/** @file Copyright (c) 2014 - 2018, Intel Corporation. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent **/ #include "UfsBlockIoPei.h" /** Wait for the value of the specified system memory set to the test value. @param Address The system memory address to test. @param MaskValue The mask value of memory. @param TestValue The test value of memory. @param Timeout The time out value for wait memory set, uses 100ns as a unit. @retval EFI_TIMEOUT The system memory setting is time out. @retval EFI_SUCCESS The system memory is correct set. **/ EFI_STATUS EFIAPI UfsWaitMemSet ( IN UINTN Address, IN UINT32 MaskValue, IN UINT32 TestValue, IN UINT64 Timeout ) { UINT32 Value; UINT64 Delay; BOOLEAN InfiniteWait; if (Timeout == 0) { InfiniteWait = TRUE; } else { InfiniteWait = FALSE; } Delay = DivU64x32 (Timeout, 10) + 1; do { // // Access PCI MMIO space to see if the value is the tested one. // Value = MmioRead32 (Address) & MaskValue; if (Value == TestValue) { return EFI_SUCCESS; } // // Stall for 1 microseconds. // MicroSecondDelay (1); Delay--; } while (InfiniteWait || (Delay > 0)); return EFI_TIMEOUT; } /** Dump UIC command execution result for debugging. @param[in] UicOpcode The executed UIC opcode. @param[in] Result The result to be parsed. **/ VOID DumpUicCmdExecResult ( IN UINT8 UicOpcode, IN UINT8 Result ) { if (UicOpcode <= UfsUicDmePeerSet) { switch (Result) { case 0x00: break; case 0x01: DEBUG ((EFI_D_VERBOSE, "UIC configuration command fails - INVALID_MIB_ATTRIBUTE\n")); break; case 0x02: DEBUG ((EFI_D_VERBOSE, "UIC configuration command fails - INVALID_MIB_ATTRIBUTE_VALUE\n")); break; case 0x03: DEBUG ((EFI_D_VERBOSE, "UIC configuration command fails - READ_ONLY_MIB_ATTRIBUTE\n")); break; case 0x04: DEBUG ((EFI_D_VERBOSE, "UIC configuration command fails - WRITE_ONLY_MIB_ATTRIBUTE\n")); break; case 0x05: DEBUG ((EFI_D_VERBOSE, "UIC configuration command fails - BAD_INDEX\n")); break; case 0x06: DEBUG ((EFI_D_VERBOSE, "UIC configuration command fails - LOCKED_MIB_ATTRIBUTE\n")); break; case 0x07: DEBUG ((EFI_D_VERBOSE, "UIC configuration command fails - BAD_TEST_FEATURE_INDEX\n")); break; case 0x08: DEBUG ((EFI_D_VERBOSE, "UIC configuration command fails - PEER_COMMUNICATION_FAILURE\n")); break; case 0x09: DEBUG ((EFI_D_VERBOSE, "UIC configuration command fails - BUSY\n")); break; case 0x0A: DEBUG ((EFI_D_VERBOSE, "UIC configuration command fails - DME_FAILURE\n")); break; default : ASSERT (FALSE); break; } } else { switch (Result) { case 0x00: break; case 0x01: DEBUG ((EFI_D_VERBOSE, "UIC control command fails - FAILURE\n")); break; default : ASSERT (FALSE); break; } } } /** Dump QUERY RESPONSE UPIU result for debugging. @param[in] Result The result to be parsed. **/ VOID DumpQueryResponseResult ( IN UINT8 Result ) { switch (Result) { case 0xF6: DEBUG ((EFI_D_VERBOSE, "Query Response with Parameter Not Readable\n")); break; case 0xF7: DEBUG ((EFI_D_VERBOSE, "Query Response with Parameter Not Writeable\n")); break; case 0xF8: DEBUG ((EFI_D_VERBOSE, "Query Response with Parameter Already Written\n")); break; case 0xF9: DEBUG ((EFI_D_VERBOSE, "Query Response with Invalid Length\n")); break; case 0xFA: DEBUG ((EFI_D_VERBOSE, "Query Response with Invalid