/** @file SCSI disk driver that layers on every SCSI IO protocol in the system. Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include "ScsiDisk.h" EFI_DRIVER_BINDING_PROTOCOL gScsiDiskDriverBinding = { ScsiDiskDriverBindingSupported, ScsiDiskDriverBindingStart, ScsiDiskDriverBindingStop, 0xa, NULL, NULL }; EFI_DISK_INFO_PROTOCOL gScsiDiskInfoProtocolTemplate = { EFI_DISK_INFO_SCSI_INTERFACE_GUID, ScsiDiskInfoInquiry, ScsiDiskInfoIdentify, ScsiDiskInfoSenseData, ScsiDiskInfoWhichIde }; /** Allocates an aligned buffer for SCSI disk. This function allocates an aligned buffer for the SCSI disk to perform SCSI IO operations. The alignment requirement is from SCSI IO interface. @param ScsiDiskDevice The SCSI disk involved for the operation. @param BufferSize The request buffer size. @return A pointer to the aligned buffer or NULL if the allocation fails. **/ VOID * AllocateAlignedBuffer ( IN SCSI_DISK_DEV *ScsiDiskDevice, IN UINTN BufferSize ) { return AllocateAlignedPages (EFI_SIZE_TO_PAGES (BufferSize), ScsiDiskDevice->ScsiIo->IoAlign); } /** Frees an aligned buffer for SCSI disk. This function frees an aligned buffer for the SCSI disk to perform SCSI IO operations. @param Buffer The aligned buffer to be freed. @param BufferSize The request buffer size. **/ VOID FreeAlignedBuffer ( IN VOID *Buffer, IN UINTN BufferSize ) { if (Buffer != NULL) { FreeAlignedPages (Buffer, EFI_SIZE_TO_PAGES (BufferSize)); } } /** The user Entry Point for module ScsiDisk. The user code starts with this function. @param ImageHandle The firmware allocated handle for the EFI image. @param SystemTable A pointer to the EFI System Table. @retval EFI_SUCCESS The entry point is executed successfully. @retval other Some error occurs when executing this entry point. **/ EFI_STATUS EFIAPI InitializeScsiDisk( IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable ) { EFI_STATUS Status; // // Install driver model protocol(s). // Status = EfiLibInstallDriverBindingComponentName2 ( ImageHandle, SystemTable, &gScsiDiskDriverBinding, ImageHandle, &gScsiDiskComponentName, &gScsiDiskComponentName2 ); ASSERT_EFI_ERROR(Status); return Status; } /** Test to see if this driver supports ControllerHandle. This service is called by the EFI boot service ConnectController(). In order to make drivers as small as possible, there are a few calling restrictions for this service. ConnectController() must follow these calling restrictions. If any other agent wishes to call Supported() it must also follow these calling restrictions. @param This Protocol instance pointer. @param ControllerHandle Handle of device to test @param RemainingDevicePath Optional parameter use to pick a specific child device to start. @retval EFI_SUCCESS This driver supports this device @retval EFI_ALREADY_STARTED This driver is already running on this device @retval other This driver does not support this device **/ EFI_STATUS EFIAPI ScsiDiskDriverBindingSupported ( IN EFI_DRIVER_BINDING_PROTOCOL *This, IN EFI_HANDLE Controller, IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL ) { EFI_STATUS Status; EFI_SCSI_IO_PROTOCOL *ScsiIo; UINT8 DeviceType; Status = gBS->OpenProtocol ( Controller, &gEfiScsiIoProtocolGuid, (VOID **) &ScsiIo, This->DriverBindingHandle, Controller, EFI_OPEN_PROTOCOL_BY_DRIVER ); if (EFI_ERROR(Status)) { return Status; } Status = ScsiIo->GetDeviceType (ScsiIo, &DeviceType); if (!EFI_ERROR(Status)) { if ((DeviceType == EFI_SCSI_TYPE_DISK) || (DeviceType == EFI_SCSI_TYPE_CDROM)) { Status = EFI_SUCCESS; } else { Status = EFI_UNSUPPORTED; } } gBS->CloseProtocol ( Controller, &gEfiScsiIoProtocolGuid, This->DriverBindingHandle, Controller ); return Status; } /** Start this driver on ControllerHandle. This service is called by the EFI boot service ConnectController(). In order to make drivers as small as possible, there are a few calling restrictions for this service. ConnectController() must follow these calling restrictions. If any other agent wishes to call Start() it must also follow these calling restrictions. @param This Protocol instance pointer. @param ControllerHandle Handle of device to bind driver to @param RemainingDevicePath Optional parameter use to pick a specific child device to start. @retval EFI_SUCCESS This driver is added to ControllerHandle @retval EFI_ALREADY_STARTED This driver is already running on ControllerHandle @retval other This driver does not support this device **/ EFI_STATUS EFIAPI ScsiDiskDriverBindingStart ( IN EFI_DRIVER_BINDING_PROTOCOL *This, IN EFI_HANDLE Controller, IN EFI_DEVICE_PATH_PROTOCOL *RemainingDevicePath OPTIONAL ) { EFI_STATUS Status; EFI_SCSI_IO_PROTOCOL *ScsiIo; SCSI_DISK_DEV *ScsiDiskDevice; BOOLEAN Temp; UINT8 Index; UINT8 MaxRetry; BOOLEAN NeedRetry; BOOLEAN MustReadCapacity; MustReadCapacity = TRUE; ScsiDiskDevice = (SCSI_DISK_DEV *) AllocateZeroPool (sizeof (SCSI_DISK_DEV)); if (ScsiDiskDevice == NULL) { return EFI_OUT_OF_RESOURCES; } Status = gBS->OpenProtocol ( Controller, &gEfiScsiIoProtocolGuid, (VOID **) &ScsiIo, This->DriverBindingHandle, Controller, EFI_OPEN_PROTOCOL_BY_DRIVER ); if (EFI_ERROR(Status)) { FreePool(ScsiDiskDevice); return Status; } ScsiDiskDevice->Signature = SCSI_DISK_DEV_SIGNATURE; ScsiDiskDevice->ScsiIo = ScsiIo; ScsiDiskDevice->BlkIo.Revision = EFI_BLOCK_IO_PROTOCOL_REVISION3; ScsiDiskDevice->BlkIo.Media = &ScsiDiskDevice->BlkIoMedia; ScsiDiskDevice->BlkIo.Media->IoAlign = ScsiIo->IoAlign; ScsiDiskDevice->BlkIo.Reset = ScsiDiskReset; ScsiDiskDevice->BlkIo.ReadBlocks = ScsiDiskReadBlocks; ScsiDiskDevice->BlkIo.WriteBlocks = ScsiDiskWriteBlocks; ScsiDiskDevice->BlkIo.FlushBlocks = ScsiDiskFlushBlocks; ScsiDiskDevice->BlkIo2.Media = &ScsiDiskDevice->BlkIoMedia; ScsiDiskDevice->BlkIo2.Reset = ScsiDiskResetEx; ScsiDiskDevice->BlkIo2.ReadBlocksEx = ScsiDiskReadBlocksEx; ScsiDiskDevice->BlkIo2.WriteBlocksEx = ScsiDiskWriteBlocksEx; ScsiDiskDevice->BlkIo2.FlushBlocksEx = ScsiDiskFlushBlocksEx; ScsiDiskDevice->EraseBlock.Revision = EFI_ERASE_BLOCK_PROTOCOL_REVISION; ScsiDiskDevice->EraseBlock.EraseLengthGranularity = 1; ScsiDiskDevice->EraseBlock.EraseBlocks = ScsiDiskEraseBlocks; ScsiDiskDevice->UnmapInfo.MaxBlkDespCnt = 1; ScsiDiskDevice->BlockLimitsVpdSupported = FALSE; ScsiDiskDevice->Handle = Controller; InitializeListHead (&ScsiDiskDevice->AsyncTaskQueue); ScsiIo->GetDeviceType (ScsiIo, &(ScsiDiskDevice->DeviceType)); switch (ScsiDiskDevice->DeviceType) { case EFI_SCSI_TYPE_DISK: ScsiDiskDevice->BlkIo.Media->BlockSize = 0x200; MustReadCapacity = TRUE; break; case EFI_SCSI_TYPE_CDROM: ScsiDiskDevice->BlkIo.Media->BlockSize = 0x800; ScsiDiskDevice->BlkIo.Media->ReadOnly = TRUE; MustReadCapacity = FALSE; break; } // // The Sense Data Array's initial size is 6 // ScsiDiskDevice->SenseDataNumber = 6; ScsiDiskDevice->SenseData = (EFI_SCSI_SENSE_DATA *) AllocateZeroPool ( sizeof (EFI_SCSI_SENSE_DATA) * ScsiDiskDevice->SenseDataNumber ); if (ScsiDiskDevice->SenseData == NULL) { gBS->CloseProtocol ( Controller, &gEfiScsiIoProtocolGuid, This->DriverBindingHandle, Controller ); FreePool(ScsiDiskDevice); return EFI_OUT_OF_RESOURCES; } // // Retrieve device information // MaxRetry = 2; for (Index = 0; Index < MaxRetry; Index++) { Status = ScsiDiskInquiryDevice (ScsiDiskDevice, &NeedRetry); if (!EFI_ERROR(Status)) { break; } if (!NeedRetry) { FreePool(ScsiDiskDevice->SenseData); gBS->CloseProtocol ( Controller, &gEfiScsiIoProtocolGuid, This->DriverBindingHandle, Controller ); FreePool(ScsiDiskDevice); return EFI_DEVICE_ERROR; } } // // The second parameter "TRUE" means must // retrieve media capacity // Status = ScsiDiskDetectMedia (ScsiDiskDevice, MustReadCapacity, &Temp); if (!EFI_ERROR(Status)) { // // Determine if Block IO & Block IO2 should be produced on this controller // handle // if (DetermineInstallBlockIo(Controller)) { InitializeInstallDiskInfo(ScsiDiskDevice, Controller); Status = gBS->InstallMultipleProtocolInterfaces ( &Controller, &gEfiBlockIoProtocolGuid, &ScsiDiskDevice->BlkIo, &gEfiBlockIo2ProtocolGuid, &ScsiDiskDevice->BlkIo2, &gEfiDiskInfoProtocolGuid, &ScsiDiskDevice->DiskInfo, NULL ); if (!EFI_ERROR(Status)) { if (DetermineInstallEraseBlock(ScsiDiskDevice, Controller)) { Status = gBS->InstallProtocolInterface ( &Controller, &gEfiEraseBlockProtocolGuid, EFI_NATIVE_INTERFACE, &ScsiDiskDevice->EraseBlock ); if (EFI_ERROR(Status)) { DEBUG ((EFI_D_ERROR, "ScsiDisk: Failed to install the Erase Block Protocol! Status = %r\n", Status)); } } ScsiDiskDevice->ControllerNameTable = NULL; AddUnicodeString2 ( "eng", gScsiDiskComponentName.SupportedLanguages, &ScsiDiskDevice->ControllerNameTable, L"SCSI Disk Device", TRUE ); AddUnicodeString2 ( "en", gScsiDiskComponentName2.SupportedLanguages, &ScsiDiskDevice->ControllerNameTable, L"SCSI Disk Device", FALSE ); return EFI_SUCCESS; } } } gBS->FreePool(ScsiDiskDevice->SenseData); gBS->FreePool(ScsiDiskDevice); gBS->CloseProtocol ( Controller, &gEfiScsiIoProtocolGuid, This->DriverBindingHandle, Controller ); return Status; } /** Stop this driver on ControllerHandle. This service is called by the EFI boot service DisconnectController(). In order to make drivers as small as possible, there are a few calling restrictions for this service. DisconnectController() must follow these calling restrictions. If any other agent wishes to call Stop() it must also follow these calling restrictions. @param This Protocol instance pointer. @param ControllerHandle Handle of device to stop driver on @param NumberOfChildren Number of Handles in ChildHandleBuffer. If number of children is zero stop the entire bus driver. @param ChildHandleBuffer List of Child Handles to Stop. @retval EFI_SUCCESS This driver is removed ControllerHandle @retval other This driver was not removed from this device **/ EFI_STATUS EFIAPI ScsiDiskDriverBindingStop ( IN EFI_DRIVER_BINDING_PROTOCOL *This, IN EFI_HANDLE Controller, IN UINTN NumberOfChildren, IN EFI_HANDLE *ChildHandleBuffer OPTIONAL ) { EFI_BLOCK_IO_PROTOCOL *BlkIo; EFI_ERASE_BLOCK_PROTOCOL *EraseBlock; SCSI_DISK_DEV *ScsiDiskDevice; EFI_STATUS Status; Status = gBS->OpenProtocol ( Controller, &gEfiBlockIoProtocolGuid, (VOID **) &BlkIo, This->DriverBindingHandle, Controller, EFI_OPEN_PROTOCOL_GET_PROTOCOL ); if (EFI_ERROR(Status)) { return Status; } ScsiDiskDevice = SCSI_DISK_DEV_FROM_BLKIO (BlkIo); // // Wait for the BlockIo2 requests queue to become empty // while (!IsListEmpty (&ScsiDiskDevice->AsyncTaskQueue)); // // If Erase Block Protocol is installed, then uninstall this protocol. // Status = gBS->OpenProtocol ( Controller, &gEfiEraseBlockProtocolGuid, (VOID **) &EraseBlock, This->DriverBindingHandle, Controller, EFI_OPEN_PROTOCOL_GET_PROTOCOL ); if (!EFI_ERROR(Status)) { Status = gBS->UninstallProtocolInterface ( Controller, &gEfiEraseBlockProtocolGuid, &ScsiDiskDevice->EraseBlock ); if (EFI_ERROR(Status)) { return Status; } } Status = gBS->UninstallMultipleProtocolInterfaces ( Controller, &gEfiBlockIoProtocolGuid, &ScsiDiskDevice->BlkIo, &gEfiBlockIo2ProtocolGuid, &ScsiDiskDevice->BlkIo2, &gEfiDiskInfoProtocolGuid, &ScsiDiskDevice->DiskInfo, NULL ); if (!EFI_ERROR(Status)) { gBS->CloseProtocol ( Controller, &gEfiScsiIoProtocolGuid, This->DriverBindingHandle, Controller ); ReleaseScsiDiskDeviceResources (ScsiDiskDevice); return EFI_SUCCESS; } // // errors met // return Status; } /** Reset SCSI Disk. @param This The pointer of EFI_BLOCK_IO_PROTOCOL @param ExtendedVerification The flag about if extend verificate @retval EFI_SUCCESS The device was reset. @retval EFI_DEVICE_ERROR The device is not functioning properly and could not be reset. @return EFI_STATUS is returned from EFI_SCSI_IO_PROTOCOL.ResetDevice(). **/ EFI_STATUS EFIAPI ScsiDiskReset ( IN EFI_BLOCK_IO_PROTOCOL *This, IN BOOLEAN ExtendedVerification ) { EFI_TPL OldTpl; SCSI_DISK_DEV *ScsiDiskDevice; EFI_STATUS Status; OldTpl = gBS->RaiseTPL (TPL_CALLBACK); ScsiDiskDevice = SCSI_DISK_DEV_FROM_BLKIO (This); Status = ScsiDiskDevice->ScsiIo->ResetDevice (ScsiDiskDevice->ScsiIo); if (EFI_ERROR(Status)) { if (Status == EFI_UNSUPPORTED) { Status = EFI_SUCCESS; } else { Status = EFI_DEVICE_ERROR; goto Done; } } if (!ExtendedVerification) { goto Done; } Status = ScsiDiskDevice->ScsiIo->ResetBus (ScsiDiskDevice->ScsiIo); if (EFI_ERROR(Status)) { Status = EFI_DEVICE_ERROR; goto Done; } Done: gBS->RestoreTPL (OldTpl); return Status; } /** The function is to Read Block from SCSI Disk. @param This The pointer of EFI_BLOCK_IO_PROTOCOL. @param MediaId The Id of Media detected @param Lba The logic block address @param BufferSize The size of Buffer @param Buffer The buffer to fill the read out data @retval EFI_SUCCESS Successfully to read out block. @retval EFI_DEVICE_ERROR Fail to detect media. @retval EFI_NO_MEDIA Media is not present. @retval EFI_MEDIA_CHANGED Media has changed. @retval EFI_BAD_BUFFER_SIZE The Buffer was not a multiple of the block size of the device. @retval EFI_INVALID_PARAMETER Invalid parameter passed in. **/ EFI_STATUS EFIAPI ScsiDiskReadBlocks ( IN EFI_BLOCK_IO_PROTOCOL *This, IN UINT32 MediaId, IN EFI_LBA Lba, IN UINTN BufferSize, OUT VOID *Buffer ) { SCSI_DISK_DEV *ScsiDiskDevice; EFI_BLOCK_IO_MEDIA *Media; EFI_STATUS Status; UINTN BlockSize; UINTN NumberOfBlocks; BOOLEAN MediaChange; EFI_TPL OldTpl; MediaChange = FALSE; OldTpl = gBS->RaiseTPL (TPL_CALLBACK); ScsiDiskDevice = SCSI_DISK_DEV_FROM_BLKIO (This); Media = ScsiDiskDevice->BlkIo.Media; if (!IS_DEVICE_FIXED(ScsiDiskDevice)) { Status = ScsiDiskDetectMedia (ScsiDiskDevice, FALSE, &MediaChange); if (EFI_ERROR(Status)) { Status = EFI_DEVICE_ERROR; goto Done; } if (MediaChange) { gBS->ReinstallProtocolInterface ( ScsiDiskDevice->Handle, &gEfiBlockIoProtocolGuid, &ScsiDiskDevice->BlkIo, &ScsiDiskDevice->BlkIo ); gBS->ReinstallProtocolInterface ( ScsiDiskDevice->Handle, &gEfiBlockIo2ProtocolGuid, &ScsiDiskDevice->BlkIo2, &ScsiDiskDevice->BlkIo2 ); if (DetermineInstallEraseBlock(ScsiDiskDevice, ScsiDiskDevice->Handle)) { gBS->ReinstallProtocolInterface ( ScsiDiskDevice->Handle, &gEfiEraseBlockProtocolGuid, &ScsiDiskDevice->EraseBlock, &ScsiDiskDevice->EraseBlock ); } if (Media->MediaPresent) { Status = EFI_MEDIA_CHANGED; } else { Status = EFI_NO_MEDIA; } goto Done; } } // // Get the intrinsic block size // BlockSize = Media->BlockSize; NumberOfBlocks = BufferSize / BlockSize; if (!(Media->MediaPresent)) { Status = EFI_NO_MEDIA; goto Done; } if (MediaId != Media->MediaId) { Status = EFI_MEDIA_CHANGED; goto Done; } if (Buffer == NULL) { Status = EFI_INVALID_PARAMETER; goto Done; } if (BufferSize == 0) { Status = EFI_SUCCESS; goto Done; } if (BufferSize % BlockSize != 0) { Status = EFI_BAD_BUFFER_SIZE; goto Done; } if (Lba > Media->LastBlock) { Status = EFI_INVALID_PARAMETER; goto Done; } if ((Lba + NumberOfBlocks - 1) > Media->LastBlock) { Status = EFI_INVALID_PARAMETER; goto Done; } if ((Media->IoAlign > 1) && (((UINTN) Buffer & (Media->IoAlign - 1)) != 0)) { Status = EFI_INVALID_PARAMETER; goto Done; } // // If all the parameters are valid, then perform read sectors command // to transfer data from device to host. // Status = ScsiDiskReadSectors (ScsiDiskDevice, Buffer, Lba, NumberOfBlocks); Done: gBS->RestoreTPL (OldTpl); return Status; } /** The function is to Write Block to SCSI Disk. @param This The pointer of EFI_BLOCK_IO_PROTOCOL @param MediaId The Id of Media detected @param Lba The logic block address @param BufferSize The size of Buffer @param Buffer The buffer to fill the read out data @retval EFI_SUCCESS Successfully to read out block. @retval EFI_WRITE_PROTECTED The device can not be written to. @retval EFI_DEVICE_ERROR Fail to detect media. @retval EFI_NO_MEDIA Media is not present. @retval EFI_MEDIA_CHNAGED Media has changed. @retval EFI_BAD_BUFFER_SIZE The Buffer was not a multiple of the block size of the device. @retval EFI_INVALID_PARAMETER Invalid parameter passed in. **/ EFI_STATUS EFIAPI ScsiDiskWriteBlocks ( IN EFI_BLOCK_IO_PROTOCOL *This, IN UINT32 MediaId, IN EFI_LBA Lba, IN UINTN BufferSize, IN VOID *Buffer ) { SCSI_DISK_DEV *ScsiDiskDevice; EFI_BLOCK_IO_MEDIA *Media; EFI_STATUS Status; UINTN BlockSize; UINTN NumberOfBlocks; BOOLEAN MediaChange; EFI_TPL OldTpl; MediaChange = FALSE; OldTpl = gBS->RaiseTPL (TPL_CALLBACK); ScsiDiskDevice = SCSI_DISK_DEV_FROM_BLKIO (This); Media = ScsiDiskDevice->BlkIo.Media; if (!IS_DEVICE_FIXED(ScsiDiskDevice)) { Status = ScsiDiskDetectMedia (ScsiDiskDevice, FALSE, &MediaChange); if (EFI_ERROR(Status)) { Status = EFI_DEVICE_ERROR; goto Done; } if (MediaChange) { gBS->ReinstallProtocolInterface ( ScsiDiskDevice->Handle, &gEfiBlockIoProtocolGuid, &ScsiDiskDevice->BlkIo, &ScsiDiskDevice->BlkIo ); gBS->ReinstallProtocolInterface ( ScsiDiskDevice->Handle, &gEfiBlockIo2ProtocolGuid, &ScsiDiskDevice->BlkIo2, &ScsiDiskDevice->BlkIo2 ); if (DetermineInstallEraseBlock(ScsiDiskDevice, ScsiDiskDevice->Handle)) { gBS->ReinstallProtocolInterface ( ScsiDiskDevice->Handle, &gEfiEraseBlockProtocolGuid, &ScsiDiskDevice->EraseBlock, &ScsiDiskDevice->EraseBlock ); } if (Media->MediaPresent) { Status = EFI_MEDIA_CHANGED; } else { Status = EFI_NO_MEDIA; } goto Done; } } // // Get the intrinsic block size // BlockSize = Media->BlockSize; NumberOfBlocks = BufferSize / BlockSize; if (!