#! /usr/bin/env perl # Copyright 2016-2020 The OpenSSL Project Authors. All Rights Reserved. # # Licensed under the Apache License 2.0 (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # This module implements Poly1305 hash for ARMv8. # # June 2015 # # Numbers are cycles per processed byte with poly1305_blocks alone. # # IALU/gcc-4.9 NEON # # Apple A7 1.86/+5% 0.72 # Cortex-A53 2.69/+58% 1.47 # Cortex-A57 2.70/+7% 1.14 # Denver 1.64/+50% 1.18(*) # X-Gene 2.13/+68% 2.27 # Mongoose 1.77/+75% 1.12 # Kryo 2.70/+55% 1.13 # ThunderX2 1.17/+95% 1.36 # # (*) estimate based on resources availability is less than 1.0, # i.e. measured result is worse than expected, presumably binary # translator is not almighty; # $output is the last argument if it looks like a file (it has an extension) # $flavour is the first argument if it doesn't look like a file $output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef; $flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef; $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or die "can't locate arm-xlate.pl"; open OUT,"| \"$^X\" $xlate $flavour \"$output\"" or die "can't call $xlate: $!"; *STDOUT=*OUT; my ($ctx,$inp,$len,$padbit) = map("x$_",(0..3)); my ($mac,$nonce)=($inp,$len); my ($h0,$h1,$h2,$r0,$r1,$s1,$t0,$t1,$d0,$d1,$d2) = map("x$_",(4..14)); $code.=<<___; #include "arm_arch.h" .text // forward "declarations" are required for Apple .extern OPENSSL_armcap_P .hidden OPENSSL_armcap_P .globl poly1305_init .hidden poly1305_init .globl poly1305_blocks .hidden poly1305_blocks .globl poly1305_emit .hidden poly1305_emit .type poly1305_init,%function .align 5 poly1305_init: cmp $inp,xzr stp xzr,xzr,[$ctx] // zero hash value stp xzr,xzr,[$ctx,#16] // [along with is_base2_26] csel x0,xzr,x0,eq b.eq .Lno_key adrp x17,OPENSSL_armcap_P ldr w17,[x17,#:lo12:OPENSSL_armcap_P] ldp $r0,$r1,[$inp] // load key mov $s1,#0xfffffffc0fffffff movk $s1,#0x0fff,lsl#48 #ifdef __ARMEB__ rev $r0,$r0 // flip bytes rev $r1,$r1 #endif and $r0,$r0,$s1 // &=0ffffffc0fffffff and $s1,$s1,#-4 and $r1,$r1,$s1 // &=0ffffffc0ffffffc stp $r0,$r1,[$ctx,#32] // save key value tst w17,#ARMV7_NEON adr $d0,.Lpoly1305_blocks adr $r0,.Lpoly1305_blocks_neon adr $d1,.Lpoly1305_emit adr $r1,.Lpoly1305_emit_neon csel $d0,$d0,$r0,eq csel $d1,$d1,$r1,eq #ifdef __ILP32__ stp w12,w13,[$len] #else stp $d0,$d1,[$len] #endif mov x0,#1 .Lno_key: ret .size poly1305_init,.