/** @file Firmware File System driver that produce Firmware Volume protocol. Layers on top of Firmware Block protocol to produce a file abstraction of FV based files. Copyright (c) 2006 - 2019, Intel Corporation. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include "DxeMain.h" #include "FwVolDriver.h" // // Protocol notify related globals // VOID *gEfiFwVolBlockNotifyReg; EFI_EVENT gEfiFwVolBlockEvent; FV_DEVICE mFvDevice = { FV2_DEVICE_SIGNATURE, NULL, NULL, { FvGetVolumeAttributes, FvSetVolumeAttributes, FvReadFile, FvReadFileSection, FvWriteFile, FvGetNextFile, sizeof (UINTN), NULL, FvGetVolumeInfo, FvSetVolumeInfo }, NULL, NULL, NULL, NULL, { NULL, NULL }, 0, 0, FALSE, FALSE }; // // FFS helper functions // /** Read data from Firmware Block by FVB protocol Read. The data may cross the multi block ranges. @param Fvb The FW_VOL_BLOCK_PROTOCOL instance from which to read data. @param StartLba Pointer to StartLba. On input, the start logical block index from which to read. On output,the end logical block index after reading. @param Offset Pointer to Offset On input, offset into the block at which to begin reading. On output, offset into the end block after reading. @param DataSize Size of data to be read. @param Data Pointer to Buffer that the data will be read into. @retval EFI_SUCCESS Successfully read data from firmware block. @retval others **/ EFI_STATUS ReadFvbData ( IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb, IN OUT EFI_LBA *StartLba, IN OUT UINTN *Offset, IN UINTN DataSize, OUT UINT8 *Data ) { UINTN BlockSize; UINTN NumberOfBlocks; UINTN BlockIndex; UINTN ReadDataSize; EFI_STATUS Status; // // Try read data in current block // BlockIndex = 0; ReadDataSize = DataSize; Status = Fvb->Read (Fvb, *StartLba, *Offset, &ReadDataSize, Data); if (Status == EFI_SUCCESS) { *Offset += DataSize; return EFI_SUCCESS; } else if (Status != EFI_BAD_BUFFER_SIZE) { // // other error will direct return // return Status; } // // Data crosses the blocks, read data from next block // DataSize -= ReadDataSize; Data += ReadDataSize; *StartLba = *StartLba + 1; while (DataSize > 0) { Status = Fvb->GetBlockSize (Fvb, *StartLba, &BlockSize, &NumberOfBlocks); if (EFI_ERROR(Status)) { return Status; } // // Read data from the crossing blocks // BlockIndex = 0; while (BlockIndex < NumberOfBlocks && DataSize >= BlockSize) { Status = Fvb->Read (Fvb, *StartLba + BlockIndex, 0, &BlockSize, Data); if (EFI_ERROR(Status)) { return Status; } Data += BlockSize; DataSize -= BlockSize; BlockIndex ++; } // // Data doesn't exceed the current block range. // if (DataSize < BlockSize) { break; } // // Data must be got from the next block range. // *StartLba += NumberOfBlocks; } // // read the remaining data // if (DataSize > 0) { Status = Fvb->Read (Fvb, *StartLba + BlockIndex, 0, &DataSize, Data); if (EFI_ERROR(Status)) { return Status; } } // // Update Lba and Offset used by the following read. // *StartLba += BlockIndex; *Offset = DataSize; return EFI_SUCCESS; } /** Given the supplied FW_VOL_BLOCK_PROTOCOL, allocate a buffer for output and copy the real length volume header into it. @param Fvb The FW_VOL_BLOCK_PROTOCOL instance from which to read the volume