;------------------------------------------------------------------------------ ; ; Some assembler helper functions plus boot.efi kernel jump callback ; ; by dmazar ; ;------------------------------------------------------------------------------ XDTR STRUCT Limit DW ? Base DQ ? XDTR ENDS ; C callback method called on jump to kernel after boot.efi finishes EXTERN KernelEntryPatchJumpBack:PROC ; saved 64bit state PUBLIC SavedCR3 PUBLIC SavedGDTR PUBLIC SavedIDTR ; addresses of relocated MyAsmCopyAndJumpToKernel code - filled by PrepareJumpFromKernel() PUBLIC MyAsmCopyAndJumpToKernel32Addr PUBLIC MyAsmCopyAndJumpToKernel64Addr ; kernel entry address - filled by KernelEntryPatchJump() PUBLIC AsmKernelEntry ; params for kernel image relocation - filled by KernelEntryPatchJumpBack() PUBLIC AsmKernelImageStartReloc PUBLIC AsmKernelImageStart PUBLIC AsmKernelImageSize ; end of MyAsmEntryPatchCode func PUBLIC MyAsmEntryPatchCodeEnd ; start and end of MyAsmCopyAndJumpToKernel PUBLIC MyAsmCopyAndJumpToKernel PUBLIC MyAsmCopyAndJumpToKernel32 PUBLIC MyAsmCopyAndJumpToKernel64 PUBLIC MyAsmCopyAndJumpToKernelEnd .data ; variables accessed from both 32 and 64 bit code ; need to have this exactly in this order DataBase: ; 64 bit state SavedGDTROff EQU $-DataBase SavedGDTR XDTR SavedIDTROff EQU $-DataBase SavedIDTR XDTR align 08h SavedCR3Off EQU $-DataBase SavedCR3 DQ ? SavedCSOff EQU $-DataBase SavedCS DW ? SavedDSOff EQU $-DataBase SavedDS DW ? ; 32 bit state SavedGDTR32Off EQU $-DataBase SavedGDTR32 XDTR SavedIDTR32Off EQU $-DataBase SavedIDTR32 XDTR SavedCS32Off EQU $-DataBase SavedCS32 DW ? SavedDS32Off EQU $-DataBase SavedDS32 DW ? SavedESP32Off EQU $-DataBase SavedESP32 DD ? align 08h ; address of relocated MyAsmCopyAndJumpToKernel32 - 64 bit MyAsmCopyAndJumpToKernel32AddrOff EQU $-DataBase MyAsmCopyAndJumpToKernel32Addr DQ 0 ; address of relocated MyAsmCopyAndJumpToKernel64 - 64 bit MyAsmCopyAndJumpToKernel64AddrOff EQU $-DataBase MyAsmCopyAndJumpToKernel64Addr DQ 0 ; kernel entry - 64 bit AsmKernelEntryOff EQU $-DataBase AsmKernelEntry DQ 0 ; ; for copying kernel image from reloc block to proper mem place ; ; kernel image start in reloc block (source) - 64 bit AsmKernelImageStartRelocOff EQU $-DataBase AsmKernelImageStartReloc DQ 0 ; kernel image start (destination) - 64 bit AsmKernelImageStartOff EQU $-DataBase AsmKernelImageStart DQ 0 ; kernel image size - 64 bit AsmKernelImageSizeOff EQU $-DataBase AsmKernelImageSize DQ 0 align 08h ; GDT not used since we are reusing UEFI state ; but left here in case will be needed. ; ; GDR record GDTROff EQU $-DataBase GDTR dw GDT_END - GDT_BASE - 1 ; GDT limit GDTR_BASE dq 0 ; GDT base - needs to be set in code align 08h ; GDT GDT_BASE: ; null descriptor NULL_SEL equ $-GDT_BASE ; 0x00 dw 0 ; limit 15:0 dw 0 ; base 15:0 db 0 ; base 23:16 db 0 ; type db 0 ; limit 19:16, flags db 0 ; base 31:24 ; 64 bit code segment descriptor CODE64_SEL equ $-GDT_BASE ; 0x08 dw 0FFFFh ; limit 0xFFFFF dw 0 ; base 0 db 0 db 09Ah ; P=1 | DPL=00 | S=1 (User) # Type=A=1010: Code/Data=1 | C:Conforming=0 | R:Readable=1 | A:Accessed=0 db 0AFh ; Flags=A=1010: G:Granularity=1 (4K) | D:Default Operand Size=0 (in long mode) | L:Long=1 (64 bit) | AVL=0 db 0 ; 32 bit and 64 bit data segment descriptor (in 64 bit almost all is ignored, so can be reused) DATA_SEL equ $-GDT_BASE ; 0x10 dw 0FFFFh ; limit 0xFFFFF dw 0 ; base 0 db 0 db 092h ; P=1 | DPL=00 | S=1 (User) # Type=2=0010: Code/Data=0 | E:Expand-Down=0 | W:Writable=1 | A:Accessed=0 db 0CFh ; Flags=C=1100: G:Granularity=1 (4K) | D/B=1 D not used when E=0, for stack B=1 means 32 bit stack | L:Long=0 not used | AVL=0 db 0 ; 32 bit code segment descriptor CODE32_SEL equ $-GDT_BASE ; 0x18 dw 0FFFFh ; limit 0xFFFFF dw 0 ; base 0 db 0 db 09Ah ; P=1 | DPL=00 | S=1 (User) # Type=A=1010: Code/Data=1 | C:Conforming=0 | R:Readable=1 | A:Accessed=0 db 0CFh ; Flags=C=1100: G:Granularity=1 (4K) | D:Default Operand Size=0 (in long mode) | L:Long=0 (32 bit) | AVL=0 db 0 GDT_END: .code ;------------------------------------------------------------------------------ ; UINT64 ; EFIAPI ; MyAsmReadSp ( ; VOID ; ); ;------------------------------------------------------------------------------ MyAsmReadSp PROC mov rax, rsp add rax, 8 ; return SP as caller see it ret MyAsmReadSp ENDP ;------------------------------------------------------------------------------ ; VOID ; EFIAPI ; MyAsmPrepareJumpFromKernel ( ; ); ;------------------------------------------------------------------------------ MyAsmPrepareJumpFromKernel PROC ; save 64 bit state sgdt SavedGDTR sidt SavedIDTR mov rax, cr3 mov QWORD PTR SavedCR3, rax mov WORD PTR SavedCS, cs mov WORD PTR SavedDS, ds ; pass DataBase to 32 bit code lea rax, DataBase mov DWORD PTR DataBaseAdr, eax; ; prepare MyAsmEntryPatchCode: ; patch MyAsmEntryPatchCode with address of MyAsmJumpFromKernel lea rax, MyAsmJumpFromKernel mov DWORD PTR MyAsmEntryPatchCodeJumpFromKernelPlaceholder, eax ret MyAsmPrepareJumpFromKernel ENDP ;------------------------------------------------------------------------------ ; Code that is used for patching kernel entry to jump back ; to our code (to MyAsmJumpFromKernel): ; - load ecx (rcx) with address to MyAsmJumpFromKernel ; - jump to MyAsmJumpFromKernel ; The same generated opcode must run properly in both 32 and 64 bit. ; 64 bit: ; - we must set rcx to 0 (upper 4 bytes) before loading ecx with address (lower 4 bytes of rcx) ; - this requires xor %rcx, %rcx ; - and that opcode contains 0x48 in front of 32 bit xor %ecx, %ecx ; 32 bit: ; - 0x48 opcode is dec %eax in 32 bit ; - and then we must inc %eax later if 32 bit is detected in MyAsmJumpFromKernel ; ; This code is patched with address of MyAsmJumpFromKernel ; (into MyAsmEntryPatchCodeJumpFromKernelPlaceholder) ; and then copied to kernel entry address by KernelEntryPatchJump() ;------------------------------------------------------------------------------ MyAsmEntryPatchCode PROC ; .code32 ; dec %eax # -> 48 ; xor %ecx, %ecx # -> 31 C9 ; .byte 0xb9 # movl $0x11223344, %ecx -> B9 44 33 22 11 ;MyAsmEntryPatchCodeJumpFromKernelPlaceholder: ; .long 0x11223344 ; call *%ecx # -> FF D1 ; jmp *%ecx # -> FF E1 xor rcx, rcx ; -> 48 31 (33) C9 db 0B9h ; mov DWORD PTR ecx, $0x11223344 -> B9 44 33 22 11 MyAsmEntryPatchCodeJumpFromKernelPlaceholder dd 011223344h call rcx ; -> FF D1 ; ;jmp *%rcx ; -> FF E1 MyAsmEntryPatchCode ENDP MyAsmEntryPatchCodeEnd: ;------------------------------------------------------------------------------ ; MyAsmJumpFromKernel ; ; Callback from boot.efi - this is where we jump when boot.efi jumps to kernel. ; ; - test if we are in 32 bit or in 64 bit ; - if 64 bit, then jump to MyAsmJumpFromKernel64 ; - else just continue with MyAsmJumpFromKernel32 ;------------------------------------------------------------------------------ MyAsmJumpFromKernel PROC ; # writing in 32 bit, but code must run in 64 bit also ; .code32 ; push %eax # save bootArgs pointer to stack ; movl $0xc0000080, %ecx # EFER MSR number. ; rdmsr # Read EFER. ; bt $8, %eax # Check if LME==1 -> CF=1. ; pop %eax ; jc MyAsmJumpFromKernel64 # LME==1 -> jump to 64 bit code ; # otherwise, continue with MyAsmJumpFromKernel32 ; # but first add 1 to it since it was decremented in 32 bit ; # in MyAsmEntryPatchCode ; inc %eax ; above code in 32 bit gives opcode ; that is equivalent to following in 64 bit push rax ; save bootArgs pointer to stack mov ecx, 0c0000080h ; EFER MSR number. rdmsr ; Read EFER. bt eax, 8 ; Check if LME==1 -> CF=1. pop rax jc MyAsmJumpFromKernel64 ; LME==1 -> jump to 64 bit code ; otherwise, continue with MyAsmJumpFromKernel32 ; but first add 1 to it since it was decremented in 32 bit ; in MyAsmEntryPatchCode db 040h ; inc eax MyAsmJumpFromKernel ENDP ;------------------------------------------------------------------------------ ; MyAsmJumpFromKernel32 ; ; Callback from boot.efi in 32 bit mode. ; State is prepared for kernel: 32 bit, no paging, pointer to bootArgs in eax. ; ; MS 64 bit compiler generates only 64 bit opcode, but this function needs ; combined 32 and 64 bit code. Code can be written only with 64 bit instructions, ; but generated opcode must be valid 32 bit. This is a big issue. ; Well, I guess I know now how the guys in Intel are feeling when ; they have to work with MS tools on a similar code. ; ; Another problem is that it's not possible to access saved variables ; from 32 bit code (64 bit code has relative addresses, but 32 bit does not ; and depends on fixes during load and that is not happening sice ; generated code is marked 64 bit, or something similar). ; To overcome this, starting address of ou DataBase is passed in runtime - stored ; to DataBaseAdr below as an argument to mov. ;------------------------------------------------------------------------------ MyAsmJumpFromKernel32 PROC ;hlt ; uncomment to stop here for test ; save bootArgs pointer to edi mov edi, eax ; load ebx with DataBase - we'll access our saved data with it db 0BBh ; mov ebx, OFFSET DataBase DataBaseAdr dd 0 ; let's find out kernel entry point - we'll need it to jump back. ; we are called with ; dec eax ; xor ecx, ecx ; mov 011223344h, ecx ; call ecx ; and that left return addr on stack. those instructions ; are 10 bytes long, and if we take address from stack and ; substitute 10 from it, we will get kernel entry point. pop rcx ; 32 bit: pop ecx sub ecx, 10 ; and save it mov DWORD PTR [rbx + AsmKernelEntryOff], ecx ; lets save 32 bit state to be able to recover it later ; rbx is ebx in 32 bit sgdt FWORD PTR [rbx + SavedGDTR32Off] sidt FWORD PTR [rbx + SavedIDTR32Off] mov WORD PTR [rbx + SavedCS32Off], cs mov WORD PTR [rbx + SavedDS32Off], ds mov DWORD PTR [rbx + SavedESP32Off], esp ; ; move to 64 bit mode ... ; ; FIXME: all this with interrupts enabled? no-no ; load saved UEFI GDT, IDT ; will become active after code segment is changed in long jump ; rbx is ebx in 32 bit lgdt FWORD PTR [rbx + SavedGDTROff] lidt FWORD PTR [rbx + SavedIDTROff] ; enable the 64-bit page-translation-table entries by setting CR4.PAE=1 mov rax, cr4 bts eax, 5 mov cr4, rax ; set the long-mode page tables - reuse saved UEFI tables mov eax, DWORD PTR [rbx +SavedCR3Off] mov cr3, rax ; enable long mode (set EFER.LME=1). mov ecx, 0c0000080h ; EFER MSR number. rdmsr ; Read EFER. bts eax, 8 ; Set LME=1. wrmsr ; Write EFER. ; enable paging to activate long mode (set CR0.PG=1) mov rax, cr0 ; Read CR0. bts eax, 31 ; Set PG=1. mov cr0, rax ; Write CR0. ; jump to the 64-bit code segment mov ax, WORD PTR [rbx + SavedCSOff] push rax