/* * Copyright (c) 2013-14 Mikko Mononen memon@inside.org * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. * * The polygon rasterization is heavily based on stb_truetype rasterizer * by Sean Barrett - http://nothings.org/ * */ /* Example Usage: // Load SVG struct SNVGImage* image = nsvgParseFromFile("test.svg."); // Create rasterizer (can be used to render multiple images). struct NSVGrasterizer* rast = nsvgCreateRasterizer(); // Allocate memory for image unsigned char* img = malloc(w*h*4); // Rasterize scaleX = width_to_see / design_width nsvgRasterize(rast, image, 0,0, scaleX, scaleY, img, w, h, w*4); */ #include "nanosvg.h" #include "FloatLib.h" #ifndef DEBUG_ALL #define DEBUG_SVG 0 #else #define DEBUG_SVG DEBUG_ALL #endif #if DEBUG_SVG == 0 #define DBG(...) #else #define DBG(...) DebugLog(DEBUG_SVG, __VA_ARGS__) #endif #define pow(x,n) PowF(x,n) #define sqrtf(x) SqrtF(x) #define sinf(x) SinF(x) #define cosf(x) CosF(x) #define tanf(x) TanF(x) #define ceilf(x) CeilF(x) #define floorf(x) FloorF(x) #define fmodf(x,y) ModF(x,y) #define acosf(x) AcosF(x) #define atan2f(x,y) Atan2F(x,y) //#define fabsf(x) ((x >= 0.0f)?x:(-x)) #define fabsf(x) FabsF(x) static void renderShape(NSVGrasterizer* r, NSVGshape* shape, float *xform, float min_scale); void DumpFloat (char* s, float* t, int N) { #if DEBUG_SVG int i; DBG("%s: ", s); for(i=0; i med) j--; // Change if (i <= j) { memcpy(&Temp, &Array[i], Size); memcpy(&Array[i++], &Array[j], Size); memcpy(&Array[j--], &Temp, Size); } } // FreePool(Temp); // Recursion if (j > Low) nsvg_qsort(Array, Low, j); if (High > i) nsvg_qsort(Array, i, High); } void qsort(void* Array, int Num, INTN Size, int (*compare)(const void* a, const void* b)) { // QuickSort(Array, 0, Num - 1, Size, compare); nsvg_qsort((NSVGedge*)Array, 0, Num - 1); } //caller is responsible for free memory NSVGrasterizer* nsvgCreateRasterizer() { NSVGrasterizer* r = (NSVGrasterizer*)AllocateZeroPool(sizeof(NSVGrasterizer)); if (r == NULL) return NULL; r->tessTol = 0.1f; //0.25f; r->distTol = 0.01f; return r; } void nsvgDeleteRasterizer(NSVGrasterizer* r) { NSVGmemPage* p; if (r == NULL) return; p = r->pages; while (p != NULL) { NSVGmemPage* next = p->next; FreePool(p); p = next; } if (r->edges) FreePool(r->edges); if (r->points) FreePool(r->points); if (r->points2) FreePool(r->points2); if (r->scanline) FreePool(r->scanline); if (r->stencil) FreePool(r->stencil); FreePool(r); } static NSVGmemPage* nsvg__nextPage(NSVGrasterizer* r, NSVGmemPage* cur) { NSVGmemPage *newp; // If using existing chain, return the next page in chain if (cur != NULL && cur->next != NULL) { return cur->next; } // Alloc new page newp = (NSVGmemPage*)AllocateZeroPool(sizeof(NSVGmemPage)); if (newp == NULL) return NULL; // Add to linked list if (cur != NULL) cur->next = newp; else r->pages = newp; return newp; } static void nsvg__resetPool(NSVGrasterizer* r) { NSVGmemPage* p = r->pages; while (p != NULL) { p->size = 0; p = p->next; } r->curpage = r->pages; } static unsigned char* nsvg__alloc(NSVGrasterizer* r, int size) { unsigned char* buf; if (size > NSVG__MEMPAGE_SIZE) return NULL; if (r->curpage == NULL || r->curpage->size+size > NSVG__MEMPAGE_SIZE) { r->curpage = nsvg__nextPage(r, r->curpage); } buf = &r->curpage->mem[r->curpage->size]; r->curpage->size += size; return buf; } static int nsvg__ptEquals(NSVGpoint* pt1, NSVGpoint* pt2, float tol) { float dx = pt2->x - pt1->x; float dy = pt2->y - pt1->y; return SqrF(dx) + SqrF(dy) < SqrF(tol); } // t is a matrix xform static void nsvg__addPathPoint(NSVGrasterizer* r, NSVGpoint* pt, float* t, int flags) { NSVGpoint* pt1; NSVGpoint pt2; if (!t) { pt2 = *pt; } else { pt2.x = pt->x*t[0] + pt->y*t[2] + t[4]; pt2.y = pt->x*t[1] + pt->y*t[3] + t[5]; } if (r->npoints > 0) { pt1 = &r->points[r->npoints-1]; if (nsvg__ptEquals(pt1, &pt2, r->distTol)) { r->points[r->npoints-1].flags |= (unsigned char)flags; return; } } if (r->npoints+1 > r->cpoints) { int OldSize = r->cpoints * sizeof(NSVGpoint); r->cpoints = r->cpoints > 0 ? r->cpoints * 2 : 64; if (OldSize == 0) { r->points = (NSVGpoint*)AllocatePool(64 * sizeof(NSVGpoint)); } else { r->points = (NSVGpoint*)ReallocatePool(OldSize, sizeof(NSVGpoint) * r->cpoints, r->points); } if (r->points == NULL) return; } pt1 = &r->points[r->npoints]; pt1->x = pt2.x; pt1->y = pt2.y; pt1->flags = (unsigned char)flags; r->npoints++; } static void nsvg__appendPathPoint(NSVGrasterizer* r, NSVGpoint* pt) { if (r->npoints+1 > r->cpoints) { int OldSize = r->cpoints * sizeof(NSVGpoint); r->cpoints = r->cpoints > 0 ? r->cpoints * 2 : 64; if (OldSize == 0) { r->points = (NSVGpoint*)AllocatePool(64 * sizeof(NSVGpoint)); } else r->points = (NSVGpoint*)ReallocatePool(OldSize, sizeof(NSVGpoint) * r->cpoints, r->points); if (r->points == NULL) return; } r->points[r->npoints] = *pt; r->npoints++; } static void nsvg__duplicatePoints(NSVGrasterizer* r) { if (r->npoints > r->cpoints2) { int OldSize = r->cpoints2 * sizeof(NSVGpoint); r->cpoints2 = r->npoints; if (OldSize == 0) { r->points2 = (NSVGpoint*)AllocatePool(r->npoints * sizeof(NSVGpoint)); } else r->points2 = (NSVGpoint*)ReallocatePool(OldSize, sizeof(NSVGpoint) * r->cpoints2, r->points2); if (r->points2 == NULL) return; } if (r->npoints) { memcpy(r->points2, r->points, sizeof(NSVGpoint) * r->npoints); } r->npoints2 = r->npoints; } static void nsvg__addEdge(NSVGrasterizer* r, float x0, float y0, float x1, float y1) { NSVGedge* e; // Skip horizontal edges if (y0 == y1) return; // DBG("nedges=%d