(Media->MediaPresent)) { Status = EFI_NO_MEDIA; goto Done; } if (MediaId != Media->MediaId) { Status = EFI_MEDIA_CHANGED; goto Done; } if (Media->ReadOnly) { Status = EFI_WRITE_PROTECTED; goto Done; } if (BufferSize == 0) { Status = EFI_SUCCESS; goto Done; } if (Buffer == NULL) { Status = EFI_INVALID_PARAMETER; goto Done; } if (BufferSize % BlockSize != 0) { Status = EFI_BAD_BUFFER_SIZE; goto Done; } if (Lba > Media->LastBlock) { Status = EFI_INVALID_PARAMETER; goto Done; } if ((Lba + NumberOfBlocks - 1) > Media->LastBlock) { Status = EFI_INVALID_PARAMETER; goto Done; } if ((Media->IoAlign > 1) && (((UINTN) Buffer & (Media->IoAlign - 1)) != 0)) { Status = EFI_INVALID_PARAMETER; goto Done; } // // if all the parameters are valid, then perform read sectors command // to transfer data from device to host. // Status = ScsiDiskWriteSectors (ScsiDiskDevice, Buffer, Lba, NumberOfBlocks); Done: gBS->RestoreTPL (OldTpl); return Status; } /** Flush Block to Disk. EFI_SUCCESS is returned directly. @param This The pointer of EFI_BLOCK_IO_PROTOCOL @retval EFI_SUCCESS All outstanding data was written to the device **/ EFI_STATUS EFIAPI ScsiDiskFlushBlocks ( IN EFI_BLOCK_IO_PROTOCOL *This ) { // // return directly // return EFI_SUCCESS; } /** Reset SCSI Disk. @param This The pointer of EFI_BLOCK_IO2_PROTOCOL. @param ExtendedVerification The flag about if extend verificate. @retval EFI_SUCCESS The device was reset. @retval EFI_DEVICE_ERROR The device is not functioning properly and could not be reset. @return EFI_STATUS is returned from EFI_SCSI_IO_PROTOCOL.ResetDevice(). **/ EFI_STATUS EFIAPI ScsiDiskResetEx ( IN EFI_BLOCK_IO2_PROTOCOL *This, IN BOOLEAN ExtendedVerification ) { EFI_TPL OldTpl; SCSI_DISK_DEV *ScsiDiskDevice; EFI_STATUS Status; OldTpl = gBS->RaiseTPL (TPL_CALLBACK); ScsiDiskDevice = SCSI_DISK_DEV_FROM_BLKIO2 (This); Status = ScsiDiskDevice->ScsiIo->ResetDevice (ScsiDiskDevice->ScsiIo); if (EFI_ERROR(Status)) { if (Status == EFI_UNSUPPORTED) { Status = EFI_SUCCESS; } else { Status = EFI_DEVICE_ERROR; goto Done; } } if (!ExtendedVerification) { goto Done; } Status = ScsiDiskDevice->ScsiIo->ResetBus (ScsiDiskDevice->ScsiIo); if (EFI_ERROR(Status)) { Status = EFI_DEVICE_ERROR; goto Done; } Done: gBS->RestoreTPL (OldTpl); return Status; } /** The function is to Read Block from SCSI Disk. @param This The pointer of EFI_BLOCK_IO_PROTOCOL. @param MediaId The Id of Media detected. @param Lba The logic block address. @param Token A pointer to the token associated with the transaction. @param BufferSize The size of Buffer. @param Buffer The buffer to fill the read out data. @retval EFI_SUCCESS The read request was queued if Token-> Event is not NULL. The data was read correctly from the device if theToken-> Event is NULL. @retval EFI_DEVICE_ERROR The device reported an error while attempting to perform the read operation. @retval EFI_NO_MEDIA There is no media in the device. @retval EFI_MEDIA_CHANGED The MediaId is not for the current media. @retval EFI_BAD_BUFFER_SIZE The BufferSize parameter is not a multiple of the intrinsic block size of the device. @retval EFI_INVALID_PARAMETER The read request contains LBAs that are not valid, or the buffer is not on proper alignment. @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources. **/ EFI_STATUS EFIAPI ScsiDiskReadBlocksEx ( IN EFI_BLOCK_IO2_PROTOCOL *This, IN UINT32 MediaId, IN EFI_LBA Lba, IN OUT EFI_BLOCK_IO2_TOKEN *Token, IN UINTN BufferSize, OUT VOID *Buffer ) { SCSI_DISK_DEV *ScsiDiskDevice; EFI_BLOCK_IO_MEDIA *Media; EFI_STATUS Status; UINTN BlockSize; UINTN NumberOfBlocks; BOOLEAN MediaChange; EFI_TPL OldTpl; MediaChange = FALSE; OldTpl = gBS->RaiseTPL (TPL_CALLBACK); ScsiDiskDevice = SCSI_DISK_DEV_FROM_BLKIO2 (This); Media = ScsiDiskDevice->BlkIo.Media; if (!IS_DEVICE_FIXED(ScsiDiskDevice)) { Status = ScsiDiskDetectMedia (ScsiDiskDevice, FALSE, &MediaChange); if (EFI_ERROR(Status)) { Status = EFI_DEVICE_ERROR; goto Done; } if (MediaChange) { gBS->ReinstallProtocolInterface ( ScsiDiskDevice->Handle, &gEfiBlockIoProtocolGuid, &ScsiDiskDevice->BlkIo, &ScsiDiskDevice->BlkIo ); gBS->ReinstallProtocolInterface ( ScsiDiskDevice->Handle, &gEfiBlockIo2ProtocolGuid, &ScsiDiskDevice->BlkIo2, &ScsiDiskDevice->BlkIo2 ); if (DetermineInstallEraseBlock(ScsiDiskDevice, ScsiDiskDevice->Handle)) { gBS->ReinstallProtocolInterface ( ScsiDiskDevice->Handle, &gEfiEraseBlockProtocolGuid, &ScsiDiskDevice->EraseBlock, &ScsiDiskDevice->EraseBlock ); } if (Media->MediaPresent) { Status = EFI_MEDIA_CHANGED; } else { Status = EFI_NO_MEDIA; } goto Done; } } // // Get the intrinsic block size // BlockSize = Media->BlockSize; NumberOfBlocks = BufferSize / BlockSize; if (!(Media->MediaPresent)) { Status = EFI_NO_MEDIA; goto Done; } if (MediaId != Media->MediaId) { Status = EFI_MEDIA_CHANGED; goto Done; } if (Buffer == NULL) { Status = EFI_INVALID_PARAMETER; goto Done; } if (BufferSize == 0) { if ((Token != NULL) && (Token->Event != NULL)) { Token->TransactionStatus = EFI_SUCCESS; gBS->SignalEvent (Token->Event); } Status = EFI_SUCCESS; goto Done; } if (BufferSize % BlockSize != 0) { Status = EFI_BAD_BUFFER_SIZE; goto Done; } if (Lba > Media->LastBlock) { Status = EFI_INVALID_PARAMETER; goto Done; } if ((Lba + NumberOfBlocks - 1) > Media->LastBlock) { Status = EFI_INVALID_PARAMETER; goto Done; } if ((Media->IoAlign > 1) && (((UINTN) Buffer & (Media->IoAlign - 1)) != 0)) { Status = EFI_INVALID_PARAMETER; goto Done; } // // If all the parameters are valid, then perform read sectors command // to transfer data from device to host. // if ((Token != NULL) && (Token->Event != NULL)) { Token->TransactionStatus = EFI_SUCCESS; Status = ScsiDiskAsyncReadSectors ( ScsiDiskDevice, Buffer, Lba, NumberOfBlocks, Token ); } else { Status = ScsiDiskReadSectors ( ScsiDiskDevice, Buffer, Lba, NumberOfBlocks ); } Done: gBS->RestoreTPL (OldTpl); return Status; } /** The function is to Write Block to SCSI Disk. @param This The pointer of EFI_BLOCK_IO_PROTOCOL. @param MediaId The Id of Media detected. @param Lba The logic block address. @param Token A pointer to the token associated with the transaction. @param BufferSize The size of Buffer. @param Buffer The buffer to fill the read out data. @retval EFI_SUCCESS The data were written correctly to the device. @retval EFI_WRITE_PROTECTED The device cannot be written to. @retval EFI_NO_MEDIA There is no media in the device. @retval EFI_MEDIA_CHANGED The MediaId is not for the current media. @retval EFI_DEVICE_ERROR The device reported an error while attempting to perform the write operation. @retval EFI_BAD_BUFFER_SIZE The BufferSize parameter is not a multiple of the intrinsic block size of the device. @retval EFI_INVALID_PARAMETER The write request contains LBAs that are not valid, or the buffer is not on proper alignment. **/ EFI_STATUS EFIAPI ScsiDiskWriteBlocksEx ( IN EFI_BLOCK_IO2_PROTOCOL *This, IN UINT32 MediaId, IN EFI_LBA Lba, IN OUT EFI_BLOCK_IO2_TOKEN *Token, IN UINTN BufferSize, IN VOID *Buffer ) { SCSI_DISK_DEV *ScsiDiskDevice; EFI_BLOCK_IO_MEDIA *Media; EFI_STATUS Status; UINTN BlockSize; UINTN NumberOfBlocks; BOOLEAN MediaChange; EFI_TPL OldTpl; MediaChange = FALSE; OldTpl = gBS->RaiseTPL (TPL_CALLBACK); ScsiDiskDevice = SCSI_DISK_DEV_FROM_BLKIO2 (This); Media = ScsiDiskDevice->BlkIo.Media; if (!IS_DEVICE_FIXED(ScsiDiskDevice)) { Status = ScsiDiskDetectMedia (ScsiDiskDevice, FALSE, &MediaChange); if (EFI_ERROR(Status)) { Status = EFI_DEVICE_ERROR; goto Done; } if (MediaChange) { gBS->ReinstallProtocolInterface ( ScsiDiskDevice->Handle, &gEfiBlockIoProtocolGuid, &ScsiDiskDevice->BlkIo, &ScsiDiskDevice->BlkIo ); gBS->ReinstallProtocolInterface ( ScsiDiskDevice->Handle, &gEfiBlockIo2ProtocolGuid, &ScsiDiskDevice->BlkIo2, &ScsiDiskDevice->BlkIo2 ); if (DetermineInstallEraseBlock(ScsiDiskDevice, ScsiDiskDevice->Handle)) { gBS->ReinstallProtocolInterface ( ScsiDiskDevice->Handle, &gEfiEraseBlockProtocolGuid, &ScsiDiskDevice->EraseBlock, &ScsiDiskDevice->EraseBlock ); } if (Media->MediaPresent) { Status = EFI_MEDIA_CHANGED; } else { Status = EFI_NO_MEDIA; } goto Done; } } // // Get the intrinsic block size // BlockSize = Media->BlockSize; NumberOfBlocks = BufferSize / BlockSize; if (!(Media->MediaPresent)) { Status = EFI_NO_MEDIA; goto Done; } if (MediaId != Media->MediaId) { Status = EFI_MEDIA_CHANGED; goto Done; } if (Media->ReadOnly) { Status = EFI_WRITE_PROTECTED; goto Done; } if (BufferSize == 0) { if ((Token != NULL) && (Token->Event != NULL)) { Token->TransactionStatus = EFI_SUCCESS; gBS->SignalEvent (Token->Event); } Status = EFI_SUCCESS; goto Done; } if (Buffer == NULL) { Status = EFI_INVALID_PARAMETER; goto Done; } if (BufferSize % BlockSize != 0) { Status = EFI_BAD_BUFFER_SIZE; goto Done; } if (Lba > Media->LastBlock) { Status = EFI_INVALID_PARAMETER; goto Done; } if ((Lba + NumberOfBlocks - 1) > Media->LastBlock) { Status = EFI_INVALID_PARAMETER; goto Done; } if ((Media->IoAlign > 1) && (((UINTN) Buffer & (Media->IoAlign - 1)) != 0)) { Status = EFI_INVALID_PARAMETER; goto Done; } // // if all the parameters are valid, then perform write sectors command // to transfer data from device to host. // if ((Token != NULL) && (Token->Event != NULL)) { Token->TransactionStatus = EFI_SUCCESS; Status = ScsiDiskAsyncWriteSectors ( ScsiDiskDevice, Buffer, Lba, NumberOfBlocks, Token ); } else { Status = ScsiDiskWriteSectors ( ScsiDiskDevice, Buffer, Lba, NumberOfBlocks ); } Done: gBS->RestoreTPL (OldTpl); return Status; } /** Flush the Block Device. @param This Indicates a pointer to the calling context. @param Token A pointer to the token associated with the transaction. @retval EFI_SUCCESS All outstanding data was written to the device. @retval EFI_DEVICE_ERROR The device reported an error while attempting to write data. @retval EFI_WRITE_PROTECTED The device cannot be written to. @retval EFI_NO_MEDIA There is no media in the device. @retval EFI_MEDIA_CHANGED The MediaId is not for the current media. **/ EFI_STATUS EFIAPI ScsiDiskFlushBlocksEx ( IN EFI_BLOCK_IO2_PROTOCOL *This, IN OUT EFI_BLOCK_IO2_TOKEN *Token ) { SCSI_DISK_DEV *ScsiDiskDevice; EFI_BLOCK_IO_MEDIA *Media; EFI_STATUS Status; BOOLEAN MediaChange; EFI_TPL OldTpl; MediaChange = FALSE; OldTpl = gBS->RaiseTPL (TPL_CALLBACK); ScsiDiskDevice = SCSI_DISK_DEV_FROM_BLKIO2 (This); Media = ScsiDiskDevice->BlkIo.Media; if (!IS_DEVICE_FIXED(ScsiDiskDevice)) { Status = ScsiDiskDetectMedia (ScsiDiskDevice, FALSE, &MediaChange); if (EFI_ERROR(Status)) { Status = EFI_DEVICE_ERROR; goto Done; } if (MediaChange) { gBS->ReinstallProtocolInterface ( ScsiDiskDevice->Handle, &gEfiBlockIoProtocolGuid, &ScsiDiskDevice->BlkIo, &ScsiDiskDevice->BlkIo ); gBS->ReinstallProtocolInterface ( ScsiDiskDevice->Handle, &gEfiBlockIo2ProtocolGuid, &ScsiDiskDevice->BlkIo2, &ScsiDiskDevice->BlkIo2 ); if (DetermineInstallEraseBlock(ScsiDiskDevice, ScsiDiskDevice->Handle)) { gBS->ReinstallProtocolInterface ( ScsiDiskDevice->Handle, &gEfiEraseBlockProtocolGuid, &ScsiDiskDevice->EraseBlock, &ScsiDiskDevice->EraseBlock ); } if (Media->MediaPresent) { Status = EFI_MEDIA_CHANGED; } else { Status = EFI_NO_MEDIA; } goto Done; } } if (!(Media->MediaPresent)) { Status = EFI_NO_MEDIA; goto Done; } if (Media->ReadOnly) { Status = EFI_WRITE_PROTECTED; goto Done; } // // Wait for the BlockIo2 requests queue to become empty // while (!IsListEmpty (&ScsiDiskDevice->AsyncTaskQueue)); Status = EFI_SUCCESS; // // Signal caller event // if ((Token != NULL) && (Token->Event != NULL)) { Token->TransactionStatus = EFI_SUCCESS; gBS->SignalEvent (Token->Event); } Done: gBS->RestoreTPL (OldTpl); return Status; } /** Internal helper notify function which process the result of an asynchronous SCSI UNMAP Command and signal the event passed from EraseBlocks. @param Event The instance of EFI_EVENT. @param Context The parameter passed in. **/ VOID EFIAPI ScsiDiskAsyncUnmapNotify ( IN EFI_EVENT Event, IN VOID *Context ) { SCSI_ERASEBLK_REQUEST *EraseBlkReq; EFI_SCSI_IO_SCSI_REQUEST_PACKET *CommandPacket; EFI_ERASE_BLOCK_TOKEN *Token; EFI_STATUS Status; gBS->CloseEvent (Event); EraseBlkReq = (SCSI_ERASEBLK_REQUEST *) Context; CommandPacket = &EraseBlkReq->CommandPacket; Token = EraseBlkReq->Token; Token->TransactionStatus = EFI_SUCCESS; Status = CheckHostAdapterStatus (CommandPacket->HostAdapterStatus); if (EFI_ERROR(Status)) { DEBUG (( EFI_D_ERROR, "ScsiDiskAsyncUnmapNotify: Host adapter indicating error status 0x%x.\n", CommandPacket->HostAdapterStatus )); Token->TransactionStatus = Status; goto Done; } Status = CheckTargetStatus (CommandPacket->TargetStatus); if (EFI_ERROR(Status)) { DEBUG (( EFI_D_ERROR, "ScsiDiskAsyncUnmapNotify: Target indicating error status 0x%x.\n", CommandPacket->HostAdapterStatus )); Token->TransactionStatus = Status; goto Done; } Done: RemoveEntryList (&EraseBlkReq->Link); FreePool(CommandPacket->OutDataBuffer); FreePool(EraseBlkReq->CommandPacket.Cdb); FreePool(EraseBlkReq); gBS->SignalEvent (Token->Event); } /** Require the device server to cause one or more LBAs to be unmapped. @param ScsiDiskDevice The pointer of ScsiDiskDevice. @param Lba The start block number. @param Blocks Total block number to be unmapped. @param Token The pointer to the token associated with the non-blocking erase block request. @retval EFI_SUCCESS Target blocks have been successfully unmapped. @retval EFI_DEVICE_ERROR Fail to unmap the target blocks. **/ EFI_STATUS ScsiDiskUnmap ( IN SCSI_DISK_DEV *ScsiDiskDevice, IN UINT64 Lba, IN UINTN Blocks, IN EFI_ERASE_BLOCK_TOKEN *Token OPTIONAL ) { EFI_SCSI_IO_PROTOCOL *ScsiIo; SCSI_ERASEBLK_REQUEST *EraseBlkReq; EFI_SCSI_IO_SCSI_REQUEST_PACKET *CommandPacket; EFI_SCSI_DISK_UNMAP_BLOCK_DESP *BlkDespPtr; EFI_STATUS Status; EFI_STATUS ReturnStatus; UINT8 *Cdb; UINT32 MaxLbaCnt; UINT32 MaxBlkDespCnt; UINT32 BlkDespCnt; UINT16 UnmapParamListLen; VOID *UnmapParamList; EFI_EVENT AsyncUnmapEvent; EFI_TPL OldTpl; ScsiIo = ScsiDiskDevice->ScsiIo; MaxLbaCnt = ScsiDiskDevice->UnmapInfo.MaxLbaCnt; MaxBlkDespCnt = ScsiDiskDevice->UnmapInfo.MaxBlkDespCnt; EraseBlkReq = NULL; UnmapParamList = NULL; AsyncUnmapEvent = NULL; ReturnStatus = EFI_SUCCESS; if (Blocks / (UINTN) MaxLbaCnt > MaxBlkDespCnt) { ReturnStatus = EFI_DEVICE_ERROR; goto Done; } EraseBlkReq = AllocateZeroPool (sizeof (SCSI_ERASEBLK_REQUEST)); if (EraseBlkReq == NULL) { ReturnStatus = EFI_DEVICE_ERROR; goto Done; } EraseBlkReq->CommandPacket.Cdb = AllocateZeroPool (0xA); if (EraseBlkReq->CommandPacket.Cdb == NULL) { ReturnStatus = EFI_DEVICE_ERROR; goto Done; } BlkDespCnt = (UINT32) ((Blocks - 1) / MaxLbaCnt + 1); UnmapParamListLen = (UINT16) (sizeof (EFI_SCSI_DISK_UNMAP_PARAM_LIST_HEADER) + BlkDespCnt * sizeof (EFI_SCSI_DISK_UNMAP_BLOCK_DESP)); UnmapParamList = AllocateZeroPool (UnmapParamListLen); if (UnmapParamList == NULL) { ReturnStatus = EFI_DEVICE_ERROR; goto Done; } *((UINT16 *)UnmapParamList) = SwapBytes16 (UnmapParamListLen - 2); *((UINT16 *)UnmapParamList + 1) = SwapBytes16 (UnmapParamListLen - sizeof (EFI_SCSI_DISK_UNMAP_PARAM_LIST_HEADER)); BlkDespPtr = (EFI_SCSI_DISK_UNMAP_BLOCK_DESP *)((UINT8 *)UnmapParamList + sizeof (EFI_SCSI_DISK_UNMAP_PARAM_LIST_HEADER)); while (Blocks > 0) { if (Blocks > MaxLbaCnt) { *(UINT64 *)(&BlkDespPtr->Lba) = SwapBytes64 (Lba); *(UINT32 *)(&BlkDespPtr->BlockNum) = SwapBytes32 (MaxLbaCnt); Blocks -= MaxLbaCnt; Lba += MaxLbaCnt; } else { *(UINT64 *)(&BlkDespPtr->Lba) = SwapBytes64 (Lba); *(UINT32 *)(&BlkDespPtr->BlockNum) = SwapBytes32 ((UINT32) Blocks); Blocks = 0; } BlkDespPtr++; } CommandPacket = &EraseBlkReq->CommandPacket; CommandPacket->Timeout = SCSI_DISK_TIMEOUT; CommandPacket->OutDataBuffer = UnmapParamList; CommandPacket->OutTransferLength = UnmapParamListLen; CommandPacket->CdbLength = 0xA; CommandPacket->DataDirection = EFI_SCSI_DATA_OUT; // // Fill Cdb for UNMAP Command // Cdb = CommandPacket->Cdb; Cdb[0] = EFI_SCSI_OP_UNMAP; WriteUnaligned16 ((UINT16 *)&Cdb[7], SwapBytes16 (UnmapParamListLen)); if ((Token != NULL) && (Token->Event != NULL)) { // // Non-blocking UNMAP request // Status = gBS->CreateEvent ( EVT_NOTIFY_SIGNAL, TPL_NOTIFY, ScsiDiskAsyncUnmapNotify, EraseBlkReq, &AsyncUnmapEvent ); if (EFI_ERROR(Status)) { ReturnStatus = EFI_DEVICE_ERROR; goto Done; } OldTpl = gBS->RaiseTPL (TPL_NOTIFY); InsertTailList (&ScsiDiskDevice->AsyncTaskQueue, &EraseBlkReq->Link); gBS->RestoreTPL (OldTpl); EraseBlkReq->Token = Token; Status = ScsiIo->ExecuteScsiCommand ( ScsiIo, CommandPacket, AsyncUnmapEvent ); if (EFI_ERROR(Status)) { ReturnStatus = EFI_DEVICE_ERROR; OldTpl = gBS->RaiseTPL (TPL_NOTIFY); RemoveEntryList (&EraseBlkReq->Link); gBS->RestoreTPL (OldTpl); goto Done; } else { // // Directly return if the non-blocking UNMAP request is queued. // return EFI_SUCCESS; } } else { // // Blocking UNMAP request // Status = ScsiIo->ExecuteScsiCommand ( ScsiIo, CommandPacket, NULL ); if (EFI_ERROR(Status)) { ReturnStatus = EFI_DEVICE_ERROR; goto Done; } } // // Only blocking UNMAP request will reach here. // Status = CheckHostAdapterStatus (CommandPacket->HostAdapterStatus); if (EFI_ERROR(Status)) { DEBUG (( EFI_D_ERROR, "ScsiDiskUnmap: Host adapter indicating error status 0x%x.