-poly1305_init .type poly1305_blocks,%function .align 5 poly1305_blocks: .Lpoly1305_blocks: ands $len,$len,#-16 b.eq .Lno_data ldp $h0,$h1,[$ctx] // load hash value ldp $r0,$r1,[$ctx,#32] // load key value ldr $h2,[$ctx,#16] add $s1,$r1,$r1,lsr#2 // s1 = r1 + (r1 >> 2) b .Loop .align 5 .Loop: ldp $t0,$t1,[$inp],#16 // load input sub $len,$len,#16 #ifdef __ARMEB__ rev $t0,$t0 rev $t1,$t1 #endif adds $h0,$h0,$t0 // accumulate input adcs $h1,$h1,$t1 mul $d0,$h0,$r0 // h0*r0 adc $h2,$h2,$padbit umulh $d1,$h0,$r0 mul $t0,$h1,$s1 // h1*5*r1 umulh $t1,$h1,$s1 adds $d0,$d0,$t0 mul $t0,$h0,$r1 // h0*r1 adc $d1,$d1,$t1 umulh $d2,$h0,$r1 adds $d1,$d1,$t0 mul $t0,$h1,$r0 // h1*r0 adc $d2,$d2,xzr umulh $t1,$h1,$r0 adds $d1,$d1,$t0 mul $t0,$h2,$s1 // h2*5*r1 adc $d2,$d2,$t1 mul $t1,$h2,$r0 // h2*r0 adds $d1,$d1,$t0 adc $d2,$d2,$t1 and $t0,$d2,#-4 // final reduction and $h2,$d2,#3 add $t0,$t0,$d2,lsr#2 adds $h0,$d0,$t0 adcs $h1,$d1,xzr adc $h2,$h2,xzr cbnz $len,.Loop stp $h0,$h1,[$ctx] // store hash value str $h2,[$ctx,#16] .Lno_data: ret .size poly1305_blocks,.-poly1305_blocks .type poly1305_emit,%function .align 5 poly1305_emit: .Lpoly1305_emit: ldp $h0,$h1,[$ctx] // load hash base 2^64 ldr $h2,[$ctx,#16] ldp $t0,$t1,[$nonce] // load nonce adds $d0,$h0,#5 // compare to modulus adcs $d1,$h1,xzr adc $d2,$h2,xzr tst $d2,#-4 // see if it's carried/borrowed csel $h0,$h0,$d0,eq csel $h1,$h1,$d1,eq #ifdef __ARMEB__ ror $t0,$t0,#32 // flip nonce words ror $t1,$t1,#32 #endif adds $h0,$h0,$t0 // accumulate nonce adc $h1,$h1,$t1 #ifdef __ARMEB__ rev $h0,$h0 // flip output bytes rev $h1,$h1 #endif stp $h0,$h1,[$mac] // write result ret .size poly1305_emit,.-poly1305_emit ___ my ($R0,$R1,$S1,$R2,$S2,$R3,$S3,$R4,$S4) = map("v$_.4s",(0..8)); my ($IN01_0,$IN01_1,$IN01_2,$IN01_3,$IN01_4) = map("v$_.2s",(9..13)); my ($IN23_0,$IN23_1,$IN23_2,$IN23_3,$IN23_4) = map("v$_.2s",(14..18)); my ($ACC0,$ACC1,$ACC2,$ACC3,$ACC4) = map("v$_.2d",(19..23)); my ($H0,$H1,$H2,$H3,$H4) = map("v$_.2s",(24..28)); my ($T0,$T1,$MASK) = map("v$_",(29..31)); my ($in2,$zeros)=("x16","x17"); my $is_base2_26 = $zeros; # borrow $code.=<<___; .type poly1305_mult,%function .align 5 poly1305_mult: mul $d0,$h0,$r0 // h0*r0 umulh $d1,$h0,$r0 mul $t0,$h1,$s1 // h1*5*r1 umulh $t1,$h1,$s1 adds $d0,$d0,$t0 mul $t0,$h0,$r1 // h0*r1 adc $d1,$d1,$t1 umulh $d2,$h0,$r1 adds $d1,$d1,$t0 mul $t0,$h1,$r0 // h1*r0 adc $d2,$d2,xzr umulh $t1,$h1,$r0 adds $d1,$d1,$t0 mul $t0,$h2,$s1 // h2*5*r1 adc $d2,$d2,$t1 mul $t1,$h2,$r0 // h2*r0 adds $d1,$d1,$t0 adc $d2,$d2,$t1 and $t0,$d2,#-4 // final reduction and $h2,$d2,#3 add $t0,$t0,$d2,lsr#2 adds $h0,$d0,$t0 adcs $h1,$d1,xzr adc $h2,$h2,xzr ret .size poly1305_mult,.