cedges=%d\n", r->nedges, r->cedges); if (r->nedges+1 > r->cedges) { int OldSize = r->cedges * sizeof(NSVGedge); r->cedges = r->cedges > 0 ? r->cedges * 2 : 64; if (OldSize == 0) { r->edges = (NSVGedge*)AllocatePool(64 * sizeof(NSVGedge)); } else r->edges = (NSVGedge*)ReallocatePool(OldSize, sizeof(NSVGedge) * r->cedges, r->edges); if (r->edges == NULL) return; } e = &r->edges[r->nedges]; r->nedges++; if (y0 < y1) { e->x0 = x0; e->y0 = y0; e->x1 = x1; e->y1 = y1; e->dir = 1; } else { e->x0 = x1; e->y0 = y1; e->x1 = x0; e->y1 = y0; e->dir = -1; } } static float nsvg__normalize(float *x, float* y) { // float d = sqrtf((*x)*(*x) + (*y)*(*y)); float d = SqrtF(SqrF(*x) + SqrF(*y)); if (d > 1e-6f) { float id = 1.0f / d; *x *= id; *y *= id; } return d; } //static float nsvg__absf(float x) { return x < 0 ? -x : x; } #define nsvg__absf(x) FabsF(x) //static float nsvg__sqr(float x) { return x*x; } #define nsvg__sqr(x) SqrF(x) // 0 1 2 3 4 5 6 7 static float nsvg__controlPathLength(float x1, float y1, float x2, float y2, float x3, float y3, float x4, float y4) { float l1, l2, l3; l1 = (float) sqrtf(nsvg__sqr(x2 - x1) + nsvg__sqr(y2 - y1)); l2 = (float) sqrtf(nsvg__sqr(x3 - x2) + nsvg__sqr(y3 - y2)); l3 = (float) sqrtf(nsvg__sqr(x4 - x3) + nsvg__sqr(y4 - y3)); return l1 + l2 + l3; } static void nsvg__flattenCubicBez2(NSVGrasterizer* r, float* x, float* t, int type) { float ax, ay, bx, by, cx, cy, dx, dy; float x1, y1, x2, y2, x3, y3, x4, y4; // float pointX, pointY; NSVGpoint p; float firstFDX, firstFDY, secondFDX, secondFDY, thirdFDX, thirdFDY; float h, h2, h3; int i; float control_path_len; int N; x1 = x[0]*t[0] + x[1]*t[2] + t[4]; y1 = x[0]*t[1] + x[1]*t[3] + t[5]; x2 = x[2]*t[0] + x[3]*t[2] + t[4]; y2 = x[2]*t[1] + x[3]*t[3] + t[5]; x3 = x[4]*t[0] + x[5]*t[2] + t[4]; y3 = x[4]*t[1] + x[5]*t[3] + t[5]; x4 = x[6]*t[0] + x[7]*t[2] + t[4]; y4 = x[6]*t[1] + x[7]*t[3] + t[5]; control_path_len = nsvg__controlPathLength(x1, y1, x2, y2, x3, y3, x4, y4); /* This is going to need tweaking, gives approximate same number of divisons as old code on the test image */ N = (int)(control_path_len / ( 32 * r->tessTol)) + 2; if (N > 1024) N = 1024; /* Compute polynomial coefficients from Bezier points */ ax = -x1 + 3.f * x2 + -3.f * x3 + x4; ay = -y1 + 3.f * y2 + -3.f * y3 + y4; bx = 3.f * x1 - 6.f * x2 + 3.f * x3; by = 3.f * y1 - 6.f * y2 + 3.f * y3; cx = 3.0f * (x2 - x1); //-3 * x1 + 3 * x2; cy = 3.0f * (y2 - y1); //-3 * y1 + 3 * y2; dx = x1; dy = y1; /* Set up step size */ h = 1.0f / (N-1); h2 = h * h; h3 = h2 * h; /* Compute forward differences from Bezier points and "h" */ p.x = dx; p.y = dy; firstFDX = ((ax * h + bx) * h + cx) * h; firstFDY = ((ay * h + by) * h + cy) * h; secondFDX = (6.0f * ax * h + 2.0f * bx) * h2; secondFDY = (6.0f * ay * h + 2.0f * by) * h2; thirdFDX = 6.0f * ax * h3; thirdFDY = 6.0f * ay * h3; /* Compute points at each step */ for (i = 0; i < N-1; i++) { nsvg__addPathPoint(r, &p, NULL, 0); p.x += firstFDX; p.y += firstFDY; firstFDX += secondFDX; firstFDY += secondFDY; secondFDX += thirdFDX; secondFDY += thirdFDY; } nsvg__addPathPoint(r, &p, NULL, type); return; } static void nsvg__flattenShape(NSVGrasterizer* r, NSVGshape* shape, float* xform) { int i, j; NSVGpath* path; NSVGpoint pt; // DumpFloat("flattenShape with", xform, 6); for (path = shape->paths; path != NULL; path = path->next) { r->npoints = 0; // Flatten path pt.x = path->pts[0]; pt.y = path->pts[1]; nsvg__addPathPoint(r, &pt, xform, 0); for (i = 0; i < path->npts-1; i += 3) { float* p = &path->pts[i*2]; nsvg__flattenCubicBez2(r, p, xform, 0); } // Close path nsvg__addPathPoint(r, &pt, xform, 0); // Build edges for (i = 0, j = r->npoints-1; i < r->npoints; j = i++) nsvg__addEdge(r, r->points[j].x, r->points[j].y, r->points[i].x, r->points[i].y); } } enum NSVGpointFlags { NSVG_PT_CORNER = 0x01, NSVG_PT_BEVEL = 0x02, NSVG_PT_LEFT = 0x04 }; static void nsvg__initClosed(NSVGpoint* left, NSVGpoint* right, NSVGpoint* p0, NSVGpoint* p1, float lineWidth) { float w = lineWidth * 0.5f; float dx = p1->x - p0->x; float dy = p1->y - p0->y; float len = nsvg__normalize(&dx, &dy); float px = p0->x + dx*len*0.5f, py = p0->y + dy*len*0.5f; float dlx = dy, dly = -dx; float lx = px - dlx*w, ly = py - dly*w; float rx = px + dlx*w, ry = py + dly*w; left->x = lx; left->y = ly; right->x = rx; right->y = ry; } static void nsvg__buttCap(NSVGrasterizer* r, NSVGpoint* left, NSVGpoint* right, NSVGpoint* p, float dx, float dy, float lineWidth, int connect) { float w = lineWidth * 0.5f; float px = p->x, py = p->y; float dlx = dy, dly = -dx; float lx = px - dlx*w, ly = py - dly*w; float rx = px + dlx*w, ry = py + dly*w; nsvg__addEdge(r, lx, ly, rx, ry); if (connect) { nsvg__addEdge(r, left->x, left->y, lx, ly); nsvg__addEdge(r, rx, ry, right->x, right->y); } left->x = lx; left->y = ly; right->x = rx; right->y = ry; } static void nsvg__squareCap(NSVGrasterizer* r, NSVGpoint* left, NSVGpoint* right, NSVGpoint* p, float dx, float dy, float lineWidth, int connect) { float w = lineWidth * 0.5f; float px = p->x - dx*w, py = p->y - dy*w; float dlx = dy, dly = -dx; float lx = px - dlx*w, ly = py - dly*w; float rx = px + dlx*w, ry = py + dly*w; nsvg__addEdge(r, lx, ly, rx, ry); if (connect) { nsvg__addEdge(r, left->x, left->y, lx, ly); nsvg__addEdge(r, rx, ry, right->x, right->y); } left->x = lx; left->y = ly; right->x = rx; right->y = ry; } #ifndef NSVG_PI #define NSVG_PI (3.14159265358979323846264338327f) #endif static void