\n", CommandPacket->HostAdapterStatus )); ReturnStatus = EFI_DEVICE_ERROR; goto Done; } Status = CheckTargetStatus (CommandPacket->TargetStatus); if (EFI_ERROR(Status)) { DEBUG (( EFI_D_ERROR, "ScsiDiskUnmap: Target indicating error status 0x%x.\n", CommandPacket->HostAdapterStatus )); ReturnStatus = EFI_DEVICE_ERROR; goto Done; } Done: if (EraseBlkReq != NULL) { if (EraseBlkReq->CommandPacket.Cdb != NULL) { FreePool(EraseBlkReq->CommandPacket.Cdb); } FreePool(EraseBlkReq); } if (UnmapParamList != NULL) { FreePool(UnmapParamList); } if (AsyncUnmapEvent != NULL) { gBS->CloseEvent (AsyncUnmapEvent); } return ReturnStatus; } /** Erase a specified number of device blocks. @param[in] This Indicates a pointer to the calling context. @param[in] MediaId The media ID that the erase request is for. @param[in] Lba The starting logical block address to be erased. The caller is responsible for erasing only legitimate locations. @param[in, out] Token A pointer to the token associated with the transaction. @param[in] Size The size in bytes to be erased. This must be a multiple of the physical block size of the device. @retval EFI_SUCCESS The erase request was queued if Event is not NULL. The data was erased correctly to the device if the Event is NULL.to the device. @retval EFI_WRITE_PROTECTED The device cannot be erased due to write protection. @retval EFI_DEVICE_ERROR The device reported an error while attempting to perform the erase operation. @retval EFI_INVALID_PARAMETER The erase request contains LBAs that are not valid. @retval EFI_NO_MEDIA There is no media in the device. @retval EFI_MEDIA_CHANGED The MediaId is not for the current media. **/ EFI_STATUS EFIAPI ScsiDiskEraseBlocks ( IN EFI_ERASE_BLOCK_PROTOCOL *This, IN UINT32 MediaId, IN EFI_LBA Lba, IN OUT EFI_ERASE_BLOCK_TOKEN *Token, IN UINTN Size ) { SCSI_DISK_DEV *ScsiDiskDevice; EFI_BLOCK_IO_MEDIA *Media; EFI_STATUS Status; UINTN BlockSize; UINTN NumberOfBlocks; BOOLEAN MediaChange; EFI_TPL OldTpl; MediaChange = FALSE; OldTpl = gBS->RaiseTPL (TPL_CALLBACK); ScsiDiskDevice = SCSI_DISK_DEV_FROM_ERASEBLK (This); if (!IS_DEVICE_FIXED(ScsiDiskDevice)) { Status = ScsiDiskDetectMedia (ScsiDiskDevice, FALSE, &MediaChange); if (EFI_ERROR(Status)) { Status = EFI_DEVICE_ERROR; goto Done; } if (MediaChange) { gBS->ReinstallProtocolInterface ( ScsiDiskDevice->Handle, &gEfiBlockIoProtocolGuid, &ScsiDiskDevice->BlkIo, &ScsiDiskDevice->BlkIo ); gBS->ReinstallProtocolInterface ( ScsiDiskDevice->Handle, &gEfiBlockIo2ProtocolGuid, &ScsiDiskDevice->BlkIo2, &ScsiDiskDevice->BlkIo2 ); if (DetermineInstallEraseBlock(ScsiDiskDevice, ScsiDiskDevice->Handle)) { gBS->ReinstallProtocolInterface ( ScsiDiskDevice->Handle, &gEfiEraseBlockProtocolGuid, &ScsiDiskDevice->EraseBlock, &ScsiDiskDevice->EraseBlock ); } Status = EFI_MEDIA_CHANGED; goto Done; } } // // Get the intrinsic block size // Media = ScsiDiskDevice->BlkIo.Media; if (!(Media->MediaPresent)) { Status = EFI_NO_MEDIA; goto Done; } if (MediaId != Media->MediaId) { Status = EFI_MEDIA_CHANGED; goto Done; } if (Media->ReadOnly) { Status = EFI_WRITE_PROTECTED; goto Done; } if (Size == 0) { if ((Token != NULL) && (Token->Event != NULL)) { Token->TransactionStatus = EFI_SUCCESS; gBS->SignalEvent (Token->Event); } Status = EFI_SUCCESS; goto Done; } BlockSize = Media->BlockSize; if ((Size % BlockSize) != 0) { Status = EFI_INVALID_PARAMETER; goto Done; } NumberOfBlocks = Size / BlockSize; if ((Lba + NumberOfBlocks - 1) > Media->LastBlock) { Status = EFI_INVALID_PARAMETER; goto Done; } if ((Token != NULL) && (Token->Event != NULL)) { Status = ScsiDiskUnmap (ScsiDiskDevice, Lba, NumberOfBlocks, Token); } else { Status = ScsiDiskUnmap (ScsiDiskDevice, Lba, NumberOfBlocks, NULL); } Done: gBS->RestoreTPL (OldTpl); return Status; } /** Detect Device and read out capacity ,if error occurs, parse the sense key. @param ScsiDiskDevice The pointer of SCSI_DISK_DEV @param MustReadCapacity The flag about reading device capacity @param MediaChange The pointer of flag indicates if media has changed @retval EFI_DEVICE_ERROR Indicates that error occurs @retval EFI_SUCCESS Successfully to detect media **/ EFI_STATUS ScsiDiskDetectMedia ( IN SCSI_DISK_DEV *ScsiDiskDevice, IN BOOLEAN MustReadCapacity, OUT BOOLEAN *MediaChange ) { EFI_STATUS Status; EFI_SCSI_SENSE_DATA *SenseData; UINTN NumberOfSenseKeys; BOOLEAN NeedRetry; BOOLEAN NeedReadCapacity; UINT8 Retry; UINT8 MaxRetry; EFI_BLOCK_IO_MEDIA OldMedia; UINTN Action; EFI_EVENT TimeoutEvt; Status = EFI_SUCCESS; SenseData = NULL; NumberOfSenseKeys = 0; Retry = 0; MaxRetry = 3; Action = ACTION_NO_ACTION; NeedReadCapacity = FALSE; *MediaChange = FALSE; TimeoutEvt = NULL; CopyMem (&OldMedia, ScsiDiskDevice->BlkIo.Media, sizeof (OldMedia)); Status = gBS->CreateEvent ( EVT_TIMER, TPL_CALLBACK, NULL, NULL, &TimeoutEvt ); if (EFI_ERROR(Status)) { return Status; } Status = gBS->SetTimer (TimeoutEvt, TimerRelative, EFI_TIMER_PERIOD_SECONDS(120)); if (EFI_ERROR(Status)) { goto EXIT; } // // Sending Test_Unit cmd to poll device status. // If the sense data shows the drive is not ready or reset before, we need poll the device status again. // We limit the upper boundary to 120 seconds. // while (EFI_ERROR(gBS->CheckEvent (TimeoutEvt))) { Status = ScsiDiskTestUnitReady ( ScsiDiskDevice, &NeedRetry, &SenseData, &NumberOfSenseKeys ); if (!EFI_ERROR(Status)) { Status = DetectMediaParsingSenseKeys ( ScsiDiskDevice, SenseData, NumberOfSenseKeys, &Action ); if (EFI_ERROR(Status)) { goto EXIT; } else if (Action == ACTION_RETRY_COMMAND_LATER) { continue; } else { break; } } else { Retry++; if (!NeedRetry || (Retry >= MaxRetry)) { goto EXIT; } } } if (EFI_ERROR(Status)) { goto EXIT; } // // ACTION_NO_ACTION: need not read capacity // other action code: need read capacity // if (Action == ACTION_READ_CAPACITY) { NeedReadCapacity = TRUE; } // // either NeedReadCapacity is TRUE, or MustReadCapacity is TRUE, // retrieve capacity via Read Capacity command // if (NeedReadCapacity || MustReadCapacity) { // // retrieve media information // for (Retry = 0; Retry < MaxRetry; Retry++) { Status = ScsiDiskReadCapacity ( ScsiDiskDevice, &NeedRetry, &SenseData, &NumberOfSenseKeys ); if (!EFI_ERROR(Status)) { // // analyze sense key to action // Status = DetectMediaParsingSenseKeys ( ScsiDiskDevice, SenseData, NumberOfSenseKeys, &Action ); if (EFI_ERROR(Status)) { // // if Status is error, it may indicate crisis error, // so return without retry. // goto EXIT; } else if (Action == ACTION_RETRY_COMMAND_LATER) { Retry = 0; continue; } else { break; } } else { Retry++; if (!NeedRetry || (Retry >= MaxRetry)) { goto EXIT; } } } if (EFI_ERROR(Status)) { goto EXIT; } } if (ScsiDiskDevice->BlkIo.Media->MediaId != OldMedia.MediaId) { // // Media change information got from the device // *MediaChange = TRUE; } if (ScsiDiskDevice->BlkIo.Media->ReadOnly != OldMedia.ReadOnly) { *MediaChange = TRUE; ScsiDiskDevice->BlkIo.Media->MediaId += 1; } if (ScsiDiskDevice->BlkIo.Media->BlockSize != OldMedia.BlockSize) { *MediaChange = TRUE; ScsiDiskDevice->BlkIo.Media->MediaId += 1; } if (ScsiDiskDevice->BlkIo.Media->LastBlock != OldMedia.LastBlock) { *MediaChange = TRUE; ScsiDiskDevice->BlkIo.Media->MediaId += 1; } if (ScsiDiskDevice->BlkIo.Media->MediaPresent != OldMedia.MediaPresent) { if (ScsiDiskDevice->BlkIo.Media->MediaPresent) { // // when change from no media to media present, reset the MediaId to 1. // ScsiDiskDevice->BlkIo.Media->MediaId = 1; } else { // // when no media, reset the MediaId to zero. // ScsiDiskDevice->BlkIo.Media->MediaId = 0; } *MediaChange = TRUE; } EXIT: if (TimeoutEvt != NULL) { gBS->CloseEvent (TimeoutEvt); } return Status; } /** Send out Inquiry command to Device. @param ScsiDiskDevice The pointer of SCSI_DISK_DEV @param NeedRetry Indicates if needs try again when error happens @retval EFI_DEVICE_ERROR Indicates that error occurs @retval EFI_SUCCESS Successfully to detect media **/ EFI_STATUS ScsiDiskInquiryDevice ( IN OUT SCSI_DISK_DEV *ScsiDiskDevice, OUT BOOLEAN *NeedRetry ) { UINT32 InquiryDataLength; UINT8 SenseDataLength; UINT8 HostAdapterStatus; UINT8 TargetStatus; EFI_SCSI_SENSE_DATA *SenseDataArray; UINTN NumberOfSenseKeys; EFI_STATUS Status; UINT8 MaxRetry; UINT8 Index; EFI_SCSI_SUPPORTED_VPD_PAGES_VPD_PAGE *SupportedVpdPages; EFI_SCSI_BLOCK_LIMITS_VPD_PAGE *BlockLimits; UINTN PageLength; InquiryDataLength = sizeof (EFI_SCSI_INQUIRY_DATA); SenseDataLength = 0; Status = ScsiInquiryCommand ( ScsiDiskDevice->ScsiIo, SCSI_DISK_TIMEOUT, NULL, &SenseDataLength, &HostAdapterStatus, &TargetStatus, (VOID *) &(ScsiDiskDevice->InquiryData), &InquiryDataLength, FALSE ); // // no need to check HostAdapterStatus and TargetStatus // if ((Status == EFI_SUCCESS) || (Status == EFI_WARN_BUFFER_TOO_SMALL)) { ParseInquiryData (ScsiDiskDevice); if (ScsiDiskDevice->DeviceType == EFI_SCSI_TYPE_DISK) { // // Check whether the device supports Block Limits VPD page (0xB0) // SupportedVpdPages = AllocateAlignedBuffer (ScsiDiskDevice, sizeof (EFI_SCSI_SUPPORTED_VPD_PAGES_VPD_PAGE)); if (SupportedVpdPages == NULL) { *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } ZeroMem (SupportedVpdPages, sizeof (EFI_SCSI_SUPPORTED_VPD_PAGES_VPD_PAGE)); InquiryDataLength = sizeof (EFI_SCSI_SUPPORTED_VPD_PAGES_VPD_PAGE); SenseDataLength = 0; Status = ScsiInquiryCommandEx ( ScsiDiskDevice->ScsiIo, SCSI_DISK_TIMEOUT, NULL, &SenseDataLength, &HostAdapterStatus, &TargetStatus, (VOID *) SupportedVpdPages, &InquiryDataLength, TRUE, EFI_SCSI_PAGE_CODE_SUPPORTED_VPD ); if (!EFI_ERROR(Status)) { PageLength = (SupportedVpdPages->PageLength2 << 8) | SupportedVpdPages->PageLength1; // // Sanity checks for coping with broken devices // if (PageLength > sizeof SupportedVpdPages->SupportedVpdPageList) { DEBUG ((EFI_D_WARN, "%a: invalid PageLength (%u) in Supported VPD Pages page\n", __FUNCTION__, (UINT32)PageLength)); PageLength = 0; } if ((PageLength > 0) && (SupportedVpdPages->SupportedVpdPageList[0] != EFI_SCSI_PAGE_CODE_SUPPORTED_VPD)) { DEBUG ((EFI_D_WARN, "%a: Supported VPD Pages page doesn't start with code 0x%02x\n", __FUNCTION__, EFI_SCSI_PAGE_CODE_SUPPORTED_VPD)); PageLength = 0; } // // Locate the code for the Block Limits VPD page // for (Index = 0; Index < PageLength; Index++) { // // Sanity check // if ((Index > 0) && (SupportedVpdPages->SupportedVpdPageList[Index] <= SupportedVpdPages->SupportedVpdPageList[Index - 1])) { DEBUG ((EFI_D_WARN, "%a: non-ascending code in Supported VPD Pages page @ %u\n", __FUNCTION__, Index)); Index = 0; PageLength = 0; break; } if (SupportedVpdPages->SupportedVpdPageList[Index] == EFI_SCSI_PAGE_CODE_BLOCK_LIMITS_VPD) { break; } } // // Query the Block Limits VPD page // if (Index < PageLength) { BlockLimits = AllocateAlignedBuffer (ScsiDiskDevice, sizeof (EFI_SCSI_BLOCK_LIMITS_VPD_PAGE)); if (BlockLimits == NULL) { FreeAlignedBuffer (SupportedVpdPages, sizeof (EFI_SCSI_SUPPORTED_VPD_PAGES_VPD_PAGE)); *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } ZeroMem (BlockLimits, sizeof (EFI_SCSI_BLOCK_LIMITS_VPD_PAGE)); InquiryDataLength = sizeof (EFI_SCSI_BLOCK_LIMITS_VPD_PAGE); SenseDataLength = 0; Status = ScsiInquiryCommandEx ( ScsiDiskDevice->ScsiIo, SCSI_DISK_TIMEOUT, NULL, &SenseDataLength, &HostAdapterStatus, &TargetStatus, (VOID *) BlockLimits, &InquiryDataLength, TRUE, EFI_SCSI_PAGE_CODE_BLOCK_LIMITS_VPD ); if (!EFI_ERROR(Status)) { ScsiDiskDevice->BlkIo.Media->OptimalTransferLengthGranularity = (BlockLimits->OptimalTransferLengthGranularity2 << 8) | BlockLimits->OptimalTransferLengthGranularity1; ScsiDiskDevice->UnmapInfo.MaxLbaCnt = (BlockLimits->MaximumUnmapLbaCount4 << 24) | (BlockLimits->MaximumUnmapLbaCount3 << 16) | (BlockLimits->MaximumUnmapLbaCount2 << 8) | BlockLimits->MaximumUnmapLbaCount1; ScsiDiskDevice->UnmapInfo.MaxBlkDespCnt = (BlockLimits->MaximumUnmapBlockDescriptorCount4 << 24) | (BlockLimits->MaximumUnmapBlockDescriptorCount3 << 16) | (BlockLimits->MaximumUnmapBlockDescriptorCount2 << 8) | BlockLimits->MaximumUnmapBlockDescriptorCount1; ScsiDiskDevice->EraseBlock.EraseLengthGranularity = (BlockLimits->OptimalUnmapGranularity4 << 24) | (BlockLimits->OptimalUnmapGranularity3 << 16) | (BlockLimits->OptimalUnmapGranularity2 << 8) | BlockLimits->OptimalUnmapGranularity1; if (BlockLimits->UnmapGranularityAlignmentValid != 0) { ScsiDiskDevice->UnmapInfo.GranularityAlignment = (BlockLimits->UnmapGranularityAlignment4 << 24) | (BlockLimits->UnmapGranularityAlignment3 << 16) | (BlockLimits->UnmapGranularityAlignment2 << 8) | BlockLimits->UnmapGranularityAlignment1; } if (ScsiDiskDevice->EraseBlock.EraseLengthGranularity == 0) { // // A value of 0 indicates that the optimal unmap granularity is // not reported. // ScsiDiskDevice->EraseBlock.EraseLengthGranularity = 1; } ScsiDiskDevice->BlockLimitsVpdSupported = TRUE; } FreeAlignedBuffer (BlockLimits, sizeof (EFI_SCSI_BLOCK_LIMITS_VPD_PAGE)); } } FreeAlignedBuffer (SupportedVpdPages, sizeof (EFI_SCSI_SUPPORTED_VPD_PAGES_VPD_PAGE)); } } if (!EFI_ERROR(Status)) { return EFI_SUCCESS; } else if (Status == EFI_NOT_READY) { *NeedRetry = TRUE; return EFI_DEVICE_ERROR; } else if ((Status == EFI_INVALID_PARAMETER) || (Status == EFI_UNSUPPORTED)) { *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } // // go ahead to check HostAdapterStatus and TargetStatus // (EFI_TIMEOUT, EFI_DEVICE_ERROR) // Status = CheckHostAdapterStatus (HostAdapterStatus); if ((Status == EFI_TIMEOUT) || (Status == EFI_NOT_READY)) { *NeedRetry = TRUE; return EFI_DEVICE_ERROR; } else if (Status == EFI_DEVICE_ERROR) { // // reset the scsi channel // ScsiDiskDevice->ScsiIo->ResetBus (ScsiDiskDevice->ScsiIo); *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } Status = CheckTargetStatus (TargetStatus); if (Status == EFI_NOT_READY) { // // reset the scsi device // ScsiDiskDevice->ScsiIo->ResetDevice (ScsiDiskDevice->ScsiIo); *NeedRetry = TRUE; return EFI_DEVICE_ERROR; } else if (Status == EFI_DEVICE_ERROR) { *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } // // if goes here, meant ScsiInquiryCommand() failed. // if ScsiDiskRequestSenseKeys() succeeds at last, // better retry ScsiInquiryCommand(). (by setting *NeedRetry = TRUE) // MaxRetry = 3; for (Index = 0; Index < MaxRetry; Index++) { Status = ScsiDiskRequestSenseKeys ( ScsiDiskDevice, NeedRetry, &SenseDataArray, &NumberOfSenseKeys, TRUE ); if (!EFI_ERROR(Status)) { *NeedRetry = TRUE; return EFI_DEVICE_ERROR; } if (!*NeedRetry) { return EFI_DEVICE_ERROR; } } // // ScsiDiskRequestSenseKeys() failed after several rounds of retry. // set *NeedRetry = FALSE to avoid the outside caller try again. // *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } /** To test device. When Test Unit Ready command succeeds, retrieve Sense Keys via Request Sense; When Test Unit Ready command encounters any error caused by host adapter or target, return error without retrieving Sense Keys. @param ScsiDiskDevice The pointer of SCSI_DISK_DEV @param NeedRetry The pointer of flag indicates try again @param SenseDataArray The pointer of an array of sense data @param NumberOfSenseKeys The pointer of the number of sense data array @retval EFI_DEVICE_ERROR Indicates that error occurs @retval EFI_SUCCESS Successfully to test unit **/ EFI_STATUS ScsiDiskTestUnitReady ( IN SCSI_DISK_DEV *ScsiDiskDevice, OUT BOOLEAN *NeedRetry, OUT EFI_SCSI_SENSE_DATA **SenseDataArray, OUT UINTN *NumberOfSenseKeys ) { EFI_STATUS Status; UINT8 SenseDataLength; UINT8 HostAdapterStatus; UINT8 TargetStatus; UINT8 Index; UINT8 MaxRetry; SenseDataLength = (UINT8) (ScsiDiskDevice->SenseDataNumber * sizeof (EFI_SCSI_SENSE_DATA)); *NumberOfSenseKeys = 0; // // Parameter 3 and 4: do not require sense data, retrieve it when needed. // Status = ScsiTestUnitReadyCommand ( ScsiDiskDevice->ScsiIo, SCSI_DISK_TIMEOUT, ScsiDiskDevice->SenseData, &SenseDataLength, &HostAdapterStatus, &TargetStatus ); // // no need to check HostAdapterStatus and TargetStatus // if (Status == EFI_NOT_READY) { *NeedRetry = TRUE; return EFI_DEVICE_ERROR; } else if ((Status == EFI_INVALID_PARAMETER) || (Status == EFI_UNSUPPORTED)) { *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } // // go ahead to check HostAdapterStatus and TargetStatus(in case of EFI_DEVICE_ERROR) // Status = CheckHostAdapterStatus (HostAdapterStatus); if ((Status == EFI_TIMEOUT) || (Status == EFI_NOT_READY)) { *NeedRetry = TRUE; return EFI_DEVICE_ERROR; } else if (Status == EFI_DEVICE_ERROR) { // // reset the scsi channel // ScsiDiskDevice->ScsiIo->ResetBus (ScsiDiskDevice->ScsiIo); *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } Status = CheckTargetStatus (TargetStatus); if (Status == EFI_NOT_READY) { // // reset the scsi device // ScsiDiskDevice->ScsiIo->ResetDevice (ScsiDiskDevice->ScsiIo); *NeedRetry = TRUE; return EFI_DEVICE_ERROR; } else if (Status == EFI_DEVICE_ERROR) { *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } if (SenseDataLength != 0) { *NumberOfSenseKeys = SenseDataLength / sizeof (EFI_SCSI_SENSE_DATA); *SenseDataArray = ScsiDiskDevice->SenseData; return EFI_SUCCESS; } MaxRetry = 3; for (Index = 0; Index < MaxRetry; Index++) { Status = ScsiDiskRequestSenseKeys ( ScsiDiskDevice, NeedRetry, SenseDataArray, NumberOfSenseKeys, FALSE ); if (!EFI_ERROR(Status)) { return EFI_SUCCESS; } if (!