-poly1305_mult .type poly1305_splat,%function .align 5 poly1305_splat: and x12,$h0,#0x03ffffff // base 2^64 -> base 2^26 ubfx x13,$h0,#26,#26 extr x14,$h1,$h0,#52 and x14,x14,#0x03ffffff ubfx x15,$h1,#14,#26 extr x16,$h2,$h1,#40 str w12,[$ctx,#16*0] // r0 add w12,w13,w13,lsl#2 // r1*5 str w13,[$ctx,#16*1] // r1 add w13,w14,w14,lsl#2 // r2*5 str w12,[$ctx,#16*2] // s1 str w14,[$ctx,#16*3] // r2 add w14,w15,w15,lsl#2 // r3*5 str w13,[$ctx,#16*4] // s2 str w15,[$ctx,#16*5] // r3 add w15,w16,w16,lsl#2 // r4*5 str w14,[$ctx,#16*6] // s3 str w16,[$ctx,#16*7] // r4 str w15,[$ctx,#16*8] // s4 ret .size poly1305_splat,.-poly1305_splat .type poly1305_blocks_neon,%function .align 5 poly1305_blocks_neon: .Lpoly1305_blocks_neon: ldr $is_base2_26,[$ctx,#24] cmp $len,#128 b.hs .Lblocks_neon cbz $is_base2_26,.Lpoly1305_blocks .Lblocks_neon: .inst 0xd503233f // paciasp stp x29,x30,[sp,#-80]! add x29,sp,#0 ands $len,$len,#-16 b.eq .Lno_data_neon cbz $is_base2_26,.Lbase2_64_neon ldp w10,w11,[$ctx] // load hash value base 2^26 ldp w12,w13,[$ctx,#8] ldr w14,[$ctx,#16] tst $len,#31 b.eq .Leven_neon ldp $r0,$r1,[$ctx,#32] // load key value add $h0,x10,x11,lsl#26 // base 2^26 -> base 2^64 lsr $h1,x12,#12 adds $h0,$h0,x12,lsl#52 add $h1,$h1,x13,lsl#14 adc $h1,$h1,xzr lsr $h2,x14,#24 adds $h1,$h1,x14,lsl#40 adc $d2,$h2,xzr // can be partially reduced... ldp $d0,$d1,[$inp],#16 // load input sub $len,$len,#16 add $s1,$r1,$r1,lsr#2 // s1 = r1 + (r1 >> 2) and $t0,$d2,#-4 // ... so reduce and $h2,$d2,#3 add $t0,$t0,$d2,lsr#2 adds $h0,$h0,$t0 adcs $h1,$h1,xzr adc $h2,$h2,xzr #ifdef __ARMEB__ rev $d0,$d0 rev $d1,$d1 #endif adds $h0,$h0,$d0 // accumulate input adcs $h1,$h1,$d1 adc $h2,$h2,$padbit bl poly1305_mult ldr x30,[sp,#8] cbz $padbit,.Lstore_base2_64_neon and x10,$h0,#0x03ffffff // base 2^64 -> base 2^26 ubfx x11,$h0,#26,#26 extr x12,$h1,$h0,#52 and x12,x12,#0x03ffffff ubfx x13,$h1,#14,#26 extr x14,$h2,$h1,#40 cbnz $len,.Leven_neon stp w10,w11,[$ctx] // store hash value base 2^26 stp w12,w13,[$ctx,#8] str w14,[$ctx,#16] b .Lno_data_neon .align 4 .Lstore_base2_64_neon: stp $h0,$h1,[$ctx] // store hash value base 2^64 stp $h2,xzr,[$ctx,#16] // note that is_base2_26 is zeroed b .Lno_data_neon .align 4 .Lbase2_64_neon: ldp $r0,$r1,[$ctx,#32] // load key value ldp $h0,$h1,[$ctx] // load hash value base 2^64 ldr $h2,[$ctx,#16] tst $len,#31 b.eq .Linit_neon ldp $d0,$d1,[$inp],#16 // load input sub $len,$len,#16 add $s1,$r1,$r1,lsr#2 // s1 = r1 + (r1 >> 2) #ifdef __ARMEB__ rev $d0,$d0 rev $d1,$d1 #endif