Value\n")); break; case 0xFB: DEBUG ((EFI_D_VERBOSE, "Query Response with Invalid Selector\n")); break; case 0xFC: DEBUG ((EFI_D_VERBOSE, "Query Response with Invalid Index\n")); break; case 0xFD: DEBUG ((EFI_D_VERBOSE, "Query Response with Invalid Idn\n")); break; case 0xFE: DEBUG ((EFI_D_VERBOSE, "Query Response with Invalid Opcode\n")); break; case 0xFF: DEBUG ((EFI_D_VERBOSE, "Query Response with General Failure\n")); break; default : ASSERT (FALSE); break; } } /** Swap little endian to big endian. @param[in, out] Buffer The data buffer. In input, it contains little endian data. In output, it will become big endian. @param[in] BufferSize The length of converted data. **/ VOID SwapLittleEndianToBigEndian ( IN OUT UINT8 *Buffer, IN UINT32 BufferSize ) { UINT32 Index; UINT8 Temp; UINT32 SwapCount; SwapCount = BufferSize / 2; for (Index = 0; Index < SwapCount; Index++) { Temp = Buffer[Index]; Buffer[Index] = Buffer[BufferSize - 1 - Index]; Buffer[BufferSize - 1 - Index] = Temp; } } /** Fill TSF field of QUERY REQUEST UPIU. @param[in, out] TsfBase The base address of TSF field of QUERY REQUEST UPIU. @param[in] Opcode The opcode of request. @param[in] DescId The descriptor ID of request. @param[in] Index The index of request. @param[in] Selector The selector of request. @param[in] Length The length of transferred data. The maximum is 4. @param[in] Value The value of transferred data. **/ VOID UfsFillTsfOfQueryReqUpiu ( IN OUT UTP_UPIU_TSF *TsfBase, IN UINT8 Opcode, IN UINT8 DescId OPTIONAL, IN UINT8 Index OPTIONAL, IN UINT8 Selector OPTIONAL, IN UINT16 Length OPTIONAL, IN UINT32 Value OPTIONAL ) { ASSERT (TsfBase != NULL); ASSERT (Opcode <= UtpQueryFuncOpcodeTogFlag); TsfBase->Opcode = Opcode; if (Opcode != UtpQueryFuncOpcodeNop) { TsfBase->DescId = DescId; TsfBase->Index = Index; TsfBase->Selector = Selector; if ((Opcode == UtpQueryFuncOpcodeRdDesc) || (Opcode == UtpQueryFuncOpcodeWrDesc)) { SwapLittleEndianToBigEndian ((UINT8*)&Length, sizeof (Length)); TsfBase->Length = Length; } if (Opcode == UtpQueryFuncOpcodeWrAttr) { SwapLittleEndianToBigEndian ((UINT8*)&Value, sizeof (Value)); TsfBase->Value = Value; } } } /** Initialize COMMAND UPIU. @param[in, out] Command The base address of COMMAND UPIU. @param[in] Lun The Lun on which the SCSI command is executed. @param[in] TaskTag The task tag of request. @param[in] Cdb The cdb buffer containing SCSI command. @param[in] CdbLength The cdb length. @param[in] DataDirection The direction of data transfer. @param[in] ExpDataTranLen The expected transfer data length. @retval EFI_SUCCESS The initialization succeed. **/ EFI_STATUS UfsInitCommandUpiu ( IN OUT UTP_COMMAND_UPIU *Command, IN UINT8 Lun, IN UINT8 TaskTag, IN UINT8 *Cdb, IN UINT8 CdbLength, IN UFS_DATA_DIRECTION DataDirection, IN UINT32 ExpDataTranLen ) { UINT8 Flags; ASSERT ((Command != NULL) && (Cdb != NULL)); // // Task attribute is hard-coded to Ordered. // if (DataDirection == UfsDataIn) { Flags = BIT0 | BIT6; } else if (DataDirection == UfsDataOut) { Flags = BIT0 | BIT5; } else { Flags = BIT0; } // // Fill UTP COMMAND UPIU associated fields. // Command->TransCode = 0x01; Command->Flags = Flags; Command->Lun = Lun; Command->TaskTag = TaskTag; Command->CmdSet = 0x00; SwapLittleEndianToBigEndian ((UINT8*)&ExpDataTranLen, sizeof (ExpDataTranLen)); Command->ExpDataTranLen = ExpDataTranLen; CopyMem(Command->Cdb, Cdb, CdbLength); return EFI_SUCCESS; } /** Initialize UTP PRDT for data transfer. @param[in] Prdt The base address of PRDT. @param[in] Buffer The buffer to be read or written. @param[in] BufferSize The data size to be read or written. @retval EFI_SUCCESS The initialization succeed. **/ EFI_STATUS UfsInitUtpPrdt ( IN UTP_TR_PRD *Prdt, IN VOID *Buffer, IN UINT32 BufferSize ) { UINT32 PrdtIndex; UINT32 RemainingLen; UINT8 *Remaining; UINTN PrdtNumber; if ((BufferSize & (BIT0 | BIT1)) != 0) { BufferSize &= ~(BIT0 | BIT1); DEBUG ((EFI_D_WARN, "UfsInitUtpPrdt: The BufferSize [%d] is not dword-aligned!\n", BufferSize)); } if (BufferSize == 0) { return EFI_SUCCESS; } ASSERT (((UINTN)Buffer & (BIT0 | BIT1)) == 0); RemainingLen = BufferSize; Remaining = Buffer; PrdtNumber = (UINTN)DivU64x32 ((UINT64)BufferSize + UFS_MAX_DATA_LEN_PER_PRD - 1, UFS_MAX_DATA_LEN_PER_PRD); for (PrdtIndex = 0; PrdtIndex < PrdtNumber; PrdtIndex++) { if (RemainingLen < UFS_MAX_DATA_LEN_PER_PRD) { Prdt[PrdtIndex].DbCount = (UINT32)RemainingLen - 1; } else { Prdt[PrdtIndex].DbCount = UFS_MAX_DATA_LEN_PER_PRD - 1; } Prdt[PrdtIndex].DbAddr = (UINT32)RShiftU64 ((UINT64)(UINTN)Remaining, 2); Prdt[PrdtIndex].DbAddrU = (UINT32)RShiftU64 ((UINT64)(UINTN)Remaining, 32); RemainingLen -= UFS_MAX_DATA_LEN_PER_PRD; Remaining += UFS_MAX_DATA_LEN_PER_PRD; } return EFI_SUCCESS; } /** Initialize QUERY REQUEST UPIU. @param[in, out] QueryReq The base address of QUERY REQUEST UPIU. @param[in] TaskTag The task tag of request. @param[in] Opcode The opcode of request. @param[in] DescId The descriptor ID of request. @param[in] Index The index of request. @param[in] Selector The selector of request. @param[in] DataSize The data size to be read or written. @param[in] Data The buffer to be read or written. @retval EFI_SUCCESS The initialization succeed. **/ EFI_STATUS UfsInitQueryRequestUpiu ( IN OUT UTP_QUERY_REQ_UPIU *QueryReq, IN UINT8 TaskTag, IN UINT8 Opcode, IN UINT8 DescId, IN UINT8 Index, IN UINT8 Selector, IN UINTN DataSize OPTIONAL, IN UINT8 *Data OPTIONAL ) { ASSERT (QueryReq != NULL); QueryReq->TransCode = 0x16; QueryReq->TaskTag = TaskTag; if ((Opcode == UtpQueryFuncOpcodeRdDesc) || (Opcode == UtpQueryFuncOpcodeRdFlag) || (Opcode == UtpQueryFuncOpcodeRdAttr)) { QueryReq->QueryFunc = QUERY_FUNC_STD_READ_REQ; } else { QueryReq->QueryFunc = QUERY_FUNC_STD_WRITE_REQ; } if (Opcode == UtpQueryFuncOpcodeWrAttr) { UfsFillTsfOfQueryReqUpiu (&QueryReq->Tsf, Opcode, DescId, Index, Selector, 0, *(UINT32*)Data); } else if ((Opcode == UtpQueryFuncOpcodeRdDesc) || (Opcode == UtpQueryFuncOpcodeWrDesc)) { UfsFillTsfOfQueryReqUpiu (&QueryReq->Tsf, Opcode, DescId, Index, Selector, (UINT16)DataSize, 0); } else { UfsFillTsfOfQueryReqUpiu (&QueryReq->Tsf, Opcode, DescId, Index, Selector, 0, 0); } if (Opcode == UtpQueryFuncOpcodeWrDesc) { CopyMem(QueryReq + 1, Data, DataSize); SwapLittleEndianToBigEndian ((UINT8*)&DataSize, sizeof (UINT16)); QueryReq->DataSegLen = (UINT16)DataSize; } return EFI_SUCCESS; } /** Allocate COMMAND/RESPONSE UPIU for filling UTP TRD's command descriptor