*NeedRetry) { return EFI_DEVICE_ERROR; } } // // ScsiDiskRequestSenseKeys() failed after several rounds of retry. // set *NeedRetry = FALSE to avoid the outside caller try again. // *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } /** Parsing Sense Keys which got from request sense command. @param ScsiDiskDevice The pointer of SCSI_DISK_DEV @param SenseData The pointer of EFI_SCSI_SENSE_DATA @param NumberOfSenseKeys The number of sense key @param Action The pointer of action which indicates what is need to do next @retval EFI_DEVICE_ERROR Indicates that error occurs @retval EFI_SUCCESS Successfully to complete the parsing **/ EFI_STATUS DetectMediaParsingSenseKeys ( OUT SCSI_DISK_DEV *ScsiDiskDevice, IN EFI_SCSI_SENSE_DATA *SenseData, IN UINTN NumberOfSenseKeys, OUT UINTN *Action ) { BOOLEAN RetryLater; // // Default is to read capacity, unless.. // *Action = ACTION_READ_CAPACITY; if (NumberOfSenseKeys == 0) { if (ScsiDiskDevice->BlkIo.Media->MediaPresent == TRUE) { *Action = ACTION_NO_ACTION; } return EFI_SUCCESS; } if (!ScsiDiskHaveSenseKey (SenseData, NumberOfSenseKeys)) { // // No Sense Key returned from last submitted command // if (ScsiDiskDevice->BlkIo.Media->MediaPresent == TRUE) { *Action = ACTION_NO_ACTION; } return EFI_SUCCESS; } if (ScsiDiskIsNoMedia (SenseData, NumberOfSenseKeys)) { ScsiDiskDevice->BlkIo.Media->MediaPresent = FALSE; ScsiDiskDevice->BlkIo.Media->LastBlock = 0; *Action = ACTION_NO_ACTION; DEBUG ((EFI_D_VERBOSE, "ScsiDisk: ScsiDiskIsNoMedia\n")); return EFI_SUCCESS; } if (ScsiDiskIsMediaChange (SenseData, NumberOfSenseKeys)) { ScsiDiskDevice->BlkIo.Media->MediaId++; DEBUG ((EFI_D_VERBOSE, "ScsiDisk: ScsiDiskIsMediaChange!\n")); return EFI_SUCCESS; } if (ScsiDiskIsResetBefore (SenseData, NumberOfSenseKeys)) { *Action = ACTION_RETRY_COMMAND_LATER; DEBUG ((EFI_D_VERBOSE, "ScsiDisk: ScsiDiskIsResetBefore!\n")); return EFI_SUCCESS; } if (ScsiDiskIsMediaError (SenseData, NumberOfSenseKeys)) { DEBUG ((EFI_D_VERBOSE, "ScsiDisk: ScsiDiskIsMediaError\n")); *Action = ACTION_RETRY_WITH_BACKOFF_ALGO; return EFI_DEVICE_ERROR; } if (ScsiDiskIsHardwareError (SenseData, NumberOfSenseKeys)) { DEBUG ((EFI_D_VERBOSE, "ScsiDisk: ScsiDiskIsHardwareError\n")); *Action = ACTION_RETRY_WITH_BACKOFF_ALGO; return EFI_DEVICE_ERROR; } if (!ScsiDiskIsDriveReady (SenseData, NumberOfSenseKeys, &RetryLater)) { if (RetryLater) { *Action = ACTION_RETRY_COMMAND_LATER; DEBUG ((EFI_D_VERBOSE, "ScsiDisk: ScsiDiskDriveNotReady!\n")); return EFI_SUCCESS; } *Action = ACTION_NO_ACTION; return EFI_DEVICE_ERROR; } *Action = ACTION_RETRY_WITH_BACKOFF_ALGO; DEBUG ((EFI_D_VERBOSE, "ScsiDisk: Sense Key = 0x%x ASC = 0x%x!\n", SenseData->Sense_Key, SenseData->Addnl_Sense_Code)); return EFI_SUCCESS; } /** Send read capacity command to device and get the device parameter. @param ScsiDiskDevice The pointer of SCSI_DISK_DEV @param NeedRetry The pointer of flag indicates if need a retry @param SenseDataArray The pointer of an array of sense data @param NumberOfSenseKeys The number of sense key @retval EFI_DEVICE_ERROR Indicates that error occurs @retval EFI_SUCCESS Successfully to read capacity or sense data is received. **/ EFI_STATUS ScsiDiskReadCapacity ( IN OUT SCSI_DISK_DEV *ScsiDiskDevice, OUT BOOLEAN *NeedRetry, OUT EFI_SCSI_SENSE_DATA **SenseDataArray, OUT UINTN *NumberOfSenseKeys ) { UINT8 HostAdapterStatus; UINT8 TargetStatus; EFI_STATUS CommandStatus; EFI_STATUS Status; UINT8 Index; UINT8 MaxRetry; UINT8 SenseDataLength; UINT32 DataLength10; UINT32 DataLength16; EFI_SCSI_DISK_CAPACITY_DATA *CapacityData10; EFI_SCSI_DISK_CAPACITY_DATA16 *CapacityData16; CapacityData10 = AllocateAlignedBuffer (ScsiDiskDevice, sizeof (EFI_SCSI_DISK_CAPACITY_DATA)); if (CapacityData10 == NULL) { *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } CapacityData16 = AllocateAlignedBuffer (ScsiDiskDevice, sizeof (EFI_SCSI_DISK_CAPACITY_DATA16)); if (CapacityData16 == NULL) { FreeAlignedBuffer (CapacityData10, sizeof (EFI_SCSI_DISK_CAPACITY_DATA)); *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } SenseDataLength = 0; DataLength10 = sizeof (EFI_SCSI_DISK_CAPACITY_DATA); DataLength16 = sizeof (EFI_SCSI_DISK_CAPACITY_DATA16); ZeroMem (CapacityData10, sizeof (EFI_SCSI_DISK_CAPACITY_DATA)); ZeroMem (CapacityData16, sizeof (EFI_SCSI_DISK_CAPACITY_DATA16)); *NumberOfSenseKeys = 0; *NeedRetry = FALSE; // // submit Read Capacity(10) Command. If it returns capacity of FFFFFFFFh, // 16 byte command should be used to access large hard disk >2TB // CommandStatus = ScsiReadCapacityCommand ( ScsiDiskDevice->ScsiIo, SCSI_DISK_TIMEOUT, NULL, &SenseDataLength, &HostAdapterStatus, &TargetStatus, (VOID *) CapacityData10, &DataLength10, FALSE ); ScsiDiskDevice->Cdb16Byte = FALSE; if ((!EFI_ERROR(CommandStatus)) && (CapacityData10->LastLba3 == 0xff) && (CapacityData10->LastLba2 == 0xff) && (CapacityData10->LastLba1 == 0xff) && (CapacityData10->LastLba0 == 0xff)) { // // use Read Capacity (16), Read (16) and Write (16) next when hard disk size > 2TB // ScsiDiskDevice->Cdb16Byte = TRUE; // // submit Read Capacity(16) Command to get parameter LogicalBlocksPerPhysicalBlock // and LowestAlignedLba // CommandStatus = ScsiReadCapacity16Command ( ScsiDiskDevice->ScsiIo, SCSI_DISK_TIMEOUT, NULL, &SenseDataLength, &HostAdapterStatus, &TargetStatus, (VOID *) CapacityData16, &DataLength16, FALSE ); } // // no need to check HostAdapterStatus and TargetStatus // if (CommandStatus == EFI_SUCCESS) { GetMediaInfo (ScsiDiskDevice, CapacityData10, CapacityData16); FreeAlignedBuffer (CapacityData10, sizeof (EFI_SCSI_DISK_CAPACITY_DATA)); FreeAlignedBuffer (CapacityData16, sizeof (EFI_SCSI_DISK_CAPACITY_DATA16)); return EFI_SUCCESS; } FreeAlignedBuffer (CapacityData10, sizeof (EFI_SCSI_DISK_CAPACITY_DATA)); FreeAlignedBuffer (CapacityData16, sizeof (EFI_SCSI_DISK_CAPACITY_DATA16)); if (CommandStatus == EFI_NOT_READY) { *NeedRetry = TRUE; return EFI_DEVICE_ERROR; } else if ((CommandStatus == EFI_INVALID_PARAMETER) || (CommandStatus == EFI_UNSUPPORTED)) { *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } // // go ahead to check HostAdapterStatus and TargetStatus // (EFI_TIMEOUT, EFI_DEVICE_ERROR, EFI_WARN_BUFFER_TOO_SMALL) // Status = CheckHostAdapterStatus (HostAdapterStatus); if ((Status == EFI_TIMEOUT) || (Status == EFI_NOT_READY)) { *NeedRetry = TRUE; return EFI_DEVICE_ERROR; } else if (Status == EFI_DEVICE_ERROR) { // // reset the scsi channel // ScsiDiskDevice->ScsiIo->ResetBus (ScsiDiskDevice->ScsiIo); *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } Status = CheckTargetStatus (TargetStatus); if (Status == EFI_NOT_READY) { // // reset the scsi device // ScsiDiskDevice->ScsiIo->ResetDevice (ScsiDiskDevice->ScsiIo); *NeedRetry = TRUE; return EFI_DEVICE_ERROR; } else if (Status == EFI_DEVICE_ERROR) { *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } // // if goes here, meant ScsiReadCapacityCommand() failed. // if ScsiDiskRequestSenseKeys() succeeds at last, // better retry ScsiReadCapacityCommand(). (by setting *NeedRetry = TRUE) // MaxRetry = 3; for (Index = 0; Index < MaxRetry; Index++) { Status = ScsiDiskRequestSenseKeys ( ScsiDiskDevice, NeedRetry, SenseDataArray, NumberOfSenseKeys, TRUE ); if (!EFI_ERROR(Status)) { return EFI_SUCCESS; } if (!*NeedRetry) { return EFI_DEVICE_ERROR; } } // // ScsiDiskRequestSenseKeys() failed after several rounds of retry. // set *NeedRetry = FALSE to avoid the outside caller try again. // *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } /** Check the HostAdapter status and re-interpret it in EFI_STATUS. @param HostAdapterStatus Host Adapter status @retval EFI_SUCCESS Host adapter is OK. @retval EFI_TIMEOUT Timeout. @retval EFI_NOT_READY Adapter NOT ready. @retval EFI_DEVICE_ERROR Adapter device error. **/ EFI_STATUS CheckHostAdapterStatus ( IN UINT8 HostAdapterStatus ) { switch (HostAdapterStatus) { case EFI_EXT_SCSI_STATUS_HOST_ADAPTER_OK: return EFI_SUCCESS; case EFI_EXT_SCSI_STATUS_HOST_ADAPTER_SELECTION_TIMEOUT: case EFI_EXT_SCSI_STATUS_HOST_ADAPTER_TIMEOUT: case EFI_EXT_SCSI_STATUS_HOST_ADAPTER_TIMEOUT_COMMAND: return EFI_TIMEOUT; case EFI_EXT_SCSI_STATUS_HOST_ADAPTER_MESSAGE_REJECT: case EFI_EXT_SCSI_STATUS_HOST_ADAPTER_PARITY_ERROR: case EFI_EXT_SCSI_STATUS_HOST_ADAPTER_REQUEST_SENSE_FAILED: case EFI_EXT_SCSI_STATUS_HOST_ADAPTER_DATA_OVERRUN_UNDERRUN: case EFI_EXT_SCSI_STATUS_HOST_ADAPTER_BUS_RESET: return EFI_NOT_READY; case EFI_EXT_SCSI_STATUS_HOST_ADAPTER_BUS_FREE: case EFI_EXT_SCSI_STATUS_HOST_ADAPTER_PHASE_ERROR: return EFI_DEVICE_ERROR; default: return EFI_SUCCESS; } } /** Check the target status and re-interpret it in EFI_STATUS. @param TargetStatus Target status @retval EFI_NOT_READY Device is NOT ready. @retval EFI_DEVICE_ERROR @retval EFI_SUCCESS **/ EFI_STATUS CheckTargetStatus ( IN UINT8 TargetStatus ) { switch (TargetStatus) { case EFI_EXT_SCSI_STATUS_TARGET_GOOD: case EFI_EXT_SCSI_STATUS_TARGET_CHECK_CONDITION: case EFI_EXT_SCSI_STATUS_TARGET_CONDITION_MET: return EFI_SUCCESS; case EFI_EXT_SCSI_STATUS_TARGET_INTERMEDIATE: case EFI_EXT_SCSI_STATUS_TARGET_INTERMEDIATE_CONDITION_MET: case EFI_EXT_SCSI_STATUS_TARGET_BUSY: case EFI_EXT_SCSI_STATUS_TARGET_TASK_SET_FULL: return EFI_NOT_READY; case EFI_EXT_SCSI_STATUS_TARGET_RESERVATION_CONFLICT: return EFI_DEVICE_ERROR; default: return EFI_SUCCESS; } } /** Retrieve all sense keys from the device. When encountering error during the process, if retrieve sense keys before error encountered, it returns the sense keys with return status set to EFI_SUCCESS, and NeedRetry set to FALSE; otherwize, return the proper return status. @param ScsiDiskDevice The pointer of SCSI_DISK_DEV @param NeedRetry The pointer of flag indicates if need a retry @param SenseDataArray The pointer of an array of sense data @param NumberOfSenseKeys The number of sense key @param AskResetIfError The flag indicates if need reset when error occurs @retval EFI_DEVICE_ERROR Indicates that error occurs @retval EFI_SUCCESS Successfully to request sense key **/ EFI_STATUS ScsiDiskRequestSenseKeys ( IN OUT SCSI_DISK_DEV *ScsiDiskDevice, OUT BOOLEAN *NeedRetry, OUT EFI_SCSI_SENSE_DATA **SenseDataArray, OUT UINTN *NumberOfSenseKeys, IN BOOLEAN AskResetIfError ) { EFI_SCSI_SENSE_DATA *PtrSenseData; UINT8 SenseDataLength; BOOLEAN SenseReq; EFI_STATUS Status; EFI_STATUS FallStatus; UINT8 HostAdapterStatus; UINT8 TargetStatus; FallStatus = EFI_SUCCESS; SenseDataLength = (UINT8) sizeof (EFI_SCSI_SENSE_DATA); ZeroMem ( ScsiDiskDevice->SenseData, sizeof (EFI_SCSI_SENSE_DATA) * (ScsiDiskDevice->SenseDataNumber) ); *NumberOfSenseKeys = 0; *SenseDataArray = ScsiDiskDevice->SenseData; Status = EFI_SUCCESS; PtrSenseData = AllocateAlignedBuffer (ScsiDiskDevice, sizeof (EFI_SCSI_SENSE_DATA)); if (PtrSenseData == NULL) { return EFI_DEVICE_ERROR; } for (SenseReq = TRUE; SenseReq;) { ZeroMem (PtrSenseData, sizeof (EFI_SCSI_SENSE_DATA)); Status = ScsiRequestSenseCommand ( ScsiDiskDevice->ScsiIo, SCSI_DISK_TIMEOUT, PtrSenseData, &SenseDataLength, &HostAdapterStatus, &TargetStatus ); if ((Status == EFI_SUCCESS) || (Status == EFI_WARN_BUFFER_TOO_SMALL)) { FallStatus = EFI_SUCCESS; } else if ((Status == EFI_TIMEOUT) || (Status == EFI_NOT_READY)) { *NeedRetry = TRUE; FallStatus = EFI_DEVICE_ERROR; } else if ((Status == EFI_INVALID_PARAMETER) || (Status == EFI_UNSUPPORTED)) { *NeedRetry = FALSE; FallStatus = EFI_DEVICE_ERROR; } else if (Status == EFI_DEVICE_ERROR) { if (AskResetIfError) { ScsiDiskDevice->ScsiIo->ResetDevice (ScsiDiskDevice->ScsiIo); } FallStatus = EFI_DEVICE_ERROR; } if (EFI_ERROR(FallStatus)) { if (*NumberOfSenseKeys != 0) { *NeedRetry = FALSE; Status = EFI_SUCCESS; goto EXIT; } else { Status = EFI_DEVICE_ERROR; goto EXIT; } } CopyMem (ScsiDiskDevice->SenseData + *NumberOfSenseKeys, PtrSenseData, SenseDataLength); (*NumberOfSenseKeys) += 1; // // no more sense key or number of sense keys exceeds predefined, // skip the loop. // if ((PtrSenseData->Sense_Key == EFI_SCSI_SK_NO_SENSE) || (*NumberOfSenseKeys == ScsiDiskDevice->SenseDataNumber)) { SenseReq = FALSE; } } EXIT: FreeAlignedBuffer (PtrSenseData, sizeof (EFI_SCSI_SENSE_DATA)); return Status; } /** Get information from media read capacity command. @param ScsiDiskDevice The pointer of SCSI_DISK_DEV @param Capacity10 The pointer of EFI_SCSI_DISK_CAPACITY_DATA @param Capacity16 The pointer of EFI_SCSI_DISK_CAPACITY_DATA16 **/ VOID GetMediaInfo ( IN OUT SCSI_DISK_DEV *ScsiDiskDevice, IN EFI_SCSI_DISK_CAPACITY_DATA *Capacity10, IN EFI_SCSI_DISK_CAPACITY_DATA16 *Capacity16 ) { UINT8 *Ptr; if (!ScsiDiskDevice->Cdb16Byte) { ScsiDiskDevice->BlkIo.Media->LastBlock = ((UINT32) Capacity10->LastLba3 << 24) | (Capacity10->LastLba2 << 16) | (Capacity10->LastLba1 << 8) | Capacity10->LastLba0; ScsiDiskDevice->BlkIo.Media->BlockSize = (Capacity10->BlockSize3 << 24) | (Capacity10->BlockSize2 << 16) | (Capacity10->BlockSize1 << 8) | Capacity10->BlockSize0; ScsiDiskDevice->BlkIo.Media->LowestAlignedLba = 0; ScsiDiskDevice->BlkIo.Media->LogicalBlocksPerPhysicalBlock = 0; if (!ScsiDiskDevice->BlockLimitsVpdSupported) { ScsiDiskDevice->UnmapInfo.MaxLbaCnt = (UINT32) ScsiDiskDevice->BlkIo.Media->LastBlock; } } else { Ptr = (UINT8*)&ScsiDiskDevice->BlkIo.Media->LastBlock; *Ptr++ = Capacity16->LastLba0; *Ptr++ = Capacity16->LastLba1; *Ptr++ = Capacity16->LastLba2; *Ptr++ = Capacity16->LastLba3; *Ptr++ = Capacity16->LastLba4; *Ptr++ = Capacity16->LastLba5; *Ptr++ = Capacity16->LastLba6; *Ptr = Capacity16->LastLba7; ScsiDiskDevice->BlkIo.Media->BlockSize = (Capacity16->BlockSize3 << 24) | (Capacity16->BlockSize2 << 16) | (Capacity16->BlockSize1 << 8) | Capacity16->BlockSize0; ScsiDiskDevice->BlkIo.Media->LowestAlignedLba = (Capacity16->LowestAlignLogic2 << 8) | Capacity16->LowestAlignLogic1; ScsiDiskDevice->BlkIo.Media->LogicalBlocksPerPhysicalBlock = (1 << Capacity16->LogicPerPhysical); if (!ScsiDiskDevice->BlockLimitsVpdSupported) { if (ScsiDiskDevice->BlkIo.Media->LastBlock > (UINT32) -1) { ScsiDiskDevice->UnmapInfo.MaxLbaCnt = (UINT32) -1; } else { ScsiDiskDevice->UnmapInfo.MaxLbaCnt = (UINT32) ScsiDiskDevice->BlkIo.Media->LastBlock; } } } ScsiDiskDevice->BlkIo.Media->MediaPresent = TRUE; } /** Parse Inquiry data. @param ScsiDiskDevice The pointer of SCSI_DISK_DEV **/ VOID ParseInquiryData ( IN OUT SCSI_DISK_DEV *ScsiDiskDevice ) { ScsiDiskDevice->FixedDevice = (BOOLEAN) ((ScsiDiskDevice->InquiryData.Rmb == 1) ? 0 : 1); ScsiDiskDevice->BlkIoMedia.RemovableMedia = (BOOLEAN) (!ScsiDiskDevice->FixedDevice); } /** Read sector from SCSI Disk. @param ScsiDiskDevice The pointer of SCSI_DISK_DEV @param Buffer The buffer to fill in the read out data @param Lba Logic block address @param NumberOfBlocks The number of blocks to read @retval EFI_DEVICE_ERROR Indicates a device error. @retval EFI_SUCCESS Operation is successful. **/ EFI_STATUS ScsiDiskReadSectors ( IN SCSI_DISK_DEV *ScsiDiskDevice, OUT VOID *Buffer, IN EFI_LBA Lba, IN UINTN NumberOfBlocks ) { UINTN BlocksRemaining; UINT8 *PtrBuffer; UINT32 BlockSize; UINT32 ByteCount; UINT32 MaxBlock; UINT32 SectorCount; UINT32 NextSectorCount; UINT64 Timeout; EFI_STATUS Status; UINT8 Index; UINT8 MaxRetry; BOOLEAN NeedRetry; Status = EFI_SUCCESS; BlocksRemaining = NumberOfBlocks; BlockSize = ScsiDiskDevice->BlkIo.Media->BlockSize; // // limit the data bytes that can be transferred by one Read(10) or Read(16) Command // if (!ScsiDiskDevice->Cdb16Byte) { MaxBlock = 0xFFFF; } else { MaxBlock = 0xFFFFFFFF; } PtrBuffer = Buffer; while (BlocksRemaining > 0) { if (BlocksRemaining <= MaxBlock) { if (!ScsiDiskDevice->Cdb16Byte) { SectorCount = (UINT16) BlocksRemaining; } else { SectorCount = (UINT32) BlocksRemaining; } } else { SectorCount = MaxBlock; } ByteCount = SectorCount * BlockSize; // // |------------------------|-----------------|------------------|-----------------| // | ATA Transfer Mode | Transfer Rate | SCSI Interface | Transfer Rate | // |------------------------|-----------------|------------------|-----------------| // | PIO Mode 0 | 3.3Mbytes/sec | SCSI-1 | 5Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | PIO Mode 1 | 5.2Mbytes/sec | Fast SCSI | 10Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | PIO Mode 2 | 8.3Mbytes/sec | Fast-Wide SCSI | 20Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | PIO Mode 3 | 11.1Mbytes/sec | Ultra SCSI | 20Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | PIO Mode 4 | 16.6Mbytes/sec | Ultra Wide SCSI | 40Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | Single-word DMA Mode 0 | 2.1Mbytes/sec | Ultra2 SCSI | 40Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | Single-word DMA Mode 1 | 4.2Mbytes/sec | Ultra2 Wide SCSI | 80Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | Single-word DMA Mode 2 | 8.4Mbytes/sec | Ultra3 SCSI | 160Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | Multi-word DMA Mode 0 | 4.2Mbytes/sec | Ultra-320 SCSI | 320Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | Multi-word DMA Mode 1 | 13.3Mbytes/sec | Ultra-640 SCSI | 640Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // // As ScsiDisk and ScsiBus driver are used to manage SCSI or ATAPI devices, we have to use // the lowest transfer rate to calculate the possible maximum timeout value for each operation. // From the above table, we could know 2.1Mbytes per second is lowest one. // The timout value is rounded up to nearest integar and here an additional 30s is added // to follow ATA spec in which it mentioned that the device may take up to 30s to respond // commands in the Standby/Idle mode. // Timeout = EFI_TIMER_PERIOD_SECONDS (ByteCount / 2100000 + 31); MaxRetry = 2; for (Index = 0; Index < MaxRetry; Index++) { if (!ScsiDiskDevice->Cdb16Byte) { Status = ScsiDiskRead10 ( ScsiDiskDevice, &NeedRetry, Timeout, PtrBuffer, &ByteCount, (UINT32) Lba, SectorCount ); } else { Status = ScsiDiskRead16 ( ScsiDiskDevice, &NeedRetry, Timeout, PtrBuffer, &ByteCount, Lba, SectorCount ); } if (!EFI_ERROR(Status)) { break; } if (!NeedRetry) { return EFI_DEVICE_ERROR; } // // We need to retry. However, if ScsiDiskRead10() or ScsiDiskRead16() has // lowered ByteCount on output, we must make sure that we lower // SectorCount accordingly. SectorCount will be encoded in the CDB, and // it is invalid to request more sectors in the CDB than the entire // transfer (ie. ByteCount) can carry. // // In addition, ByteCount is only expected to go down, or stay unchaged. // Therefore we don't need to update Timeout: the original timeout should // accommodate shorter transfers too. // NextSectorCount = ByteCount / BlockSize; if (NextSectorCount < SectorCount) { SectorCount = NextSectorCount; // // Account for any rounding down. // ByteCount = SectorCount * BlockSize; } } if ((Index == MaxRetry) && (Status != EFI_SUCCESS)) { return EFI_DEVICE_ERROR; } // // actual transferred sectors // SectorCount = ByteCount / BlockSize; Lba += SectorCount; PtrBuffer = PtrBuffer + SectorCount * BlockSize; BlocksRemaining -= SectorCount; } return EFI_SUCCESS; } /** Write sector to SCSI Disk. @param ScsiDiskDevice The pointer of SCSI_DISK_DEV @param Buffer The buffer of data to be written into SCSI Disk @param Lba Logic block address @param NumberOfBlocks The number of blocks to read @retval EFI_DEVICE_ERROR Indicates a device error. @retval EFI_SUCCESS Operation is successful. **/ EFI_STATUS ScsiDiskWriteSectors ( IN SCSI_DISK_DEV *ScsiDiskDevice, IN VOID *Buffer, IN EFI_LBA Lba, IN UINTN NumberOfBlocks ) { UINTN BlocksRemaining; UINT8 *PtrBuffer; UINT32 BlockSize; UINT32 ByteCount; UINT32 MaxBlock; UINT32 SectorCount; UINT32 NextSectorCount; UINT64 Timeout; EFI_STATUS Status; UINT8 Index; UINT8 MaxRetry; BOOLEAN NeedRetry; Status = EFI_SUCCESS; BlocksRemaining = NumberOfBlocks; BlockSize = ScsiDiskDevice->BlkIo.Media->BlockSize; // // limit the data bytes that can be transferred by one Read(10) or Read(16) Command // if (!ScsiDiskDevice->Cdb16Byte) { MaxBlock = 0xFFFF; } else { MaxBlock = 0xFFFFFFFF; } PtrBuffer = Buffer; while (BlocksRemaining > 0) { if (BlocksRemaining <= MaxBlock) { if (!ScsiDiskDevice->Cdb16Byte) { SectorCount = (UINT16) BlocksRemaining; } else { SectorCount = (UINT32) BlocksRemaining; } } else { SectorCount = MaxBlock; } ByteCount = SectorCount * BlockSize; // // |------------------------|-----------------|------------------|-----------------| // | ATA Transfer Mode | Transfer Rate | SCSI Interface | Transfer Rate | // |------------------------|-----------------|------------------|-----------------| // | PIO Mode 0 | 3.3Mbytes/sec | SCSI-1 | 5Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | PIO Mode 1 | 5.2Mbytes/sec | Fast SCSI | 10Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | PIO Mode 2 | 8.3Mbytes/sec | Fast-Wide SCSI | 20Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | PIO Mode 3 | 11.1Mbytes/sec | Ultra SCSI | 20Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | PIO Mode 4 | 16.6Mbytes/sec | Ultra Wide SCSI | 40Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | Single-word DMA Mode 0 | 2.1Mbytes/sec | Ultra2 SCSI | 40Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | Single-word DMA Mode 1 | 4.2Mbytes/sec | Ultra2 Wide SCSI | 80Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | Single-word DMA Mode 2 | 8.4Mbytes/sec | Ultra3 SCSI | 160Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | Multi-word DMA Mode 0 | 4.2Mbytes/sec | Ultra-320 SCSI | 320Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | Multi-word DMA Mode 1 | 13.3Mbytes/sec | Ultra-640 SCSI | 640Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // // As ScsiDisk and ScsiBus driver are used to manage SCSI or ATAPI devices, we have to use // the lowest transfer rate to calculate the possible maximum timeout value for each operation. // From the above table, we could know 2.1Mbytes per second is lowest one. // The timout value is rounded up to nearest integar and here an additional 30s is added // to follow ATA spec in which it mentioned that the device may take up to 30s to respond // commands in the Standby/Idle mode. // Timeout = EFI_TIMER_PERIOD_SECONDS (ByteCount / 2100000 + 31); MaxRetry = 2; for (Index = 0; Index < MaxRetry; Index++) { if (!ScsiDiskDevice->Cdb16Byte) { Status = ScsiDiskWrite10 ( ScsiDiskDevice, &NeedRetry, Timeout, PtrBuffer, &ByteCount, (UINT32) Lba, SectorCount ); } else { Status = ScsiDiskWrite16 ( ScsiDiskDevice, &NeedRetry, Timeout, PtrBuffer, &ByteCount, Lba, SectorCount ); } if (!EFI_ERROR(Status)) { break; } if (!NeedRetry) { return EFI_DEVICE_ERROR; } // // We need to retry. However, if ScsiDiskWrite10() or ScsiDiskWrite16() // has lowered ByteCount on output, we must make sure that we lower // SectorCount accordingly. SectorCount will be encoded in the CDB, and // it is invalid to request more sectors in the CDB than the entire // transfer (ie. ByteCount) can carry. // // In addition, ByteCount is only expected to go down, or stay unchaged. // Therefore we don't need to update Timeout: the original timeout should // accommodate shorter transfers too. // NextSectorCount = ByteCount / BlockSize; if (NextSectorCount < SectorCount) { SectorCount = NextSectorCount; // // Account for any rounding down. // ByteCount = SectorCount * BlockSize; } } if ((Index == MaxRetry) && (Status != EFI_SUCCESS)) { return EFI_DEVICE_ERROR; } // // actual transferred sectors // SectorCount = ByteCount / BlockSize; Lba += SectorCount; PtrBuffer = PtrBuffer + SectorCount * BlockSize; BlocksRemaining -= SectorCount; } return EFI_SUCCESS; } /** Asynchronously read sector from SCSI Disk. @param ScsiDiskDevice The pointer of SCSI_DISK_DEV. @param Buffer The buffer to fill in the read out data. @param Lba Logic block address. @param NumberOfBlocks The number of blocks to read. @param Token A pointer to the token associated with the non-blocking read request. @retval EFI_INVALID_PARAMETER Token is NULL or Token->Event is NULL. @retval EFI_DEVICE_ERROR Indicates a device error. @retval EFI_SUCCESS Operation is successful. **/ EFI_STATUS ScsiDiskAsyncReadSectors ( IN SCSI_DISK_DEV *ScsiDiskDevice, OUT VOID *Buffer, IN EFI_LBA Lba, IN UINTN NumberOfBlocks, IN EFI_BLOCK_IO2_TOKEN *Token ) { UINTN BlocksRemaining; UINT8 *PtrBuffer; UINT32 BlockSize; UINT32 ByteCount; UINT32 MaxBlock; UINT32 SectorCount; UINT64 Timeout; SCSI_BLKIO2_REQUEST *BlkIo2Req; EFI_STATUS Status; EFI_TPL OldTpl; if ((Token == NULL) || (Token->Event == NULL)) { return EFI_INVALID_PARAMETER; } BlkIo2Req = AllocateZeroPool (sizeof (SCSI_BLKIO2_REQUEST)); if (BlkIo2Req == NULL) { return EFI_OUT_OF_RESOURCES; } BlkIo2Req->Token = Token; OldTpl = gBS->RaiseTPL (TPL_NOTIFY); InsertTailList (&ScsiDiskDevice->AsyncTaskQueue, &BlkIo2Req->Link); gBS->RestoreTPL (OldTpl); InitializeListHead (&BlkIo2Req->ScsiRWQueue); Status = EFI_SUCCESS; BlocksRemaining = NumberOfBlocks; BlockSize = ScsiDiskDevice->BlkIo.Media->BlockSize; // // Limit the data bytes that can be transferred by one Read(10) or Read(16) // Command // if (!ScsiDiskDevice->Cdb16Byte) { MaxBlock = 0xFFFF; } else { MaxBlock = 0xFFFFFFFF; } PtrBuffer = Buffer; while (BlocksRemaining > 0) { if (BlocksRemaining <= MaxBlock) { if (!ScsiDiskDevice->Cdb16Byte) { SectorCount = (UINT16) BlocksRemaining; } else { SectorCount = (UINT32) BlocksRemaining; } } else { SectorCount = MaxBlock; } ByteCount = SectorCount * BlockSize; // // |------------------------|-----------------|------------------|-----------------| // | ATA Transfer Mode | Transfer Rate | SCSI Interface | Transfer Rate | // |------------------------|-----------------|------------------|-----------------| // | PIO Mode 0 | 3.3Mbytes/sec | SCSI-1 | 5Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | PIO Mode 1 | 5.2Mbytes/sec | Fast SCSI | 10Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | PIO Mode 2 | 8.3Mbytes/sec | Fast-Wide SCSI | 20Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | PIO Mode 3 | 11.1Mbytes/sec | Ultra SCSI | 20Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | PIO Mode 4 | 16.6Mbytes/sec | Ultra Wide SCSI | 40Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | Single-word DMA Mode 0 | 2.1Mbytes/sec | Ultra2 SCSI | 40Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | Single-word DMA Mode 1 | 4.2Mbytes/sec | Ultra2 Wide SCSI | 80Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | Single-word DMA Mode 2 | 8.4Mbytes/sec | Ultra3 SCSI | 160Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | Multi-word DMA Mode 0 | 4.2Mbytes/sec | Ultra-320 SCSI | 320Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | Multi-word DMA Mode 1 | 13.3Mbytes/sec | Ultra-640 SCSI | 640Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // // As ScsiDisk and ScsiBus driver are used to manage SCSI or ATAPI devices, // we have to use the lowest transfer rate to calculate the possible // maximum timeout value for each operation. // From the above table, we could know 2.1Mbytes per second is lowest one. // The timout value is rounded up to nearest integar and here an additional // 30s is added to follow ATA spec in which it mentioned that the device // may take up to 30s to respond commands in the Standby/Idle mode. // Timeout = EFI_TIMER_PERIOD_SECONDS (ByteCount / 2100000 + 31); if (!ScsiDiskDevice->Cdb16Byte) { Status = ScsiDiskAsyncRead10 ( ScsiDiskDevice, Timeout, 0, PtrBuffer, ByteCount, (UINT32) Lba, SectorCount, BlkIo2Req, Token ); } else { Status = ScsiDiskAsyncRead16 ( ScsiDiskDevice, Timeout, 0, PtrBuffer, ByteCount, Lba, SectorCount, BlkIo2Req, Token ); } if (EFI_ERROR(Status)) { // // Some devices will return EFI_DEVICE_ERROR or EFI_TIMEOUT when the data // length of a SCSI I/O command is too large. // In this case, we retry sending the SCSI command with a data length // half of its previous value. // if ((Status == EFI_DEVICE_ERROR) || (Status == EFI_TIMEOUT)) { if ((MaxBlock > 1) && (SectorCount > 1)) { MaxBlock = MIN (MaxBlock, SectorCount) >> 1; continue; } } OldTpl = gBS->RaiseTPL (TPL_NOTIFY); if (IsListEmpty (&BlkIo2Req->ScsiRWQueue)) { // // Free the SCSI_BLKIO2_REQUEST structure only when there is no other // SCSI sub-task running. Otherwise, it will be freed in the callback // function ScsiDiskNotify(). // RemoveEntryList (&BlkIo2Req->Link); FreePool(BlkIo2Req); BlkIo2Req = NULL; gBS->RestoreTPL (OldTpl); // // It is safe to return error status to the caller, since there is no // previous SCSI sub-task executing. // Status = EFI_DEVICE_ERROR; goto Done; } else { gBS->RestoreTPL (OldTpl); // // There are previous SCSI commands still running, EFI_SUCCESS should // be returned to make sure that the caller does not free resources // still using by these SCSI commands. // Status = EFI_SUCCESS; goto Done; } } // // Sectors submitted for transfer // SectorCount = ByteCount / BlockSize; Lba += SectorCount; PtrBuffer = PtrBuffer + SectorCount * BlockSize; BlocksRemaining -= SectorCount; } Status = EFI_SUCCESS; Done: if (BlkIo2Req != NULL) { BlkIo2Req->LastScsiRW = TRUE; OldTpl = gBS->RaiseTPL (TPL_NOTIFY); if (IsListEmpty (&BlkIo2Req->ScsiRWQueue)) { RemoveEntryList (&BlkIo2Req->Link); FreePool(BlkIo2Req); BlkIo2Req = NULL; gBS->SignalEvent (Token->Event); } gBS->RestoreTPL (OldTpl); } return Status; } /** Asynchronously write sector to SCSI Disk. @param ScsiDiskDevice The pointer of SCSI_DISK_DEV. @param Buffer The buffer of data to be written into SCSI Disk. @param Lba Logic block address. @param NumberOfBlocks The number of blocks to read. @param Token A pointer to the token associated with the non-blocking read request. @retval EFI_INVALID_PARAMETER Token is NULL or Token->Event is NULL @retval EFI_DEVICE_ERROR Indicates a device error. @retval EFI_SUCCESS Operation is successful. **/ EFI_STATUS ScsiDiskAsyncWriteSectors ( IN SCSI_DISK_DEV *ScsiDiskDevice, IN VOID *Buffer, IN EFI_LBA Lba, IN UINTN NumberOfBlocks, IN EFI_BLOCK_IO2_TOKEN *Token ) { UINTN BlocksRemaining; UINT8 *PtrBuffer; UINT32 BlockSize; UINT32 ByteCount; UINT32 MaxBlock; UINT32 SectorCount; UINT64 Timeout; SCSI_BLKIO2_REQUEST *BlkIo2Req; EFI_STATUS Status; EFI_TPL OldTpl; if ((Token == NULL) || (Token->Event == NULL)) { return EFI_INVALID_PARAMETER; } BlkIo2Req = AllocateZeroPool (sizeof (SCSI_BLKIO2_REQUEST)); if (BlkIo2Req == NULL) { return EFI_OUT_OF_RESOURCES; } BlkIo2Req->Token = Token; OldTpl = gBS->RaiseTPL (TPL_NOTIFY); InsertTailList (&ScsiDiskDevice->AsyncTaskQueue, &BlkIo2Req->Link); gBS->RestoreTPL (OldTpl); InitializeListHead (&BlkIo2Req->ScsiRWQueue); Status = EFI_SUCCESS; BlocksRemaining = NumberOfBlocks; BlockSize = ScsiDiskDevice->BlkIo.Media->BlockSize; // // Limit the data bytes that can be transferred by one Read(10) or Read(16) // Command // if (!ScsiDiskDevice->Cdb16Byte) { MaxBlock = 0xFFFF; } else { MaxBlock = 0xFFFFFFFF; } PtrBuffer = Buffer; while (BlocksRemaining > 0) { if (BlocksRemaining <= MaxBlock) { if (!ScsiDiskDevice->Cdb16Byte) { SectorCount = (UINT16) BlocksRemaining; } else { SectorCount = (UINT32) BlocksRemaining; } } else { SectorCount = MaxBlock; } ByteCount = SectorCount * BlockSize; // // |------------------------|-----------------|------------------|-----------------| // | ATA Transfer Mode | Transfer Rate | SCSI Interface | Transfer Rate | // |------------------------|-----------------|------------------|-----------------| // | PIO Mode 0 | 3.3Mbytes/sec | SCSI-1 | 5Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | PIO Mode 1 | 5.2Mbytes/sec | Fast SCSI | 10Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | PIO Mode 2 | 8.3Mbytes/sec | Fast-Wide SCSI | 20Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | PIO Mode 3 | 11.1Mbytes/sec | Ultra SCSI | 20Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | PIO Mode 4 | 16.6Mbytes/sec | Ultra Wide SCSI | 40Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | Single-word DMA Mode 0 | 2.1Mbytes/sec | Ultra2 SCSI | 40Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | Single-word DMA Mode 1 | 4.2Mbytes/sec | Ultra2 Wide SCSI | 80Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | Single-word DMA Mode 2 | 8.4Mbytes/sec | Ultra3 SCSI | 160Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | Multi-word DMA Mode 0 | 4.2Mbytes/sec | Ultra-320 SCSI | 320Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // | Multi-word DMA Mode 1 | 13.3Mbytes/sec | Ultra-640 SCSI | 640Mbytes/sec | // |------------------------|-----------------|------------------|-----------------| // // As ScsiDisk and ScsiBus driver are used to manage SCSI or ATAPI devices, // we have to use the lowest transfer rate to calculate the possible // maximum timeout value for each operation. // From the above table, we could know 2.1Mbytes per second is lowest one. // The timout value is rounded up to nearest integar and here an additional // 30s is added to follow ATA spec in which it mentioned that the device // may take up to 30s to respond commands in the Standby/Idle mode. // Timeout = EFI_TIMER_PERIOD_SECONDS (ByteCount / 2100000 + 31); if (!ScsiDiskDevice->Cdb16Byte) { Status = ScsiDiskAsyncWrite10 ( ScsiDiskDevice, Timeout, 0, PtrBuffer, ByteCount, (UINT32) Lba, SectorCount, BlkIo2Req, Token ); } else { Status = ScsiDiskAsyncWrite16 ( ScsiDiskDevice, Timeout, 0, PtrBuffer, ByteCount, Lba, SectorCount, BlkIo2Req, Token ); } if (EFI_ERROR(Status)) { // // Some devices will return EFI_DEVICE_ERROR or EFI_TIMEOUT when the data // length of a SCSI I/O command is too large. // In this case, we retry sending the SCSI command with a data length // half of its previous value. // if ((Status == EFI_DEVICE_ERROR) || (Status == EFI_TIMEOUT)) { if ((MaxBlock > 1) && (SectorCount > 1)) { MaxBlock = MIN (MaxBlock, SectorCount) >> 1; continue; } } OldTpl = gBS->RaiseTPL (TPL_NOTIFY); if (IsListEmpty (&BlkIo2Req->ScsiRWQueue)) { // // Free the SCSI_BLKIO2_REQUEST structure only when there is no other // SCSI sub-task running. Otherwise, it will be freed in the callback // function ScsiDiskNotify(). // RemoveEntryList (&BlkIo2Req->Link); FreePool(BlkIo2Req); BlkIo2Req = NULL; gBS->RestoreTPL (OldTpl); // // It is safe to return error status to the caller, since there is no // previous SCSI sub-task executing. // Status = EFI_DEVICE_ERROR; goto Done; } else { gBS->RestoreTPL (OldTpl); // // There are previous SCSI commands still running, EFI_SUCCESS should // be returned to make sure that the caller does not free resources // still using by these SCSI commands. // Status = EFI_SUCCESS; goto Done; } } // // Sectors submitted for transfer // SectorCount = ByteCount / BlockSize; Lba += SectorCount; PtrBuffer = PtrBuffer + SectorCount * BlockSize; BlocksRemaining -= SectorCount; } Status = EFI_SUCCESS; Done: if (BlkIo2Req != NULL) { BlkIo2Req->LastScsiRW = TRUE; OldTpl = gBS->RaiseTPL (TPL_NOTIFY); if (IsListEmpty (&BlkIo2Req->ScsiRWQueue)) { RemoveEntryList (&BlkIo2Req->Link); FreePool(BlkIo2Req); BlkIo2Req = NULL; gBS->SignalEvent (Token->Event); } gBS->RestoreTPL (OldTpl); } return Status; } /** Submit Read(10) command. @param ScsiDiskDevice The pointer of ScsiDiskDevice @param NeedRetry The pointer of flag indicates if needs retry if error happens @param Timeout The time to complete the command @param DataBuffer The buffer to fill with the read out data @param DataLength The length of buffer @param StartLba The start logic block address @param SectorCount The number of blocks to read @return EFI_STATUS is returned by calling ScsiRead10Command(). **/ EFI_STATUS ScsiDiskRead10 ( IN SCSI_DISK_DEV *ScsiDiskDevice, OUT BOOLEAN *NeedRetry, IN UINT64 Timeout, OUT UINT8 *DataBuffer, IN OUT UINT32 *DataLength, IN UINT32 StartLba, IN UINT32 SectorCount ) { UINT8 SenseDataLength; EFI_STATUS Status; EFI_STATUS ReturnStatus; UINT8 HostAdapterStatus; UINT8 TargetStatus; UINTN Action; // // Implement a backoff algorithem to resolve some compatibility issues that // some SCSI targets or ATAPI devices couldn't correctly response reading/writing // big data in a single operation. // This algorithem will at first try to execute original request. If the request fails // with media error sense data or else, it will reduce the transfer length to half and // try again till the operation succeeds or fails with one sector transfer length. // BackOff: *NeedRetry = FALSE; Action = ACTION_NO_ACTION; SenseDataLength = (UINT8) (ScsiDiskDevice->SenseDataNumber * sizeof (EFI_SCSI_SENSE_DATA)); ReturnStatus = ScsiRead10Command ( ScsiDiskDevice->ScsiIo, Timeout, ScsiDiskDevice->SenseData, &SenseDataLength, &HostAdapterStatus, &TargetStatus, DataBuffer, DataLength, StartLba, SectorCount ); if (ReturnStatus == EFI_NOT_READY || ReturnStatus == EFI_BAD_BUFFER_SIZE) { *NeedRetry = TRUE; return EFI_DEVICE_ERROR; } else if ((ReturnStatus == EFI_INVALID_PARAMETER) || (ReturnStatus == EFI_UNSUPPORTED)) { *NeedRetry = FALSE; return ReturnStatus; } // // go ahead to check HostAdapterStatus and TargetStatus // (EFI_TIMEOUT, EFI_DEVICE_ERROR, EFI_WARN_BUFFER_TOO_SMALL) // Status = CheckHostAdapterStatus (HostAdapterStatus); if ((Status == EFI_TIMEOUT) || (Status == EFI_NOT_READY)) { *NeedRetry = TRUE; return EFI_DEVICE_ERROR; } else if (Status == EFI_DEVICE_ERROR) { // // reset the scsi channel // ScsiDiskDevice->ScsiIo->ResetBus (ScsiDiskDevice->ScsiIo); *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } Status = CheckTargetStatus (TargetStatus); if (Status == EFI_NOT_READY) { // // reset the scsi device // ScsiDiskDevice->ScsiIo->ResetDevice (ScsiDiskDevice->ScsiIo); *NeedRetry = TRUE; return EFI_DEVICE_ERROR; } else if (Status == EFI_DEVICE_ERROR) { *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } if ((TargetStatus == EFI_EXT_SCSI_STATUS_TARGET_CHECK_CONDITION) || (EFI_ERROR(ReturnStatus))) { DEBUG ((EFI_D_ERROR, "ScsiDiskRead10: Check Condition happened!\n")); Status = DetectMediaParsingSenseKeys (ScsiDiskDevice, ScsiDiskDevice->SenseData, SenseDataLength / sizeof (EFI_SCSI_SENSE_DATA), &Action); if (Action == ACTION_RETRY_COMMAND_LATER) { *NeedRetry = TRUE; return EFI_DEVICE_ERROR; } else if (Action == ACTION_RETRY_WITH_BACKOFF_ALGO) { if (SectorCount <= 1) { // // Jump out if the operation still fails with one sector transfer length. // *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } // // Try again with half length if the sense data shows we need to retry. // SectorCount >>= 1; *DataLength = SectorCount * ScsiDiskDevice->BlkIo.Media->BlockSize; goto BackOff; } else { *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } } return ReturnStatus; } /** Submit Write(10) Command. @param ScsiDiskDevice The pointer of ScsiDiskDevice @param NeedRetry The pointer of flag indicates if needs retry if error happens @param Timeout The time to complete the command @param DataBuffer The buffer to fill with the read out data @param DataLength The length of buffer @param StartLba The start logic block address @param SectorCount The number of blocks to write @return EFI_STATUS is returned by calling ScsiWrite10Command(). **/ EFI_STATUS ScsiDiskWrite10 ( IN SCSI_DISK_DEV *ScsiDiskDevice, OUT BOOLEAN *NeedRetry, IN UINT64 Timeout, IN UINT8 *DataBuffer, IN OUT UINT32 *DataLength, IN UINT32 StartLba, IN UINT32 SectorCount ) { EFI_STATUS Status; EFI_STATUS ReturnStatus; UINT8 SenseDataLength; UINT8 HostAdapterStatus; UINT8 TargetStatus; UINTN Action; // // Implement a backoff algorithem to resolve some compatibility issues that // some SCSI targets or ATAPI devices couldn't correctly response reading/writing // big data in a single operation. // This algorithem will at first try to execute original request. If the request fails // with media error sense data or else, it will reduce the transfer length to half and // try again till the operation succeeds or fails with one sector transfer length. // BackOff: *NeedRetry = FALSE; Action = ACTION_NO_ACTION; SenseDataLength = (UINT8) (ScsiDiskDevice->SenseDataNumber * sizeof (EFI_SCSI_SENSE_DATA)); ReturnStatus = ScsiWrite10Command ( ScsiDiskDevice->ScsiIo, Timeout, ScsiDiskDevice->SenseData, &SenseDataLength, &HostAdapterStatus, &TargetStatus, DataBuffer, DataLength, StartLba, SectorCount ); if (ReturnStatus == EFI_NOT_READY || ReturnStatus == EFI_BAD_BUFFER_SIZE) { *NeedRetry = TRUE; return EFI_DEVICE_ERROR; } else if ((ReturnStatus == EFI_INVALID_PARAMETER) || (ReturnStatus == EFI_UNSUPPORTED)) { *NeedRetry = FALSE; return ReturnStatus; } // // go ahead to check HostAdapterStatus and TargetStatus // (EFI_TIMEOUT, EFI_DEVICE_ERROR, EFI_WARN_BUFFER_TOO_SMALL) // Status = CheckHostAdapterStatus (HostAdapterStatus); if ((Status == EFI_TIMEOUT) || (Status == EFI_NOT_READY)) { *NeedRetry = TRUE; return EFI_DEVICE_ERROR; } else if (Status == EFI_DEVICE_ERROR) { // // reset the scsi channel // ScsiDiskDevice->ScsiIo->ResetBus (ScsiDiskDevice->ScsiIo); *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } Status = CheckTargetStatus (TargetStatus); if (Status == EFI_NOT_READY) { // // reset the scsi device // ScsiDiskDevice->ScsiIo->ResetDevice (ScsiDiskDevice->ScsiIo); *NeedRetry = TRUE; return EFI_DEVICE_ERROR; } else if (Status == EFI_DEVICE_ERROR) { *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } if ((TargetStatus == EFI_EXT_SCSI_STATUS_TARGET_CHECK_CONDITION) || (EFI_ERROR(ReturnStatus))) { DEBUG ((EFI_D_ERROR, "ScsiDiskWrite10: Check Condition happened!\n")); Status = DetectMediaParsingSenseKeys (ScsiDiskDevice, ScsiDiskDevice->SenseData, SenseDataLength / sizeof (EFI_SCSI_SENSE_DATA), &Action); if (Action == ACTION_RETRY_COMMAND_LATER) { *NeedRetry = TRUE; return EFI_DEVICE_ERROR; } else if (Action == ACTION_RETRY_WITH_BACKOFF_ALGO) { if (SectorCount <= 1) { // // Jump out if the operation still fails with one sector transfer length. // *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } // // Try again with half length if the sense data shows we need to retry. // SectorCount >>= 1; *DataLength = SectorCount * ScsiDiskDevice->BlkIo.Media->BlockSize; goto BackOff; } else { *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } } return ReturnStatus; } /** Submit Read(16) command. @param ScsiDiskDevice The pointer of ScsiDiskDevice @param NeedRetry The pointer of flag indicates if needs retry if error happens @param Timeout The time to complete the command @param DataBuffer The buffer to fill with the read out data @param DataLength The length of buffer @param StartLba The start logic block address @param SectorCount The number of blocks to read @return EFI_STATUS is returned by calling ScsiRead16Command(). **/ EFI_STATUS ScsiDiskRead16 ( IN SCSI_DISK_DEV *ScsiDiskDevice, OUT BOOLEAN *NeedRetry, IN UINT64 Timeout, OUT UINT8 *DataBuffer, IN OUT UINT32 *DataLength, IN UINT64 StartLba, IN UINT32 SectorCount ) { UINT8 SenseDataLength; EFI_STATUS Status; EFI_STATUS ReturnStatus; UINT8 HostAdapterStatus; UINT8 TargetStatus; UINTN Action; // // Implement a backoff algorithem to resolve some compatibility issues that // some SCSI targets or ATAPI devices couldn't correctly response reading/writing // big data in a single operation. // This algorithem will at first try to execute original request. If the request fails // with media error sense data or else, it will reduce the transfer length to half and // try again till the operation succeeds or fails with one sector transfer length. // BackOff: *NeedRetry = FALSE; Action = ACTION_NO_ACTION; SenseDataLength = (UINT8) (ScsiDiskDevice->SenseDataNumber * sizeof (EFI_SCSI_SENSE_DATA)); ReturnStatus = ScsiRead16Command ( ScsiDiskDevice->ScsiIo, Timeout, ScsiDiskDevice->SenseData, &SenseDataLength, &HostAdapterStatus, &TargetStatus, DataBuffer, DataLength, StartLba, SectorCount ); if (ReturnStatus == EFI_NOT_READY || ReturnStatus == EFI_BAD_BUFFER_SIZE) { *NeedRetry = TRUE; return EFI_DEVICE_ERROR; } else if ((ReturnStatus == EFI_INVALID_PARAMETER) || (ReturnStatus == EFI_UNSUPPORTED)) { *NeedRetry = FALSE; return ReturnStatus; } // // go ahead to check HostAdapterStatus and TargetStatus // (EFI_TIMEOUT, EFI_DEVICE_ERROR, EFI_WARN_BUFFER_TOO_SMALL) // Status = CheckHostAdapterStatus (HostAdapterStatus); if ((Status == EFI_TIMEOUT) || (Status == EFI_NOT_READY)) { *NeedRetry = TRUE; return EFI_DEVICE_ERROR; } else if (Status == EFI_DEVICE_ERROR) { // // reset the scsi channel // ScsiDiskDevice->ScsiIo->ResetBus (ScsiDiskDevice->ScsiIo); *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } Status = CheckTargetStatus (TargetStatus); if (Status == EFI_NOT_READY) { // // reset the scsi device // ScsiDiskDevice->ScsiIo->ResetDevice (ScsiDiskDevice->ScsiIo); *NeedRetry = TRUE; return EFI_DEVICE_ERROR; } else if (Status == EFI_DEVICE_ERROR) { *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } if ((TargetStatus == EFI_EXT_SCSI_STATUS_TARGET_CHECK_CONDITION) || (EFI_ERROR(ReturnStatus))) { DEBUG ((EFI_D_ERROR, "ScsiDiskRead16: Check Condition happened!\n")); Status = DetectMediaParsingSenseKeys (ScsiDiskDevice, ScsiDiskDevice->SenseData, SenseDataLength / sizeof (EFI_SCSI_SENSE_DATA), &Action); if (Action == ACTION_RETRY_COMMAND_LATER) { *NeedRetry = TRUE; return EFI_DEVICE_ERROR; } else if (Action == ACTION_RETRY_WITH_BACKOFF_ALGO) { if (SectorCount <= 1) { // // Jump out if the operation still fails with one sector transfer length. // *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } // // Try again with half length if the sense data shows we need to retry. // SectorCount >>= 1; *DataLength = SectorCount * ScsiDiskDevice->BlkIo.Media->BlockSize; goto BackOff; } else { *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } } return ReturnStatus; } /** Submit Write(16) Command. @param ScsiDiskDevice The pointer of ScsiDiskDevice @param NeedRetry The pointer of flag indicates if needs retry if error happens @param Timeout The time to complete the command @param DataBuffer The buffer to fill with the read out data @param DataLength The length of buffer @param StartLba The start logic block address @param SectorCount The number of blocks to write @return EFI_STATUS is returned by calling ScsiWrite16Command(). **/ EFI_STATUS ScsiDiskWrite16 ( IN SCSI_DISK_DEV *ScsiDiskDevice, OUT BOOLEAN *NeedRetry, IN UINT64 Timeout, IN UINT8 *DataBuffer, IN OUT UINT32 *DataLength, IN UINT64 StartLba, IN UINT32 SectorCount ) { EFI_STATUS Status; EFI_STATUS ReturnStatus; UINT8 SenseDataLength; UINT8 HostAdapterStatus; UINT8 TargetStatus; UINTN Action; // // Implement a backoff algorithem to resolve some compatibility issues that // some SCSI targets or ATAPI devices couldn't correctly response reading/writing // big data in a single operation. // This algorithem will at first try to execute original request. If the request fails // with media error sense data or else, it will reduce the transfer length to half and // try again till the operation succeeds or fails with one sector transfer length. // BackOff: *NeedRetry = FALSE; Action = ACTION_NO_ACTION; SenseDataLength = (UINT8) (ScsiDiskDevice->SenseDataNumber * sizeof (EFI_SCSI_SENSE_DATA)); ReturnStatus = ScsiWrite16Command ( ScsiDiskDevice->ScsiIo, Timeout, ScsiDiskDevice->SenseData, &SenseDataLength, &HostAdapterStatus, &TargetStatus, DataBuffer, DataLength, StartLba, SectorCount ); if (ReturnStatus == EFI_NOT_READY || ReturnStatus == EFI_BAD_BUFFER_SIZE) { *NeedRetry = TRUE; return EFI_DEVICE_ERROR; } else if ((ReturnStatus == EFI_INVALID_PARAMETER) || (ReturnStatus == EFI_UNSUPPORTED)) { *NeedRetry = FALSE; return ReturnStatus; } // // go ahead to check HostAdapterStatus and TargetStatus // (EFI_TIMEOUT, EFI_DEVICE_ERROR, EFI_WARN_BUFFER_TOO_SMALL) // Status = CheckHostAdapterStatus (HostAdapterStatus); if ((Status == EFI_TIMEOUT) || (Status == EFI_NOT_READY)) { *NeedRetry = TRUE; return EFI_DEVICE_ERROR; } else if (Status == EFI_DEVICE_ERROR) { // // reset the scsi channel // ScsiDiskDevice->ScsiIo->ResetBus (ScsiDiskDevice->ScsiIo); *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } Status = CheckTargetStatus (TargetStatus); if (Status == EFI_NOT_READY) { // // reset the scsi device // ScsiDiskDevice->ScsiIo->ResetDevice (ScsiDiskDevice->ScsiIo); *NeedRetry = TRUE; return EFI_DEVICE_ERROR; } else if (Status == EFI_DEVICE_ERROR) { *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } if ((TargetStatus == EFI_EXT_SCSI_STATUS_TARGET_CHECK_CONDITION) || (EFI_ERROR(ReturnStatus))) { DEBUG ((EFI_D_ERROR, "ScsiDiskWrite16: Check Condition happened!\n")); Status = DetectMediaParsingSenseKeys (ScsiDiskDevice, ScsiDiskDevice->SenseData, SenseDataLength / sizeof (EFI_SCSI_SENSE_DATA), &Action); if (Action == ACTION_RETRY_COMMAND_LATER) { *NeedRetry = TRUE; return EFI_DEVICE_ERROR; } else if (Action == ACTION_RETRY_WITH_BACKOFF_ALGO) { if (SectorCount <= 1) { // // Jump out if the operation still fails with one sector transfer length. // *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } // // Try again with half length if the sense data shows we need to retry. // SectorCount >>= 1; *DataLength = SectorCount * ScsiDiskDevice->BlkIo.Media->BlockSize; goto BackOff; } else { *NeedRetry = FALSE; return EFI_DEVICE_ERROR; } } return ReturnStatus; } /** Internal helper notify function in which determine whether retry of a SCSI Read/Write command is needed and signal the event passed from Block I/O(2) if the SCSI I/O operation completes. @param Event The instance of EFI_EVENT. @param Context The parameter passed in. **/ VOID EFIAPI ScsiDiskNotify ( IN EFI_EVENT Event, IN VOID *Context ) { EFI_STATUS Status; SCSI_ASYNC_RW_REQUEST *Request; SCSI_DISK_DEV *ScsiDiskDevice; EFI_BLOCK_IO2_TOKEN *Token; UINTN Action; UINT32 OldDataLength; UINT32 OldSectorCount; UINT8 MaxRetry; gBS->CloseEvent (Event); Request = (SCSI_ASYNC_RW_REQUEST *) Context; ScsiDiskDevice = Request->ScsiDiskDevice; Token = Request->BlkIo2Req->Token; OldDataLength = Request->DataLength; OldSectorCount = Request->SectorCount; MaxRetry = 2; // // If previous sub-tasks already fails, no need to process this sub-task. // if (Token->TransactionStatus != EFI_SUCCESS) { goto Exit; } // // Check HostAdapterStatus and TargetStatus // (EFI_TIMEOUT, EFI_DEVICE_ERROR, EFI_WARN_BUFFER_TOO_SMALL) // Status = CheckHostAdapterStatus (Request->HostAdapterStatus); if ((Status == EFI_TIMEOUT) || (Status == EFI_NOT_READY)) { if (++Request->TimesRetry > MaxRetry) { Token->TransactionStatus = EFI_DEVICE_ERROR; goto Exit; } else { goto Retry; } } else if (Status == EFI_DEVICE_ERROR) { // // reset the scsi channel // ScsiDiskDevice->ScsiIo->ResetBus (ScsiDiskDevice->ScsiIo); Token->TransactionStatus = EFI_DEVICE_ERROR; goto Exit; } Status = CheckTargetStatus (Request->TargetStatus); if (Status == EFI_NOT_READY) { // // reset the scsi device // ScsiDiskDevice->ScsiIo->ResetDevice (ScsiDiskDevice->ScsiIo); if (++Request->TimesRetry > MaxRetry) { Token->TransactionStatus = EFI_DEVICE_ERROR; goto Exit; } else { goto Retry; } } else if (Status == EFI_DEVICE_ERROR) { Token->TransactionStatus = EFI_DEVICE_ERROR; goto Exit; } if (Request->TargetStatus == EFI_EXT_SCSI_STATUS_TARGET_CHECK_CONDITION) { DEBUG ((EFI_D_ERROR, "ScsiDiskNotify: Check Condition happened!