adds $h0,$h0,$d0 // accumulate input adcs $h1,$h1,$d1 adc $h2,$h2,$padbit bl poly1305_mult .Linit_neon: and x10,$h0,#0x03ffffff // base 2^64 -> base 2^26 ubfx x11,$h0,#26,#26 extr x12,$h1,$h0,#52 and x12,x12,#0x03ffffff ubfx x13,$h1,#14,#26 extr x14,$h2,$h1,#40 stp d8,d9,[sp,#16] // meet ABI requirements stp d10,d11,[sp,#32] stp d12,d13,[sp,#48] stp d14,d15,[sp,#64] fmov ${H0},x10 fmov ${H1},x11 fmov ${H2},x12 fmov ${H3},x13 fmov ${H4},x14 ////////////////////////////////// initialize r^n table mov $h0,$r0 // r^1 add $s1,$r1,$r1,lsr#2 // s1 = r1 + (r1 >> 2) mov $h1,$r1 mov $h2,xzr add $ctx,$ctx,#48+12 bl poly1305_splat bl poly1305_mult // r^2 sub $ctx,$ctx,#4 bl poly1305_splat bl poly1305_mult // r^3 sub $ctx,$ctx,#4 bl poly1305_splat bl poly1305_mult // r^4 sub $ctx,$ctx,#4 bl poly1305_splat ldr x30,[sp,#8] add $in2,$inp,#32 adr $zeros,.Lzeros subs $len,$len,#64 csel $in2,$zeros,$in2,lo mov x4,#1 stur x4,[$ctx,#-24] // set is_base2_26 sub $ctx,$ctx,#48 // restore original $ctx b .Ldo_neon .align 4 .Leven_neon: add $in2,$inp,#32 adr $zeros,.Lzeros subs $len,$len,#64 csel $in2,$zeros,$in2,lo stp d8,d9,[sp,#16] // meet ABI requirements stp d10,d11,[sp,#32] stp d12,d13,[sp,#48] stp d14,d15,[sp,#64] fmov ${H0},x10 fmov ${H1},x11 fmov ${H2},x12 fmov ${H3},x13 fmov ${H4},x14 .Ldo_neon: ldp x8,x12,[$in2],#16 // inp[2:3] (or zero) ldp x9,x13,[$in2],#48 lsl $padbit,$padbit,#24 add x15,$ctx,#48 #ifdef __ARMEB__ rev x8,x8 rev x12,x12 rev x9,x9 rev x13,x13 #endif and x4,x8,#0x03ffffff // base 2^64 -> base 2^26 and x5,x9,#0x03ffffff ubfx x6,x8,#26,#26 ubfx x7,x9,#26,#26 add x4,x4,x5,lsl#32 // bfi x4,x5,#32,#32 extr x8,x12,x8,#52 extr x9,x13,x9,#52 add x6,x6,x7,lsl#32 // bfi x6,x7,#32,#32 fmov $IN23_0,x4 and x8,x8,#0x03ffffff and x9,x9,#0x03ffffff ubfx x10,x12,#14,#26 ubfx x11,x13,#14,#26 add x12,$padbit,x12,lsr#40 add x13,$padbit,x13,lsr#40 add x8,x8,x9,lsl#32 // bfi x8,x9,#32,#32 fmov $IN23_1,x6 add x10,x10,x11,lsl#32 // bfi x10,x11,#32,#32 add x12,x12,x13,lsl#32 // bfi x12,x13,#32,#32 fmov $IN23_2,x8 fmov $IN23_3,x10 fmov $IN23_4,x12 ldp x8,x12,[$inp],#16 // inp[0:1] ldp x9,x13,[$inp],#48 ld1 {$R0,$R1,$S1,$R2},[x15],#64 ld1 {$S2,$R3,$S3,$R4},[x15],#64 ld1 {$S4},[x15] #ifdef __ARMEB__ rev x8,x8 rev x12,x12 rev x9,x9 rev x13,x13 #endif and x4,x8,#0x03ffffff // base 2^64 -> base 2^26 and x5,x9,#0x03ffffff ubfx x6,x8,#26,#26 ubfx x7,x9,#26,#26 add x4,x4,x5,lsl#32 // bfi x4,x5,#32,#32 extr x8,x12,x8,#52 extr x9,x13,x9,#52 add x6,x6,x7,lsl#32 // bfi x6,x7,#32,#32 fmov $IN01_0,x4 and x8,x8,#0x03ffffff and