chassis thermal status.
**/
MISC_CHASSIS_STATE
EFIAPI
OemGetChassisThermalState (
VOID
);
/** Fetches the chassis security status when last booted.
@return Chassis security status.
**/
MISC_CHASSIS_SECURITY_STATE
EFIAPI
OemGetChassisSecurityStatus (
VOID
);
/** Fetches the chassis height in RMUs (Rack Mount Units).
@return The height of the chassis.
**/
UINT8
EFIAPI
OemGetChassisHeight (
VOID
);
/** Fetches the number of power cords.
@return The number of power cords.
**/
UINT8
EFIAPI
OemGetChassisNumPowerCords (
VOID
);
/**
Fetches the system UUID.
@param[out] SystemUuid The pointer to the buffer to store the System UUID.
**/
VOID
EFIAPI
OemGetSystemUuid (
OUT GUID *SystemUuid
);
/** Fetches the BIOS release.
@return The BIOS release.
**/
UINT16
EFIAPI
OemGetBiosRelease (
VOID
);
/** Fetches the embedded controller firmware release.
@return The embedded controller firmware release.
**/
UINT16
EFIAPI
OemGetEmbeddedControllerFirmwareRelease (
VOID
);
#endif // OEM_MISC_LIB_H_

View File

@ -0,0 +1,120 @@
/** @file
OP-TEE specific header file.
Copyright (c) 2018, Linaro Ltd. All rights reserved.<BR>
Copyright (c) 2021, Arm Limited. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef OPTEE_LIB_H_
#define OPTEE_LIB_H_
/*
* The 'Trusted OS Call UID' is supposed to return the following UUID for
* OP-TEE OS. This is a 128-bit value.
*/
#define OPTEE_OS_UID0 0x384fb3e0
#define OPTEE_OS_UID1 0xe7f811e3
#define OPTEE_OS_UID2 0xaf630002
#define OPTEE_OS_UID3 0xa5d5c51b
#define OPTEE_MESSAGE_ATTRIBUTE_TYPE_NONE 0x0
#define OPTEE_MESSAGE_ATTRIBUTE_TYPE_VALUE_INPUT 0x1
#define OPTEE_MESSAGE_ATTRIBUTE_TYPE_VALUE_OUTPUT 0x2
#define OPTEE_MESSAGE_ATTRIBUTE_TYPE_VALUE_INOUT 0x3
#define OPTEE_MESSAGE_ATTRIBUTE_TYPE_MEMORY_INPUT 0x9
#define OPTEE_MESSAGE_ATTRIBUTE_TYPE_MEMORY_OUTPUT 0xa
#define OPTEE_MESSAGE_ATTRIBUTE_TYPE_MEMORY_INOUT 0xb
#define OPTEE_MESSAGE_ATTRIBUTE_TYPE_MASK 0xff
#define OPTEE_SUCCESS 0x00000000
#define OPTEE_ORIGIN_COMMUNICATION 0x00000002
#define OPTEE_ERROR_COMMUNICATION 0xFFFF000E
typedef struct {
UINT64 BufferAddress;
UINT64 Size;
UINT64 SharedMemoryReference;
} OPTEE_MESSAGE_PARAM_MEMORY;
typedef struct {
UINT64 A;
UINT64 B;
UINT64 C;
} OPTEE_MESSAGE_PARAM_VALUE;
typedef union {
OPTEE_MESSAGE_PARAM_MEMORY Memory;
OPTEE_MESSAGE_PARAM_VALUE Value;
} OPTEE_MESSAGE_PARAM_UNION;
typedef struct {
UINT64 Attribute;
OPTEE_MESSAGE_PARAM_UNION Union;
} OPTEE_MESSAGE_PARAM;
#define OPTEE_MAX_CALL_PARAMS 4
typedef struct {
UINT32 Command;
UINT32 Function;
UINT32 Session;
UINT32 CancelId;
UINT32 Pad;
UINT32 Return;
UINT32 ReturnOrigin;
UINT32 NumParams;
// NumParams tells the actual number of element in Params
OPTEE_MESSAGE_PARAM Params[OPTEE_MAX_CALL_PARAMS];
} OPTEE_MESSAGE_ARG;
typedef struct {
EFI_GUID Uuid; // [in] GUID/UUID of the Trusted Application
UINT32 Session; // [out] Session id
UINT32 Return; // [out] Return value
UINT32 ReturnOrigin; // [out] Origin of the return value
} OPTEE_OPEN_SESSION_ARG;
typedef struct {
UINT32 Function; // [in] Trusted Application function, specific to the TA
UINT32 Session; // [in] Session id
UINT32 Return; // [out] Return value
UINT32 ReturnOrigin; // [out] Origin of the return value
OPTEE_MESSAGE_PARAM Params[OPTEE_MAX_CALL_PARAMS]; // Params for function to be invoked
} OPTEE_INVOKE_FUNCTION_ARG;
BOOLEAN
EFIAPI
IsOpteePresent (
VOID
);
EFI_STATUS
EFIAPI
OpteeInit (
VOID
);
EFI_STATUS
EFIAPI
OpteeOpenSession (
IN OUT OPTEE_OPEN_SESSION_ARG *OpenSessionArg
);
EFI_STATUS
EFIAPI
OpteeCloseSession (
IN UINT32 Session
);
EFI_STATUS
EFIAPI
OpteeInvokeFunction (
IN OUT OPTEE_INVOKE_FUNCTION_ARG *InvokeFunctionArg
);
#endif // OPTEE_LIB_H_

View File

@ -0,0 +1,132 @@
/** @file
Copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>
Portions copyright (c) 2011, 2012, ARM Ltd. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef SEMIHOSTING_LIB_H_
#define SEMIHOSTING_LIB_H_
/*
*
* Please refer to ARM RVDS 3.0 Compiler and Libraries Guide for more information
* about the semihosting interface.
*
*/
#define SEMIHOST_FILE_MODE_READ (0 << 2)
#define SEMIHOST_FILE_MODE_WRITE (1 << 2)
#define SEMIHOST_FILE_MODE_APPEND (2 << 2)
#define SEMIHOST_FILE_MODE_UPDATE (1 << 1)
#define SEMIHOST_FILE_MODE_BINARY (1 << 0)
#define SEMIHOST_FILE_MODE_ASCII (0 << 0)
BOOLEAN
SemihostConnectionSupported (
VOID
);
RETURN_STATUS
SemihostFileOpen (
IN CHAR8 *FileName,
IN UINT32 Mode,
OUT UINTN *FileHandle
);
RETURN_STATUS
SemihostFileSeek (
IN UINTN FileHandle,
IN UINTN Offset
);
RETURN_STATUS
SemihostFileRead (
IN UINTN FileHandle,
IN OUT UINTN *Length,
OUT VOID *Buffer
);
RETURN_STATUS
SemihostFileWrite (
IN UINTN FileHandle,
IN OUT UINTN *Length,
IN VOID *Buffer
);
RETURN_STATUS
SemihostFileClose (
IN UINTN FileHandle
);
RETURN_STATUS
SemihostFileLength (
IN UINTN FileHandle,
OUT UINTN *Length
);
/**
Get a temporary name for a file from the host running the debug agent.
@param[out] Buffer Pointer to the buffer where the temporary name has to
be stored
@param[in] Identifier File name identifier (integer in the range 0 to 255)
@param[in] Length Length of the buffer to store the temporary name
@retval RETURN_SUCCESS Temporary name returned
@retval RETURN_INVALID_PARAMETER Invalid buffer address
@retval RETURN_ABORTED Temporary name not returned
**/
RETURN_STATUS
SemihostFileTmpName (
OUT VOID *Buffer,
IN UINT8 Identifier,
IN UINTN Length
);
RETURN_STATUS
SemihostFileRemove (
IN CHAR8 *FileName
);
/**
Rename a specified file.
@param[in] FileName Name of the file to rename.
@param[in] NewFileName The new name of the file.
@retval RETURN_SUCCESS File Renamed
@retval RETURN_INVALID_PARAMETER Either the current or the new name is not specified
@retval RETURN_ABORTED Rename failed
**/
RETURN_STATUS
SemihostFileRename (
IN CHAR8 *FileName,
IN CHAR8 *NewFileName
);
CHAR8
SemihostReadCharacter (
VOID
);
VOID
SemihostWriteCharacter (
IN CHAR8 Character
);
VOID
SemihostWriteString (
IN CHAR8 *String
);
UINT32
SemihostSystem (
IN CHAR8 *CommandLine
);
#endif // SEMIHOSTING_LIB_H_

View File

@ -0,0 +1,36 @@
/** @file
Copyright (c) 2018, ARM Ltd. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#ifndef STANDALONE_MM_MMU_LIB_
#define STANDALONE_MM_MMU_LIB_
EFI_STATUS
ArmSetMemoryRegionNoExec (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
);
EFI_STATUS
ArmClearMemoryRegionNoExec (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
);
EFI_STATUS
ArmSetMemoryRegionReadOnly (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
);
EFI_STATUS
ArmClearMemoryRegionReadOnly (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
);
#endif /* STANDALONE_MM_MMU_LIB_ */

View File

@ -0,0 +1,52 @@
/** @file
*
* Copyright (c) 2011, ARM Limited. All rights reserved.
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#ifndef ARM_MP_CORE_INFO_PPI_H_
#define ARM_MP_CORE_INFO_PPI_H_
#include <Guid/ArmMpCoreInfo.h>
#define ARM_MP_CORE_INFO_PPI_GUID \
{ 0x6847cc74, 0xe9ec, 0x4f8f, {0xa2, 0x9d, 0xab, 0x44, 0xe7, 0x54, 0xa8, 0xfc} }
/**
This service of the EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI that migrates temporary RAM into
permanent memory.
@param PeiServices Pointer to the PEI Services Table.
@param TemporaryMemoryBase Source Address in temporary memory from which the SEC or PEIM will copy the
Temporary RAM contents.
@param PermanentMemoryBase Destination Address in permanent memory into which the SEC or PEIM will copy the
Temporary RAM contents.
@param CopySize Amount of memory to migrate from temporary to permanent memory.
@retval EFI_SUCCESS The data was successfully returned.
@retval EFI_INVALID_PARAMETER PermanentMemoryBase + CopySize > TemporaryMemoryBase when
TemporaryMemoryBase > PermanentMemoryBase.
**/
typedef
EFI_STATUS
(EFIAPI *ARM_MP_CORE_INFO_GET)(
OUT UINTN *ArmCoreCount,
OUT ARM_CORE_INFO **ArmCoreTable
);
///
/// This service abstracts the ability to migrate contents of the platform early memory store.
/// Note: The name EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI is different from the current PI 1.2 spec.
/// This PPI was optional.
///
typedef struct {
ARM_MP_CORE_INFO_GET GetMpCoreInfo;
} ARM_MP_CORE_INFO_PPI;
extern EFI_GUID gArmMpCoreInfoPpiGuid;
extern EFI_GUID gArmMpCoreInfoGuid;
#endif // ARM_MP_CORE_INFO_PPI_H_

View File

@ -0,0 +1,20 @@
/** @file
Copyright (c) 2017-2018, Arm Limited. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
System Control and Management Interface V1.0
http://infocenter.arm.com/help/topic/com.arm.doc.den0056a/
DEN0056A_System_Control_and_Management_Interface.pdf
**/
#ifndef ARM_SCMI_H_
#define ARM_SCMI_H_
/* As per SCMI specification, maximum allowed ASCII string length
for various return values/parameters of a SCMI message.
*/
#define SCMI_MAX_STR_LEN 16
#endif /* ARM_SCMI_H_ */