header @param FwVolHeader Pointer to pointer to allocated buffer in which the volume header is returned. @retval EFI_OUT_OF_RESOURCES No enough buffer could be allocated. @retval EFI_SUCCESS Successfully read volume header to the allocated buffer. @retval EFI_INVALID_PARAMETER The FV Header signature is not as expected or the file system could not be understood. **/ EFI_STATUS GetFwVolHeader ( IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb, OUT EFI_FIRMWARE_VOLUME_HEADER **FwVolHeader ) { EFI_STATUS Status; EFI_FIRMWARE_VOLUME_HEADER TempFvh; UINTN FvhLength; EFI_LBA StartLba; UINTN Offset; UINT8 *Buffer; // // Read the standard FV header // StartLba = 0; Offset = 0; FvhLength = sizeof (EFI_FIRMWARE_VOLUME_HEADER); Status = ReadFvbData (Fvb, &StartLba, &Offset, FvhLength, (UINT8 *)&TempFvh); if (EFI_ERROR(Status)) { return Status; } // // Validate FV Header signature, if not as expected, continue. // if (TempFvh.Signature != EFI_FVH_SIGNATURE) { return EFI_INVALID_PARAMETER; } // // Check to see that the file system is indeed formatted in a way we can // understand it... // if ((!CompareGuid (&TempFvh.FileSystemGuid, &gEfiFirmwareFileSystem2Guid)) && (!CompareGuid (&TempFvh.FileSystemGuid, &gEfiFirmwareFileSystem3Guid))) { return EFI_INVALID_PARAMETER; } // // Allocate a buffer for the caller // *FwVolHeader = AllocatePool (TempFvh.HeaderLength); if (*FwVolHeader == NULL) { return EFI_OUT_OF_RESOURCES; } // // Copy the standard header into the buffer // CopyMem (*FwVolHeader, &TempFvh, sizeof (EFI_FIRMWARE_VOLUME_HEADER)); // // Read the rest of the header // FvhLength = TempFvh.HeaderLength - sizeof (EFI_FIRMWARE_VOLUME_HEADER); Buffer = (UINT8 *)*FwVolHeader + sizeof (EFI_FIRMWARE_VOLUME_HEADER); Status = ReadFvbData (Fvb, &StartLba, &Offset, FvhLength, Buffer); if (EFI_ERROR(Status)) { // // Read failed so free buffer // CoreFreePool(*FwVolHeader); } return Status; } /** Free FvDevice resource when error happens @param FvDevice pointer to the FvDevice to be freed. **/ VOID FreeFvDeviceResource ( IN FV_DEVICE *FvDevice ) { FFS_FILE_LIST_ENTRY *FfsFileEntry; LIST_ENTRY *NextEntry; // // Free File List Entry // FfsFileEntry = (FFS_FILE_LIST_ENTRY *)FvDevice->FfsFileListHeader.ForwardLink; while (&FfsFileEntry->Link != &FvDevice->FfsFileListHeader) { NextEntry = (&FfsFileEntry->Link)->ForwardLink; if (FfsFileEntry->StreamHandle != 0) { // // Close stream and free resources from SEP // CloseSectionStream (FfsFileEntry->StreamHandle, FALSE); } if (FfsFileEntry->FileCached) { // // Free the cached file buffer. // CoreFreePool(FfsFileEntry->FfsHeader); } CoreFreePool(FfsFileEntry); FfsFileEntry = (FFS_FILE_LIST_ENTRY *) NextEntry; } if (!FvDevice->IsMemoryMapped) { // // Free the cached FV buffer. // CoreFreePool(FvDevice->CachedFv); } // // Free Volume Header // CoreFreePool(FvDevice->FwVolHeader); return; } /** Check if an FV is consistent and allocate cache for it. @param FvDevice A pointer to the FvDevice to be checked. @retval EFI_OUT_OF_RESOURCES No enough buffer could be allocated. @retval EFI_SUCCESS FV is consistent and cache is allocated. @retval EFI_VOLUME_CORRUPTED File system is corrupted. **/ EFI_STATUS FvCheck ( IN OUT