x9,x9,#0x03ffffff ubfx x10,x12,#14,#26 ubfx x11,x13,#14,#26 add x12,$padbit,x12,lsr#40 add x13,$padbit,x13,lsr#40 add x8,x8,x9,lsl#32 // bfi x8,x9,#32,#32 fmov $IN01_1,x6 add x10,x10,x11,lsl#32 // bfi x10,x11,#32,#32 add x12,x12,x13,lsl#32 // bfi x12,x13,#32,#32 movi $MASK.2d,#-1 fmov $IN01_2,x8 fmov $IN01_3,x10 fmov $IN01_4,x12 ushr $MASK.2d,$MASK.2d,#38 b.ls .Lskip_loop .align 4 .Loop_neon: //////////////////////////////////////////////////////////////// // ((inp[0]*r^4+inp[2]*r^2+inp[4])*r^4+inp[6]*r^2 // ((inp[1]*r^4+inp[3]*r^2+inp[5])*r^3+inp[7]*r // \___________________/ // ((inp[0]*r^4+inp[2]*r^2+inp[4])*r^4+inp[6]*r^2+inp[8])*r^2 // ((inp[1]*r^4+inp[3]*r^2+inp[5])*r^4+inp[7]*r^2+inp[9])*r // \___________________/ \____________________/ // // Note that we start with inp[2:3]*r^2. This is because it // doesn't depend on reduction in previous iteration. //////////////////////////////////////////////////////////////// // d4 = h0*r4 + h1*r3 + h2*r2 + h3*r1 + h4*r0 // d3 = h0*r3 + h1*r2 + h2*r1 + h3*r0 + h4*5*r4 // d2 = h0*r2 + h1*r1 + h2*r0 + h3*5*r4 + h4*5*r3 // d1 = h0*r1 + h1*r0 + h2*5*r4 + h3*5*r3 + h4*5*r2 // d0 = h0*r0 + h1*5*r4 + h2*5*r3 + h3*5*r2 + h4*5*r1 subs $len,$len,#64 umull $ACC4,$IN23_0,${R4}[2] csel $in2,$zeros,$in2,lo umull $ACC3,$IN23_0,${R3}[2] umull $ACC2,$IN23_0,${R2}[2] ldp x8,x12,[$in2],#16 // inp[2:3] (or zero) umull $ACC1,$IN23_0,${R1}[2] ldp x9,x13,[$in2],#48 umull $ACC0,$IN23_0,${R0}[2] #ifdef __ARMEB__ rev x8,x8 rev x12,x12 rev x9,x9 rev x13,x13 #endif umlal $ACC4,$IN23_1,${R3}[2] and x4,x8,#0x03ffffff // base 2^64 -> base 2^26 umlal $ACC3,$IN23_1,${R2}[2] and x5,x9,#0x03ffffff umlal $ACC2,$IN23_1,${R1}[2] ubfx x6,x8,#26,#26 umlal $ACC1,$IN23_1,${R0}[2] ubfx x7,x9,#26,#26 umlal $ACC0,$IN23_1,${S4}[2] add x4,x4,x5,lsl#32 // bfi x4,x5,#32,#32 umlal $ACC4,$IN23_2,${R2}[2] extr x8,x12,x8,#52 umlal $ACC3,$IN23_2,${R1}[2] extr x9,x13,x9,#52 umlal $ACC2,$IN23_2,${R0}[2] add x6,x6,x7,lsl#32 // bfi x6,x7,#32,#32 umlal $ACC1,$IN23_2,${S4}[2] fmov $IN23_0,x4 umlal $ACC0,$IN23_2,${S3}[2] and x8,x8,#0x03ffffff umlal $ACC4,$IN23_3,${R1}[2] and x9,x9,#0x03ffffff umlal $ACC3,$IN23_3,${R0}[2] ubfx x10,x12,#14,#26 umlal $ACC2,$IN23_3,${S4}[2] ubfx x11,x13,#14,#26 umlal $ACC1,$IN23_3,${S3}[2] add x8,x8,x9,lsl#32 // bfi x8,x9,#32,#32 umlal $ACC0,$IN23_3,${S2}[2] fmov $IN23_1,x6 add $IN01_2,$IN01_2,$H2 add x12,$padbit,x12,lsr#40 umlal $ACC4,$IN23_4,${R0}[2] add x13,$padbit,x13,lsr#40 umlal $ACC3,$IN23_4,${S4}[2] add x10,x10,x11,lsl#32 // bfi x10,x11,#32,#32 umlal $ACC2,$IN23_4,${S3}[2] add