View File

@ -0,0 +1,168 @@
/** @file
Copyright (c) 2017-2021, Arm Limited. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
@par Specification Reference:
- Arm System Control and Management Interface - Platform Design Document
(https://developer.arm.com/documentation/den0056/)
**/
#ifndef ARM_SCMI_BASE_PROTOCOL_H_
#define ARM_SCMI_BASE_PROTOCOL_H_
#include <Protocol/ArmScmi.h>
#define BASE_PROTOCOL_VERSION_V1 0x10000
#define BASE_PROTOCOL_VERSION_V2 0x20000
#define NUM_PROTOCOL_MASK 0xFFU
#define NUM_AGENT_MASK 0xFFU
#define NUM_AGENT_SHIFT 0x8
/** Returns total number of protocols that are
implemented (excluding the Base protocol)
*/
#define SCMI_TOTAL_PROTOCOLS(Attr) (Attr & NUM_PROTOCOL_MASK)
// Returns total number of agents in the system.
#define SCMI_TOTAL_AGENTS(Attr) ((Attr >> NUM_AGENT_SHIFT) & NUM_AGENT_MASK)
#define ARM_SCMI_BASE_PROTOCOL_GUID { \
0xd7e5abe9, 0x33ab, 0x418e, {0x9f, 0x91, 0x72, 0xda, 0xe2, 0xba, 0x8e, 0x2f} \
}
extern EFI_GUID gArmScmiBaseProtocolGuid;
typedef struct _SCMI_BASE_PROTOCOL SCMI_BASE_PROTOCOL;
/** Return version of the Base protocol supported by SCP firmware.
@param[in] This A Pointer to SCMI_BASE_PROTOCOL Instance.
@param[out] Version Version of the supported SCMI Base protocol.
@retval EFI_SUCCESS The version of the protocol is returned.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
typedef
EFI_STATUS
(EFIAPI *SCMI_BASE_GET_VERSION)(
IN SCMI_BASE_PROTOCOL *This,
OUT UINT32 *Version
);
/** Return total number of SCMI protocols supported by the SCP firmware.
@param[in] This A Pointer to SCMI_BASE_PROTOCOL Instance.
@param[out] TotalProtocols Total number of SCMI protocols supported.
@retval EFI_SUCCESS Total number of protocols supported are returned.
@retval EFI_DEVICE_ERROR SCP returns a SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
typedef
EFI_STATUS
(EFIAPI *SCMI_BASE_GET_TOTAL_PROTOCOLS)(
IN SCMI_BASE_PROTOCOL *This,
OUT UINT32 *TotalProtocols
);
/** Return vendor name.
@param[in] This A Pointer to SCMI_BASE_PROTOCOL Instance.
@param[out] VendorIdentifier Null terminated ASCII string of up to
16 bytes with a vendor name.
@retval EFI_SUCCESS VendorIdentifier is returned.
@retval EFI_DEVICE_ERROR SCP returns a SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
typedef
EFI_STATUS
(EFIAPI *SCMI_BASE_DISCOVER_VENDOR)(
IN SCMI_BASE_PROTOCOL *This,
OUT UINT8 VendorIdentifier[SCMI_MAX_STR_LEN]
);
/** Return sub vendor name.
@param[in] This A Pointer to SCMI_BASE_PROTOCOL Instance.
@param[out] VendorIdentifier Null terminated ASCII string of up to
16 bytes with a vendor name.
@retval EFI_SUCCESS VendorIdentifier is returned.
@retval EFI_DEVICE_ERROR SCP returns a SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
typedef
EFI_STATUS
(EFIAPI *SCMI_BASE_DISCOVER_SUB_VENDOR)(
IN SCMI_BASE_PROTOCOL *This,
OUT UINT8 VendorIdentifier[SCMI_MAX_STR_LEN]
);
/** Return implementation version.
@param[in] This A Pointer to SCMI_BASE_PROTOCOL Instance.
@param[out] ImplementationVersion Vendor specific implementation version.
@retval EFI_SUCCESS Implementation version is returned.
@retval EFI_DEVICE_ERROR SCP returns a SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
typedef
EFI_STATUS
(EFIAPI *SCMI_BASE_DISCOVER_IMPLEMENTATION_VERSION)(
IN SCMI_BASE_PROTOCOL *This,
OUT UINT32 *ImplementationVersion
);
/** Return list of protocols.
@param[in] This A Pointer to SCMI_BASE_PROTOCOL Instance.
@param[out] ProtocolListSize Size of the ProtocolList.
@param[out] ProtocolList Protocol list.
@retval EFI_SUCCESS List of protocols is returned.
@retval EFI_BUFFER_TOO_SMALL ProtocolListSize is too small for the result.
It has been updated to the size needed.
@retval EFI_DEVICE_ERROR SCP returns a SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
typedef
EFI_STATUS
(EFIAPI *SCMI_BASE_DISCOVER_LIST_PROTOCOLS)(
IN SCMI_BASE_PROTOCOL *This,
IN OUT UINT32 *ProtocolListSize,
OUT UINT8 *ProtocolList
);
// Base protocol.
typedef struct _SCMI_BASE_PROTOCOL {
SCMI_BASE_GET_VERSION GetVersion;
SCMI_BASE_GET_TOTAL_PROTOCOLS GetTotalProtocols;
SCMI_BASE_DISCOVER_VENDOR DiscoverVendor;
SCMI_BASE_DISCOVER_SUB_VENDOR DiscoverSubVendor;
SCMI_BASE_DISCOVER_IMPLEMENTATION_VERSION DiscoverImplementationVersion;
SCMI_BASE_DISCOVER_LIST_PROTOCOLS DiscoverListProtocols;
} SCMI_BASE_PROTOCOL;
// SCMI Message IDs for Base protocol.
typedef enum {
ScmiMessageIdBaseDiscoverVendor = 0x3,
ScmiMessageIdBaseDiscoverSubVendor = 0x4,
ScmiMessageIdBaseDiscoverImplementationVersion = 0x5,
ScmiMessageIdBaseDiscoverListProtocols = 0x6
} SCMI_MESSAGE_ID_BASE;
#endif /* ARM_SCMI_BASE_PROTOCOL_H_ */

View File

@ -0,0 +1,191 @@
/** @file
Copyright (c) 2017-2021, Arm Limited. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
System Control and Management Interface V1.0
http://infocenter.arm.com/help/topic/com.arm.doc.den0056a/
DEN0056A_System_Control_and_Management_Interface.pdf
**/
#ifndef ARM_SCMI_CLOCK2_PROTOCOL_H_
#define ARM_SCMI_CLOCK2_PROTOCOL_H_
#include <Protocol/ArmScmi.h>
#include <Protocol/ArmScmiClockProtocol.h>
#define ARM_SCMI_CLOCK2_PROTOCOL_GUID {\
0xb8d8caf2, 0x9e94, 0x462c, { 0xa8, 0x34, 0x6c, 0x99, 0xfc, 0x05, 0xef, 0xcf } \
}
extern EFI_GUID gArmScmiClock2ProtocolGuid;
#define SCMI_CLOCK2_PROTOCOL_VERSION 1
typedef struct _SCMI_CLOCK2_PROTOCOL SCMI_CLOCK2_PROTOCOL;
// Protocol Interface functions.
/** Return version of the clock management protocol supported by SCP firmware.
@param[in] This A Pointer to SCMI_CLOCK2_PROTOCOL Instance.
@param[out] Version Version of the supported SCMI Clock management protocol.
@retval EFI_SUCCESS The version is returned.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
typedef
EFI_STATUS
(EFIAPI *SCMI_CLOCK2_GET_VERSION)(
IN SCMI_CLOCK2_PROTOCOL *This,
OUT UINT32 *Version
);
/** Return total number of clock devices supported by the clock management
protocol.
@param[in] This A Pointer to SCMI_CLOCK2_PROTOCOL Instance.
@param[out] TotalClocks Total number of clocks supported.
@retval EFI_SUCCESS Total number of clocks supported is returned.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
typedef
EFI_STATUS
(EFIAPI *SCMI_CLOCK2_GET_TOTAL_CLOCKS)(
IN SCMI_CLOCK2_PROTOCOL *This,
OUT UINT32 *TotalClocks
);
/** Return attributes of a clock device.
@param[in] This A Pointer to SCMI_CLOCK2_PROTOCOL Instance.
@param[in] ClockId Identifier for the clock device.
@param[out] Enabled If TRUE, the clock device is enabled.
@param[out] ClockAsciiName A NULL terminated ASCII string with the clock
name, of up to 16 bytes.
@retval EFI_SUCCESS Clock device attributes are returned.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
typedef
EFI_STATUS
(EFIAPI *SCMI_CLOCK2_GET_CLOCK_ATTRIBUTES)(
IN SCMI_CLOCK2_PROTOCOL *This,
IN UINT32 ClockId,
OUT BOOLEAN *Enabled,
OUT CHAR8 *ClockAsciiName
);
/** Return list of rates supported by a given clock device.
@param[in] This A pointer to SCMI_CLOCK2_PROTOCOL Instance.
@param[in] ClockId Identifier for the clock device.
@param[out] Format ScmiClockRateFormatDiscrete: Clock device
supports range of clock rates which are non-linear.
ScmiClockRateFormatLinear: Clock device supports
range of linear clock rates from Min to Max in steps.
@param[out] TotalRates Total number of rates.
@param[in,out] RateArraySize Size of the RateArray.
@param[out] RateArray List of clock rates.
@retval EFI_SUCCESS List of clock rates are returned.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval EFI_BUFFER_TOO_SMALL RateArraySize is too small for the result.
It has been updated to the size needed.
@retval !(EFI_SUCCESS) Other errors.
**/
typedef
EFI_STATUS
(EFIAPI *SCMI_CLOCK2_DESCRIBE_RATES)(
IN SCMI_CLOCK2_PROTOCOL *This,
IN UINT32 ClockId,
OUT SCMI_CLOCK_RATE_FORMAT *Format,
OUT UINT32 *TotalRates,
IN OUT UINT32 *RateArraySize,
OUT SCMI_CLOCK_RATE *RateArray
);
/** Get clock rate.
@param[in] This A Pointer to SCMI_CLOCK2_PROTOCOL Instance.
@param[in] ClockId Identifier for the clock device.
@param[out] Rate Clock rate.
@retval EFI_SUCCESS Clock rate is returned.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
typedef
EFI_STATUS
(EFIAPI *SCMI_CLOCK2_RATE_GET)(
IN SCMI_CLOCK2_PROTOCOL *This,
IN UINT32 ClockId,
OUT UINT64 *Rate
);
/** Set clock rate.
@param[in] This A Pointer to SCMI_CLOCK2_PROTOCOL Instance.
@param[in] ClockId Identifier for the clock device.
@param[in] Rate Clock rate.
@retval EFI_SUCCESS Clock rate set success.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
typedef
EFI_STATUS
(EFIAPI *SCMI_CLOCK2_RATE_SET)(
IN SCMI_CLOCK2_PROTOCOL *This,
IN UINT32 ClockId,
IN UINT64 Rate
);
/** Enable/Disable specified clock.
Function is only available under gArmScmiClock2ProtocolGuid
@param[in] This A Pointer to SCMI_CLOCK2_PROTOCOL Instance.
@param[in] ClockId Identifier for the clock device.
@param[in] Enable TRUE to enable, FALSE to disable.
@retval EFI_SUCCESS Clock enable/disable successful.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
typedef
EFI_STATUS
(EFIAPI *SCMI_CLOCK2_ENABLE)(
IN SCMI_CLOCK2_PROTOCOL *This,
IN UINT32 ClockId,
IN BOOLEAN Enable
);
typedef struct _SCMI_CLOCK2_PROTOCOL {
SCMI_CLOCK2_GET_VERSION GetVersion;
SCMI_CLOCK2_GET_TOTAL_CLOCKS GetTotalClocks;
SCMI_CLOCK2_GET_CLOCK_ATTRIBUTES GetClockAttributes;
SCMI_CLOCK2_DESCRIBE_RATES DescribeRates;
SCMI_CLOCK2_RATE_GET RateGet;
SCMI_CLOCK2_RATE_SET RateSet;
// Extension to original ClockProtocol, added here so SCMI_CLOCK2_PROTOCOL
// can be cast to SCMI_CLOCK_PROTOCOL
UINTN Version; // For future expandability
SCMI_CLOCK2_ENABLE Enable;
} SCMI_CLOCK2_PROTOCOL;
#endif /* ARM_SCMI_CLOCK2_PROTOCOL_H_ */