call _RETF32 ; ; aloha! ; if there is any luck, we are in 64 bit mode now ; ;hlt ; uncomment to stop here for test ; set segmens mov ax, WORD PTR [rbx + SavedDSOff] mov ds, ax ; set up stack ... ; not sure if needed, but lets set ss to ds mov ss, ax ; disables interrupts for 1 instruction to load rsp ; lets align the stack ; mov rax, rsp ; and rax, 0xfffffffffffffff0 ; mov rsp, rax and rsp, 0xfffffffffffffff0 ; call our C code ; (calling conv.: always reserve place for 4 args on stack) ; KernelEntryPatchJumpBack (rcx = rax = bootArgs, rdx = 0 = 32 bit kernel jump) mov rcx, rdi xor rdx, rdx push rdx push rdx push rdx push rcx ; TEST 64 bit jump ; mov rax, rdi ; mov rdx, QWORD PTR AsmKernelEntry ; jmp rdx ; TEST end ; KernelEntryPatchJumpBack should be EFIAPI ; and rbx should not be changed by EFIAPI calling convention call KernelEntryPatchJumpBack ;hlt ; uncomment to stop here for test ; return value in rax is bootArgs pointer mov rdi, rax ; ; time to go back to 32 bit ; ; FIXME: all this with interrupts enabled? no-no ; load saved 32 bit gdtr lgdt FWORD PTR [rbx + SavedGDTR32Off] ; push saved cs and rip (with call) to stack and do retf mov ax, WORD PTR [rbx + SavedCS32Off] push rax call _RETF64 ; ; ok, 32 bit opcode again from here ; ; disable paging (set CR0.PG=0) mov rax, cr0 ; Read CR0. btr eax, 31 ; Set PG=0. mov cr0, rax ; Write CR0. ; disable long mode (set EFER.LME=0). mov ecx, 0c0000080h ; EFER MSR number. rdmsr ; Read EFER. btr eax, 8 ; Set LME=0. wrmsr ; Write EFER. jmp toNext toNext: ; ; we are in 32 bit protected mode, no paging ; ; now reload saved 32 bit state data lidt FWORD PTR [rbx + SavedIDTR32Off] mov ax, WORD PTR [rbx + SavedDS32Off] mov ds, ax mov es, ax mov fs, ax mov gs, ax mov ss, ax ; disables interrupts for 1 instruction to load esp mov esp, DWORD PTR [rbx + SavedESP32Off] ; ; prepare vars for copying kernel to proper mem ; and jump to kernel: set registers as needed ; by MyAsmCopyAndJumpToKernel32 ; ; boot args back from edi mov eax, edi ; kernel entry point mov edx, DWORD PTR [rbx + AsmKernelEntryOff] ; source, destination and size for kernel copy mov esi, DWORD PTR [rbx + AsmKernelImageStartRelocOff] mov edi, DWORD PTR [rbx + AsmKernelImageStartOff] mov ecx, DWORD PTR [rbx + AsmKernelImageSizeOff] ; address of relocated MyAsmCopyAndJumpToKernel32 mov ebx, DWORD PTR [rbx + MyAsmCopyAndJumpToKernel32AddrOff] ; note: ebx not valid as a pointer to DataBase any more ; ; jump to MyAsmCopyAndJumpToKernel32 ; jmp QWORD PTR rbx ; jmp DWORD PTR ebx in 32 bit _RETF64: DB 048h _RETF32: retf ; the following is not used - it's here just for a reference ; jump to the 64-bit code segment ; as xnu kernel does it ; example: ; 07f8437a4: 68 28 00 00 cb = push 0cb000008h - last word on stack is segment 0x0008, 07f8437a8h contains CB opcode which is retf ; 07f8437a9: e8 fa ff ff ff = call 07f8437a8h - push EIP on stack and continue with 07f8437a8h which is retf ; retf does far return to next instr after 'call $-1' push ((0cbh SHL 24) OR CODE64_SEL) call $-1 MyAsmJumpFromKernel32 ENDP ;------------------------------------------------------------------------------ ; MyAsmJumpFromKernel64 ; ; Callback from boot.efi in 64 bit mode. ; State is prepared for kernel: 64 bit, pointer to bootArgs in rax. ;------------------------------------------------------------------------------ MyAsmJumpFromKernel64 PROC ; let's find out kernel entry point - we'll need it to jump back. pop rcx sub rcx, 10 ; and save it mov QWORD PTR AsmKernelEntry, rcx ; call