FV_DEVICE *FvDevice ) { EFI_STATUS Status; EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb; EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader; EFI_FIRMWARE_VOLUME_EXT_HEADER *FwVolExtHeader; EFI_FVB_ATTRIBUTES_2 FvbAttributes; EFI_FV_BLOCK_MAP_ENTRY *BlockMap; FFS_FILE_LIST_ENTRY *FfsFileEntry; EFI_FFS_FILE_HEADER *FfsHeader; UINT8 *CacheLocation; UINTN Index; EFI_LBA LbaIndex; UINTN Size; EFI_FFS_FILE_STATE FileState; UINT8 *TopFvAddress; UINTN TestLength; EFI_PHYSICAL_ADDRESS PhysicalAddress; BOOLEAN FileCached; UINTN WholeFileSize; EFI_FFS_FILE_HEADER *CacheFfsHeader; FileCached = FALSE; CacheFfsHeader = NULL; Fvb = FvDevice->Fvb; FwVolHeader = FvDevice->FwVolHeader; Status = Fvb->GetAttributes (Fvb, &FvbAttributes); if (EFI_ERROR(Status)) { return Status; } Size = (UINTN) FwVolHeader->FvLength; if ((FvbAttributes & EFI_FVB2_MEMORY_MAPPED) != 0) { FvDevice->IsMemoryMapped = TRUE; Status = Fvb->GetPhysicalAddress (Fvb, &PhysicalAddress); if (EFI_ERROR(Status)) { return Status; } // // Don't cache memory mapped FV really. // FvDevice->CachedFv = (UINT8 *) (UINTN) PhysicalAddress; } else { FvDevice->IsMemoryMapped = FALSE; FvDevice->CachedFv = AllocatePool (Size); if (FvDevice->CachedFv == NULL) { return EFI_OUT_OF_RESOURCES; } } // // Remember a pointer to the end of the CachedFv // FvDevice->EndOfCachedFv = FvDevice->CachedFv + Size; if (!FvDevice->IsMemoryMapped) { // // Copy FV into memory using the block map. // BlockMap = FwVolHeader->BlockMap; CacheLocation = FvDevice->CachedFv; LbaIndex = 0; while ((BlockMap->NumBlocks != 0) || (BlockMap->Length != 0)) { // // read the FV data // Size = BlockMap->Length; for (Index = 0; Index < BlockMap->NumBlocks; Index++) { Status = Fvb->Read ( Fvb, LbaIndex, 0, &Size, CacheLocation ); // // Not check EFI_BAD_BUFFER_SIZE, for Size = BlockMap->Length // if (EFI_ERROR(Status)) { goto Done; } LbaIndex++; CacheLocation += BlockMap->Length; } BlockMap++; } } // // Scan to check the free space & File list // if ((FvbAttributes & EFI_FVB2_ERASE_POLARITY) != 0) { FvDevice->ErasePolarity = 1; } else { FvDevice->ErasePolarity = 0; } // // go through the whole FV cache, check the consistence of the FV. // Make a linked list of all the Ffs file headers // Status = EFI_SUCCESS; InitializeListHead (&FvDevice->FfsFileListHeader); // // Build FFS list // if (FwVolHeader->ExtHeaderOffset != 0) { // // Searching for files starts on an 8 byte aligned boundary after the end of the Extended Header if it exists. // FwVolExtHeader = (EFI_FIRMWARE_VOLUME_EXT_HEADER *) (FvDevice->CachedFv + FwVolHeader->ExtHeaderOffset); FfsHeader = (EFI_FFS_FILE_HEADER *) ((UINT8 *) FwVolExtHeader + FwVolExtHeader->ExtHeaderSize); } else { FfsHeader = (EFI_FFS_FILE_HEADER *) (FvDevice->CachedFv + FwVolHeader->HeaderLength); } FfsHeader = (EFI_FFS_FILE_HEADER *) ALIGN_POINTER (FfsHeader, 8); TopFvAddress = FvDevice->EndOfCachedFv; while (((UINTN) FfsHeader >= (UINTN) FvDevice->CachedFv) && ((UINTN) FfsHeader <= (UINTN) ((UINTN) TopFvAddress - sizeof (EFI_FFS_FILE_HEADER)))) { if (FileCached) { CoreFreePool(CacheFfsHeader); FileCached = FALSE; } TestLength = TopFvAddress - ((UINT8 *) FfsHeader); if (TestLength > sizeof (EFI_FFS_FILE_HEADER)) { TestLength = sizeof (EFI_FFS_FILE_HEADER); } if (IsBufferErased (FvDevice->ErasePolarity, FfsHeader, TestLength)) { // // We have found the free space so we are done! // goto Done; } if (!IsValidFfsHeader (FvDevice->ErasePolarity, FfsHeader, &FileState)) { if ((FileState == EFI_FILE_HEADER_INVALID) || (FileState == EFI_FILE_HEADER_CONSTRUCTION)) { if (IS_FFS_FILE2 (FfsHeader)) { if (!FvDevice->IsFfs3Fv) { DEBUG ((EFI_D_ERROR, "Found a FFS3 formatted file: %g in a non-FFS3 formatted FV.\n", &FfsHeader->Name)); } FfsHeader = (EFI_FFS_FILE_HEADER *) ((UINT8 *) FfsHeader + sizeof (EFI_FFS_FILE_HEADER2)); } else { FfsHeader = (EFI_FFS_FILE_HEADER *) ((UINT8 *) FfsHeader + sizeof (EFI_FFS_FILE_HEADER)); } continue; } else { // // File system is corrputed // Status = EFI_VOLUME_CORRUPTED; goto Done; } } CacheFfsHeader = FfsHeader; if ((CacheFfsHeader->Attributes & FFS_ATTRIB_CHECKSUM) == FFS_ATTRIB_CHECKSUM) { if (FvDevice->IsMemoryMapped) { // // Memory mapped FV has not been cached. // Here is to cache FFS file to memory buffer for following checksum calculating. // And then, the cached file buffer can be also used for FvReadFile. // WholeFileSize = IS_FFS_FILE2 (CacheFfsHeader) ? FFS_FILE2_SIZE (CacheFfsHeader): FFS_FILE_SIZE (CacheFfsHeader); CacheFfsHeader = AllocateCopyPool (WholeFileSize, CacheFfsHeader); if (CacheFfsHeader == NULL) { Status = EFI_OUT_OF_RESOURCES; goto Done; } FileCached = TRUE; } } if (!IsValidFfsFile (FvDevice->ErasePolarity, CacheFfsHeader)) { // // File system is corrupted // Status = EFI_VOLUME_CORRUPTED; goto Done; } if (IS_FFS_FILE2 (CacheFfsHeader)) { ASSERT (FFS_FILE2_SIZE (CacheFfsHeader) > 0x00FFFFFF); if (!FvDevice->IsFfs3Fv) { DEBUG ((EFI_D_ERROR, "Found a FFS3 formatted file: %g in a non-FFS3 formatted FV.\n", &CacheFfsHeader->Name)); FfsHeader = (EFI_FFS_FILE_HEADER *) ((UINT8 *) FfsHeader + FFS_FILE2_SIZE (CacheFfsHeader)); // // Adjust pointer to the next 8-byte aligned boundary. // FfsHeader = (EFI_FFS_FILE_HEADER *) (((UINTN) FfsHeader + 7) & ~0x07); continue; } } FileState = GetFileState (FvDevice->ErasePolarity, CacheFfsHeader); // // check for non-deleted file // if (FileState != EFI_FILE_DELETED) { // // Create a FFS list entry for each non-deleted file // FfsFileEntry = AllocateZeroPool (sizeof (FFS_FILE_LIST_ENTRY)); if (FfsFileEntry == NULL) { Status = EFI_OUT_OF_RESOURCES; goto Done; } FfsFileEntry->FfsHeader = CacheFfsHeader; FfsFileEntry->FileCached = FileCached; FileCached = FALSE; InsertTailList (&FvDevice->FfsFileListHeader, &FfsFileEntry->Link); } if (IS_FFS_FILE2 (CacheFfsHeader)) { FfsHeader = (EFI_FFS_FILE_HEADER *) ((UINT8 *) FfsHeader + FFS_FILE2_SIZE (CacheFfsHeader)); } else { FfsHeader = (EFI_FFS_FILE_HEADER *) ((UINT8 *) FfsHeader + FFS_FILE_SIZE (CacheFfsHeader)); } // // Adjust pointer to the next 8-byte aligned boundary. // FfsHeader = (EFI_FFS_FILE_HEADER *)(((UINTN)FfsHeader + 7) & ~0x07); } Done: if (EFI_ERROR(Status)) { if (FileCached) { CoreFreePool(CacheFfsHeader); FileCached = FALSE; } FreeFvDeviceResource (FvDevice); } return Status; } /** This notification function is invoked when an instance of the EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL is produced. It layers an instance of the EFI_FIRMWARE_VOLUME2_PROTOCOL on the same handle. This is the function where the actual initialization of the EFI_FIRMWARE_VOLUME2_PROTOCOL is done. @param Event The event that occured @param Context For EFI compatiblity. Not used. **/ VOID EFIAPI NotifyFwVolBlock ( IN EFI_EVENT Event, IN VOID *Context ) { EFI_HANDLE Handle; EFI_STATUS Status; UINTN BufferSize; EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb; EFI_FIRMWARE_VOLUME2_PROTOCOL *Fv; FV_DEVICE *FvDevice; EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader; // // Examine all new handles // for (;;) { // // Get the next handle // BufferSize = sizeof (Handle); Status = CoreLocateHandle ( ByRegisterNotify, NULL, gEfiFwVolBlockNotifyReg, &BufferSize, &Handle ); // // If not found, we're done // if (EFI_NOT_FOUND == Status) { break; } if (EFI_ERROR(Status)) { continue; } // // Get the FirmwareVolumeBlock protocol on that handle // Status = CoreHandleProtocol (Handle, &gEfiFirmwareVolumeBlockProtocolGuid, (VOID **)&Fvb); ASSERT_EFI_ERROR(Status); ASSERT (Fvb != NULL); // // Make sure the Fv Header is O.K. // Status = GetFwVolHeader (Fvb, &FwVolHeader); if (EFI_ERROR(Status)) { continue; } ASSERT (FwVolHeader != NULL); if (!VerifyFvHeaderChecksum (FwVolHeader)) { CoreFreePool(FwVolHeader); continue; } // // Check if there is an FV protocol already installed in that handle // Status = CoreHandleProtocol (Handle, &gEfiFirmwareVolume2ProtocolGuid, (VOID **)&Fv); if (!EFI_ERROR(Status)) { // // Update Fv to use a new Fvb // FvDevice = BASE_CR (Fv, FV_DEVICE, Fv); if (FvDevice->Signature == FV2_DEVICE_SIGNATURE) { // // Only write into our device structure if it's our device structure // FvDevice->Fvb = Fvb; } } else { // // No FwVol protocol on the handle so create a new one // FvDevice = AllocateCopyPool (sizeof (FV_DEVICE), &mFvDevice); if (FvDevice == NULL) { return; } FvDevice->Fvb = Fvb; FvDevice->Handle = Handle; FvDevice->FwVolHeader = FwVolHeader; FvDevice->IsFfs3Fv = CompareGuid (&FwVolHeader->FileSystemGuid, &gEfiFirmwareFileSystem3Guid); FvDevice->Fv.ParentHandle = Fvb->ParentHandle; // // Inherit the authentication status from FVB. // FvDevice->AuthenticationStatus = GetFvbAuthenticationStatus (Fvb); if (!EFI_ERROR(FvCheck (FvDevice))) { // // Install an New FV protocol on the existing handle // Status = CoreInstallProtocolInterface ( &Handle, &gEfiFirmwareVolume2ProtocolGuid, EFI_NATIVE_INTERFACE, &FvDevice->Fv ); ASSERT_EFI_ERROR(Status); } else { // // Free FvDevice Buffer for the corrupt FV image. // CoreFreePool(FvDevice); } } } return; } /** This routine is the driver initialization entry point. It registers a notification function. This notification function are responsible for building the FV stack dynamically. @param ImageHandle The image handle. @param SystemTable The system table. @retval EFI_SUCCESS Function successfully returned. **/ EFI_STATUS EFIAPI FwVolDriverInit ( IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable ) { gEfiFwVolBlockEvent = EfiCreateProtocolNotifyEvent ( &gEfiFirmwareVolumeBlockProtocolGuid, TPL_CALLBACK, NotifyFwVolBlock, NULL, &gEfiFwVolBlockNotifyReg ); return EFI_SUCCESS; }