View File

@ -0,0 +1,217 @@
/** @file
Copyright (c) 2017-2021, Arm Limited. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
System Control and Management Interface V1.0
http://infocenter.arm.com/help/topic/com.arm.doc.den0056a/
DEN0056A_System_Control_and_Management_Interface.pdf
**/
#ifndef ARM_SCMI_CLOCK_PROTOCOL_H_
#define ARM_SCMI_CLOCK_PROTOCOL_H_
#include <Protocol/ArmScmi.h>
#define ARM_SCMI_CLOCK_PROTOCOL_GUID {\
0x91ce67a8, 0xe0aa, 0x4012, {0xb9, 0x9f, 0xb6, 0xfc, 0xf3, 0x4, 0x8e, 0xaa} \
}
extern EFI_GUID gArmScmiClockProtocolGuid;
// Message Type for clock management protocol.
typedef enum {
ScmiMessageIdClockAttributes = 0x3,
ScmiMessageIdClockDescribeRates = 0x4,
ScmiMessageIdClockRateSet = 0x5,
ScmiMessageIdClockRateGet = 0x6,
ScmiMessageIdClockConfigSet = 0x7
} SCMI_MESSAGE_ID_CLOCK;
typedef enum {
ScmiClockRateFormatDiscrete, // Non-linear range.
ScmiClockRateFormatLinear // Linear range.
} SCMI_CLOCK_RATE_FORMAT;
// Clock management protocol version.
#define SCMI_CLOCK_PROTOCOL_VERSION 0x10000
#define SCMI_CLOCK_PROTOCOL_PENDING_ASYNC_RATES_MASK 0xFFU
#define SCMI_CLOCK_PROTOCOL_PENDING_ASYNC_RATES_SHIFT 16
#define SCMI_CLOCK_PROTOCOL_NUM_CLOCKS_MASK 0xFFFFU
/** Total number of pending asynchronous clock rates changes
supported by the SCP, Attr Bits[23:16]
*/
#define SCMI_CLOCK_PROTOCOL_MAX_ASYNC_CLK_RATES(Attr) ( \
(Attr >> SCMI_CLOCK_PROTOCOL_PENDING_ASYNC_RATES_SHIFT) && \
SCMI_CLOCK_PROTOCOL_PENDING_ASYNC_RATES_MASK)
// Total of clock devices supported by the SCP, Attr Bits[15:0]
#define SCMI_CLOCK_PROTOCOL_TOTAL_CLKS(Attr) (Attr & SCMI_CLOCK_PROTOCOL_NUM_CLOCKS_MASK)
#pragma pack(1)
/* Depending on the format (linear/non-linear) supported by a clock device
either Rate or Min/Max/Step triplet is valid.
*/
typedef struct {
UINT64 Min;
UINT64 Max;
UINT64 Step;
} SCMI_CLOCK_RATE_CONTINUOUS;
typedef struct {
UINT64 Rate;
} SCMI_CLOCK_RATE_DISCRETE;
typedef union {
SCMI_CLOCK_RATE_CONTINUOUS ContinuousRate;
SCMI_CLOCK_RATE_DISCRETE DiscreteRate;
} SCMI_CLOCK_RATE;
#pragma pack()
typedef struct _SCMI_CLOCK_PROTOCOL SCMI_CLOCK_PROTOCOL;
// Protocol Interface functions.
/** Return version of the clock management protocol supported by SCP firmware.
@param[in] This A Pointer to SCMI_CLOCK_PROTOCOL Instance.
@param[out] Version Version of the supported SCMI Clock management protocol.
@retval EFI_SUCCESS The version is returned.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
typedef
EFI_STATUS
(EFIAPI *SCMI_CLOCK_GET_VERSION)(
IN SCMI_CLOCK_PROTOCOL *This,
OUT UINT32 *Version
);
/** Return total number of clock devices supported by the clock management
protocol.
@param[in] This A Pointer to SCMI_CLOCK_PROTOCOL Instance.
@param[out] TotalClocks Total number of clocks supported.
@retval EFI_SUCCESS Total number of clocks supported is returned.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
typedef
EFI_STATUS
(EFIAPI *SCMI_CLOCK_GET_TOTAL_CLOCKS)(
IN SCMI_CLOCK_PROTOCOL *This,
OUT UINT32 *TotalClocks
);
/** Return attributes of a clock device.
@param[in] This A Pointer to SCMI_CLOCK_PROTOCOL Instance.
@param[in] ClockId Identifier for the clock device.
@param[out] Enabled If TRUE, the clock device is enabled.
@param[out] ClockAsciiName A NULL terminated ASCII string with the clock
name, of up to 16 bytes.
@retval EFI_SUCCESS Clock device attributes are returned.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
typedef
EFI_STATUS
(EFIAPI *SCMI_CLOCK_GET_CLOCK_ATTRIBUTES)(
IN SCMI_CLOCK_PROTOCOL *This,
IN UINT32 ClockId,
OUT BOOLEAN *Enabled,
OUT CHAR8 *ClockAsciiName
);
/** Return list of rates supported by a given clock device.
@param[in] This A pointer to SCMI_CLOCK_PROTOCOL Instance.
@param[in] ClockId Identifier for the clock device.
@param[out] Format ScmiClockRateFormatDiscrete: Clock device
supports range of clock rates which are non-linear.
ScmiClockRateFormatLinear: Clock device supports
range of linear clock rates from Min to Max in steps.
@param[out] TotalRates Total number of rates.
@param[in,out] RateArraySize Size of the RateArray.
@param[out] RateArray List of clock rates.
@retval EFI_SUCCESS List of clock rates are returned.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval EFI_BUFFER_TOO_SMALL RateArraySize is too small for the result.
It has been updated to the size needed.
@retval !(EFI_SUCCESS) Other errors.
**/
typedef
EFI_STATUS
(EFIAPI *SCMI_CLOCK_DESCRIBE_RATES)(
IN SCMI_CLOCK_PROTOCOL *This,
IN UINT32 ClockId,
OUT SCMI_CLOCK_RATE_FORMAT *Format,
OUT UINT32 *TotalRates,
IN OUT UINT32 *RateArraySize,
OUT SCMI_CLOCK_RATE *RateArray
);
/** Get clock rate.
@param[in] This A Pointer to SCMI_CLOCK_PROTOCOL Instance.
@param[in] ClockId Identifier for the clock device.
@param[out] Rate Clock rate.
@retval EFI_SUCCESS Clock rate is returned.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
typedef
EFI_STATUS
(EFIAPI *SCMI_CLOCK_RATE_GET)(
IN SCMI_CLOCK_PROTOCOL *This,
IN UINT32 ClockId,
OUT UINT64 *Rate
);
/** Set clock rate.
@param[in] This A Pointer to SCMI_CLOCK_PROTOCOL Instance.
@param[in] ClockId Identifier for the clock device.
@param[in] Rate Clock rate.
@retval EFI_SUCCESS Clock rate set success.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
typedef
EFI_STATUS
(EFIAPI *SCMI_CLOCK_RATE_SET)(
IN SCMI_CLOCK_PROTOCOL *This,
IN UINT32 ClockId,
IN UINT64 Rate
);
typedef struct _SCMI_CLOCK_PROTOCOL {
SCMI_CLOCK_GET_VERSION GetVersion;
SCMI_CLOCK_GET_TOTAL_CLOCKS GetTotalClocks;
SCMI_CLOCK_GET_CLOCK_ATTRIBUTES GetClockAttributes;
SCMI_CLOCK_DESCRIBE_RATES DescribeRates;
SCMI_CLOCK_RATE_GET RateGet;
SCMI_CLOCK_RATE_SET RateSet;
} SCMI_CLOCK_PROTOCOL;
#endif /* ARM_SCMI_CLOCK_PROTOCOL_H_ */

View File

@ -0,0 +1,258 @@
/** @file
Copyright (c) 2017-2021, Arm Limited. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
System Control and Management Interface V1.0
http://infocenter.arm.com/help/topic/com.arm.doc.den0056a/
DEN0056A_System_Control_and_Management_Interface.pdf
**/
#ifndef ARM_SCMI_PERFORMANCE_PROTOCOL_H_
#define ARM_SCMI_PERFORMANCE_PROTOCOL_H_
#include <Protocol/ArmScmi.h>
#define PERFORMANCE_PROTOCOL_VERSION 0x10000
#define ARM_SCMI_PERFORMANCE_PROTOCOL_GUID { \
0x9b8ba84, 0x3dd3, 0x49a6, {0xa0, 0x5a, 0x31, 0x34, 0xa5, 0xf0, 0x7b, 0xad} \
}
extern EFI_GUID gArmScmiPerformanceProtocolGuid;
typedef struct _SCMI_PERFORMANCE_PROTOCOL SCMI_PERFORMANCE_PROTOCOL;
#pragma pack(1)
#define POWER_IN_MW_SHIFT 16
#define POWER_IN_MW_MASK 0x1
#define NUM_PERF_DOMAINS_MASK 0xFFFF
// Total number of performance domains, Attr Bits [15:0]
#define SCMI_PERF_TOTAL_DOMAINS(Attr) (Attr & NUM_PERF_DOMAINS_MASK)
// A flag to express power values in mW or platform specific way, Attr Bit [16]
#define SCMI_PERF_POWER_IN_MW(Attr) ((Attr >> POWER_IN_MW_SHIFT) & \
POWER_IN_MW_MASK)
// Performance protocol attributes return values.
typedef struct {
UINT32 Attributes;
UINT64 StatisticsAddress;
UINT32 StatisticsLen;
} SCMI_PERFORMANCE_PROTOCOL_ATTRIBUTES;
#define SCMI_PERF_SUPPORT_LVL_CHANGE_NOTIFY(Attr) ((Attr >> 28) & 0x1)
#define SCMI_PERF_SUPPORT_LIM_CHANGE_NOTIFY(Attr) ((Attr >> 29) & 0x1)
#define SCMI_PERF_SUPPORT_SET_LVL(Attr) ((Attr >> 30) & 0x1)
#define SCMI_PERF_SUPPORT_SET_LIM(Attr) ((Attr >> 31) & 0x1)
#define SCMI_PERF_RATE_LIMIT(RateLimit) (RateLimit & 0xFFF)
// Performance protocol domain attributes.
typedef struct {
UINT32 Attributes;
UINT32 RateLimit;
UINT32 SustainedFreq;
UINT32 SustainedPerfLevel;
UINT8 Name[SCMI_MAX_STR_LEN];
} SCMI_PERFORMANCE_DOMAIN_ATTRIBUTES;
// Worst case latency in microseconds, Bits[15:0]
#define PERF_LATENCY_MASK 0xFFFF
#define SCMI_PERFORMANCE_PROTOCOL_LATENCY(Latency) (Latency & PERF_LATENCY_MASK)
// Performance protocol performance level.
typedef struct {
UINT32 Level;
UINT32 PowerCost;
UINT32 Latency;
} SCMI_PERFORMANCE_LEVEL;
// Performance protocol performance limit.
typedef struct {
UINT32 RangeMax;
UINT32 RangeMin;
} SCMI_PERFORMANCE_LIMITS;
#pragma pack()
/** Return version of the performance management protocol supported by SCP.
firmware.
@param[in] This A Pointer to SCMI_PERFORMANCE_PROTOCOL Instance.
@param[out] Version Version of the supported SCMI performance management
protocol.
@retval EFI_SUCCESS The version is returned.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
typedef
EFI_STATUS
(EFIAPI *SCMI_PERFORMANCE_GET_VERSION)(
IN SCMI_PERFORMANCE_PROTOCOL *This,
OUT UINT32 *Version
);
/** Return protocol attributes of the performance management protocol.
@param[in] This A Pointer to SCMI_PERFORMANCE_PROTOCOL Instance.
@param[out] Attributes Protocol attributes.
@retval EFI_SUCCESS Protocol attributes are returned.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
typedef
EFI_STATUS
(EFIAPI *SCMI_PERFORMANCE_GET_ATTRIBUTES)(
IN SCMI_PERFORMANCE_PROTOCOL *This,
OUT SCMI_PERFORMANCE_PROTOCOL_ATTRIBUTES *Attributes
);
/** Return performance domain attributes.
@param[in] This A Pointer to SCMI_PERFORMANCE_PROTOCOL Instance.
@param[in] DomainId Identifier for the performance domain.
@param[out] Attributes Performance domain attributes.
@retval EFI_SUCCESS Domain attributes are returned.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
typedef
EFI_STATUS
(EFIAPI *SCMI_PERFORMANCE_GET_DOMAIN_ATTRIBUTES)(
IN SCMI_PERFORMANCE_PROTOCOL *This,
IN UINT32 DomainId,
OUT SCMI_PERFORMANCE_DOMAIN_ATTRIBUTES *DomainAttributes
);
/** Return list of performance domain levels of a given domain.
@param[in] This A Pointer to SCMI_PERFORMANCE_PROTOCOL Instance.
@param[in] DomainId Identifier for the performance domain.
@param[out] NumLevels Total number of levels a domain can support.
@param[in,out] LevelArraySize Size of the performance level array.
@param[out] LevelArray Array of the performance levels.
@retval EFI_SUCCESS Domain levels are returned.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval EFI_BUFFER_TOO_SMALL LevelArraySize is too small for the result.
It has been updated to the size needed.
@retval !(EFI_SUCCESS) Other errors.
**/
typedef
EFI_STATUS
(EFIAPI *SCMI_PERFORMANCE_DESCRIBE_LEVELS)(
IN SCMI_PERFORMANCE_PROTOCOL *This,
IN UINT32 DomainId,
OUT UINT32 *NumLevels,
IN OUT UINT32 *LevelArraySize,
OUT SCMI_PERFORMANCE_LEVEL *LevelArray
);
/** Set performance limits of a domain.
@param[in] This A Pointer to SCMI_PERFORMANCE_PROTOCOL Instance.
@param[in] DomainId Identifier for the performance domain.
@param[in] Limit Performance limit to set.
@retval EFI_SUCCESS Performance limits set successfully.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
typedef
EFI_STATUS
(EFIAPI *SCMI_PERFORMANCE_LIMITS_SET)(
IN SCMI_PERFORMANCE_PROTOCOL *This,
IN UINT32 DomainId,
IN SCMI_PERFORMANCE_LIMITS *Limits
);
/** Get performance limits of a domain.
@param[in] This A Pointer to SCMI_PERFORMANCE_PROTOCOL Instance.
@param[in] DomainId Identifier for the performance domain.
@param[out] Limit Performance Limits of the domain.
@retval EFI_SUCCESS Performance limits are returned.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
typedef
EFI_STATUS
(EFIAPI *SCMI_PERFORMANCE_LIMITS_GET)(
SCMI_PERFORMANCE_PROTOCOL *This,
UINT32 DomainId,
SCMI_PERFORMANCE_LIMITS *Limits
);
/** Set performance level of a domain.
@param[in] This A Pointer to SCMI_PERFORMANCE_PROTOCOL Instance.
@param[in] DomainId Identifier for the performance domain.
@param[in] Level Performance level of the domain.
@retval EFI_SUCCESS Performance level set successfully.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
typedef
EFI_STATUS
(EFIAPI *SCMI_PERFORMANCE_LEVEL_SET)(
IN SCMI_PERFORMANCE_PROTOCOL *This,
IN UINT32 DomainId,
IN UINT32 Level
);
/** Get performance level of a domain.
@param[in] This A Pointer to SCMI_PERFORMANCE_PROTOCOL Instance.
@param[in] DomainId Identifier for the performance domain.
@param[out] Level Performance level of the domain.
@retval EFI_SUCCESS Performance level got successfully.
@retval EFI_DEVICE_ERROR SCP returns an SCMI error.
@retval !(EFI_SUCCESS) Other errors.
**/
typedef
EFI_STATUS
(EFIAPI *SCMI_PERFORMANCE_LEVEL_GET)(
IN SCMI_PERFORMANCE_PROTOCOL *This,
IN UINT32 DomainId,
OUT UINT32 *Level
);
typedef struct _SCMI_PERFORMANCE_PROTOCOL {
SCMI_PERFORMANCE_GET_VERSION GetVersion;
SCMI_PERFORMANCE_GET_ATTRIBUTES GetProtocolAttributes;
SCMI_PERFORMANCE_GET_DOMAIN_ATTRIBUTES GetDomainAttributes;
SCMI_PERFORMANCE_DESCRIBE_LEVELS DescribeLevels;
SCMI_PERFORMANCE_LIMITS_SET LimitsSet;
SCMI_PERFORMANCE_LIMITS_GET LimitsGet;
SCMI_PERFORMANCE_LEVEL_SET LevelSet;
SCMI_PERFORMANCE_LEVEL_GET LevelGet;
} SCMI_PERFORMANCE_PROTOCOL;
typedef enum {
ScmiMessageIdPerformanceDomainAttributes = 0x3,
ScmiMessageIdPerformanceDescribeLevels = 0x4,
ScmiMessageIdPerformanceLimitsSet = 0x5,
ScmiMessageIdPerformanceLimitsGet = 0x6,
ScmiMessageIdPerformanceLevelSet = 0x7,
ScmiMessageIdPerformanceLevelGet = 0x8,
} SCMI_MESSAGE_ID_PERFORMANCE;
#endif /* ARM_SCMI_PERFORMANCE_PROTOCOL_H_ */