\n")); Status = DetectMediaParsingSenseKeys ( ScsiDiskDevice, Request->SenseData, Request->SenseDataLength / sizeof (EFI_SCSI_SENSE_DATA), &Action ); if (Action == ACTION_RETRY_COMMAND_LATER) { if (++Request->TimesRetry > MaxRetry) { Token->TransactionStatus = EFI_DEVICE_ERROR; goto Exit; } else { goto Retry; } } else if (Action == ACTION_RETRY_WITH_BACKOFF_ALGO) { if (Request->SectorCount <= 1) { // // Jump out if the operation still fails with one sector transfer // length. // Token->TransactionStatus = EFI_DEVICE_ERROR; goto Exit; } // // Try again with two half length request if the sense data shows we need // to retry. // Request->SectorCount >>= 1; Request->DataLength = Request->SectorCount * ScsiDiskDevice->BlkIo.Media->BlockSize; Request->TimesRetry = 0; goto Retry; } else { Token->TransactionStatus = EFI_DEVICE_ERROR; goto Exit; } } // // This sub-task succeeds, no need to retry. // goto Exit; Retry: if (Request->InBuffer != NULL) { // // SCSI read command // if (!ScsiDiskDevice->Cdb16Byte) { Status = ScsiDiskAsyncRead10 ( ScsiDiskDevice, Request->Timeout, Request->TimesRetry, Request->InBuffer, Request->DataLength, (UINT32) Request->StartLba, Request->SectorCount, Request->BlkIo2Req, Token ); } else { Status = ScsiDiskAsyncRead16 ( ScsiDiskDevice, Request->Timeout, Request->TimesRetry, Request->InBuffer, Request->DataLength, Request->StartLba, Request->SectorCount, Request->BlkIo2Req, Token ); } if (EFI_ERROR(Status)) { Token->TransactionStatus = EFI_DEVICE_ERROR; goto Exit; } else if (OldSectorCount != Request->SectorCount) { // // Original sub-task will be split into two new sub-tasks with smaller // DataLength // if (!ScsiDiskDevice->Cdb16Byte) { Status = ScsiDiskAsyncRead10 ( ScsiDiskDevice, Request->Timeout, 0, Request->InBuffer + Request->SectorCount * ScsiDiskDevice->BlkIo.Media->BlockSize, OldDataLength - Request->DataLength, (UINT32) Request->StartLba + Request->SectorCount, OldSectorCount - Request->SectorCount, Request->BlkIo2Req, Token ); } else { Status = ScsiDiskAsyncRead16 ( ScsiDiskDevice, Request->Timeout, 0, Request->InBuffer + Request->SectorCount * ScsiDiskDevice->BlkIo.Media->BlockSize, OldDataLength - Request->DataLength, Request->StartLba + Request->SectorCount, OldSectorCount - Request->SectorCount, Request->BlkIo2Req, Token ); } if (EFI_ERROR(Status)) { Token->TransactionStatus = EFI_DEVICE_ERROR; goto Exit; } } } else { // // SCSI write command // if (!ScsiDiskDevice->Cdb16Byte) { Status = ScsiDiskAsyncWrite10 ( ScsiDiskDevice, Request->Timeout, Request->TimesRetry, Request->OutBuffer, Request->DataLength, (UINT32) Request->StartLba, Request->SectorCount, Request->BlkIo2Req, Token ); } else { Status = ScsiDiskAsyncWrite16 ( ScsiDiskDevice, Request->Timeout, Request->TimesRetry, Request->OutBuffer, Request->DataLength, Request->StartLba, Request->SectorCount, Request->BlkIo2Req, Token ); } if (EFI_ERROR(Status)) { Token->TransactionStatus = EFI_DEVICE_ERROR; goto Exit; } else if (OldSectorCount != Request->SectorCount) { // // Original sub-task will be split into two new sub-tasks with smaller // DataLength // if (!ScsiDiskDevice->Cdb16Byte) { Status = ScsiDiskAsyncWrite10 ( ScsiDiskDevice, Request->Timeout, 0, Request->OutBuffer + Request->SectorCount * ScsiDiskDevice->BlkIo.Media->BlockSize, OldDataLength - Request->DataLength, (UINT32) Request->StartLba + Request->SectorCount, OldSectorCount - Request->SectorCount, Request->BlkIo2Req, Token ); } else { Status = ScsiDiskAsyncWrite16 ( ScsiDiskDevice, Request->Timeout, 0, Request->OutBuffer + Request->SectorCount * ScsiDiskDevice->BlkIo.Media->BlockSize, OldDataLength - Request->DataLength, Request->StartLba + Request->SectorCount, OldSectorCount - Request->SectorCount, Request->BlkIo2Req, Token ); } if (EFI_ERROR(Status)) { Token->TransactionStatus = EFI_DEVICE_ERROR; goto Exit; } } } Exit: RemoveEntryList (&Request->Link); if ((IsListEmpty (&Request->BlkIo2Req->ScsiRWQueue)) && (Request->BlkIo2Req->LastScsiRW)) { // // The last SCSI R/W command of a BlockIo2 request completes // RemoveEntryList (&Request->BlkIo2Req->Link); FreePool(Request->BlkIo2Req); // Should be freed only once gBS->SignalEvent (Token->Event); } FreePool(Request->SenseData); FreePool(Request); } /** Submit Async Read(10) command. @param ScsiDiskDevice The pointer of ScsiDiskDevice. @param Timeout The time to complete the command. @param TimesRetry The number of times the command has been retried. @param DataBuffer The buffer to fill with the read out data. @param DataLength The length of buffer. @param StartLba The start logic block address. @param SectorCount The number of blocks to read. @param BlkIo2Req The upstream BlockIo2 request. @param Token The pointer to the token associated with the non-blocking read request. @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources. @return others Status returned by calling ScsiRead10CommandEx(). **/ EFI_STATUS ScsiDiskAsyncRead10 ( IN SCSI_DISK_DEV *ScsiDiskDevice, IN UINT64 Timeout, IN UINT8 TimesRetry, OUT UINT8 *DataBuffer, IN UINT32 DataLength, IN UINT32 StartLba, IN UINT32 SectorCount, IN OUT SCSI_BLKIO2_REQUEST *BlkIo2Req, IN EFI_BLOCK_IO2_TOKEN *Token ) { EFI_STATUS Status; SCSI_ASYNC_RW_REQUEST *Request; EFI_EVENT AsyncIoEvent; EFI_TPL OldTpl; AsyncIoEvent = NULL; Request = AllocateZeroPool (sizeof (SCSI_ASYNC_RW_REQUEST)); if (Request == NULL) { return EFI_OUT_OF_RESOURCES; } OldTpl = gBS->RaiseTPL (TPL_NOTIFY); InsertTailList (&BlkIo2Req->ScsiRWQueue, &Request->Link); gBS->RestoreTPL (OldTpl); Request->SenseDataLength = (UINT8) (6 * sizeof (EFI_SCSI_SENSE_DATA)); Request->SenseData = AllocateZeroPool (Request->SenseDataLength); if (Request->SenseData == NULL) { Status = EFI_OUT_OF_RESOURCES; goto ErrorExit; } Request->ScsiDiskDevice = ScsiDiskDevice; Request->Timeout = Timeout; Request->TimesRetry = TimesRetry; Request->InBuffer = DataBuffer; Request->DataLength = DataLength; Request->StartLba = StartLba; Request->SectorCount = SectorCount; Request->BlkIo2Req = BlkIo2Req; // // Create Event // Status = gBS->CreateEvent ( EVT_NOTIFY_SIGNAL, TPL_NOTIFY, ScsiDiskNotify, Request, &AsyncIoEvent ); if (EFI_ERROR(Status)) { goto ErrorExit; } Status = ScsiRead10CommandEx ( ScsiDiskDevice->ScsiIo, Request->Timeout, Request->SenseData, &Request->SenseDataLength, &Request->HostAdapterStatus, &Request->TargetStatus, Request->InBuffer, &Request->DataLength, (UINT32) Request->StartLba, Request->SectorCount, AsyncIoEvent ); if (EFI_ERROR(Status)) { goto ErrorExit; } return EFI_SUCCESS; ErrorExit: if (AsyncIoEvent != NULL) { gBS->CloseEvent (AsyncIoEvent); } if (Request != NULL) { if (Request->SenseData != NULL) { FreePool(Request->SenseData); } OldTpl = gBS->RaiseTPL (TPL_NOTIFY); RemoveEntryList (&Request->Link); gBS->RestoreTPL (OldTpl); FreePool(Request); } return Status; } /** Submit Async Write(10) command. @param ScsiDiskDevice The pointer of ScsiDiskDevice. @param Timeout The time to complete the command. @param TimesRetry The number of times the command has been retried. @param DataBuffer The buffer contains the data to write. @param DataLength The length of buffer. @param StartLba The start logic block address. @param SectorCount The number of blocks to write. @param BlkIo2Req The upstream BlockIo2 request. @param Token The pointer to the token associated with the non-blocking read request. @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources. @return others Status returned by calling ScsiWrite10CommandEx(). **/ EFI_STATUS ScsiDiskAsyncWrite10 ( IN SCSI_DISK_DEV *ScsiDiskDevice, IN UINT64 Timeout, IN UINT8 TimesRetry, IN UINT8 *DataBuffer, IN UINT32 DataLength, IN UINT32 StartLba, IN UINT32 SectorCount, IN OUT SCSI_BLKIO2_REQUEST *BlkIo2Req, IN EFI_BLOCK_IO2_TOKEN *Token ) { EFI_STATUS Status; SCSI_ASYNC_RW_REQUEST *Request; EFI_EVENT AsyncIoEvent; EFI_TPL OldTpl; AsyncIoEvent = NULL; Request = AllocateZeroPool (sizeof (SCSI_ASYNC_RW_REQUEST)); if (Request == NULL) { return EFI_OUT_OF_RESOURCES; } OldTpl = gBS->RaiseTPL (TPL_NOTIFY); InsertTailList (&BlkIo2Req->ScsiRWQueue, &Request->Link); gBS->RestoreTPL (OldTpl); Request->SenseDataLength = (UINT8) (6 * sizeof (EFI_SCSI_SENSE_DATA)); Request->SenseData = AllocateZeroPool (Request->SenseDataLength); if (Request->SenseData == NULL) { Status = EFI_OUT_OF_RESOURCES; goto ErrorExit; } Request->ScsiDiskDevice = ScsiDiskDevice; Request->Timeout = Timeout; Request->TimesRetry = TimesRetry; Request->OutBuffer = DataBuffer; Request->DataLength = DataLength; Request->StartLba = StartLba; Request->SectorCount = SectorCount; Request->BlkIo2Req = BlkIo2Req; // // Create Event // Status = gBS->CreateEvent ( EVT_NOTIFY_SIGNAL, TPL_NOTIFY, ScsiDiskNotify, Request, &AsyncIoEvent ); if (EFI_ERROR(Status)) { goto ErrorExit; } Status = ScsiWrite10CommandEx ( ScsiDiskDevice->ScsiIo, Request->Timeout, Request->SenseData, &Request->SenseDataLength, &Request->HostAdapterStatus, &Request->TargetStatus, Request->OutBuffer, &Request->DataLength, (UINT32) Request->StartLba, Request->SectorCount, AsyncIoEvent ); if (EFI_ERROR(Status)) { goto ErrorExit; } return EFI_SUCCESS; ErrorExit: if (AsyncIoEvent != NULL) { gBS->CloseEvent (AsyncIoEvent); } if (Request != NULL) { if (Request->SenseData != NULL) { FreePool(Request->SenseData); } OldTpl = gBS->RaiseTPL (TPL_NOTIFY); RemoveEntryList (&Request->Link); gBS->RestoreTPL (OldTpl); FreePool(Request); } return Status; } /** Submit Async Read(16) command. @param ScsiDiskDevice The pointer of ScsiDiskDevice. @param Timeout The time to complete the command. @param TimesRetry The number of times the command has been retried. @param DataBuffer The buffer to fill with the read out data. @param DataLength The length of buffer. @param StartLba The start logic block address. @param SectorCount The number of blocks to read. @param BlkIo2Req The upstream BlockIo2 request. @param Token The pointer to the token associated with the non-blocking read request. @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources. @return others Status returned by calling ScsiRead16CommandEx(). **/ EFI_STATUS ScsiDiskAsyncRead16 ( IN SCSI_DISK_DEV *ScsiDiskDevice, IN UINT64 Timeout, IN UINT8 TimesRetry, OUT UINT8 *DataBuffer, IN UINT32 DataLength, IN UINT64 StartLba, IN UINT32 SectorCount, IN OUT SCSI_BLKIO2_REQUEST *BlkIo2Req, IN EFI_BLOCK_IO2_TOKEN *Token ) { EFI_STATUS Status; SCSI_ASYNC_RW_REQUEST *Request; EFI_EVENT AsyncIoEvent; EFI_TPL OldTpl; AsyncIoEvent = NULL; Request = AllocateZeroPool (sizeof (SCSI_ASYNC_RW_REQUEST)); if (Request == NULL) { return EFI_OUT_OF_RESOURCES; } OldTpl = gBS->RaiseTPL (TPL_NOTIFY); InsertTailList (&BlkIo2Req->ScsiRWQueue, &Request->Link); gBS->RestoreTPL (OldTpl); Request->SenseDataLength = (UINT8) (6 * sizeof (EFI_SCSI_SENSE_DATA)); Request->SenseData = AllocateZeroPool (Request->SenseDataLength); if (Request->SenseData == NULL) { Status = EFI_OUT_OF_RESOURCES; goto ErrorExit; } Request->ScsiDiskDevice = ScsiDiskDevice; Request->Timeout = Timeout; Request->TimesRetry = TimesRetry; Request->InBuffer = DataBuffer; Request->DataLength = DataLength; Request->StartLba = StartLba; Request->SectorCount = SectorCount; Request->BlkIo2Req = BlkIo2Req; // // Create Event // Status = gBS->CreateEvent ( EVT_NOTIFY_SIGNAL, TPL_NOTIFY, ScsiDiskNotify, Request, &AsyncIoEvent ); if (EFI_ERROR(Status)) { goto ErrorExit; } Status = ScsiRead16CommandEx ( ScsiDiskDevice->ScsiIo, Request->Timeout, Request->SenseData, &Request->SenseDataLength, &Request->HostAdapterStatus, &Request->TargetStatus, Request->InBuffer, &Request->DataLength, Request->StartLba, Request->SectorCount, AsyncIoEvent ); if (EFI_ERROR(Status)) { goto ErrorExit; } return EFI_SUCCESS; ErrorExit: if (AsyncIoEvent != NULL) { gBS->CloseEvent (AsyncIoEvent); } if (Request != NULL) { if (Request->SenseData != NULL) { FreePool(Request->SenseData); } OldTpl = gBS->RaiseTPL (TPL_NOTIFY); RemoveEntryList (&Request->Link); gBS->RestoreTPL (OldTpl); FreePool(Request); } return Status; } /** Submit Async Write(16) command. @param ScsiDiskDevice The pointer of ScsiDiskDevice. @param Timeout The time to complete the command. @param TimesRetry The number of times the command has been retried. @param DataBuffer The buffer contains the data to write. @param DataLength The length of buffer. @param StartLba The start logic block address. @param SectorCount The number of blocks to write. @param BlkIo2Req The upstream BlockIo2 request. @param Token The pointer to the token associated with the non-blocking read request. @retval EFI_OUT_OF_RESOURCES The request could not be completed due to a lack of resources. @return others Status returned by calling ScsiWrite16CommandEx(). **/ EFI_STATUS ScsiDiskAsyncWrite16 ( IN SCSI_DISK_DEV *ScsiDiskDevice, IN UINT64 Timeout, IN UINT8 TimesRetry, IN UINT8 *DataBuffer, IN UINT32 DataLength, IN UINT64 StartLba, IN UINT32 SectorCount, IN OUT SCSI_BLKIO2_REQUEST *BlkIo2Req, IN EFI_BLOCK_IO2_TOKEN *Token ) { EFI_STATUS Status; SCSI_ASYNC_RW_REQUEST *Request; EFI_EVENT AsyncIoEvent; EFI_TPL OldTpl; AsyncIoEvent = NULL; Request = AllocateZeroPool (sizeof (SCSI_ASYNC_RW_REQUEST)); if (Request == NULL) { return EFI_OUT_OF_RESOURCES; } OldTpl = gBS->RaiseTPL (TPL_NOTIFY); InsertTailList (&BlkIo2Req->ScsiRWQueue, &Request->Link); gBS->RestoreTPL (OldTpl); Request->SenseDataLength = (UINT8) (6 * sizeof (EFI_SCSI_SENSE_DATA)); Request->SenseData = AllocateZeroPool (Request->SenseDataLength); if (Request->SenseData == NULL) { Status = EFI_OUT_OF_RESOURCES; goto ErrorExit; } Request->ScsiDiskDevice = ScsiDiskDevice; Request->Timeout = Timeout; Request->TimesRetry = TimesRetry; Request->OutBuffer = DataBuffer; Request->DataLength = DataLength; Request->StartLba = StartLba; Request->SectorCount = SectorCount; Request->BlkIo2Req = BlkIo2Req; // // Create Event // Status = gBS->CreateEvent ( EVT_NOTIFY_SIGNAL, TPL_NOTIFY, ScsiDiskNotify, Request, &AsyncIoEvent ); if (EFI_ERROR(Status)) { goto ErrorExit; } Status = ScsiWrite16CommandEx ( ScsiDiskDevice->ScsiIo, Request->Timeout, Request->SenseData, &Request->SenseDataLength, &Request->HostAdapterStatus, &Request->TargetStatus, Request->OutBuffer, &Request->DataLength, Request->StartLba, Request->SectorCount, AsyncIoEvent ); if (EFI_ERROR(Status)) { goto ErrorExit; } return EFI_SUCCESS; ErrorExit: if (AsyncIoEvent != NULL) { gBS->CloseEvent (AsyncIoEvent); } if (Request != NULL) { if (Request->SenseData != NULL) { FreePool(Request->SenseData); } OldTpl = gBS->RaiseTPL (TPL_NOTIFY); RemoveEntryList (&Request->Link); gBS->RestoreTPL (OldTpl); FreePool(Request); } return Status; } /** Check sense key to find if media presents. @param SenseData The pointer of EFI_SCSI_SENSE_DATA @param SenseCounts The number of sense key @retval TRUE NOT any media @retval FALSE Media presents **/ BOOLEAN ScsiDiskIsNoMedia ( IN EFI_SCSI_SENSE_DATA *SenseData, IN UINTN SenseCounts ) { EFI_SCSI_SENSE_DATA *SensePtr; UINTN Index; BOOLEAN IsNoMedia; IsNoMedia = FALSE; SensePtr = SenseData; for (Index = 0; Index < SenseCounts; Index++) { // // Sense Key is EFI_SCSI_SK_NOT_READY (0x2), // Additional Sense Code is ASC_NO_MEDIA (0x3A) // if ((SensePtr->Sense_Key == EFI_SCSI_SK_NOT_READY) && (SensePtr->Addnl_Sense_Code == EFI_SCSI_ASC_NO_MEDIA)) { IsNoMedia = TRUE; } SensePtr++; } return IsNoMedia; } /** Parse sense key. @param SenseData The pointer of EFI_SCSI_SENSE_DATA @param SenseCounts The number of sense key @retval TRUE Error @retval FALSE NOT error **/ BOOLEAN ScsiDiskIsMediaError ( IN EFI_SCSI_SENSE_DATA *SenseData, IN UINTN SenseCounts ) { EFI_SCSI_SENSE_DATA *SensePtr; UINTN Index; BOOLEAN IsError; IsError = FALSE; SensePtr = SenseData; for (Index = 0; Index < SenseCounts; Index++) { switch (SensePtr->Sense_Key) { case EFI_SCSI_SK_MEDIUM_ERROR: // // Sense Key is EFI_SCSI_SK_MEDIUM_ERROR (0x3) // switch (SensePtr->Addnl_Sense_Code) { // // fall through // case EFI_SCSI_ASC_MEDIA_ERR1: // // fall through // case EFI_SCSI_ASC_MEDIA_ERR2: // // fall through // case EFI_SCSI_ASC_MEDIA_ERR3: case EFI_SCSI_ASC_MEDIA_ERR4: IsError = TRUE; break; default: break; } break; case EFI_SCSI_SK_NOT_READY: // // Sense Key is EFI_SCSI_SK_NOT_READY (0x2) // switch (SensePtr->Addnl_Sense_Code) { // // Additional Sense Code is ASC_MEDIA_UPSIDE_DOWN (0x6) // case EFI_SCSI_ASC_MEDIA_UPSIDE_DOWN: IsError = TRUE; break; default: break; } break; default: break; } SensePtr++; } return IsError; } /** Check sense key to find if hardware error happens. @param SenseData The pointer of EFI_SCSI_SENSE_DATA @param SenseCounts The number of sense key @retval TRUE Hardware error exits. @retval FALSE NO error. **/ BOOLEAN ScsiDiskIsHardwareError ( IN EFI_SCSI_SENSE_DATA *SenseData, IN UINTN SenseCounts ) { EFI_SCSI_SENSE_DATA *SensePtr; UINTN Index; BOOLEAN IsError; IsError = FALSE; SensePtr = SenseData; for (Index = 0; Index < SenseCounts; Index++) { // // Sense Key is EFI_SCSI_SK_HARDWARE_ERROR (0x4) // if (SensePtr->Sense_Key == EFI_SCSI_SK_HARDWARE_ERROR) { IsError = TRUE; } SensePtr++; } return IsError; } /** Check sense key to find if media has changed. @param SenseData The pointer of EFI_SCSI_SENSE_DATA @param SenseCounts The number of sense key @retval TRUE Media is changed. @retval FALSE Media is NOT changed. **/ BOOLEAN ScsiDiskIsMediaChange ( IN EFI_SCSI_SENSE_DATA *SenseData, IN UINTN SenseCounts ) { EFI_SCSI_SENSE_DATA *SensePtr; UINTN Index; BOOLEAN IsMediaChanged; IsMediaChanged = FALSE; SensePtr = SenseData; for (Index = 0; Index < SenseCounts; Index++) { // // Sense