nsvg__roundCap(NSVGrasterizer* r, NSVGpoint* left, NSVGpoint* right, NSVGpoint* p, float dx, float dy, float lineWidth, int ncap, int connect) { int i; float w = lineWidth * 0.5f; float px = p->x, py = p->y; float dlx = dy, dly = -dx; float lx = 0, ly = 0, rx = 0, ry = 0, prevx = 0, prevy = 0; for (i = 0; i < ncap; i++) { float a = (float)i/(float)(ncap-1)*NSVG_PI; float ax = cosf(a) * w, ay = sinf(a) * w; float x = px - dlx*ax - dx*ay; float y = py - dly*ax - dy*ay; if (i > 0) nsvg__addEdge(r, prevx, prevy, x, y); prevx = x; prevy = y; if (i == 0) { lx = x; ly = y; } else if (i == ncap-1) { rx = x; ry = y; } } if (connect) { nsvg__addEdge(r, left->x, left->y, lx, ly); nsvg__addEdge(r, rx, ry, right->x, right->y); } left->x = lx; left->y = ly; right->x = rx; right->y = ry; } static void nsvg__bevelJoin(NSVGrasterizer* r, NSVGpoint* left, NSVGpoint* right, NSVGpoint* p0, NSVGpoint* p1, float lineWidth) { float w = lineWidth * 0.5f; float dlx0 = p0->dy, dly0 = -p0->dx; float dlx1 = p1->dy, dly1 = -p1->dx; float lx0 = p1->x - (dlx0 * w), ly0 = p1->y - (dly0 * w); float rx0 = p1->x + (dlx0 * w), ry0 = p1->y + (dly0 * w); float lx1 = p1->x - (dlx1 * w), ly1 = p1->y - (dly1 * w); float rx1 = p1->x + (dlx1 * w), ry1 = p1->y + (dly1 * w); nsvg__addEdge(r, lx0, ly0, left->x, left->y); nsvg__addEdge(r, lx1, ly1, lx0, ly0); nsvg__addEdge(r, right->x, right->y, rx0, ry0); nsvg__addEdge(r, rx0, ry0, rx1, ry1); left->x = lx1; left->y = ly1; right->x = rx1; right->y = ry1; } static void nsvg__miterJoin(NSVGrasterizer* r, NSVGpoint* left, NSVGpoint* right, NSVGpoint* p0, NSVGpoint* p1, float lineWidth) { float w = lineWidth * 0.5f; float dlx0 = p0->dy, dly0 = -p0->dx; float dlx1 = p1->dy, dly1 = -p1->dx; float lx0, rx0, lx1, rx1; float ly0, ry0, ly1, ry1; if (p1->flags & NSVG_PT_LEFT) { lx0 = lx1 = p1->x - p1->dmx * w; ly0 = ly1 = p1->y - p1->dmy * w; nsvg__addEdge(r, lx1, ly1, left->x, left->y); rx0 = p1->x + (dlx0 * w); ry0 = p1->y + (dly0 * w); rx1 = p1->x + (dlx1 * w); ry1 = p1->y + (dly1 * w); nsvg__addEdge(r, right->x, right->y, rx0, ry0); nsvg__addEdge(r, rx0, ry0, rx1, ry1); } else { lx0 = p1->x - (dlx0 * w); ly0 = p1->y - (dly0 * w); lx1 = p1->x - (dlx1 * w); ly1 = p1->y - (dly1 * w); nsvg__addEdge(r, lx0, ly0, left->x, left->y); nsvg__addEdge(r, lx1, ly1, lx0, ly0); rx0 = rx1 = p1->x + p1->dmx * w; ry0 = ry1 = p1->y + p1->dmy * w; nsvg__addEdge(r, right->x, right->y, rx1, ry1); } left->x = lx1; left->y = ly1; right->x = rx1; right->y = ry1; } static void nsvg__roundJoin(NSVGrasterizer* r, NSVGpoint* left, NSVGpoint* right, NSVGpoint* p0, NSVGpoint* p1, float lineWidth, int ncap) { int i, n; float w = lineWidth * 0.5f; float dlx0 = p0->dy, dly0 = -p0->dx; float dlx1 = p1->dy, dly1 = -p1->dx; float a0 = atan2f(dly0, dlx0); float a1 = atan2f(dly1, dlx1); float da = a1 - a0; float lx, ly, rx, ry; if (da < -NSVG_PI) da += PI2; //NSVG_PI*2; if (da > NSVG_PI) da -= PI2; //NSVG_PI*2; n = (int)ceilf((nsvg__absf(da) / NSVG_PI) * (float)ncap); if (n < 2) n = 2; if (n > ncap) n = ncap; lx = left->x; ly = left->y; rx = right->x; ry = right->y; for (i = 0; i < n; i++) { float u = (float)i/(float)(n-1); float a = a0 + u*da; float ax = cosf(a) * w, ay = sinf(a) * w; float lx1 = p1->x - ax, ly1 = p1->y - ay; float rx1 = p1->x + ax, ry1 = p1->y + ay; nsvg__addEdge(r, lx1, ly1, lx, ly); nsvg__addEdge(r, rx, ry, rx1, ry1); lx = lx1; ly = ly1; rx = rx1; ry = ry1; } left->x = lx; left->y = ly; right->x = rx; right->y = ry; } static void nsvg__straightJoin(NSVGrasterizer* r, NSVGpoint* left, NSVGpoint* right, NSVGpoint* p1, float lineWidth) { float w = lineWidth * 0.5f; float lx = p1->x - (p1->dmx * w), ly = p1->y - (p1->dmy * w); float rx = p1->x + (p1->dmx * w), ry = p1->y + (p1->dmy * w); nsvg__addEdge(r, lx, ly, left->x, left->y); nsvg__addEdge(r, right->x, right->y, rx, ry); left->x = lx; left->y = ly; right->x = rx; right->y = ry; } static int nsvg__curveDivs(float r, float arc, float tol) { float da = acosf(r / (r + tol)) * 2.0f; int divs = (int)ceilf(arc / da); if (divs < 2) divs = 2; return divs; } static void nsvg__expandStroke(NSVGrasterizer* r, NSVGpoint* points, int npoints, int closed, int lineJoin, int lineCap, float lineWidth) { int ncap = nsvg__curveDivs(lineWidth*0.5f, NSVG_PI, r->tessTol); // Calculate divisions per half circle. NSVGpoint left = {0,0,0,0,0,0,0,0}, right = {0,0,0,0,0,0,0,0}, firstLeft = {0,0,0,0,0,0,0,0}, firstRight = {0,0,0,0,0,0,0,0}; NSVGpoint* p0, *p1; int j, s, e; // Build stroke edges if (closed) { // Looping p0 = &points[npoints-1]; p1 = &points[0]; s = 0; e = npoints; } else { // Add cap p0 = &points[0]; p1 = &points[1]; s = 1; e = npoints-1; } if (closed) { nsvg__initClosed(&left, &right, p0, p1, lineWidth); firstLeft = left; firstRight = right; } else { // Add cap float dx = p1->x - p0->x; float dy = p1->y - p0->y; nsvg__normalize(&dx, &dy); if (lineCap == NSVG_CAP_BUTT) nsvg__buttCap(r, &left, &right, p0, dx, dy, lineWidth, 0); else if (lineCap == NSVG_CAP_SQUARE) nsvg__squareCap(r, &left, &right, p0, dx, dy, lineWidth, 0); else if (lineCap == NSVG_CAP_ROUND) nsvg__roundCap(r, &left, &right, p0, dx, dy, lineWidth, ncap, 0); } for (j = s; j < e; ++j) { if (p1->flags & NSVG_PT_CORNER) { if (lineJoin == NSVG_JOIN_ROUND) nsvg__roundJoin(r, &left, &right, p0, p1, lineWidth, ncap); else if (lineJoin == NSVG_JOIN_BEVEL || (p1->flags & NSVG_PT_BEVEL)) nsvg__bevelJoin(r, &left, &right, p0, p1, lineWidth); else nsvg__miterJoin(r, &left, &right, p0, p1, lineWidth); } else { nsvg__straightJoin(r, &left, &right, p1, lineWidth); } p0 = p1++; } if (closed) { // Loop it nsvg__addEdge(r, firstLeft.x, firstLeft.y, left.x, left.y); nsvg__addEdge(r, right.x, right.y, firstRight.x, firstRight.y); } else { // Add cap float dx = p1->x - p0->x; float dy = p1->y - p0->y; nsvg__normalize(&dx, &dy); if (lineCap == NSVG_CAP_BUTT) nsvg__buttCap(r, &right, &left, p1, -dx, -dy, lineWidth, 1); else if (lineCap == NSVG_CAP_SQUARE) nsvg__squareCap(r, &right, &left, p1, -dx, -dy, lineWidth, 1); else if (lineCap == NSVG_CAP_ROUND) nsvg__roundCap(r, &right, &left, p1, -dx, -dy, lineWidth, ncap, 1); } } static void nsvg__prepareStroke(NSVGrasterizer* r, float miterLimit, int lineJoin) { int i, j; NSVGpoint* p0, *p1; p0 = &r->points[r->npoints-1]; p1 = &r->points[0]; for (i = 0; i < r->npoints; i++) { // Calculate segment direction and length p0->dx = p1->x - p0->x; p0->dy = p1->y - p0->y; p0->len = nsvg__normalize(&p0->dx, &p0->dy); // Advance p0 = p1++; } // calculate joins p0 = &r->points[r->npoints-1]; p1 = &r->points[0]; for (j = 0; j < r->npoints; j++) { float dlx0, dly0, dlx1, dly1, dmr2, cross; dlx0 = p0->dy; dly0 = -p0->dx; dlx1 = p1->dy; dly1 = -p1->dx; // Calculate extrusions p1->dmx = (dlx0 + dlx1) * 0.5f; p1->dmy = (dly0 + dly1) * 0.5f; dmr2 = p1->dmx*p1->dmx + p1->dmy*p1->dmy; if (dmr2 > 0.000001f) { float s2 = 1.0f / dmr2; if (s2 > 600.0f) { s2 = 600.0f; } p1->dmx *= s2; p1->dmy *= s2; } // Clear flags, but keep the corner. p1->flags = (p1->flags & NSVG_PT_CORNER) ? NSVG_PT_CORNER : 0; // Keep track of left turns. cross = p1->dx * p0->dy - p0->dx * p1->dy; if (cross > 0.0f) p1->flags |= NSVG_PT_LEFT; // Check to see if the corner needs to be beveled. if (p1->flags & NSVG_PT_CORNER) { if ((dmr2 * miterLimit*miterLimit) < 1.0f || lineJoin == NSVG_JOIN_BEVEL || lineJoin == NSVG_JOIN_ROUND) { p1->flags |= NSVG_PT_BEVEL; } } p0 = p1++; } } static void nsvg__flattenShapeStroke(NSVGrasterizer* r, NSVGshape* shape, float* xform) { int i, j, closed; NSVGpath* path; NSVGpoint* p0, *p1; NSVGpoint p; float lineWidth = 0.5; float scalex1 = fabsf(xform[0]); float scalex2 = fabsf(xform[2]); float scaley1 = fabsf(xform[1]); float scaley2 = fabsf(xform[3]); // float scale = (scalex > scaley)?scalex:scaley; //(scalex + scaley) * 0.5f float scale = (sqrtf(scalex1*scalex1 + scalex2*scalex2) + sqrtf(scaley1*scaley1 + scaley2*scaley2)) * 0.5f; float miterLimit = shape->miterLimit; int lineJoin = shape->strokeLineJoin; int lineCap = shape->strokeLineCap; /* if (shape->isText) { lineWidth = shape->strokeWidth; } else { */ lineWidth = shape->strokeWidth * scale; // } //DumpFloat("shapeStroke", xform, 6); for (path = shape->paths; path != NULL; path = path->next) { // Flatten path r->npoints = 0; p.x = path->pts[0]; p.y = path->pts[1]; nsvg__addPathPoint(r, &p, xform, NSVG_PT_CORNER); for (i = 0; i < path->npts-1; i += 3) { float* pt = &path->pts[i*2]; nsvg__flattenCubicBez2(r, pt, xform, NSVG_PT_CORNER); } if (r->npoints < 2) continue; closed = path->closed; // If the first and last points are the same, remove the last, mark as closed path. p0 = &r->points[r->npoints-1]; p1 = &r->points[0]; if (nsvg__ptEquals(p0, p1, r->distTol)) { r->npoints--; p0 = &r->points[r->npoints-1]; closed = 1; } if (shape->strokeDashCount > 0) { int idash = 0, dashState = 1; float totalDist = 0, dashLen, allDashLen, dashOffset; NSVGpoint* cur; if (closed) nsvg__appendPathPoint(r, p1); // Duplicate points -> points2. nsvg__duplicatePoints(r); r->npoints = 0; cur = &r->points2[0]; nsvg__appendPathPoint(r, cur); // Figure out dash offset. allDashLen = 0; for (j = 0; j < shape->strokeDashCount; j++) allDashLen += shape->strokeDashArray[j]; if (shape->strokeDashCount & 1) allDashLen *= 2.0f; // Find location inside pattern dashOffset = fmodf(shape->strokeDashOffset, allDashLen); if (dashOffset < 0.0f) dashOffset += allDashLen; while (dashOffset > shape->strokeDashArray[idash]) { dashOffset -= shape->strokeDashArray[idash]; idash = (idash + 1) % shape->strokeDashCount; } dashLen = (shape->strokeDashArray[idash] - dashOffset) * scale; for (j = 1; j < r->npoints2; ) { float dx = r->points2[j].x - cur->x; float dy = r->points2[j].y - cur->y; float dist = sqrtf(dx*dx + dy*dy); if ((totalDist + dist) > dashLen) { // Calculate intermediate point float d = (dashLen - totalDist) / dist; NSVGpoint pc; pc.x = cur->x + dx * d; pc.y = cur->y + dy * d; nsvg__addPathPoint(r, &pc, NULL, NSVG_PT_CORNER); // Stroke if (r->npoints > 1 && dashState) { nsvg__prepareStroke(r, miterLimit, lineJoin); nsvg__expandStroke(r, r->points, r->npoints, 0, lineJoin, lineCap, lineWidth); } // Advance dash pattern dashState = !dashState; idash = (idash+1) % shape->strokeDashCount; dashLen = shape->strokeDashArray[idash] * scale; // Restart cur->x = pc.x; cur->y = pc.y; cur->flags = NSVG_PT_CORNER; totalDist = 0.0f; r->npoints = 0; nsvg__appendPathPoint(r, cur); } else { totalDist += dist; cur = &r->points2[j]; nsvg__appendPathPoint(r, cur); j++; } } // Stroke any leftover path if (r->npoints > 1 && dashState) nsvg__expandStroke(r, r->points, r->npoints, 0, lineJoin, lineCap, lineWidth); } else { nsvg__prepareStroke(r, miterLimit, lineJoin); nsvg__expandStroke(r, r->points, r->npoints, closed, lineJoin, lineCap, lineWidth); } } } /* static int nsvg__cmpEdge(const void *p, const void *q) { const NSVGedge* a = (const NSVGedge*)p; const NSVGedge* b = (const NSVGedge*)q; if (a->y0 < b->y0) return -1; if (a->y0 > b->y0) return 1; return 0; } */ static