View File

@ -0,0 +1,284 @@
/** @file
Generic ARM implementation of TimerLib.h
Copyright (c) 2011 - 2021, Arm Limited. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Base.h>
#include <Library/ArmLib.h>
#include <Library/BaseLib.h>
#include <Library/TimerLib.h>
#include <Library/DebugLib.h>
#include <Library/PcdLib.h>
#include <Library/ArmGenericTimerCounterLib.h>
#define TICKS_PER_MICRO_SEC (PcdGet32 (PcdArmArchTimerFreqInHz)/1000000U)
// Select appropriate multiply function for platform architecture.
#ifdef MDE_CPU_ARM
#define MULT_U64_X_N MultU64x32
#else
#define MULT_U64_X_N MultU64x64
#endif
RETURN_STATUS
EFIAPI
TimerConstructor (
VOID
)
{
//
// Check if the ARM Generic Timer Extension is implemented.
//
if (ArmIsArchTimerImplemented ()) {
//
// Check if Architectural Timer frequency is pre-determined by the platform
// (ie. nonzero).
//
if (PcdGet32 (PcdArmArchTimerFreqInHz) != 0) {
//
// Check if ticks/uS is not 0. The Architectural timer runs at constant
// frequency, irrespective of CPU frequency. According to Generic Timer
// Ref manual, lower bound of the frequency is in the range of 1-10MHz.
//
ASSERT (TICKS_PER_MICRO_SEC);
#ifdef MDE_CPU_ARM
//
// Only set the frequency for ARMv7. We expect the secure firmware to
// have already done it.
// If the security extension is not implemented, set Timer Frequency
// here.
//
if (ArmHasSecurityExtensions ()) {
ArmGenericTimerSetTimerFreq (PcdGet32 (PcdArmArchTimerFreqInHz));
}
#endif
}
//
// Architectural Timer Frequency must be set in Secure privileged
// mode (if secure extension is supported).
// If the reset value (0) is returned, just ASSERT.
//
ASSERT (ArmGenericTimerGetTimerFreq () != 0);
} else {
DEBUG ((DEBUG_ERROR, "ARM Architectural Timer is not available in the CPU, hence this library cannot be used.\n"));
ASSERT (0);
}
return RETURN_SUCCESS;
}
/**
A local utility function that returns the PCD value, if specified.
Otherwise it defaults to ArmGenericTimerGetTimerFreq.
@return The timer frequency.
**/
STATIC
UINTN
EFIAPI
GetPlatformTimerFreq (
)
{
UINTN TimerFreq;
TimerFreq = PcdGet32 (PcdArmArchTimerFreqInHz);
if (TimerFreq == 0) {
TimerFreq = ArmGenericTimerGetTimerFreq ();
}
return TimerFreq;
}
/**
Stalls the CPU for the number of microseconds specified by MicroSeconds.
@param MicroSeconds The minimum number of microseconds to delay.
@return The value of MicroSeconds input.
**/
UINTN
EFIAPI
MicroSecondDelay (
IN UINTN MicroSeconds
)
{
UINT64 TimerTicks64;
UINT64 SystemCounterVal;
// Calculate counter ticks that represent requested delay:
// = MicroSeconds x TICKS_PER_MICRO_SEC
// = MicroSeconds x Frequency.10^-6
TimerTicks64 = DivU64x32 (
MULT_U64_X_N (
MicroSeconds,
GetPlatformTimerFreq ()
),
1000000U
);
// Read System Counter value
SystemCounterVal = ArmGenericTimerGetSystemCount ();
TimerTicks64 += SystemCounterVal;
// Wait until delay count expires.
while (SystemCounterVal < TimerTicks64) {
SystemCounterVal = ArmGenericTimerGetSystemCount ();
}
return MicroSeconds;
}
/**
Stalls the CPU for at least the given number of nanoseconds.
Stalls the CPU for the number of nanoseconds specified by NanoSeconds.
When the timer frequency is 1MHz, each tick corresponds to 1 microsecond.
Therefore, the nanosecond delay will be rounded up to the nearest 1 microsecond.
@param NanoSeconds The minimum number of nanoseconds to delay.
@return The value of NanoSeconds inputted.
**/
UINTN
EFIAPI
NanoSecondDelay (
IN UINTN NanoSeconds
)
{
UINTN MicroSeconds;
// Round up to 1us Tick Number
MicroSeconds = NanoSeconds / 1000;
MicroSeconds += ((NanoSeconds % 1000) == 0) ? 0 : 1;
MicroSecondDelay (MicroSeconds);
return NanoSeconds;
}
/**
Retrieves the current value of a 64-bit free running performance counter.
The counter can either count up by 1 or count down by 1. If the physical
performance counter counts by a larger increment, then the counter values
must be translated. The properties of the counter can be retrieved from
GetPerformanceCounterProperties().
@return The current value of the free running performance counter.
**/
UINT64
EFIAPI
GetPerformanceCounter (
VOID
)
{
// Just return the value of system count
return ArmGenericTimerGetSystemCount ();
}
/**
Retrieves the 64-bit frequency in Hz and the range of performance counter
values.
If StartValue is not NULL, then the value that the performance counter starts
with immediately after is it rolls over is returned in StartValue. If
EndValue is not NULL, then the value that the performance counter end with
immediately before it rolls over is returned in EndValue. The 64-bit
frequency of the performance counter in Hz is always returned. If StartValue
is less than EndValue, then the performance counter counts up. If StartValue
is greater than EndValue, then the performance counter counts down. For
example, a 64-bit free running counter that counts up would have a StartValue
of 0 and an EndValue of 0xFFFFFFFFFFFFFFFF. A 24-bit free running counter
that counts down would have a StartValue of 0xFFFFFF and an EndValue of 0.
@param StartValue The value the performance counter starts with when it
rolls over.
@param EndValue The value that the performance counter ends with before
it rolls over.
@return The frequency in Hz.
**/
UINT64
EFIAPI
GetPerformanceCounterProperties (
OUT UINT64 *StartValue OPTIONAL,
OUT UINT64 *EndValue OPTIONAL
)
{
if (StartValue != NULL) {
// Timer starts at 0
*StartValue = (UINT64)0ULL;
}
if (EndValue != NULL) {
// Timer counts up.
*EndValue = 0xFFFFFFFFFFFFFFFFUL;
}
return (UINT64)ArmGenericTimerGetTimerFreq ();
}
/**
Converts elapsed ticks of performance counter to time in nanoseconds.
This function converts the elapsed ticks of running performance counter to
time value in unit of nanoseconds.
@param Ticks The number of elapsed ticks of running performance counter.
@return The elapsed time in nanoseconds.
**/
UINT64
EFIAPI
GetTimeInNanoSecond (
IN UINT64 Ticks
)
{
UINT64 NanoSeconds;
UINT32 Remainder;
UINT32 TimerFreq;
TimerFreq = GetPlatformTimerFreq ();
//
// Ticks
// Time = --------- x 1,000,000,000
// Frequency
//
NanoSeconds = MULT_U64_X_N (
DivU64x32Remainder (
Ticks,
TimerFreq,
&Remainder
),
1000000000U
);
//
// Frequency < 0x100000000, so Remainder < 0x100000000, then (Remainder * 1,000,000,000)
// will not overflow 64-bit.
//
NanoSeconds += DivU64x32 (
MULT_U64_X_N (
(UINT64)Remainder,
1000000000U
),
TimerFreq
);
return NanoSeconds;
}

View File

@ -0,0 +1,32 @@
#/** @file
#
# Copyright (c) 2011 - 2014, ARM Limited. All rights reserved.<BR>
# SPDX-License-Identifier: BSD-2-Clause-Patent
#
#**/
[Defines]
INF_VERSION = 0x00010005
BASE_NAME = ArmArchTimerLib
FILE_GUID = 82da1b44-d2d6-4a7d-bbf0-a0cb67964034
MODULE_TYPE = BASE
VERSION_STRING = 1.0
LIBRARY_CLASS = TimerLib
CONSTRUCTOR = TimerConstructor
[Sources.common]
ArmArchTimerLib.c
[Packages]
MdePkg/MdePkg.dec
EmbeddedPkg/EmbeddedPkg.dec
ArmPkg/ArmPkg.dec
[LibraryClasses]
DebugLib
ArmLib
BaseLib
ArmGenericTimerCounterLib
[Pcd]
gArmTokenSpaceGuid.PcdArmArchTimerFreqInHz

View File

@ -0,0 +1,148 @@
/** @file
Copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>
Copyright (c) 2011 - 2021, ARM Limited. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Base.h>
#include <Library/ArmLib.h>
#include <Library/DebugLib.h>
#include <Library/PcdLib.h>
STATIC
VOID
CacheRangeOperation (
IN VOID *Start,
IN UINTN Length,
IN LINE_OPERATION LineOperation,
IN UINTN LineLength
)
{
UINTN ArmCacheLineAlignmentMask;
// Align address (rounding down)
UINTN AlignedAddress;
UINTN EndAddress;
ArmCacheLineAlignmentMask = LineLength - 1;
AlignedAddress = (UINTN)Start - ((UINTN)Start & ArmCacheLineAlignmentMask);
EndAddress = (UINTN)Start + Length;
// Perform the line operation on an address in each cache line
while (AlignedAddress < EndAddress) {
LineOperation (AlignedAddress);
AlignedAddress += LineLength;
}
ArmDataSynchronizationBarrier ();
}
VOID
EFIAPI
InvalidateInstructionCache (
VOID
)
{
ASSERT (FALSE);
}
VOID
EFIAPI
InvalidateDataCache (
VOID
)
{
ASSERT (FALSE);
}
VOID *
EFIAPI
InvalidateInstructionCacheRange (
IN VOID *Address,
IN UINTN Length
)
{
CacheRangeOperation (
Address,
Length,
ArmCleanDataCacheEntryToPoUByMVA,
ArmDataCacheLineLength ()
);
CacheRangeOperation (
Address,
Length,
ArmInvalidateInstructionCacheEntryToPoUByMVA,
ArmInstructionCacheLineLength ()
);
ArmInstructionSynchronizationBarrier ();
return Address;
}
VOID
EFIAPI
WriteBackInvalidateDataCache (
VOID
)
{
ASSERT (FALSE);
}
VOID *
EFIAPI
WriteBackInvalidateDataCacheRange (
IN VOID *Address,
IN UINTN Length
)
{
CacheRangeOperation (
Address,
Length,
ArmCleanInvalidateDataCacheEntryByMVA,
ArmDataCacheLineLength ()
);
return Address;
}
VOID
EFIAPI
WriteBackDataCache (
VOID
)
{
ASSERT (FALSE);
}
VOID *
EFIAPI
WriteBackDataCacheRange (
IN VOID *Address,
IN UINTN Length
)
{
CacheRangeOperation (
Address,
Length,
ArmCleanDataCacheEntryByMVA,
ArmDataCacheLineLength ()
);
return Address;
}
VOID *
EFIAPI
InvalidateDataCacheRange (
IN VOID *Address,
IN UINTN Length
)
{
CacheRangeOperation (
Address,
Length,
ArmInvalidateDataCacheEntryByMVA,
ArmDataCacheLineLength ()
);
return Address;
}

View File

@ -0,0 +1,28 @@
#/** @file
# Implement CacheMaintenanceLib for ARM architectures
#
# Copyright (c) 2008, Apple Inc. All rights reserved.<BR>
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
#
#
#**/
[Defines]
INF_VERSION = 0x00010005
BASE_NAME = ArmCacheMaintenanceLib
FILE_GUID = 1A20BE1F-33AD-450C-B49A-7123FCA8B7F9
MODULE_TYPE = BASE
VERSION_STRING = 1.0
LIBRARY_CLASS = CacheMaintenanceLib
[Sources.common]
ArmCacheMaintenanceLib.c
[Packages]
ArmPkg/ArmPkg.dec
MdePkg/MdePkg.dec
[LibraryClasses]
ArmLib
BaseLib