Key is EFI_SCSI_SK_UNIT_ATTENTION (0x6), // Additional sense code is EFI_SCSI_ASC_MEDIA_CHANGE (0x28) // if ((SensePtr->Sense_Key == EFI_SCSI_SK_UNIT_ATTENTION) && (SensePtr->Addnl_Sense_Code == EFI_SCSI_ASC_MEDIA_CHANGE)) { IsMediaChanged = TRUE; } SensePtr++; } return IsMediaChanged; } /** Check sense key to find if reset happens. @param SenseData The pointer of EFI_SCSI_SENSE_DATA @param SenseCounts The number of sense key @retval TRUE It is reset before. @retval FALSE It is NOT reset before. **/ BOOLEAN ScsiDiskIsResetBefore ( IN EFI_SCSI_SENSE_DATA *SenseData, IN UINTN SenseCounts ) { EFI_SCSI_SENSE_DATA *SensePtr; UINTN Index; BOOLEAN IsResetBefore; IsResetBefore = FALSE; SensePtr = SenseData; for (Index = 0; Index < SenseCounts; Index++) { // // Sense Key is EFI_SCSI_SK_UNIT_ATTENTION (0x6) // Additional Sense Code is EFI_SCSI_ASC_RESET (0x29) // if ((SensePtr->Sense_Key == EFI_SCSI_SK_UNIT_ATTENTION) && (SensePtr->Addnl_Sense_Code == EFI_SCSI_ASC_RESET)) { IsResetBefore = TRUE; } SensePtr++; } return IsResetBefore; } /** Check sense key to find if the drive is ready. @param SenseData The pointer of EFI_SCSI_SENSE_DATA @param SenseCounts The number of sense key @param RetryLater The flag means if need a retry @retval TRUE Drive is ready. @retval FALSE Drive is NOT ready. **/ BOOLEAN ScsiDiskIsDriveReady ( IN EFI_SCSI_SENSE_DATA *SenseData, IN UINTN SenseCounts, OUT BOOLEAN *RetryLater ) { EFI_SCSI_SENSE_DATA *SensePtr; UINTN Index; BOOLEAN IsReady; IsReady = TRUE; *RetryLater = FALSE; SensePtr = SenseData; for (Index = 0; Index < SenseCounts; Index++) { switch (SensePtr->Sense_Key) { case EFI_SCSI_SK_NOT_READY: // // Sense Key is EFI_SCSI_SK_NOT_READY (0x2) // switch (SensePtr->Addnl_Sense_Code) { case EFI_SCSI_ASC_NOT_READY: // // Additional Sense Code is EFI_SCSI_ASC_NOT_READY (0x4) // switch (SensePtr->Addnl_Sense_Code_Qualifier) { case EFI_SCSI_ASCQ_IN_PROGRESS: // // Additional Sense Code Qualifier is // EFI_SCSI_ASCQ_IN_PROGRESS (0x1) // IsReady = FALSE; *RetryLater = TRUE; break; default: IsReady = FALSE; *RetryLater = FALSE; break; } break; default: break; } break; default: break; } SensePtr++; } return IsReady; } /** Check sense key to find if it has sense key. @param SenseData - The pointer of EFI_SCSI_SENSE_DATA @param SenseCounts - The number of sense key @retval TRUE It has sense key. @retval FALSE It has NOT any sense key. **/ BOOLEAN ScsiDiskHaveSenseKey ( IN EFI_SCSI_SENSE_DATA *SenseData, IN UINTN SenseCounts ) { EFI_SCSI_SENSE_DATA *SensePtr; UINTN Index; BOOLEAN HaveSenseKey; if (SenseCounts == 0) { HaveSenseKey = FALSE; } else { HaveSenseKey = TRUE; } SensePtr = SenseData; for (Index = 0; Index < SenseCounts; Index++) { // // Sense Key is SK_NO_SENSE (0x0) // if ((SensePtr->Sense_Key == EFI_SCSI_SK_NO_SENSE) && (Index == 0)) { HaveSenseKey = FALSE; } SensePtr++; } return HaveSenseKey; } /** Release resource about disk device. @param ScsiDiskDevice The pointer of SCSI_DISK_DEV **/ VOID ReleaseScsiDiskDeviceResources ( IN SCSI_DISK_DEV *ScsiDiskDevice ) { if (ScsiDiskDevice == NULL) { return ; } if (ScsiDiskDevice->SenseData != NULL) { FreePool(ScsiDiskDevice->SenseData); ScsiDiskDevice->SenseData = NULL; } if (ScsiDiskDevice->ControllerNameTable != NULL) { FreeUnicodeStringTable (ScsiDiskDevice->ControllerNameTable); ScsiDiskDevice->ControllerNameTable = NULL; } FreePool(ScsiDiskDevice); ScsiDiskDevice = NULL; } /** Determine if Block Io & Block Io2 should be produced. @param ChildHandle Child Handle to retrieve Parent information. @retval TRUE Should produce Block Io & Block Io2. @retval FALSE Should not produce Block Io & Block Io2. **/ BOOLEAN DetermineInstallBlockIo ( IN EFI_HANDLE ChildHandle ) { EFI_SCSI_PASS_THRU_PROTOCOL *ScsiPassThru; EFI_EXT_SCSI_PASS_THRU_PROTOCOL *ExtScsiPassThru; // // Firstly, check if ExtScsiPassThru Protocol parent handle exists. If existence, // check its attribute, logic or physical. // ExtScsiPassThru = (EFI_EXT_SCSI_PASS_THRU_PROTOCOL *)GetParentProtocol (&gEfiExtScsiPassThruProtocolGuid, ChildHandle); if (ExtScsiPassThru != NULL) { if ((ExtScsiPassThru->Mode->Attributes & EFI_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL) != 0) { return TRUE; } } // // Secondly, check if ScsiPassThru Protocol parent handle exists. If existence, // check its attribute, logic or physical. // ScsiPassThru = (EFI_SCSI_PASS_THRU_PROTOCOL *)GetParentProtocol (&gEfiScsiPassThruProtocolGuid, ChildHandle); if (ScsiPassThru != NULL) { if ((ScsiPassThru->Mode->Attributes & EFI_SCSI_PASS_THRU_ATTRIBUTES_LOGICAL) != 0) { return TRUE; } } return FALSE; } /** Search protocol database and check to see if the protocol specified by ProtocolGuid is present on a ControllerHandle and opened by ChildHandle with an attribute of EFI_OPEN_PROTOCOL_BY_CHILD_CONTROLLER. If the ControllerHandle is found, then the protocol specified by ProtocolGuid will be opened on it. @param ProtocolGuid ProtocolGuid pointer. @param ChildHandle Child Handle to retrieve Parent information. **/ VOID * EFIAPI GetParentProtocol ( IN EFI_GUID *ProtocolGuid, IN EFI_HANDLE ChildHandle ) { UINTN Index; UINTN HandleCount; VOID *Interface; EFI_STATUS Status; EFI_HANDLE *HandleBuffer; // // Retrieve the list of all handles from the handle database // Status = gBS->LocateHandleBuffer ( ByProtocol, ProtocolGuid, NULL, &HandleCount, &HandleBuffer ); if (EFI_ERROR(Status)) { return NULL; } // // Iterate to find who is parent handle that is opened with ProtocolGuid by ChildHandle // for (Index = 0; Index < HandleCount; Index++) { Status = EfiTestChildHandle (HandleBuffer[Index], ChildHandle, ProtocolGuid); if (!EFI_ERROR(Status)) { Status = gBS->HandleProtocol (HandleBuffer[Index], ProtocolGuid, (VOID **)&Interface); if (!EFI_ERROR(Status)) { gBS->FreePool(HandleBuffer); return Interface; } } } gBS->FreePool(HandleBuffer); return NULL; } /** Determine if EFI Erase Block Protocol should be produced. @param ScsiDiskDevice The pointer of SCSI_DISK_DEV. @param ChildHandle Handle of device. @retval TRUE Should produce EFI Erase Block Protocol. @retval FALSE Should not produce EFI Erase Block Protocol. **/ BOOLEAN DetermineInstallEraseBlock ( IN SCSI_DISK_DEV *ScsiDiskDevice, IN EFI_HANDLE ChildHandle ) { UINT8 HostAdapterStatus; UINT8 TargetStatus; EFI_STATUS CommandStatus; EFI_STATUS Status; BOOLEAN UfsDevice; BOOLEAN RetVal; EFI_DEVICE_PATH_PROTOCOL *DevicePathNode; UINT8 SenseDataLength; UINT32 DataLength16; EFI_SCSI_DISK_CAPACITY_DATA16 *CapacityData16; UfsDevice = FALSE; RetVal = TRUE; CapacityData16 = NULL; Status = gBS->HandleProtocol ( ChildHandle, &gEfiDevicePathProtocolGuid, (VOID **) &DevicePathNode ); // // Device Path protocol must be installed on the device handle. // ASSERT_EFI_ERROR(Status); while (!IsDevicePathEndType (DevicePathNode)) { // // For now, only support Erase Block Protocol on UFS devices. // if ((DevicePathNode->Type == MESSAGING_DEVICE_PATH) && (DevicePathNode->SubType == MSG_UFS_DP)) { UfsDevice = TRUE; break; } DevicePathNode = NextDevicePathNode (DevicePathNode); } if (!UfsDevice) { RetVal = FALSE; goto Done; } // // Check whether the erase functionality is enabled on the UFS device. // CapacityData16 = AllocateAlignedBuffer (ScsiDiskDevice, sizeof (EFI_SCSI_DISK_CAPACITY_DATA16)); if (CapacityData16 == NULL) { RetVal = FALSE; goto Done; } SenseDataLength = 0; DataLength16 = sizeof (EFI_SCSI_DISK_CAPACITY_DATA16); ZeroMem (CapacityData16, sizeof (EFI_SCSI_DISK_CAPACITY_DATA16)); CommandStatus = ScsiReadCapacity16Command ( ScsiDiskDevice->ScsiIo, SCSI_DISK_TIMEOUT, NULL, &SenseDataLength, &HostAdapterStatus, &TargetStatus, (VOID *) CapacityData16, &DataLength16, FALSE ); if (CommandStatus == EFI_SUCCESS) { // // Universal Flash Storage (UFS) Version 2.0 // Section 11.3.9.2 // Bits TPE and TPRZ should both be set to enable the erase feature on UFS. // if (((CapacityData16->LowestAlignLogic2 & BIT7) == 0) || ((CapacityData16->LowestAlignLogic2 & BIT6) == 0)) { DEBUG (( EFI_D_VERBOSE, "ScsiDisk EraseBlock: Either TPE or TPRZ is not set: 0x%x.\n", CapacityData16->LowestAlignLogic2 )); RetVal = FALSE; goto Done; } } else { DEBUG (( EFI_D_VERBOSE, "ScsiDisk EraseBlock: ReadCapacity16 failed with status %r.\n", CommandStatus )); RetVal = FALSE; goto Done; } // // Check whether the UFS device server implements the UNMAP command. // if ((ScsiDiskDevice->UnmapInfo.MaxLbaCnt == 0) || (ScsiDiskDevice->UnmapInfo.MaxBlkDespCnt == 0)) { DEBUG (( EFI_D_VERBOSE, "ScsiDisk EraseBlock: The device server does not implement the UNMAP command.\n" )); RetVal = FALSE; goto Done; } Done: if (CapacityData16 != NULL) { FreeAlignedBuffer (CapacityData16, sizeof (EFI_SCSI_DISK_CAPACITY_DATA16)); } return RetVal; } /** Provides inquiry information for the controller type. This function is used by the IDE bus driver to get inquiry data. Data format of Identify data is defined by the Interface GUID. @param[in] This Pointer to the EFI_DISK_INFO_PROTOCOL instance. @param[in, out] InquiryData Pointer to a buffer for the inquiry data. @param[in, out] InquiryDataSize Pointer to the value for the inquiry data size. @retval EFI_SUCCESS The command was accepted without any errors. @retval EFI_NOT_FOUND Device does not support this data class @retval EFI_DEVICE_ERROR Error reading InquiryData from device @retval EFI_BUFFER_TOO_SMALL InquiryDataSize not big enough **/ EFI_STATUS EFIAPI ScsiDiskInfoInquiry ( IN EFI_DISK_INFO_PROTOCOL *This, IN OUT VOID *InquiryData, IN OUT UINT32 *InquiryDataSize ) { EFI_STATUS Status; SCSI_DISK_DEV *ScsiDiskDevice; ScsiDiskDevice = SCSI_DISK_DEV_FROM_DISKINFO (This); Status = EFI_BUFFER_TOO_SMALL; if (*InquiryDataSize >= sizeof (ScsiDiskDevice->InquiryData)) { Status = EFI_SUCCESS; CopyMem (InquiryData, &ScsiDiskDevice->InquiryData, sizeof (ScsiDiskDevice->InquiryData)); } *InquiryDataSize = sizeof (ScsiDiskDevice->InquiryData); return Status; } /** Provides identify information for the controller type. This function is used by the IDE bus driver to get identify data. Data format of Identify data is defined by the Interface GUID. @param[in] This Pointer to the EFI_DISK_INFO_PROTOCOL instance. @param[in, out] IdentifyData Pointer to a buffer for the identify data. @param[in, out] IdentifyDataSize Pointer to the value for the identify data size. @retval EFI_SUCCESS The command was accepted without any errors. @retval EFI_NOT_FOUND Device does not support this data class @retval EFI_DEVICE_ERROR Error reading IdentifyData from device @retval EFI_BUFFER_TOO_SMALL IdentifyDataSize not big enough **/ EFI_STATUS EFIAPI ScsiDiskInfoIdentify ( IN EFI_DISK_INFO_PROTOCOL *This, IN OUT VOID *IdentifyData, IN OUT UINT32 *IdentifyDataSize ) { EFI_STATUS Status; SCSI_DISK_DEV *ScsiDiskDevice; if (CompareGuid (&This->Interface, &gEfiDiskInfoScsiInterfaceGuid) || CompareGuid (&This->Interface, &gEfiDiskInfoUfsInterfaceGuid)) { // // Physical SCSI bus does not support this data class. // return EFI_NOT_FOUND; } ScsiDiskDevice = SCSI_DISK_DEV_FROM_DISKINFO (This); Status = EFI_BUFFER_TOO_SMALL; if (*IdentifyDataSize >= sizeof (ScsiDiskDevice->IdentifyData)) { Status = EFI_SUCCESS; CopyMem (IdentifyData, &ScsiDiskDevice->IdentifyData, sizeof (ScsiDiskDevice->IdentifyData)); } *IdentifyDataSize = sizeof (ScsiDiskDevice->IdentifyData); return Status; } /** Provides sense data information for the controller type. This function is used by the IDE bus driver to get sense data. Data format of Sense data is defined by the Interface GUID. @param[in] This Pointer to the EFI_DISK_INFO_PROTOCOL instance. @param[in, out] SenseData Pointer to the SenseData. @param[in, out] SenseDataSize Size of SenseData in bytes. @param[out] SenseDataNumber Pointer to the value for the sense data size. @retval EFI_SUCCESS The command was accepted without any errors. @retval EFI_NOT_FOUND Device does not support this data class. @retval EFI_DEVICE_ERROR Error reading SenseData from device. @retval EFI_BUFFER_TOO_SMALL SenseDataSize not big enough. **/ EFI_STATUS EFIAPI ScsiDiskInfoSenseData ( IN EFI_DISK_INFO_PROTOCOL *This, IN OUT VOID *SenseData, IN OUT UINT32 *SenseDataSize, OUT UINT8 *SenseDataNumber ) { return EFI_NOT_FOUND; } /** This function is used by the IDE bus driver to get controller information. @param[in] This Pointer to the EFI_DISK_INFO_PROTOCOL instance. @param[out] IdeChannel Pointer to the Ide Channel number. Primary or secondary. @param[out] IdeDevice Pointer to the Ide Device number. Master or slave. @retval EFI_SUCCESS IdeChannel and IdeDevice are valid. @retval EFI_UNSUPPORTED This is not an IDE device. **/ EFI_STATUS EFIAPI ScsiDiskInfoWhichIde ( IN EFI_DISK_INFO_PROTOCOL *This, OUT UINT32 *IdeChannel, OUT UINT32 *IdeDevice ) { SCSI_DISK_DEV *ScsiDiskDevice; if (CompareGuid (&This->Interface, &gEfiDiskInfoScsiInterfaceGuid) || CompareGuid (&This->Interface, &gEfiDiskInfoUfsInterfaceGuid)) { // // This is not an IDE physical device. // return EFI_UNSUPPORTED; } ScsiDiskDevice = SCSI_DISK_DEV_FROM_DISKINFO (This); *IdeChannel = ScsiDiskDevice->Channel; *IdeDevice = ScsiDiskDevice->Device; return EFI_SUCCESS; } /** Issues ATA IDENTIFY DEVICE command to identify ATAPI device. This function tries to fill 512-byte ATAPI_IDENTIFY_DATA for ATAPI device to implement Identify() interface for DiskInfo protocol. The ATA command is sent via SCSI Request Packet. @param ScsiDiskDevice The pointer of SCSI_DISK_DEV @retval EFI_SUCCESS The ATAPI device identify data were retrieved successfully. @retval others Some error occurred during the identification that ATAPI device. **/ EFI_STATUS AtapiIdentifyDevice ( IN OUT SCSI_DISK_DEV *ScsiDiskDevice ) { EFI_SCSI_IO_SCSI_REQUEST_PACKET CommandPacket; UINT8 Cdb[6]; // // Initialize SCSI REQUEST_PACKET and 6-byte Cdb // ZeroMem (&CommandPacket, sizeof (CommandPacket)); ZeroMem (Cdb, sizeof (Cdb)); Cdb[0] = ATA_CMD_IDENTIFY_DEVICE; CommandPacket.Timeout = SCSI_DISK_TIMEOUT; CommandPacket.Cdb = Cdb; CommandPacket.CdbLength = (UINT8) sizeof (Cdb); CommandPacket.InDataBuffer = &ScsiDiskDevice->IdentifyData; CommandPacket.InTransferLength = sizeof (ScsiDiskDevice->IdentifyData); return ScsiDiskDevice->ScsiIo->ExecuteScsiCommand (ScsiDiskDevice->ScsiIo, &CommandPacket, NULL); } /** Initialize the installation of DiskInfo protocol. This function prepares for the installation of DiskInfo protocol on the child handle. By default, it installs DiskInfo protocol with SCSI interface GUID. If it further detects that the physical device is an ATAPI/AHCI device, it then updates interface GUID to be IDE/AHCI interface GUID. @param ScsiDiskDevice The pointer of SCSI_DISK_DEV. @param ChildHandle Child handle to install DiskInfo protocol. **/ VOID InitializeInstallDiskInfo ( IN SCSI_DISK_DEV *ScsiDiskDevice, IN EFI_HANDLE ChildHandle ) { EFI_STATUS Status; EFI_DEVICE_PATH_PROTOCOL *DevicePathNode; EFI_DEVICE_PATH_PROTOCOL *ChildDevicePathNode; ATAPI_DEVICE_PATH *AtapiDevicePath; SATA_DEVICE_PATH *SataDevicePath; UINTN IdentifyRetry; Status = gBS->HandleProtocol (ChildHandle, &gEfiDevicePathProtocolGuid, (VOID **) &DevicePathNode); // // Device Path protocol must be installed on the device handle. // ASSERT_EFI_ERROR(Status); // // Copy the DiskInfo protocol template. // CopyMem (&ScsiDiskDevice->DiskInfo, &gScsiDiskInfoProtocolTemplate, sizeof (gScsiDiskInfoProtocolTemplate)); while (!IsDevicePathEnd (DevicePathNode)) { ChildDevicePathNode = NextDevicePathNode (DevicePathNode); if ((DevicePathType (DevicePathNode) == HARDWARE_DEVICE_PATH) && (DevicePathSubType (DevicePathNode) == HW_PCI_DP) && (DevicePathType (ChildDevicePathNode) == MESSAGING_DEVICE_PATH) && ((DevicePathSubType (ChildDevicePathNode) == MSG_ATAPI_DP) || (DevicePathSubType (ChildDevicePathNode) == MSG_SATA_DP))) { IdentifyRetry = 3; do { // // Issue ATA Identify Device Command via SCSI command, which is required to publish DiskInfo protocol // with IDE/AHCI interface GUID. // Status = AtapiIdentifyDevice (ScsiDiskDevice); if (!EFI_ERROR(Status)) { if (DevicePathSubType(ChildDevicePathNode) == MSG_ATAPI_DP) { // // We find the valid ATAPI device path // AtapiDevicePath = (ATAPI_DEVICE_PATH *) ChildDevicePathNode; ScsiDiskDevice->Channel = AtapiDevicePath->PrimarySecondary; ScsiDiskDevice->Device = AtapiDevicePath->SlaveMaster; // // Update the DiskInfo.Interface to IDE interface GUID for the physical ATAPI device. // CopyGuid (&ScsiDiskDevice->DiskInfo.Interface, &gEfiDiskInfoIdeInterfaceGuid); } else { // // We find the valid SATA device path // SataDevicePath = (SATA_DEVICE_PATH *) ChildDevicePathNode; ScsiDiskDevice->Channel = SataDevicePath->HBAPortNumber; ScsiDiskDevice->Device = SataDevicePath->PortMultiplierPortNumber; // // Update the DiskInfo.Interface to AHCI interface GUID for the physical AHCI device. // CopyGuid (&ScsiDiskDevice->DiskInfo.Interface, &gEfiDiskInfoAhciInterfaceGuid); } return; } } while (--IdentifyRetry > 0); } else if ((DevicePathType (ChildDevicePathNode) == MESSAGING_DEVICE_PATH) && (DevicePathSubType (ChildDevicePathNode) == MSG_UFS_DP)) { CopyGuid (&ScsiDiskDevice->DiskInfo.Interface, &gEfiDiskInfoUfsInterfaceGuid); break; } DevicePathNode = ChildDevicePathNode; } return; }