NSVGactiveEdge* nsvg__addActive(NSVGrasterizer* r, NSVGedge* e, float startPoint) { NSVGactiveEdge* z; if (r->freelist != NULL) { // Restore from freelist. z = r->freelist; r->freelist = z->next; } else { // Alloc new edge. z = (NSVGactiveEdge*)nsvg__alloc(r, sizeof(NSVGactiveEdge)); if (z == NULL) return NULL; } float dxdy = (e->x1 - e->x0) / (e->y1 - e->y0); // STBTT_assert(e->y0 <= start_point); // round dx down to avoid going too far if (dxdy < 0) z->dx = (int)(-floorf(NSVG__FIX * -dxdy)); else z->dx = (int)floorf(NSVG__FIX * dxdy); z->x = (int)floorf(NSVG__FIX * (e->x0 + dxdy * (startPoint - e->y0))); // z->x -= off_x * FIX; z->ey = e->y1; z->next = 0; z->dir = e->dir; return z; } static void nsvg__freeActive(NSVGrasterizer* r, NSVGactiveEdge* z) { z->next = r->freelist; r->freelist = z; } static void nsvg__fillScanline(unsigned char* scanline, int len, int x0, int x1, int maxWeight, int* xmin, int* xmax) { int i = x0 >> NSVG__FIXSHIFT; int j = x1 >> NSVG__FIXSHIFT; if (i < *xmin) *xmin = i; if (j > *xmax) *xmax = j; if (i < len && j >= 0) { if (i == j) { // x0,x1 are the same pixel, so compute combined coverage scanline[i] = (unsigned char)(scanline[i] + ((x1 - x0) * maxWeight >> NSVG__FIXSHIFT)); } else { if (i >= 0) // add antialiasing for x0 scanline[i] = (unsigned char)(scanline[i] + (((NSVG__FIX - (x0 & NSVG__FIXMASK)) * maxWeight) >> NSVG__FIXSHIFT)); else i = -1; // clip if (j < len) // add antialiasing for x1 scanline[j] = (unsigned char)(scanline[j] + (((x1 & NSVG__FIXMASK) * maxWeight) >> NSVG__FIXSHIFT)); else j = len; // clip for (++i; i < j; ++i) // fill pixels between x0 and x1 scanline[i] = (unsigned char)(scanline[i] + maxWeight); } } } // note: this routine clips fills that extend off the edges... ideally this // wouldn't happen, but it could happen if the truetype glyph bounding boxes // are wrong, or if the user supplies a too-small bitmap static void nsvg__fillActiveEdges(unsigned char* scanline, int len, NSVGactiveEdge* e, int maxWeight, int* xmin, int* xmax, char fillRule) { // non-zero winding fill int x0 = 0, w = 0; if (fillRule == NSVG_FILLRULE_NONZERO) { // Non-zero while (e != NULL) { if (w == 0) { // if we're currently at zero, we need to record the edge start point x0 = e->x; w += e->dir; } else { int x1 = e->x; w += e->dir; // if we went to zero, we need to draw if (w == 0) nsvg__fillScanline(scanline, len, x0, x1, maxWeight, xmin, xmax); } e = e->next; } } else if (fillRule == NSVG_FILLRULE_EVENODD) { // Even-odd while (e != NULL) { if (w == 0) { // if we're currently at zero, we need to record the edge start point x0 = e->x; w = 1; } else { int x1 = e->x; w = 0; nsvg__fillScanline(scanline, len, x0, x1, maxWeight, xmin, xmax); } e = e->next; } } } static float nsvg__clampf(float a, float mn, float mx) { return a < mn ? mn : (a > mx ? mx : a); } static unsigned int nsvg__RGBA(unsigned char r, unsigned char g, unsigned char b, unsigned char a) { return (b) | (g << 8) | (r << 16) | (a << 24); } static unsigned int nsvg__lerpRGBA(unsigned int c0, unsigned int c1, float u, float opacity) { float xu = nsvg__clampf(u, 0.0f, 1.0f) * 256.0f; int iu = (int)(xu); //0..256 int ia = (int)(nsvg__clampf(opacity, 0.0f, 1.0f) * 256.0f); int b = (((c0) & 0xff)*(256-iu) + (((c1) & 0xff)*iu)) >> 8; int g = (((c0>>8) & 0xff)*(256-iu) + (((c1>>8) & 0xff)*iu)) >> 8; int r = (((c0>>16) & 0xff)*(256-iu) + (((c1>>16) & 0xff)*iu)) >> 8; int a = ((((c0>>24) & 0xff)*(256-iu) + (((c1>>24) & 0xff)*iu)) * ia) >> 16; return nsvg__RGBA((unsigned char)r, (unsigned char)g, (unsigned char)b, (unsigned char)a); } static unsigned int nsvg__applyOpacity(unsigned int c, float u) { int iu = (int)(nsvg__clampf(u, 0.0f, 1.0f) * 256.0f); int b = (c) & 0xff; int g = (c>>8) & 0xff; int r = (c>>16) & 0xff; int a = (((c>>24) & 0xff)*iu) >> 8; return nsvg__RGBA((unsigned char)r, (unsigned char)g, (unsigned char)b, (unsigned char)a); } static inline int nsvg__div255(int x) { return ((x+1) * 257) >> 16; } static void nsvg__scanlineBit( unsigned char* row, int count, unsigned char* cover, int x, int y, /* float tx, float ty, float scalex, float scaley, */ NSVGcachedPaint* cache) { //xxx where is security check that x/8 and (x+count)/8 is inside row[] index? // called by r->fscanline(&r->bitmap[y * r->stride], xmax-xmin+1, &r->scanline[xmin], xmin, y,/* tx,ty, scalex, scaley, */ cache); int x1 = x + count; for (; x < x1; x++) { row[x / 8] |= 1 << (x % 8); } } static void nsvg__scanlineSolid(unsigned char* row, int count, unsigned char* cover, int x, int y, /* float tx, float ty, float scalex, float scaley, */ NSVGcachedPaint* cache) { // static int once = 0; unsigned char* dst = row + x*4; if (cache->type == NSVG_PAINT_COLOR) { int i, cr, cg, cb, ca; cr = cache->colors[0] & 0xff; cg = (cache->colors[0] >> 8) & 0xff; cb = (cache->colors[0] >> 16) & 0xff; ca = (cache->colors[0] >> 24) & 0xff; for (i = 0; i < count; i++) { int r,g,b; int a = nsvg__div255((int)cover[0] * ca); int ia = 255 - a; // Premultiply r = nsvg__div255(cr * a); g = nsvg__div255(cg * a); b = nsvg__div255(cb * a); // Blend over r += nsvg__div255(ia * (int)dst[0]); g += nsvg__div255(ia * (int)dst[1]); b += nsvg__div255(ia * (int)dst[2]); a += nsvg__div255(ia * (int)dst[3]); dst[0] = (unsigned char)r; dst[1] = (unsigned char)g; dst[2] = (unsigned char)b; dst[3] = (unsigned char)a; cover++; dst += 4; } } else if (cache->type == NSVG_PAINT_LINEAR_GRADIENT) { // TODO: spread modes. // TODO: plenty of opportunities to optimize. float fx, fy, gy; float* t = cache->xform; // DumpFloat("cache grad xform", t, 6); int i, cr, cg, cb, ca; unsigned int c; //x,y - pixels fx = (float)x; fy = (float)y; // dx = 1.0f; gy = fx*t[1] + fy*t[3] + t[5]; //gradient direction. Point at cut for (i = 0; i < count; i++) { int r,g,b,a,ia; int level = cache->coarse; c = cache->colors[dither(nsvg__clampf(gy*(255.0f-level), 0, (float)(255-level)), level)]; //assumed gy = 0.0 ... 