View File

@ -0,0 +1,42 @@
/** @file
Default exception handler
Copyright (c) 2014, ARM Limited. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Base.h>
#include <Library/BaseLib.h>
#include <Library/PrintLib.h>
#include <Library/ArmDisassemblerLib.h>
/**
Place a disassembly of **OpCodePtr into buffer, and update OpCodePtr to
point to next instruction.
@param OpCodePtrPtr Pointer to pointer of instruction to disassemble.
@param Thumb TRUE for Thumb(2), FALSE for ARM instruction stream
@param Extended TRUE dump hex for instruction too.
@param ItBlock Size of IT Block
@param Buf Buffer to sprintf disassembly into.
@param Size Size of Buf in bytes.
**/
VOID
DisassembleInstruction (
IN UINT8 **OpCodePtr,
IN BOOLEAN Thumb,
IN BOOLEAN Extended,
IN OUT UINT32 *ItBlock,
OUT CHAR8 *Buf,
OUT UINTN Size
)
{
// Not yet supported for AArch64.
// Put error in the buffer as we have no return code and the buffer may be
// printed directly so needs a '\0'.
AsciiSPrint (Buf, Size, "AArch64 not supported");
return;
}

View File

@ -0,0 +1,465 @@
/** @file
Default exception handler
Copyright (c) 2008 - 2010, Apple Inc. All rights reserved.<BR>
Copyright (c) 2021, Arm Limited. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Base.h>
#include <Library/BaseLib.h>
#include <Library/PrintLib.h>
#include <Library/ArmDisassemblerLib.h>
CHAR8 *gCondition[] = {
"EQ",
"NE",
"CS",
"CC",
"MI",
"PL",
"VS",
"VC",
"HI",
"LS",
"GE",
"LT",
"GT",
"LE",
"",
"2"
};
#define COND(_a) gCondition[((_a) >> 28)]
CHAR8 *gReg[] = {
"r0",
"r1",
"r2",
"r3",
"r4",
"r5",
"r6",
"r7",
"r8",
"r9",
"r10",
"r11",
"r12",
"sp",
"lr",
"pc"
};
CHAR8 *gLdmAdr[] = {
"DA",
"IA",
"DB",
"IB"
};
CHAR8 *gLdmStack[] = {
"FA",
"FD",
"EA",
"ED"
};
#define LDM_EXT(_reg, _off) ((_reg == 13) ? gLdmStack[(_off)] : gLdmAdr[(_off)])
#define SIGN(_U) ((_U) ? "" : "-")
#define WRITE(_Write) ((_Write) ? "!" : "")
#define BYTE(_B) ((_B) ? "B":"")
#define USER(_B) ((_B) ? "^" : "")
CHAR8 mMregListStr[4*15 + 1];
CHAR8 *
MRegList (
UINT32 OpCode
)
{
UINTN Index, Start, End;
BOOLEAN First;
mMregListStr[0] = '\0';
AsciiStrCatS (mMregListStr, sizeof mMregListStr, "{");
for (Index = 0, First = TRUE; Index <= 15; Index++) {
if ((OpCode & (1 << Index)) != 0) {
Start = End = Index;
for (Index++; ((OpCode & (1 << Index)) != 0) && Index <= 15; Index++) {
End = Index;
}
if (!First) {
AsciiStrCatS (mMregListStr, sizeof mMregListStr, ",");
} else {
First = FALSE;
}
if (Start == End) {
AsciiStrCatS (mMregListStr, sizeof mMregListStr, gReg[Start]);
AsciiStrCatS (mMregListStr, sizeof mMregListStr, ", ");
} else {
AsciiStrCatS (mMregListStr, sizeof mMregListStr, gReg[Start]);
AsciiStrCatS (mMregListStr, sizeof mMregListStr, "-");
AsciiStrCatS (mMregListStr, sizeof mMregListStr, gReg[End]);
}
}
}
if (First) {
AsciiStrCatS (mMregListStr, sizeof mMregListStr, "ERROR");
}
AsciiStrCatS (mMregListStr, sizeof mMregListStr, "}");
// BugBug: Make caller pass in buffer it is cleaner
return mMregListStr;
}
CHAR8 *
FieldMask (
IN UINT32 Mask
)
{
return "";
}
UINT32
RotateRight (
IN UINT32 Op,
IN UINT32 Shift
)
{
return (Op >> Shift) | (Op << (32 - Shift));
}
/**
Place a disassembly of **OpCodePtr into buffer, and update OpCodePtr to
point to next instruction.
We cheat and only decode instructions that access
memory. If the instruction is not found we dump the instruction in hex.
@param OpCodePtr Pointer to pointer of ARM instruction to disassemble.
@param Buf Buffer to sprintf disassembly into.
@param Size Size of Buf in bytes.
@param Extended TRUE dump hex for instruction too.
**/
VOID
DisassembleArmInstruction (
IN UINT32 **OpCodePtr,
OUT CHAR8 *Buf,
OUT UINTN Size,
IN BOOLEAN Extended
)
{
UINT32 OpCode;
CHAR8 *Type;
CHAR8 *Root;
BOOLEAN Imm, Pre, Up, WriteBack, Write, Load, Sign, Half;
UINT32 Rn, Rd, Rm;
UINT32 IMod, Offset8, Offset12;
UINT32 Index;
UINT32 ShiftImm, Shift;
OpCode = **OpCodePtr;
Imm = (OpCode & BIT25) == BIT25; // I
Pre = (OpCode & BIT24) == BIT24; // P
Up = (OpCode & BIT23) == BIT23; // U
WriteBack = (OpCode & BIT22) == BIT22; // B, also called S
Write = (OpCode & BIT21) == BIT21; // W
Load = (OpCode & BIT20) == BIT20; // L
Sign = (OpCode & BIT6) == BIT6; // S
Half = (OpCode & BIT5) == BIT5; // H
Rn = (OpCode >> 16) & 0xf;
Rd = (OpCode >> 12) & 0xf;
Rm = (OpCode & 0xf);
if (Extended) {
Index = AsciiSPrint (Buf, Size, "0x%08x ", OpCode);
Buf += Index;
Size -= Index;
}
// LDREX, STREX
if ((OpCode & 0x0fe000f0) == 0x01800090) {
if (Load) {
// A4.1.27 LDREX{<cond>} <Rd>, [<Rn>]
AsciiSPrint (Buf, Size, "LDREX%a %a, [%a]", COND (OpCode), gReg[Rd], gReg[Rn]);
} else {
// A4.1.103 STREX{<cond>} <Rd>, <Rm>, [<Rn>]
AsciiSPrint (Buf, Size, "STREX%a %a, %a, [%a]", COND (OpCode), gReg[Rd], gReg[Rn], gReg[Rn]);
}
return;
}
// LDM/STM
if ((OpCode & 0x0e000000) == 0x08000000) {
if (Load) {
// A4.1.20 LDM{<cond>}<addressing_mode> <Rn>{!}, <registers>
// A4.1.21 LDM{<cond>}<addressing_mode> <Rn>, <registers_without_pc>^
// A4.1.22 LDM{<cond>}<addressing_mode> <Rn>{!}, <registers_and_pc>^
AsciiSPrint (Buf, Size, "LDM%a%a, %a%a, %a", COND (OpCode), LDM_EXT (Rn, (OpCode >> 23) & 3), gReg[Rn], WRITE (Write), MRegList (OpCode), USER (WriteBack));
} else {
// A4.1.97 STM{<cond>}<addressing_mode> <Rn>{!}, <registers>
// A4.1.98 STM{<cond>}<addressing_mode> <Rn>, <registers>^
AsciiSPrint (Buf, Size, "STM%a%a, %a%a, %a", COND (OpCode), LDM_EXT (Rn, (OpCode >> 23) & 3), gReg[Rn], WRITE (Write), MRegList (OpCode), USER (WriteBack));
}
return;
}
// LDR/STR Address Mode 2
if (((OpCode & 0x0c000000) == 0x04000000) || ((OpCode & 0xfd70f000) == 0xf550f000)) {
Offset12 = OpCode & 0xfff;
if ((OpCode & 0xfd70f000) == 0xf550f000) {
Index = AsciiSPrint (Buf, Size, "PLD");
} else {
Index = AsciiSPrint (Buf, Size, "%a%a%a%a %a, ", Load ? "LDR" : "STR", COND (OpCode), BYTE (WriteBack), (!(Pre) && Write) ? "T" : "", gReg[Rd]);
}
if (Pre) {
if (!Imm) {
// A5.2.2 [<Rn>, #+/-<offset_12>]
// A5.2.5 [<Rn>, #+/-<offset_12>]
AsciiSPrint (&Buf[Index], Size - Index, "[%a, #%a0x%x]%a", gReg[Rn], SIGN (Up), Offset12, WRITE (Write));
} else if ((OpCode & 0x03000ff0) == 0x03000000) {
// A5.2.3 [<Rn>, +/-<Rm>]
// A5.2.6 [<Rn>, +/-<Rm>]!
AsciiSPrint (&Buf[Index], Size - Index, "[%a, #%a%a]%a", gReg[Rn], SIGN (Up), WRITE (Write));
} else {
// A5.2.4 [<Rn>, +/-<Rm>, LSL #<shift_imm>]
// A5.2.7 [<Rn>, +/-<Rm>, LSL #<shift_imm>]!
ShiftImm = (OpCode >> 7) & 0x1f;
Shift = (OpCode >> 5) & 0x3;
if (Shift == 0x0) {
Type = "LSL";
} else if (Shift == 0x1) {
Type = "LSR";
if (ShiftImm == 0) {
ShiftImm = 32;
}
} else if (Shift == 0x2) {
Type = "ASR";
} else if (ShiftImm == 0) {
AsciiSPrint (&Buf[Index], Size - Index, "[%a, #%a%a, %a, RRX]%a", gReg[Rn], SIGN (Up), gReg[Rm], WRITE (Write));
return;
} else {
Type = "ROR";
}
AsciiSPrint (&Buf[Index], Size - Index, "[%a, #%a%a, %a, #%d]%a", gReg[Rn], SIGN (Up), gReg[Rm], Type, ShiftImm, WRITE (Write));
}
} else {
// !Pre
if (!Imm) {
// A5.2.8 [<Rn>], #+/-<offset_12>
AsciiSPrint (&Buf[Index], Size - Index, "[%a], #%a0x%x", gReg[Rn], SIGN (Up), Offset12);
} else if ((OpCode & 0x03000ff0) == 0x03000000) {
// A5.2.9 [<Rn>], +/-<Rm>
AsciiSPrint (&Buf[Index], Size - Index, "[%a], #%a%a", gReg[Rn], SIGN (Up), gReg[Rm]);
} else {
// A5.2.10 [<Rn>], +/-<Rm>, LSL #<shift_imm>
ShiftImm = (OpCode >> 7) & 0x1f;
Shift = (OpCode >> 5) & 0x3;
if (Shift == 0x0) {
Type = "LSL";
} else if (Shift == 0x1) {
Type = "LSR";
if (ShiftImm == 0) {
ShiftImm = 32;
}
} else if (Shift == 0x2) {
Type = "ASR";
} else if (ShiftImm == 0) {
AsciiSPrint (&Buf[Index], Size - Index, "[%a], #%a%a, %a, RRX", gReg[Rn], SIGN (Up), gReg[Rm]);
// FIx me
return;
} else {
Type = "ROR";
}
AsciiSPrint (&Buf[Index], Size - Index, "[%a], #%a%a, %a, #%d", gReg[Rn], SIGN (Up), gReg[Rm], Type, ShiftImm);
}
}
return;
}
if ((OpCode & 0x0e000000) == 0x00000000) {
// LDR/STR address mode 3
// LDR|STR{<cond>}H|SH|SB|D <Rd>, <addressing_mode>
if (Load) {
if (!Sign) {
Root = "LDR%aH %a, ";
} else if (!Half) {
Root = "LDR%aSB %a, ";
} else {
Root = "LDR%aSH %a, ";
}
} else {
if (!Sign) {
Root = "STR%aH %a ";
} else if (!Half) {
Root = "LDR%aD %a ";
} else {
Root = "STR%aD %a ";
}
}
Index = AsciiSPrint (Buf, Size, Root, COND (OpCode), gReg[Rd]);
Sign = (OpCode & BIT6) == BIT6;
Half = (OpCode & BIT5) == BIT5;
Offset8 = ((OpCode >> 4) | (OpCode * 0xf)) & 0xff;
if (Pre & !Write) {
// Immediate offset/index
if (WriteBack) {
// A5.3.2 [<Rn>, #+/-<offset_8>]
// A5.3.4 [<Rn>, #+/-<offset_8>]!
AsciiSPrint (&Buf[Index], Size - Index, "[%a, #%a%d]%a", gReg[Rn], SIGN (Up), Offset8, WRITE (Write));
} else {
// A5.3.3 [<Rn>, +/-<Rm>]
// A5.3.5 [<Rn>, +/-<Rm>]!
AsciiSPrint (&Buf[Index], Size - Index, "[%a, #%a%]a", gReg[Rn], SIGN (Up), gReg[Rm], WRITE (Write));
}
} else {
// Register offset/index
if (WriteBack) {
// A5.3.6 [<Rn>], #+/-<offset_8>
AsciiSPrint (&Buf[Index], Size - Index, "[%a], #%a%d", gReg[Rn], SIGN (Up), Offset8);
} else {
// A5.3.7 [<Rn>], +/-<Rm>
AsciiSPrint (&Buf[Index], Size - Index, "[%a], #%a%a", gReg[Rn], SIGN (Up), gReg[Rm]);
}
}
return;
}
if ((OpCode & 0x0fb000f0) == 0x01000050) {
// A4.1.108 SWP SWP{<cond>}B <Rd>, <Rm>, [<Rn>]
// A4.1.109 SWPB SWP{<cond>}B <Rd>, <Rm>, [<Rn>]
AsciiSPrint (Buf, Size, "SWP%a%a %a, %a, [%a]", COND (OpCode), BYTE (WriteBack), gReg[Rd], gReg[Rm], gReg[Rn]);
return;
}
if ((OpCode & 0xfe5f0f00) == 0xf84d0500) {
// A4.1.90 SRS SRS<addressing_mode> #<mode>{!}
AsciiSPrint (Buf, Size, "SRS%a #0x%x%a", gLdmStack[(OpCode >> 23) & 3], OpCode & 0x1f, WRITE (Write));
return;
}
if ((OpCode & 0xfe500f00) == 0xf8100500) {
// A4.1.59 RFE<addressing_mode> <Rn>{!}
AsciiSPrint (Buf, Size, "RFE%a %a", gLdmStack[(OpCode >> 23) & 3], gReg[Rn], WRITE (Write));
return;
}
if ((OpCode & 0xfff000f0) == 0xe1200070) {
// A4.1.7 BKPT <immed_16>
AsciiSPrint (Buf, Size, "BKPT %x", ((OpCode >> 8) | (OpCode & 0xf)) & 0xffff);
return;
}
if ((OpCode & 0xfff10020) == 0xf1000000) {
// A4.1.16 CPS<effect> <iflags> {, #<mode>}
if (((OpCode >> 6) & 0x7) == 0) {
AsciiSPrint (Buf, Size, "CPS #0x%x", (OpCode & 0x2f));
} else {
IMod = (OpCode >> 18) & 0x3;
Index = AsciiSPrint (
Buf,
Size,
"CPS%a %a%a%a",
(IMod == 3) ? "ID" : "IE",
((OpCode & BIT8) != 0) ? "A" : "",
((OpCode & BIT7) != 0) ? "I" : "",
((OpCode & BIT6) != 0) ? "F" : ""
);
if ((OpCode & BIT17) != 0) {
AsciiSPrint (&Buf[Index], Size - Index, ", #0x%x", OpCode & 0x1f);
}
}
return;
}
if ((OpCode & 0x0f000000) == 0x0f000000) {
// A4.1.107 SWI{<cond>} <immed_24>
AsciiSPrint (Buf, Size, "SWI%a %x", COND (OpCode), OpCode & 0x00ffffff);
return;
}
if ((OpCode & 0x0fb00000) == 0x01000000) {
// A4.1.38 MRS{<cond>} <Rd>, CPSR MRS{<cond>} <Rd>, SPSR
AsciiSPrint (Buf, Size, "MRS%a %a, %a", COND (OpCode), gReg[Rd], WriteBack ? "SPSR" : "CPSR");
return;
}
if ((OpCode & 0x0db00000) == 0x01200000) {
// A4.1.38 MSR{<cond>} CPSR_<fields>, #<immediate> MSR{<cond>} CPSR_<fields>, <Rm>
if (Imm) {
// MSR{<cond>} CPSR_<fields>, #<immediate>
AsciiSPrint (Buf, Size, "MRS%a %a_%a, #0x%x", COND (OpCode), WriteBack ? "SPSR" : "CPSR", FieldMask ((OpCode >> 16) & 0xf), RotateRight (OpCode & 0xf, ((OpCode >> 8) & 0xf) *2));
} else {
// MSR{<cond>} CPSR_<fields>, <Rm>
AsciiSPrint (Buf, Size, "MRS%a %a_%a, %a", COND (OpCode), WriteBack ? "SPSR" : "CPSR", gReg[Rd]);
}
return;
}
if ((OpCode & 0xff000010) == 0xfe000000) {
// A4.1.13 CDP{<cond>} <coproc>, <opcode_1>, <CRd>, <CRn>, <CRm>, <opcode_2>
AsciiSPrint (Buf, Size, "CDP%a 0x%x, 0x%x, CR%d, CR%d, CR%d, 0x%x", COND (OpCode), (OpCode >> 8) & 0xf, (OpCode >> 20) & 0xf, Rn, Rd, Rm, (OpCode >> 5) &0x7);
return;
}
if ((OpCode & 0x0e000000) == 0x0c000000) {
// A4.1.19 LDC and A4.1.96 SDC
if ((OpCode & 0xf0000000) == 0xf0000000) {
Index = AsciiSPrint (Buf, Size, "%a2 0x%x, CR%d, ", Load ? "LDC" : "SDC", (OpCode >> 8) & 0xf, Rd);
} else {
Index = AsciiSPrint (Buf, Size, "%a%a 0x%x, CR%d, ", Load ? "LDC" : "SDC", COND (OpCode), (OpCode >> 8) & 0xf, Rd);
}
if (!Pre) {
if (!Write) {
// A5.5.5.5 [<Rn>], <option>
AsciiSPrint (&Buf[Index], Size - Index, "[%a], {0x%x}", gReg[Rn], OpCode & 0xff);
} else {
// A.5.5.4 [<Rn>], #+/-<offset_8>*4
AsciiSPrint (&Buf[Index], Size - Index, "[%a], #%a0x%x*4", gReg[Rn], SIGN (Up), OpCode & 0xff);
}
} else {
// A5.5.5.2 [<Rn>, #+/-<offset_8>*4 ]!
AsciiSPrint (&Buf[Index], Size - Index, "[%a, #%a0x%x*4]%a", gReg[Rn], SIGN (Up), OpCode & 0xff, WRITE (Write));
}
}
if ((OpCode & 0x0f000010) == 0x0e000010) {
// A4.1.32 MRC2, MCR2
AsciiSPrint (Buf, Size, "%a%a 0x%x, 0x%x, %a, CR%d, CR%d, 0x%x", Load ? "MRC" : "MCR", COND (OpCode), (OpCode >> 8) & 0xf, (OpCode >> 20) & 0xf, gReg[Rd], Rn, Rm, (OpCode >> 5) &0x7);
return;
}
if ((OpCode & 0x0ff00000) == 0x0c400000) {
// A4.1.33 MRRC2, MCRR2
AsciiSPrint (Buf, Size, "%a%a 0x%x, 0x%x, %a, %a, CR%d", Load ? "MRRC" : "MCRR", COND (OpCode), (OpCode >> 4) & 0xf, (OpCode >> 20) & 0xf, gReg[Rd], gReg[Rn], Rm);
return;
}
AsciiSPrint (Buf, Size, "Faulting OpCode 0x%08x", OpCode);
*OpCodePtr += 1;
return;
}