our C code ; (calling conv.: always reserve place for 4 args on stack) ; KernelEntryPatchJumpBack (rcx = rax = bootArgs, rdx = 1 = 64 bit kernel jump) mov rcx, rax xor rdx, rdx inc edx push rdx push rdx push rdx push rcx ; KernelEntryPatchJumpBack should be EFIAPI call KernelEntryPatchJumpBack ;hlt ; uncomment to stop here for test ; return value in rax is bootArgs pointer ; ; prepare vars for copying kernel to proper mem ; and jump to kernel: set registers as needed ; by MyAsmCopyAndJumpToKernel64 ; ; kernel entry point mov rdx, QWORD PTR AsmKernelEntry ; source, destination and size for kernel copy mov rsi, QWORD PTR AsmKernelImageStartReloc mov rdi, QWORD PTR AsmKernelImageStart mov rcx, QWORD PTR AsmKernelImageSize ; address of relocated MyAsmCopyAndJumpToKernel64 mov rbx, QWORD PTR MyAsmCopyAndJumpToKernel64Addr ; ; jump to MyAsmCopyAndJumpToKernel64 ; jmp rbx ret MyAsmJumpFromKernel64 ENDP ;------------------------------------------------------------------------------ ; MyAsmCopyAndJumpToKernel ; ; This is the last part of the code - it will copy kernel image from reloc ; block to proper mem place and jump to kernel. ; There are separate versions for 32 and 64 bit. ; This code will be relocated (copied) to higher mem by PrepareJumpFromKernel(). ;------------------------------------------------------------------------------ align 08h MyAsmCopyAndJumpToKernel: ;------------------------------------------------------------------------------ ; MyAsmCopyAndJumpToKernel32 ; ; Expects: ; EAX = address of boot args (proper address, not from reloc block) ; EDX = kernel entry point ; ESI = start of kernel image in reloc block (source) ; EDI = proper start of kernel image (destination) ; ECX = kernel image size in bytes ;------------------------------------------------------------------------------ MyAsmCopyAndJumpToKernel32 PROC ; ; we will move double words (4 bytes) ; so ajust ECX to number of double words. ; just in case ECX is not multiple of 4 - inc by 1 ; shr ecx, 2 db 041h ; inc ecx ; ; copy kernel image from reloc block to proper mem place. ; all params should be already set: ; ECX = number of double words ; DS:ESI = source ; ES:EDI = destination ; cld ; direction is up rep movsd ; ; and finally jump to kernel: ; EAX already contains bootArgs pointer, ; and EDX contains kernel entry point ; ;hlt jmp QWORD PTR rdx ; jmp DWORD PTR edx in 32 bit MyAsmCopyAndJumpToKernel32 ENDP MyAsmCopyAndJumpToKernel32End: ;------------------------------------------------------------------------------ ; MyAsmCopyAndJumpToKernel64 ; ; Expects: ; RAX = address of boot args (proper address, not from reloc block) ; RDX = kernel entry point ; RSI = start of kernel image in reloc block (source) ; RDI = proper start of kernel image (destination) ; RCX = kernel image size in bytes ;------------------------------------------------------------------------------ align 08h MyAsmCopyAndJumpToKernel64 PROC ; ; we will move quad words (8 bytes) ; so ajust RCX to number of double words. ; just in case RCX is not multiple of 8 - inc by 1 ; shr rcx, 3 inc rcx ; ; copy kernel image from reloc block to proper mem place. ; all params should be already set: ; RCX = number of double words ; RSI = source ; RDI = destination ; cld ; direction is up rep movsq ; ; and finally jump to kernel: ; RAX already contains bootArgs pointer, ; and RDX contains kernel entry point ; ; hlt jmp QWORD PTR rdx MyAsmCopyAndJumpToKernel64 ENDP MyAsmCopyAndJumpToKernel64End: MyAsmCopyAndJumpToKernelEnd: END