1.0f cr = (c) & 0xff; cg = (c >> 8) & 0xff; cb = (c >> 16) & 0xff; ca = (c >> 24) & 0xff; a = nsvg__div255((int)cover[0] * ca); ia = 255 - a; // Premultiply r = nsvg__div255(cr * a); g = nsvg__div255(cg * a); b = nsvg__div255(cb * a); // Blend over r += nsvg__div255(ia * (int)dst[0]); g += nsvg__div255(ia * (int)dst[1]); b += nsvg__div255(ia * (int)dst[2]); a += nsvg__div255(ia * (int)dst[3]); dst[0] = (unsigned char)r; dst[1] = (unsigned char)g; dst[2] = (unsigned char)b; dst[3] = (unsigned char)a; cover++; dst += 4; // fx += dx; gy += t[1]; } } else if (cache->type == NSVG_PAINT_RADIAL_GRADIENT) { // TODO: spread modes. // TODO: plenty of opportunities to optimize. // TODO: focus (fx,fy) float fx, fy, gx, gy, gd; float* t = cache->xform; // DumpFloat("cache grad xform", t, 6); int i, cr, cg, cb, ca; unsigned int c; fx = (float)x; fy = (float)y; // dx = 1.0f; gx = fx*t[0] + fy*t[2] + t[4]; gy = fx*t[1] + fy*t[3] + t[5]; for (i = 0; i < count; i++) { int r,g,b,a,ia; gd = sqrtf(gx*gx + gy*gy); // DBG("gx=%ls gy=%ls\n", PoolPrintFloat(gx), PoolPrintFloat(gy)); int level = cache->coarse; c = cache->colors[dither(nsvg__clampf(gd*(255.0f-level*2), 0, (254.99f-level*2)), level)]; cr = (c) & 0xff; cg = (c >> 8) & 0xff; cb = (c >> 16) & 0xff; ca = (c >> 24) & 0xff; a = nsvg__div255((int)cover[0] * ca); ia = 255 - a; // Premultiply r = nsvg__div255(cr * a); g = nsvg__div255(cg * a); b = nsvg__div255(cb * a); // Blend over r += nsvg__div255(ia * (int)dst[0]); g += nsvg__div255(ia * (int)dst[1]); b += nsvg__div255(ia * (int)dst[2]); a += nsvg__div255(ia * (int)dst[3]); dst[0] = (unsigned char)r; dst[1] = (unsigned char)g; dst[2] = (unsigned char)b; dst[3] = (unsigned char)a; cover++; dst += 4; // fx += dx; gx += t[0]; gy += t[1]; } } else if (cache->type == NSVG_PAINT_PATTERN) { // TODO float fx, fy, dx, gx, gy; float* t = cache->xform; EG_IMAGE *Pattern = (EG_IMAGE *)cache->image; if (!Pattern) { DBG("no pattern to fill\n"); return; } INTN Width = Pattern->Width; INTN Height = Pattern->Height; int i, cr, cg, cb, ca, ix, iy; INTN j; fx = (float)x; fy = (float)y; dx = 1.0f; // unsigned int c; for (i = 0; i < count; i++) { int r,g,b,a,ia; gx = fx*t[0] + fy*t[2] + t[4]; gy = fx*t[1] + fy*t[3] + t[5]; ix = dither(gx * Width, 2) % Width; iy = dither(gy * Height, 2) % Height; j = iy * Width + ix; cr = Pattern->PixelData[j].r; cb = Pattern->PixelData[j].b; cg = Pattern->PixelData[j].g; ca = Pattern->PixelData[j].a; a = nsvg__div255((int)cover[0] * ca); ia = 255 - a; // Premultiply r = nsvg__div255(cr * a); g = nsvg__div255(cg * a); b = nsvg__div255(cb * a); // Blend over r += nsvg__div255(ia * (int)dst[0]); g += nsvg__div255(ia * (int)dst[1]); b += nsvg__div255(ia * (int)dst[2]); a += nsvg__div255(ia * (int)dst[3]); dst[0] = (unsigned char)r; dst[1] = (unsigned char)g; dst[2] = (unsigned char)b; dst[3] = (unsigned char)a; cover++; dst += 4; fx += dx; } } else if (cache->type == NSVG_PAINT_CONIC_GRADIENT) { // TODO: spread modes. // TODO: plenty of opportunities to optimize. // TODO: focus (fx,fy) float fx, fy, gx, gy, gd; float* t = cache->xform; // DumpFloat("cache grad xform", t, 6); int i, cr, cg, cb, ca; unsigned int c; fx = (float)x; fy = (float)y; // dx = 1.0f; gx = fx*t[0] + fy*t[2] + t[4]; gy = fx*t[1] + fy*t[3] + t[5]; for (i = 0; i < count; i++) { int r,g,b,a,ia; if ((gx == 0.f) && (gy == 0.f)) { c = 0; } else { gd = (Atan2F(gy, gx) + PI) / PI2; c = cache->colors[dither(nsvg__clampf(gd*254.0f, 0, 253.99f), 1)]; } cr = (c) & 0xff; cg = (c >> 8) & 0xff; cb = (c >> 16) & 0xff; ca = (c >> 24) & 0xff; a = nsvg__div255((int)cover[0] * ca); ia = 255 - a; // Premultiply r = nsvg__div255(cr * a); g = nsvg__div255(cg * a); b = nsvg__div255(cb * a); // Blend over r += nsvg__div255(ia * (int)dst[0]); g += nsvg__div255(ia * (int)dst[1]); b += nsvg__div255(ia * (int)dst[2]); a += nsvg__div255(ia * (int)dst[3]); dst[0] = (unsigned char)r; dst[1] = (unsigned char)g; dst[2] = (unsigned char)b; dst[3] = (unsigned char)a; cover++; dst += 4; // fx += dx; gx += t[0]; gy += t[1]; } } } static void nsvg__rasterizeSortedEdges(NSVGrasterizer *r, /* float tx, float ty, float scalex, float scaley, */ NSVGcachedPaint* cache, char fillRule, NSVGclip* clip) { NSVGactiveEdge *active = NULL; int y, s; int e = 0; int maxWeight = (255 / NSVG__SUBSAMPLES); // weight per vertical scanline int xmin, xmax; for (y = 0; y < r->height; y++) { SetMem(r->scanline, r->width, 0); xmin = r->width; xmax = 0; for (s = 0; s < NSVG__SUBSAMPLES; ++s) { // find center of pixel for this scanline float scany = (float)(y*NSVG__SUBSAMPLES + s) + 0.5f; NSVGactiveEdge **step = &active; // update all active edges; // remove all active edges that terminate before the center of this scanline while (*step) { NSVGactiveEdge *z = *step; if (z->ey <= scany) { *step = z->next; // delete from list // NSVG__assert(z->valid); nsvg__freeActive(r, z); } else { z->x += z->dx; // advance to position for current scanline step = &((*step)->next); // advance through list } } // resort the list if needed for (;;) { int changed = 0; step = &active; while (*step && (*step)->next) { if ((*step)->x > (*step)->next->x) { NSVGactiveEdge* t = *step; NSVGactiveEdge* q = t->next; t->next = q->next; q->next = t; *step = q; changed = 1; } step = &(*step)->next; } if (!changed) break; } // insert all edges that start before the center of this scanline -- omit ones that also end on this scanline while (e < r->nedges && r->edges[e].y0 <= scany) { if (r->edges[e].y1 > scany) { NSVGactiveEdge* z = nsvg__addActive(r, &r->edges[e], scany); if (z == NULL) break; // find insertion point if (active == NULL) { active = z; } else if (z->x < active->x) { // insert at front z->next = active; active = z; } else { // find thing to insert AFTER NSVGactiveEdge* p = active; while (p->next && p->next->x < z->x) p = p->next; // at this point, p->next->x is NOT < z->x z->next = p->next; p->next = z; } } e++; } // now process all active edges in non-zero fashion if (active != NULL) nsvg__fillActiveEdges(r->scanline, r->width, active, maxWeight, &xmin, &xmax, fillRule); } // Blit if (xmin < 0) xmin = 0; if (xmax > r->width-1) xmax = r->width-1; if (xmin <= xmax) { // nsvg__scanlineSolid(&r->bitmap[y * r->stride] + xmin*4, xmax-xmin+1, &r->scanline[xmin], xmin, y, tx,ty, scalex, scaley, cache); int i, j; for (i = 0; i < clip->count; i++) { unsigned char* stencil = &r->stencil[r->stencilSize * clip->index[i] + y * r->stencilStride]; for (j = xmin; j <= xmax; j++) { if (((stencil[j / 8] >> (j % 8)) & 1) == 0) { r->scanline[j] = 0; } } } r->fscanline(&r->bitmap[y * r->stride], xmax-xmin+1, &r->scanline[xmin], xmin, y,/* tx,ty, scalex, scaley, */ cache); } } } static void nsvg__unpremultiplyAlpha(unsigned char* image, int w, int h, int stride) { int x,y; // Unpremultiply for (y = 0; y < h; y++) { unsigned char *row = &image[y*stride]; for (x = 0; x < w; x++) { int r = row[0], g = row[1], b = row[2], a = row[3]; if (a != 0) { row[0] = (unsigned char)(r*255/a); row[1] = (unsigned char)(g*255/a); row[2] = (unsigned char)(b*255/a); } row += 4; } } // Defringe for (y = 0; y < h; y++) { unsigned char *row = &image[y*stride]; for (x = 0; x < w; x++) { int r = 0, g = 0, b = 0, a = row[3], n = 0; if (a == 0) { if (x-1 > 0 && row[-1] != 0) { r += row[-4]; g += row[-3]; b += row[-2]; n++; } if (x+1 < w && row[7] != 0) { r += row[4]; g += row[5]; b += row[6]; n++; } if (y-1 > 0 && row[-stride+3] != 0) { r += row[-stride]; g += row[-stride+1]; b += row[-stride+2]; n++; } if (y+1 < h && row[stride+3] != 0) { r += row[stride]; g += row[stride+1]; b += row[stride+2]; n++; } if (n > 0) { row[0] = (unsigned char)(r/n); row[1] = (unsigned char)(g/n); row[2] = (unsigned char)(b/n); } } row += 4; } } } static void nsvg__initPaint(NSVGcachedPaint* cache, NSVGpaint* paint, NSVGshape* shape, float *xformShape) { int i, j; NSVGgradient* grad = paint->paint.gradient; float opacity = shape->opacity; cache->type = paint->type; // DBG("shape=%s, paint-type=%d\n", shape->id, cache->type); if (cache->type == NSVG_PAINT_COLOR) { cache->colors[0] = nsvg__applyOpacity(paint->paint.color, opacity); return; } if (grad) { cache->coarse = grad->ditherCoarse; } if (cache->type == NSVG_PAINT_PATTERN) { cache->colors[0] = nsvg__applyOpacity(0, opacity); if (grad) { cache->image = ((NSVGpattern*)grad)->image; } float xform[6]; nsvg__xformIdentity(xform); xform[0] = shape->bounds[2] - shape->bounds[0]; xform[3] = shape->bounds[3] - shape->bounds[1]; xform[4] = shape->bounds[0]; xform[5] = shape->bounds[1]; nsvg__xformMultiply(xform, xformShape); nsvg__xformInverse(cache->xform, xform); return; } cache->spread = grad->spread; nsvg__xformInverse(cache->xform, xformShape); nsvg__xformMultiply(cache->xform, grad->xform); if (grad->nstops == 0) { //for (i = 0; i < 256; i++) { // cache->colors[i] = 0; //} SetMem(cache->colors, sizeof(cache->colors), 0); } else if (grad->nstops == 1) { for (i = 0; i < 256; i++) { cache->colors[i] = nsvg__applyOpacity(grad->stops[i].color, opacity); } } else { //nstops=2 as usual gradient unsigned int ca, cb = 0; float ua, ub, du, u; int ia, ib, count; ca = nsvg__applyOpacity(grad->stops[0].color, opacity); ua = nsvg__clampf(grad->stops[0].offset, 0, 1); ub = nsvg__clampf(grad->stops[grad->nstops-1].offset, ua, 1); ia = (int)(ua * 255.0f); ib = (int)(ub * 255.0f); for (i = 0; i < ia; i++) { cache->colors[i] = ca; //color from stop0 } for (i = 0; i < grad->nstops-1; i++) { // ca = nsvg__applyOpacity(grad->stops[i].color, opacity); //= color begin // cb = nsvg__applyOpacity(grad->stops[i+1].color, opacity); //= color end ca = grad->stops[i].color; cb = grad->stops[i+1].color; ua = nsvg__clampf(grad->stops[i].offset, 0, 1); //=0 ub = nsvg__clampf(grad->stops[i+1].offset, 0, 1); //=1 ia = (int)(ua * 255.0f); //=0 ib = (int)(ub * 255.0f); //=255 count = ib - ia; if (count <= 0) continue; u = 0; du = 1.0f / (float)count; for (j = 0; j < count; j++) { cache->colors[ia+j] = nsvg__lerpRGBA(ca,cb,u, opacity); u += du; } } // if (shape->debug) { // DBG("Color cache [0,50,100,150,200,250]:%X,%X,%X,%X,%X,%X\n", // cache->colors[0], cache->colors[50], cache->colors[100], cache->colors[150], // cache->colors[200], cache->colors[250]); // } for (i = ib; i < 256; i++) { //tail cache->colors[i] = cb; // cache->colors2[i] = cb; } } } /* static void dumpEdges(NSVGrasterizer* r, const char* name) { float xmin = 0, xmax = 0, ymin = 0, ymax = 0; NSVGedge *e = NULL; int i; if (r->nedges == 0) return; FILE* fp = fopen(name, "w"); if (fp == NULL) return; xmin = xmax = r->edges[0].x0; ymin = ymax = r->edges[0].y0; for (i = 0; i < r->nedges; i++) { e = &r->edges[i]; xmin = nsvg__minf(xmin, e->x0); xmin = nsvg__minf(xmin, e->x1); xmax = nsvg__maxf(xmax, e->x0); xmax = nsvg__maxf(xmax, e->x1); ymin = nsvg__minf(ymin, e->y0); ymin = nsvg__minf(ymin, e->y1); ymax = nsvg__maxf(ymax, e->y0); ymax = nsvg__maxf(ymax, e->y1); } fprintf(fp, "", xmin, ymin, (xmax - xmin), (ymax - ymin)); for (i = 0; i < r->nedges; i++) { e = &r->edges[i]; fprintf(fp ,"", e->x0,e->y0, e->x1,e->y1); } for (i = 0; i < r->npoints; i++) { if (i+1 < r->npoints) fprintf(fp ,"", r->points[i].x, r->points[i].y, r->points[i+1].x, r->points[i+1].y); fprintf(fp ,"", r->points[i].x, r->points[i].y, r->points[i].flags == 0 ? "#f00" : "#0f0"); } fprintf(fp, ""); fclose(fp); } */ static void nsvg__rasterizeShapes(NSVGrasterizer* r, NSVGshape* shapes, float tx, float ty, float scalex, float scaley, unsigned char* dst, int w, int h, int stride, NSVGscanlineFunction fscanline) { NSVGshape *shape = NULL, *shapeLink = NULL; float xform[6], xform2[6]; float min_scale = fabsf(scalex) < fabsf(scaley) ? fabsf(scalex) : fabsf(scaley); r->bitmap = dst; r->width = w; r->height = h; r->stride = stride; r->fscanline = fscanline; if (w > r->cscanline) { int oldw = r->cscanline; r->cscanline = w; if (oldw == 0) { r->scanline = (unsigned char*)AllocatePool(w); } else { r->scanline = (unsigned char*)ReallocatePool(oldw, w, r->scanline); } if (r->scanline == NULL) return; } nsvg__xformSetScale(&xform2[0], scalex, scaley); xform2[4] = tx; xform2[5] = ty; for (shape = shapes; shape != NULL; shape = shape->next) { if (!(shape->flags & NSVG_VIS_VISIBLE)) continue; memcpy(&xform[0], shape->xform, sizeof(float)*6); // nsvg__xformMultiply(xform, xform2); xform[0] *= scalex; xform[1] *= scaley; xform[2] *= scalex; xform[3] *= scaley; xform[4] = xform[4] * scalex + tx; xform[5] = xform[5] * scaley + ty; if (!shape->link) { renderShape(r, shape, &xform[0], min_scale); } shapeLink = shape->link; //this is while (shapeLink) { memcpy(&xform2[0], &xform[0], sizeof(float)*6); nsvg__xformPremultiply(&xform2[0], shapeLink->xform); renderShape(r, shapeLink, &xform2[0], min_scale); if (!shape->isSymbol) { break; } shapeLink = shapeLink->next; } } r->bitmap = NULL; r->width = 0; r->height = 0; r->stride = 0; r->fscanline = NULL; } static void renderShape(NSVGrasterizer* r, NSVGshape* shape, float *xform, float min_scale) { NSVGedge *e = NULL; NSVGcachedPaint cache; int i; SetMem(&cache, sizeof(NSVGcachedPaint), 0); if (shape->fill.type != NSVG_PAINT_NONE) { nsvg__resetPool(r); r->freelist = NULL; r->nedges = 0; nsvg__flattenShape(r, shape, xform); // Scale and translate edges for (i = 0; i < r->nedges; i++) { e = &r->edges[i]; e->y0 *= NSVG__SUBSAMPLES; e->y1 *= NSVG__SUBSAMPLES; } // Rasterize edges qsort(r->edges, r->nedges, sizeof(NSVGedge), NULL); // now, traverse the scanlines and find the intersections on each scanline, use non-zero rule nsvg__initPaint(&cache, &shape->fill, shape, xform); nsvg__rasterizeSortedEdges(r, &cache, shape->fillRule, &shape->clip); } if (shape->stroke.type != NSVG_PAINT_NONE && (shape->strokeWidth * min_scale) > 0.01f) { nsvg__resetPool(r); r->freelist = NULL; r->nedges = 0; nsvg__flattenShapeStroke(r, shape, xform); // Scale and translate edges for (i = 0; i < r->nedges; i++) { e = &r->edges[i]; e->y0 *= NSVG__SUBSAMPLES; e->y1 *= NSVG__SUBSAMPLES; } // Rasterize edges qsort(r->edges, r->nedges, sizeof(NSVGedge), NULL); // now, traverse the scanlines and find the intersections on each scanline, use non-zero rule nsvg__initPaint(&cache, &shape->stroke, shape, xform); nsvg__rasterizeSortedEdges(r, &cache, NSVG_FILLRULE_NONZERO, &shape->clip); } } void nsvg__rasterizeClipPaths( NSVGrasterizer* r, NSVGimage* image, int w, int h, float tx, float ty, float scalex, float scaley) { NSVGclipPath* clipPath; int clipPathCount = 0; clipPath = image->clipPaths; if (clipPath == NULL) { r->stencil = NULL; return; } while (clipPath != NULL) { clipPathCount++; clipPath = clipPath->next; } UINTN oldSize = r->stencilSize * clipPathCount; r->stencilStride = w / 8 + (w % 8 != 0 ? 1 : 0); r->stencilSize = h * r->stencilStride; // r->stencil = (unsigned char*)realloc( // r->stencil, r->stencilSize * clipPathCount); if (oldSize == 0) { r->stencil = (unsigned char*)AllocateZeroPool(r->stencilSize * clipPathCount); if (r->stencil == NULL) return; } else { r->stencil = (unsigned char*)ReallocatePool(oldSize, r->stencilSize * clipPathCount, r->stencil); if (r->stencil == NULL) return; SetMem(r->stencil, r->stencilSize * clipPathCount, 0); } clipPath = image->clipPaths; while (clipPath != NULL) { nsvg__rasterizeShapes(r, clipPath->shapes, tx, ty, scalex, scaley, &r->stencil[r->stencilSize * clipPath->index], w, h, r->stencilStride, nsvg__scanlineBit); clipPath = clipPath->next; } } void nsvgRasterize(NSVGrasterizer* r, NSVGimage* image, float tx, float ty, float scalex, float scaley, unsigned char* dst, int w, int h, int stride) { // int i; // for (i = 0; i < h; i++) // memset(&dst[i*stride], 0, w*4); //dst prepared before tx -= image->realBounds[0] * scalex; ty -= image->realBounds[1] * scaley; // DBG(" image will be shifted by [%ls,%ls]\n", PoolPrintFloat(tx), PoolPrintFloat(ty)); // DumpFloat(" image real bounds ", image->realBounds, 4); nsvg__rasterizeClipPaths(r, image, w, h, tx, ty, scalex, scaley); nsvg__rasterizeShapes(r, image->shapes, tx, ty, scalex, scaley, dst, w, h, stride, nsvg__scanlineSolid); nsvg__unpremultiplyAlpha(dst, w, h, stride); }