View File

@ -0,0 +1,35 @@
#/** @file
# ARM Disassembler library
#
# Copyright (c) 2008, Apple Inc. All rights reserved.<BR>
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
#
#
#**/
[Defines]
INF_VERSION = 0x00010005
BASE_NAME = ArmDisassemblerLib
FILE_GUID = 7ACEC173-F15D-426C-8F2F-BD86B4183EF1
MODULE_TYPE = BASE
VERSION_STRING = 1.0
LIBRARY_CLASS = ArmDisassemblerLib
[Sources.ARM]
ArmDisassembler.c
ThumbDisassembler.c
[Sources.AARCH64]
Aarch64Disassembler.c
[Packages]
MdePkg/MdePkg.dec
ArmPkg/ArmPkg.dec
[LibraryClasses]
BaseLib
PrintLib
DebugLib
PeCoffGetEntryPointLib

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,53 @@
/** @file
* Exception Handling support specific for AArch64
*
* Copyright (c) 2016 HP Development Company, L.P.
* Copyright (c) 2021, Arm Limited. All rights reserved.<BR>
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#include <Uefi.h>
#include <Chipset/AArch64.h>
#include <Library/MemoryAllocationLib.h>
#include <Protocol/DebugSupport.h> // for MAX_AARCH64_EXCEPTION
UINTN gMaxExceptionNumber = MAX_AARCH64_EXCEPTION;
EFI_EXCEPTION_CALLBACK gExceptionHandlers[MAX_AARCH64_EXCEPTION + 1] = { 0 };
EFI_EXCEPTION_CALLBACK gDebuggerExceptionHandlers[MAX_AARCH64_EXCEPTION + 1] = { 0 };
PHYSICAL_ADDRESS gExceptionVectorAlignmentMask = ARM_VECTOR_TABLE_ALIGNMENT;
UINTN gDebuggerNoHandlerValue = 0; // todo: define for AArch64
#define EL0_STACK_SIZE EFI_PAGES_TO_SIZE(2)
STATIC UINTN mNewStackBase[EL0_STACK_SIZE / sizeof (UINTN)];
VOID
RegisterEl0Stack (
IN VOID *Stack
);
RETURN_STATUS
ArchVectorConfig (
IN UINTN VectorBaseAddress
)
{
UINTN HcrReg;
// Round down sp by 16 bytes alignment
RegisterEl0Stack (
(VOID *)(((UINTN)mNewStackBase + EL0_STACK_SIZE) & ~0xFUL)
);
if (ArmReadCurrentEL () == AARCH64_EL2) {
HcrReg = ArmReadHcr ();
// Trap General Exceptions. All exceptions that would be routed to EL1 are routed to EL2
HcrReg |= ARM_HCR_TGE;
ArmWriteHcr (HcrReg);
}
return RETURN_SUCCESS;
}