x12,x12,x13,lsl#32 // bfi x12,x13,#32,#32 umlal $ACC1,$IN23_4,${S2}[2] fmov $IN23_2,x8 umlal $ACC0,$IN23_4,${S1}[2] fmov $IN23_3,x10 //////////////////////////////////////////////////////////////// // (hash+inp[0:1])*r^4 and accumulate add $IN01_0,$IN01_0,$H0 fmov $IN23_4,x12 umlal $ACC3,$IN01_2,${R1}[0] ldp x8,x12,[$inp],#16 // inp[0:1] umlal $ACC0,$IN01_2,${S3}[0] ldp x9,x13,[$inp],#48 umlal $ACC4,$IN01_2,${R2}[0] umlal $ACC1,$IN01_2,${S4}[0] umlal $ACC2,$IN01_2,${R0}[0] #ifdef __ARMEB__ rev x8,x8 rev x12,x12 rev x9,x9 rev x13,x13 #endif add $IN01_1,$IN01_1,$H1 umlal $ACC3,$IN01_0,${R3}[0] umlal $ACC4,$IN01_0,${R4}[0] and x4,x8,#0x03ffffff // base 2^64 -> base 2^26 umlal $ACC2,$IN01_0,${R2}[0] and x5,x9,#0x03ffffff umlal $ACC0,$IN01_0,${R0}[0] ubfx x6,x8,#26,#26 umlal $ACC1,$IN01_0,${R1}[0] ubfx x7,x9,#26,#26 add $IN01_3,$IN01_3,$H3 add x4,x4,x5,lsl#32 // bfi x4,x5,#32,#32 umlal $ACC3,$IN01_1,${R2}[0] extr x8,x12,x8,#52 umlal $ACC4,$IN01_1,${R3}[0] extr x9,x13,x9,#52 umlal $ACC0,$IN01_1,${S4}[0] add x6,x6,x7,lsl#32 // bfi x6,x7,#32,#32 umlal $ACC2,$IN01_1,${R1}[0] fmov $IN01_0,x4 umlal $ACC1,$IN01_1,${R0}[0] and x8,x8,#0x03ffffff add $IN01_4,$IN01_4,$H4 and x9,x9,#0x03ffffff umlal $ACC3,$IN01_3,${R0}[0] ubfx x10,x12,#14,#26 umlal $ACC0,$IN01_3,${S2}[0] ubfx x11,x13,#14,#26 umlal $ACC4,$IN01_3,${R1}[0] add x8,x8,x9,lsl#32 // bfi x8,x9,#32,#32 umlal $ACC1,$IN01_3,${S3}[0] fmov $IN01_1,x6 umlal $ACC2,$IN01_3,${S4}[0] add x12,$padbit,x12,lsr#40 umlal $ACC3,$IN01_4,${S4}[0] add x13,$padbit,x13,lsr#40 umlal $ACC0,$IN01_4,${S1}[0] add x10,x10,x11,lsl#32 // bfi x10,x11,#32,#32 umlal $ACC4,$IN01_4,${R0}[0] add x12,x12,x13,lsl#32 // bfi x12,x13,#32,#32 umlal $ACC1,$IN01_4,${S2}[0] fmov $IN01_2,x8 umlal $ACC2,$IN01_4,${S3}[0] fmov $IN01_3,x10 fmov $IN01_4,x12 ///////////////////////////////////////////////////////////////// // lazy reduction as discussed in "NEON crypto" by D.J. Bernstein // and P. Schwabe // // [see discussion in poly1305-armv4 module] ushr $T0.2d,$ACC3,#26 xtn $H3,$ACC3 ushr $T1.2d,$ACC0,#26 and $ACC0,$ACC0,$MASK.2d add $ACC4,$ACC4,$T0.2d // h3 -> h4 bic $H3,#0xfc,lsl#24 // &=0x03ffffff add $ACC1,$ACC1,$T1.2d // h0 -> h1 ushr $T0.2d,$ACC4,#26 xtn $H4,$ACC4 ushr $T1.2d,$ACC1,#26 xtn $H1,$ACC1 bic $H4,#0xfc,lsl#24 add $ACC2,$ACC2,$T1.2d // h1 -> h2 add $ACC0,$ACC0,$T0.2d shl $T0.2d,$T0.2d,#2 shrn $T1.2s,$ACC2,#26 xtn $H2,$ACC2 add $ACC0,$ACC0,$T0.2d // h4 -> h0 bic $H1,#0xfc,lsl#24 add $H3,$H3,$T1.2s // h2 -> h3 bic $H2,#0xfc,lsl#24 shrn $T0.2s,$ACC0,#26 xtn $H0,$ACC0 ushr $T1.2s,$H3,#26 bic $H3,#0xfc,lsl#24 bic $H0,#0xfc,lsl#24 add $H1,$H1,$T0.2s // h0 -> h1 add $H4,$H4,$T1.2s // h3 -> h4 b.hi .Loop_neon .Lskip_loop: dup $IN23_2,${IN23_2}[0] add $IN01_2,$IN01_2,$H2 //////////////////////////////////////////////////////////////// // multiply (inp[0:1]+hash) or inp[2:3] by r^2:r^1 adds $len,$len,#32 b.ne .Long_tail dup $IN23_2,${IN01_2}[0] add $IN23_0,$IN01_0,$H0 add $IN23_3,$IN01_3,$H3 add $IN23_1,$IN01_1,$H1 add $IN23_4,$IN01_4,$H4 .Long_tail: dup $IN23_0,${IN23_0}[0] umull2 $ACC0,$IN23_2,${S3} umull2 $ACC3,$IN23_2,${R1} umull2 $ACC4,$IN23_2,${R2} umull2 $ACC2,$IN23_2,${R0} umull2 $ACC1,$IN23_2,${S4} dup $IN23_1,${IN23_1}[0] umlal2 $ACC0,$IN23_0,${R0} umlal2 $ACC2,$IN23_0,${R2} umlal2 $ACC3,$IN23_0,${R3} umlal2 $ACC4,$IN23_0,${R4} umlal2 $ACC1,$IN23_0,${R1} dup $IN23_3,${IN23_3}[0] umlal2 $ACC0,$IN23_1,${S4} umlal2 $ACC3,$IN23_1,${R2} umlal2 $ACC2,$IN23_1,${R1} umlal2 $ACC4,$IN23_1,${R3} umlal2 $ACC1,$IN23_1,${R0} dup $IN23_4,${IN23_4}[0] umlal2 $ACC3,$IN23_3,${R0} umlal2 $ACC4,$IN23_3,${R1} umlal2 $ACC0,$IN23_3,${S2} umlal2 $ACC1,$IN23_3,${S3} umlal2 $ACC2,$IN23_3,${S4} umlal2 $ACC3,$IN23_4,${S4} umlal2 $ACC0,$IN23_4,${S1} umlal2 $ACC4,$IN23_4,${R0} umlal2 $ACC1,$IN23_4,${S2} umlal2 $ACC2,$IN23_4,${S3} b.eq .Lshort_tail //////////////////////////////////////////////////////////////// // (hash+inp[0:1])*r^4:r^3 and accumulate add $IN01_0,$IN01_0,$H0 umlal $ACC3,$IN01_2,${R1} umlal $ACC0,$IN01_2,${S3} umlal $ACC4,$IN01_2,${R2} umlal $ACC1,$IN01_2,${S4} umlal $ACC2,$IN01_2,${R0} add $IN01_1,$IN01_1,$H1 umlal $ACC3,$IN01_0,${R3} umlal $ACC0,$IN01_0,${R0} umlal $ACC4,$IN01_0,${R4} umlal $ACC1,$IN01_0,${R1} umlal $ACC2,$IN01_0,${R2} add $IN01_3,$IN01_3,$H3 umlal $ACC3,$IN01_1,${R2} umlal $ACC0,$IN01_1,${S4} umlal $ACC4,$IN01_1,${R3} umlal $ACC1,$IN01_1,${R0} umlal $ACC2,$IN01_1,${R1} add $IN01_4,$IN01_4,$H4 umlal $ACC3,$IN01_3,${R0} umlal $ACC0,$IN01_3,${S2} umlal $ACC4,$IN01_3,${R1} umlal $ACC1,$IN01_3,${S3} umlal $ACC2,$IN01_3,${S4} umlal $ACC3,$IN01_4,${S4} umlal $ACC0,$IN01_4,${S1} umlal $ACC4,$IN01_4,${R0} umlal $ACC1,$IN01_4,${S2} umlal $ACC2,$IN01_4,${S3} .Lshort_tail: //////////////////////////////////////////////////////////////// // horizontal add addp $ACC3,$ACC3,$ACC3 ldp d8,d9,[sp,#16] // meet ABI requirements addp $ACC0,$ACC0,$ACC0 ldp d10,d11,[sp,#32] addp $ACC4,$ACC4,$ACC4 ldp d12,d13,[sp,#48] addp $ACC1,$ACC1,$ACC1 ldp d14,d15,[sp,#64] addp $ACC2,$ACC2,$ACC2 //////////////////////////////////////////////////////////////// // lazy reduction, but