View File

@ -0,0 +1,392 @@
//
// Copyright (c) 2011 - 2021, Arm Limited. All rights reserved.<BR>
// Portion of Copyright (c) 2014 NVIDIA Corporation. All rights reserved.<BR>
// Copyright (c) 2016 HP Development Company, L.P.
//
// SPDX-License-Identifier: BSD-2-Clause-Patent
//
//------------------------------------------------------------------------------
#include <Chipset/AArch64.h>
#include <Library/PcdLib.h>
#include <AsmMacroIoLibV8.h>
#include <Protocol/DebugSupport.h> // for exception type definitions
/*
This is the stack constructed by the exception handler (low address to high address).
X0 to FAR makes up the EFI_SYSTEM_CONTEXT for AArch64.
UINT64 X0; 0x000
UINT64 X1; 0x008
UINT64 X2; 0x010
UINT64 X3; 0x018
UINT64 X4; 0x020
UINT64 X5; 0x028
UINT64 X6; 0x030
UINT64 X7; 0x038
UINT64 X8; 0x040
UINT64 X9; 0x048
UINT64 X10; 0x050
UINT64 X11; 0x058
UINT64 X12; 0x060
UINT64 X13; 0x068
UINT64 X14; 0x070
UINT64 X15; 0x078
UINT64 X16; 0x080
UINT64 X17; 0x088
UINT64 X18; 0x090
UINT64 X19; 0x098
UINT64 X20; 0x0a0
UINT64 X21; 0x0a8
UINT64 X22; 0x0b0
UINT64 X23; 0x0b8
UINT64 X24; 0x0c0
UINT64 X25; 0x0c8
UINT64 X26; 0x0d0
UINT64 X27; 0x0d8
UINT64 X28; 0x0e0
UINT64 FP; 0x0e8 // x29 - Frame Pointer
UINT64 LR; 0x0f0 // x30 - Link Register
UINT64 SP; 0x0f8 // x31 - Stack Pointer
// FP/SIMD Registers. 128bit if used as Q-regs.
UINT64 V0[2]; 0x100
UINT64 V1[2]; 0x110
UINT64 V2[2]; 0x120
UINT64 V3[2]; 0x130
UINT64 V4[2]; 0x140
UINT64 V5[2]; 0x150
UINT64 V6[2]; 0x160
UINT64 V7[2]; 0x170
UINT64 V8[2]; 0x180
UINT64 V9[2]; 0x190
UINT64 V10[2]; 0x1a0
UINT64 V11[2]; 0x1b0
UINT64 V12[2]; 0x1c0
UINT64 V13[2]; 0x1d0
UINT64 V14[2]; 0x1e0
UINT64 V15[2]; 0x1f0
UINT64 V16[2]; 0x200
UINT64 V17[2]; 0x210
UINT64 V18[2]; 0x220
UINT64 V19[2]; 0x230
UINT64 V20[2]; 0x240
UINT64 V21[2]; 0x250
UINT64 V22[2]; 0x260
UINT64 V23[2]; 0x270
UINT64 V24[2]; 0x280
UINT64 V25[2]; 0x290
UINT64 V26[2]; 0x2a0
UINT64 V27[2]; 0x2b0
UINT64 V28[2]; 0x2c0
UINT64 V29[2]; 0x2d0
UINT64 V30[2]; 0x2e0
UINT64 V31[2]; 0x2f0
// System Context
UINT64 ELR; 0x300 // Exception Link Register
UINT64 SPSR; 0x308 // Saved Processor Status Register
UINT64 FPSR; 0x310 // Floating Point Status Register
UINT64 ESR; 0x318 // Exception syndrome register
UINT64 FAR; 0x320 // Fault Address Register
UINT64 Padding;0x328 // Required for stack alignment
*/
GCC_ASM_EXPORT(ExceptionHandlersEnd)
GCC_ASM_EXPORT(CommonCExceptionHandler)
GCC_ASM_EXPORT(RegisterEl0Stack)
.text
#define GP_CONTEXT_SIZE (32 * 8)
#define FP_CONTEXT_SIZE (32 * 16)
#define SYS_CONTEXT_SIZE ( 6 * 8) // 5 SYS regs + Alignment requirement (ie: the stack must be aligned on 0x10)
//
// There are two methods for installing AArch64 exception vectors:
// 1. Install a copy of the vectors to a location specified by a PCD
// 2. Write VBAR directly, requiring that vectors have proper alignment (2K)
// The conditional below adjusts the alignment requirement based on which
// exception vector initialization method is used.
//
#if defined(ARM_RELOCATE_VECTORS)
GCC_ASM_EXPORT(ExceptionHandlersStart)
ASM_PFX(ExceptionHandlersStart):
#else
VECTOR_BASE(ExceptionHandlersStart)
#endif
.macro ExceptionEntry, val, sp=SPx
//
// Our backtrace and register dump code is written in C and so it requires
// a stack. This makes it difficult to produce meaningful diagnostics when
// the stack pointer has been corrupted. So in such cases (i.e., when taking
// synchronous exceptions), this macro is expanded with \sp set to SP0, in
// which case we switch to the SP_EL0 stack pointer, which has been
// initialized to point to a buffer that has been set aside for this purpose.
//
// Since 'sp' may no longer refer to the stack frame that was active when
// the exception was taken, we may have to switch back and forth between
// SP_EL0 and SP_ELx to record the correct value for SP in the context struct.
//
.ifnc \sp, SPx
msr SPsel, xzr
.endif
// Move the stackpointer so we can reach our structure with the str instruction.
sub sp, sp, #(FP_CONTEXT_SIZE + SYS_CONTEXT_SIZE)
// Push the GP registers so we can record the exception context
stp x0, x1, [sp, #-GP_CONTEXT_SIZE]!
stp x2, x3, [sp, #0x10]
stp x4, x5, [sp, #0x20]
stp x6, x7, [sp, #0x30]
stp x8, x9, [sp, #0x40]
stp x10, x11, [sp, #0x50]
stp x12, x13, [sp, #0x60]
stp x14, x15, [sp, #0x70]
stp x16, x17, [sp, #0x80]
stp x18, x19, [sp, #0x90]
stp x20, x21, [sp, #0xa0]
stp x22, x23, [sp, #0xb0]
stp x24, x25, [sp, #0xc0]
stp x26, x27, [sp, #0xd0]
stp x28, x29, [sp, #0xe0]
add x28, sp, #(GP_CONTEXT_SIZE + FP_CONTEXT_SIZE + SYS_CONTEXT_SIZE)
.ifnc \sp, SPx
msr SPsel, #1
mov x7, sp
msr SPsel, xzr
.else
mov x7, x28
.endif
stp x30, x7, [sp, #0xf0]
// Record the type of exception that occurred.
mov x0, #\val
// Jump to our general handler to deal with all the common parts and process the exception.
#if defined(ARM_RELOCATE_VECTORS)
ldr x1, =ASM_PFX(CommonExceptionEntry)
br x1
.ltorg
#else
b ASM_PFX(CommonExceptionEntry)
#endif
.endm
//
// Current EL with SP0 : 0x0 - 0x180
//
VECTOR_ENTRY(ExceptionHandlersStart, ARM_VECTOR_CUR_SP0_SYNC)
ASM_PFX(SynchronousExceptionSP0):
ExceptionEntry EXCEPT_AARCH64_SYNCHRONOUS_EXCEPTIONS
VECTOR_ENTRY(ExceptionHandlersStart, ARM_VECTOR_CUR_SP0_IRQ)
ASM_PFX(IrqSP0):
ExceptionEntry EXCEPT_AARCH64_IRQ
VECTOR_ENTRY(ExceptionHandlersStart, ARM_VECTOR_CUR_SP0_FIQ)
ASM_PFX(FiqSP0):
ExceptionEntry EXCEPT_AARCH64_FIQ
VECTOR_ENTRY(ExceptionHandlersStart, ARM_VECTOR_CUR_SP0_SERR)
ASM_PFX(SErrorSP0):
ExceptionEntry EXCEPT_AARCH64_SERROR
//
// Current EL with SPx: 0x200 - 0x380
//
VECTOR_ENTRY(ExceptionHandlersStart, ARM_VECTOR_CUR_SPX_SYNC)
ASM_PFX(SynchronousExceptionSPx):
ExceptionEntry EXCEPT_AARCH64_SYNCHRONOUS_EXCEPTIONS, SP0
VECTOR_ENTRY(ExceptionHandlersStart, ARM_VECTOR_CUR_SPX_IRQ)
ASM_PFX(IrqSPx):
ExceptionEntry EXCEPT_AARCH64_IRQ
VECTOR_ENTRY(ExceptionHandlersStart, ARM_VECTOR_CUR_SPX_FIQ)
ASM_PFX(FiqSPx):
ExceptionEntry EXCEPT_AARCH64_FIQ
VECTOR_ENTRY(ExceptionHandlersStart, ARM_VECTOR_CUR_SPX_SERR)
ASM_PFX(SErrorSPx):
ExceptionEntry EXCEPT_AARCH64_SERROR
//
// Lower EL using AArch64 : 0x400 - 0x580
//
VECTOR_ENTRY(ExceptionHandlersStart, ARM_VECTOR_LOW_A64_SYNC)
ASM_PFX(SynchronousExceptionA64):
ExceptionEntry EXCEPT_AARCH64_SYNCHRONOUS_EXCEPTIONS
VECTOR_ENTRY(ExceptionHandlersStart, ARM_VECTOR_LOW_A64_IRQ)
ASM_PFX(IrqA64):
ExceptionEntry EXCEPT_AARCH64_IRQ
VECTOR_ENTRY(ExceptionHandlersStart, ARM_VECTOR_LOW_A64_FIQ)
ASM_PFX(FiqA64):
ExceptionEntry EXCEPT_AARCH64_FIQ
VECTOR_ENTRY(ExceptionHandlersStart, ARM_VECTOR_LOW_A64_SERR)
ASM_PFX(SErrorA64):
ExceptionEntry EXCEPT_AARCH64_SERROR
//
// Lower EL using AArch32 : 0x600 - 0x780
//
VECTOR_ENTRY(ExceptionHandlersStart, ARM_VECTOR_LOW_A32_SYNC)
ASM_PFX(SynchronousExceptionA32):
ExceptionEntry EXCEPT_AARCH64_SYNCHRONOUS_EXCEPTIONS
VECTOR_ENTRY(ExceptionHandlersStart, ARM_VECTOR_LOW_A32_IRQ)
ASM_PFX(IrqA32):
ExceptionEntry EXCEPT_AARCH64_IRQ
VECTOR_ENTRY(ExceptionHandlersStart, ARM_VECTOR_LOW_A32_FIQ)
ASM_PFX(FiqA32):
ExceptionEntry EXCEPT_AARCH64_FIQ
VECTOR_ENTRY(ExceptionHandlersStart, ARM_VECTOR_LOW_A32_SERR)
ASM_PFX(SErrorA32):
ExceptionEntry EXCEPT_AARCH64_SERROR
VECTOR_END(ExceptionHandlersStart)
ASM_PFX(ExceptionHandlersEnd):
ASM_PFX(CommonExceptionEntry):
EL1_OR_EL2_OR_EL3(x1)
1:mrs x2, elr_el1 // Exception Link Register
mrs x3, spsr_el1 // Saved Processor Status Register 32bit
mrs x5, esr_el1 // EL1 Exception syndrome register 32bit
mrs x6, far_el1 // EL1 Fault Address Register
b 4f
2:mrs x2, elr_el2 // Exception Link Register
mrs x3, spsr_el2 // Saved Processor Status Register 32bit
mrs x5, esr_el2 // EL2 Exception syndrome register 32bit
mrs x6, far_el2 // EL2 Fault Address Register
b 4f
3:mrs x2, elr_el3 // Exception Link Register
mrs x3, spsr_el3 // Saved Processor Status Register 32bit
mrs x5, esr_el3 // EL3 Exception syndrome register 32bit
mrs x6, far_el3 // EL3 Fault Address Register
4:mrs x4, fpsr // Floating point Status Register 32bit
// Save the SYS regs
stp x2, x3, [x28, #-SYS_CONTEXT_SIZE]!
stp x4, x5, [x28, #0x10]
str x6, [x28, #0x20]
// Push FP regs to Stack.
stp q0, q1, [x28, #-FP_CONTEXT_SIZE]!
stp q2, q3, [x28, #0x20]
stp q4, q5, [x28, #0x40]
stp q6, q7, [x28, #0x60]
stp q8, q9, [x28, #0x80]
stp q10, q11, [x28, #0xa0]
stp q12, q13, [x28, #0xc0]
stp q14, q15, [x28, #0xe0]
stp q16, q17, [x28, #0x100]
stp q18, q19, [x28, #0x120]
stp q20, q21, [x28, #0x140]
stp q22, q23, [x28, #0x160]
stp q24, q25, [x28, #0x180]
stp q26, q27, [x28, #0x1a0]
stp q28, q29, [x28, #0x1c0]
stp q30, q31, [x28, #0x1e0]
// x0 still holds the exception type.
// Set x1 to point to the top of our struct on the Stack
mov x1, sp
// CommonCExceptionHandler (
// IN EFI_EXCEPTION_TYPE ExceptionType, R0
// IN OUT EFI_SYSTEM_CONTEXT SystemContext R1
// )
// Call the handler as defined above
// For now we spin in the handler if we received an abort of some kind.
// We do not try to recover.
bl ASM_PFX(CommonCExceptionHandler) // Call exception handler
// Pop as many GP regs as we can before entering the critical section below
ldp x2, x3, [sp, #0x10]
ldp x4, x5, [sp, #0x20]
ldp x6, x7, [sp, #0x30]
ldp x8, x9, [sp, #0x40]
ldp x10, x11, [sp, #0x50]
ldp x12, x13, [sp, #0x60]
ldp x14, x15, [sp, #0x70]
ldp x16, x17, [sp, #0x80]
ldp x18, x19, [sp, #0x90]
ldp x20, x21, [sp, #0xa0]
ldp x22, x23, [sp, #0xb0]
ldp x24, x25, [sp, #0xc0]
ldp x26, x27, [sp, #0xd0]
ldp x0, x1, [sp], #0xe0
// Pop FP regs from Stack.
ldp q2, q3, [x28, #0x20]
ldp q4, q5, [x28, #0x40]
ldp q6, q7, [x28, #0x60]
ldp q8, q9, [x28, #0x80]
ldp q10, q11, [x28, #0xa0]
ldp q12, q13, [x28, #0xc0]
ldp q14, q15, [x28, #0xe0]
ldp q16, q17, [x28, #0x100]
ldp q18, q19, [x28, #0x120]
ldp q20, q21, [x28, #0x140]
ldp q22, q23, [x28, #0x160]
ldp q24, q25, [x28, #0x180]
ldp q26, q27, [x28, #0x1a0]
ldp q28, q29, [x28, #0x1c0]
ldp q30, q31, [x28, #0x1e0]
ldp q0, q1, [x28], #FP_CONTEXT_SIZE
// Pop the SYS regs we need
ldp x29, x30, [x28]
ldr x28, [x28, #0x10]
msr fpsr, x28
//
// Disable interrupt(IRQ and FIQ) before restoring context,
// or else the context will be corrupted by interrupt reentrance.
// Interrupt mask will be restored from spsr by hardware when we call eret
//
msr daifset, #3
isb
EL1_OR_EL2_OR_EL3(x28)
1:msr elr_el1, x29 // Exception Link Register
msr spsr_el1, x30 // Saved Processor Status Register 32bit
b 4f
2:msr elr_el2, x29 // Exception Link Register
msr spsr_el2, x30 // Saved Processor Status Register 32bit
b 4f
3:msr elr_el3, x29 // Exception Link Register
msr spsr_el3, x30 // Saved Processor Status Register 32bit
4:
// pop remaining GP regs and return from exception.
ldr x30, [sp, #0xf0 - 0xe0]
ldp x28, x29, [sp], #GP_CONTEXT_SIZE - 0xe0
// Adjust SP to be where we started from when we came into the handler.
// The handler can not change the SP.
add sp, sp, #FP_CONTEXT_SIZE + SYS_CONTEXT_SIZE
eret
ASM_PFX(RegisterEl0Stack):
msr sp_el0, x0
ret

View File

@ -0,0 +1,44 @@
/** @file
* Exception handling support specific for ARM
*
* Copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR>
* Copyright (c) 2014 - 2021, Arm Limited. All rights reserved.<BR>
* Copyright (c) 2016 HP Development Company, L.P.<BR>
*
* SPDX-License-Identifier: BSD-2-Clause-Patent
*
**/
#include <Uefi.h>
#include <Chipset/ArmV7.h>
#include <Library/ArmLib.h>
#include <Protocol/DebugSupport.h> // for MAX_ARM_EXCEPTION
UINTN gMaxExceptionNumber = MAX_ARM_EXCEPTION;
EFI_EXCEPTION_CALLBACK gExceptionHandlers[MAX_ARM_EXCEPTION + 1] = { 0 };
EFI_EXCEPTION_CALLBACK gDebuggerExceptionHandlers[MAX_ARM_EXCEPTION + 1] = { 0 };
PHYSICAL_ADDRESS gExceptionVectorAlignmentMask = ARM_VECTOR_TABLE_ALIGNMENT;
// Exception handler contains branch to vector location (jmp $) so no handler
// NOTE: This code assumes vectors are ARM and not Thumb code
UINTN gDebuggerNoHandlerValue = 0xEAFFFFFE;
RETURN_STATUS
ArchVectorConfig (
IN UINTN VectorBaseAddress
)
{
// if the vector address corresponds to high vectors
if (VectorBaseAddress == 0xFFFF0000) {
// set SCTLR.V to enable high vectors
ArmSetHighVectors ();
} else {
// Set SCTLR.V to 0 to enable VBAR to be used
ArmSetLowVectors ();
}
return RETURN_SUCCESS;
}

View File

@ -0,0 +1,299 @@
#------------------------------------------------------------------------------
#
# Use ARMv6 instruction to operate on a single stack
#
# Copyright (c) 2008 - 2010, Apple Inc. All rights reserved.<BR>
# Copyright (c) 2014, ARM Limited. All rights reserved.<BR>
# Copyright (c) 2016 HP Development Company, L.P.<BR>
#
# SPDX-License-Identifier: BSD-2-Clause-Patent
#
#------------------------------------------------------------------------------
#include <Library/PcdLib.h>
/*
This is the stack constructed by the exception handler (low address to high address)
# R0 - IFAR is EFI_SYSTEM_CONTEXT for ARM
Reg Offset
=== ======
R0 0x00 # stmfd SP!,{R0-R12}
R1 0x04
R2 0x08
R3 0x0c
R4 0x10
R5 0x14
R6 0x18
R7 0x1c
R8 0x20
R9 0x24
R10 0x28
R11 0x2c
R12 0x30
SP 0x34 # reserved via subtraction 0x20 (32) from SP
LR 0x38
PC 0x3c
CPSR 0x40
DFSR 0x44
DFAR 0x48
IFSR 0x4c
IFAR 0x50
LR 0x54 # SVC Link register (we need to restore it)
LR 0x58 # pushed by srsfd
CPSR 0x5c
*/
GCC_ASM_EXPORT(ExceptionHandlersStart)
GCC_ASM_EXPORT(ExceptionHandlersEnd)
GCC_ASM_EXPORT(CommonExceptionEntry)
GCC_ASM_EXPORT(AsmCommonExceptionEntry)
GCC_ASM_EXPORT(CommonCExceptionHandler)
.text
.syntax unified
#if !defined(__APPLE__)
.fpu neon @ makes vpush/vpop assemble
#endif
.align 5
//
// This code gets copied to the ARM vector table
// ExceptionHandlersStart - ExceptionHandlersEnd gets copied
//
ASM_PFX(ExceptionHandlersStart):
ASM_PFX(Reset):
b ASM_PFX(ResetEntry)
ASM_PFX(UndefinedInstruction):
b ASM_PFX(UndefinedInstructionEntry)
ASM_PFX(SoftwareInterrupt):
b ASM_PFX(SoftwareInterruptEntry)
ASM_PFX(PrefetchAbort):
b ASM_PFX(PrefetchAbortEntry)
ASM_PFX(DataAbort):
b ASM_PFX(DataAbortEntry)
ASM_PFX(ReservedException):
b ASM_PFX(ReservedExceptionEntry)
ASM_PFX(Irq):
b ASM_PFX(IrqEntry)
ASM_PFX(Fiq):
b ASM_PFX(FiqEntry)
ASM_PFX(ResetEntry):
srsdb #0x13! @ Store return state on SVC stack
@ We are already in SVC mode
stmfd SP!,{LR} @ Store the link register for the current mode
sub SP,SP,#0x20 @ Save space for SP, LR, PC, IFAR - CPSR
stmfd SP!,{R0-R12} @ Store the register state
mov R0,#0 @ ExceptionType
ldr R1,ASM_PFX(CommonExceptionEntry)
bx R1
ASM_PFX(UndefinedInstructionEntry):
sub LR, LR, #4 @ Only -2 for Thumb, adjust in CommonExceptionEntry
srsdb #0x13! @ Store return state on SVC stack
cps #0x13 @ Switch to SVC for common stack
stmfd SP!,{LR} @ Store the link register for the current mode
sub SP,SP,#0x20 @ Save space for SP, LR, PC, IFAR - CPSR
stmfd SP!,{R0-R12} @ Store the register state
mov R0,#1 @ ExceptionType
ldr R1,ASM_PFX(CommonExceptionEntry)
bx R1
ASM_PFX(SoftwareInterruptEntry):
srsdb #0x13! @ Store return state on SVC stack
@ We are already in SVC mode
stmfd SP!,{LR} @ Store the link register for the current mode
sub SP,SP,#0x20 @ Save space for SP, LR, PC, IFAR - CPSR
stmfd SP!,{R0-R12} @ Store the register state
mov R0,#2 @ ExceptionType
ldr R1,ASM_PFX(CommonExceptionEntry)
bx R1
ASM_PFX(PrefetchAbortEntry):
sub LR,LR,#4
srsdb #0x13! @ Store return state on SVC stack
cps #0x13 @ Switch to SVC for common stack
stmfd SP!,{LR} @ Store the link register for the current mode
sub SP,SP,#0x20 @ Save space for SP, LR, PC, IFAR - CPSR
stmfd SP!,{R0-R12} @ Store the register state
mov R0,#3 @ ExceptionType
ldr R1,ASM_PFX(CommonExceptionEntry)
bx R1
ASM_PFX(DataAbortEntry):
sub LR,LR,#8
srsdb #0x13! @ Store return state on SVC stack
cps #0x13 @ Switch to SVC for common stack
stmfd SP!,{LR} @ Store the link register for the current mode
sub SP,SP,#0x20 @ Save space for SP, LR, PC, IFAR - CPSR
stmfd SP!,{R0-R12} @ Store the register state
mov R0,#4
ldr R1,ASM_PFX(CommonExceptionEntry)
bx R1
ASM_PFX(ReservedExceptionEntry):
srsdb #0x13! @ Store return state on SVC stack
cps #0x13 @ Switch to SVC for common stack
stmfd SP!,{LR} @ Store the link register for the current mode
sub SP,SP,#0x20 @ Save space for SP, LR, PC, IFAR - CPSR
stmfd SP!,{R0-R12} @ Store the register state
mov R0,#5
ldr R1,ASM_PFX(CommonExceptionEntry)
bx R1
ASM_PFX(IrqEntry):
sub LR,LR,#4
srsdb #0x13! @ Store return state on SVC stack
cps #0x13 @ Switch to SVC for common stack
stmfd SP!,{LR} @ Store the link register for the current mode
sub SP,SP,#0x20 @ Save space for SP, LR, PC, IFAR - CPSR
stmfd SP!,{R0-R12} @ Store the register state
mov R0,#6 @ ExceptionType
ldr R1,ASM_PFX(CommonExceptionEntry)
bx R1
ASM_PFX(FiqEntry):
sub LR,LR,#4
srsdb #0x13! @ Store return state on SVC stack
cps #0x13 @ Switch to SVC for common stack
stmfd SP!,{LR} @ Store the link register for the current mode
sub SP,SP,#0x20 @ Save space for SP, LR, PC, IFAR - CPSR
stmfd SP!,{R0-R12} @ Store the register state
@ Since we have already switch to SVC R8_fiq - R12_fiq
@ never get used or saved
mov R0,#7 @ ExceptionType
ldr R1,ASM_PFX(CommonExceptionEntry)
bx R1
//
// This gets patched by the C code that patches in the vector table
//
ASM_PFX(CommonExceptionEntry):
.word ASM_PFX(AsmCommonExceptionEntry)
ASM_PFX(ExceptionHandlersEnd):
//
// This code runs from CpuDxe driver loaded address. It is patched into
// CommonExceptionEntry.
//
ASM_PFX(AsmCommonExceptionEntry):
mrc p15, 0, R1, c6, c0, 2 @ Read IFAR
str R1, [SP, #0x50] @ Store it in EFI_SYSTEM_CONTEXT_ARM.IFAR
mrc p15, 0, R1, c5, c0, 1 @ Read IFSR
str R1, [SP, #0x4c] @ Store it in EFI_SYSTEM_CONTEXT_ARM.IFSR
mrc p15, 0, R1, c6, c0, 0 @ Read DFAR
str R1, [SP, #0x48] @ Store it in EFI_SYSTEM_CONTEXT_ARM.DFAR
mrc p15, 0, R1, c5, c0, 0 @ Read DFSR
str R1, [SP, #0x44] @ Store it in EFI_SYSTEM_CONTEXT_ARM.DFSR
ldr R1, [SP, #0x5c] @ srsdb saved pre-exception CPSR on the stack
str R1, [SP, #0x40] @ Store it in EFI_SYSTEM_CONTEXT_ARM.CPSR
add R2, SP, #0x38 @ Make R2 point to EFI_SYSTEM_CONTEXT_ARM.LR
and R3, R1, #0x1f @ Check CPSR to see if User or System Mode
cmp R3, #0x1f @ if ((CPSR == 0x10) || (CPSR == 0x1f))
cmpne R3, #0x10 @
stmdaeq R2, {lr}^ @ save unbanked lr
@ else
stmdane R2, {lr} @ save SVC lr
ldr R5, [SP, #0x58] @ PC is the LR pushed by srsfd
@ Check to see if we have to adjust for Thumb entry
sub r4, r0, #1 @ if (ExceptionType == 1 || ExceptionType == 2)) {
cmp r4, #1 @ // UND & SVC have different LR adjust for Thumb
bhi NoAdjustNeeded
tst r1, #0x20 @ if ((CPSR & T)) == T) { // Thumb Mode on entry
addne R5, R5, #2 @ PC += 2;
strne R5,[SP,#0x58] @ Update LR value pushed by srsfd
NoAdjustNeeded:
str R5, [SP, #0x3c] @ Store it in EFI_SYSTEM_CONTEXT_ARM.PC
add R1, SP, #0x60 @ We pushed 0x60 bytes on the stack
str R1, [SP, #0x34] @ Store it in EFI_SYSTEM_CONTEXT_ARM.SP
@ R0 is ExceptionType
mov R1,SP @ R1 is SystemContext
#if (FixedPcdGet32(PcdVFPEnabled))
vpush {d0-d15} @ save vstm registers in case they are used in optimizations
#endif
mov R4, SP @ Save current SP
tst R4, #4
subne SP, SP, #4 @ Adjust SP if not 8-byte aligned
/*
VOID
EFIAPI
CommonCExceptionHandler (
IN EFI_EXCEPTION_TYPE ExceptionType, R0
IN OUT EFI_SYSTEM_CONTEXT SystemContext R1
)
*/
blx ASM_PFX(CommonCExceptionHandler) @ Call exception handler
mov SP, R4 @ Restore SP
#if (FixedPcdGet32(PcdVFPEnabled))
vpop {d0-d15}
#endif
ldr R1, [SP, #0x4c] @ Restore EFI_SYSTEM_CONTEXT_ARM.IFSR
mcr p15, 0, R1, c5, c0, 1 @ Write IFSR
ldr R1, [SP, #0x44] @ Restore EFI_SYSTEM_CONTEXT_ARM.DFSR
mcr p15, 0, R1, c5, c0, 0 @ Write DFSR
ldr R1,[SP,#0x3c] @ EFI_SYSTEM_CONTEXT_ARM.PC
str R1,[SP,#0x58] @ Store it back to srsfd stack slot so it can be restored
ldr R1,[SP,#0x40] @ EFI_SYSTEM_CONTEXT_ARM.CPSR
str R1,[SP,#0x5c] @ Store it back to srsfd stack slot so it can be restored
add R3, SP, #0x54 @ Make R3 point to SVC LR saved on entry
add R2, SP, #0x38 @ Make R2 point to EFI_SYSTEM_CONTEXT_ARM.LR
and R1, R1, #0x1f @ Check to see if User or System Mode
cmp R1, #0x1f @ if ((CPSR == 0x10) || (CPSR == 0x1f))
cmpne R1, #0x10 @
ldmibeq R2, {lr}^ @ restore unbanked lr
@ else
ldmibne R3, {lr} @ restore SVC lr, via ldmfd SP!, {LR}
ldmfd SP!,{R0-R12} @ Restore general purpose registers
@ Exception handler can not change SP
add SP,SP,#0x20 @ Clear out the remaining stack space
ldmfd SP!,{LR} @ restore the link register for this context
rfefd SP! @ return from exception via srsfd stack slot

Some files were not shown because too many files have changed in this diff Show More