without narrowing ushr $T0.2d,$ACC3,#26 and $ACC3,$ACC3,$MASK.2d ushr $T1.2d,$ACC0,#26 and $ACC0,$ACC0,$MASK.2d add $ACC4,$ACC4,$T0.2d // h3 -> h4 add $ACC1,$ACC1,$T1.2d // h0 -> h1 ushr $T0.2d,$ACC4,#26 and $ACC4,$ACC4,$MASK.2d ushr $T1.2d,$ACC1,#26 and $ACC1,$ACC1,$MASK.2d add $ACC2,$ACC2,$T1.2d // h1 -> h2 add $ACC0,$ACC0,$T0.2d shl $T0.2d,$T0.2d,#2 ushr $T1.2d,$ACC2,#26 and $ACC2,$ACC2,$MASK.2d add $ACC0,$ACC0,$T0.2d // h4 -> h0 add $ACC3,$ACC3,$T1.2d // h2 -> h3 ushr $T0.2d,$ACC0,#26 and $ACC0,$ACC0,$MASK.2d ushr $T1.2d,$ACC3,#26 and $ACC3,$ACC3,$MASK.2d add $ACC1,$ACC1,$T0.2d // h0 -> h1 add $ACC4,$ACC4,$T1.2d // h3 -> h4 //////////////////////////////////////////////////////////////// // write the result, can be partially reduced st4 {$ACC0,$ACC1,$ACC2,$ACC3}[0],[$ctx],#16 st1 {$ACC4}[0],[$ctx] .Lno_data_neon: ldr x29,[sp],#80 .inst 0xd50323bf // autiasp ret .size poly1305_blocks_neon,.-poly1305_blocks_neon .type poly1305_emit_neon,%function .align 5 poly1305_emit_neon: .Lpoly1305_emit_neon: ldr $is_base2_26,[$ctx,#24] cbz $is_base2_26,poly1305_emit ldp w10,w11,[$ctx] // load hash value base 2^26 ldp w12,w13,[$ctx,#8] ldr w14,[$ctx,#16] add $h0,x10,x11,lsl#26 // base 2^26 -> base 2^64 lsr $h1,x12,#12 adds $h0,$h0,x12,lsl#52 add $h1,$h1,x13,lsl#14 adc $h1,$h1,xzr lsr $h2,x14,#24 adds $h1,$h1,x14,lsl#40 adc $h2,$h2,xzr // can be partially reduced... ldp $t0,$t1,[$nonce] // load nonce and $d0,$h2,#-4 // ... so reduce add $d0,$d0,$h2,lsr#2 and $h2,$h2,#3 adds $h0,$h0,$d0 adcs $h1,$h1,xzr adc $h2,$h2,xzr adds $d0,$h0,#5 // compare to modulus adcs $d1,$h1,xzr adc $d2,$h2,xzr tst $d2,#-4 // see if it's carried/borrowed csel $h0,$h0,$d0,eq csel $h1,$h1,$d1,eq #ifdef __ARMEB__ ror $t0,$t0,#32 // flip nonce words ror $t1,$t1,#32 #endif adds $h0,$h0,$t0 // accumulate nonce adc $h1,$h1,$t1 #ifdef __ARMEB__ rev $h0,$h0 // flip output bytes rev $h1,$h1 #endif stp $h0,$h1,[$mac] // write result ret .size poly1305_emit_neon,.-poly1305_emit_neon .align 5 .Lzeros: .long 0,0,0,0,0,0,0,0 .asciz "Poly1305 for ARMv8, CRYPTOGAMS by " .align 2 ___ foreach (split("\n",$code)) { s/\b(shrn\s+v[0-9]+)\.[24]d/$1.2s/ or s/\b(fmov\s+)v([0-9]+)[^,]*,\s*x([0-9]+)/$1d$2,x$3/ or (m/\bdup\b/ and (s/\.[24]s/.2d/g or 1)) or (m/\b(eor|and)/ and (s/\.[248][sdh]/.16b/g or 1)) or (m/\bum(ul|la)l\b/ and (s/\.4s/.2s/g or 1)) or (m/\bum(ul|la)l2\b/ and (s/\.2s/.4s/g or 1)) or (m/\bst[1-4]\s+{[^}]+}\[/ and (s/\.[24]d/.s/g or 1)); s/\.[124]([sd])\[/.$1\[/; print $_,"\n"; } close STDOUT or die "error closing STDOUT: $!";