field. @param[in] Private The pointer to the UFS_PEIM_HC_PRIVATE_DATA data structure. @param[in] Lun The Lun on which the SCSI command is executed. @param[in] Packet The pointer to the UFS_SCSI_REQUEST_PACKET data structure. @param[in] Trd The pointer to the UTP Transfer Request Descriptor. @param[out] BufferMap A resulting value, if not NULL, to pass to IoMmuUnmap(). @retval EFI_SUCCESS The creation succeed. @retval EFI_DEVICE_ERROR The creation failed. @retval EFI_OUT_OF_RESOURCES The memory resource is insufficient. **/ EFI_STATUS UfsCreateScsiCommandDesc ( IN UFS_PEIM_HC_PRIVATE_DATA *Private, IN UINT8 Lun, IN UFS_SCSI_REQUEST_PACKET *Packet, IN UTP_TRD *Trd, OUT VOID **BufferMap ) { UINT8 *CommandDesc; UINTN TotalLen; UINTN PrdtNumber; VOID *Buffer; UINT32 Length; UTP_COMMAND_UPIU *CommandUpiu; UTP_TR_PRD *PrdtBase; UFS_DATA_DIRECTION DataDirection; EFI_STATUS Status; EDKII_IOMMU_OPERATION MapOp; UINTN MapLength; EFI_PHYSICAL_ADDRESS BufferPhyAddr; ASSERT ((Private != NULL) && (Packet != NULL) && (Trd != NULL)); BufferPhyAddr = 0; if (Packet->DataDirection == UfsDataIn) { Buffer = Packet->InDataBuffer; Length = Packet->InTransferLength; DataDirection = UfsDataIn; MapOp = EdkiiIoMmuOperationBusMasterWrite; } else { Buffer = Packet->OutDataBuffer; Length = Packet->OutTransferLength; DataDirection = UfsDataOut; MapOp = EdkiiIoMmuOperationBusMasterRead; } if (Length == 0) { DataDirection = UfsNoData; } else { MapLength = Length; Status = IoMmuMap (MapOp, Buffer, &MapLength, &BufferPhyAddr, BufferMap); if (EFI_ERROR(Status) || (MapLength != Length)) { DEBUG ((DEBUG_ERROR, "UfsCreateScsiCommandDesc: Fail to map data buffer.\n")); return EFI_OUT_OF_RESOURCES; } } PrdtNumber = (UINTN)DivU64x32 ((UINT64)Length + UFS_MAX_DATA_LEN_PER_PRD - 1, UFS_MAX_DATA_LEN_PER_PRD); TotalLen = ROUNDUP8 (sizeof (UTP_COMMAND_UPIU)) + ROUNDUP8 (sizeof (UTP_RESPONSE_UPIU)) + PrdtNumber * sizeof (UTP_TR_PRD); CommandDesc = UfsPeimAllocateMem (Private->Pool, TotalLen); if (CommandDesc == NULL) { return EFI_OUT_OF_RESOURCES; } CommandUpiu = (UTP_COMMAND_UPIU*)CommandDesc; PrdtBase = (UTP_TR_PRD*)(CommandDesc + ROUNDUP8 (sizeof (UTP_COMMAND_UPIU)) + ROUNDUP8 (sizeof (UTP_RESPONSE_UPIU))); UfsInitCommandUpiu (CommandUpiu, Lun, Private->TaskTag++, Packet->Cdb, Packet->CdbLength, DataDirection, Length); UfsInitUtpPrdt (PrdtBase, (VOID*)(UINTN)BufferPhyAddr, Length); // // Fill UTP_TRD associated fields // NOTE: Some UFS host controllers request the Response UPIU and the Physical Region Description Table // *MUST* be located at a 64-bit aligned boundary. // Trd->Int = UFS_INTERRUPT_COMMAND; Trd->Dd = DataDirection; Trd->Ct = UFS_STORAGE_COMMAND_TYPE; Trd->Ocs = UFS_HC_TRD_OCS_INIT_VALUE; Trd->UcdBa = (UINT32)RShiftU64 ((UINT64)(UINTN)CommandUpiu, 7); Trd->UcdBaU = (UINT32)RShiftU64 ((UINT64)(UINTN)CommandUpiu, 32); Trd->RuL = (UINT16)DivU64x32 ((UINT64)ROUNDUP8 (sizeof (UTP_RESPONSE_UPIU)), sizeof (UINT32)); Trd->RuO = (UINT16)DivU64x32 ((UINT64)ROUNDUP8 (sizeof (UTP_COMMAND_UPIU)), sizeof (UINT32)); Trd->PrdtL = (UINT16)PrdtNumber; Trd->PrdtO = (UINT16)DivU64x32 ((UINT64)(ROUNDUP8 (sizeof (UTP_COMMAND_UPIU)) + ROUNDUP8 (sizeof (UTP_RESPONSE_UPIU))), sizeof (UINT32)); return EFI_SUCCESS; } /** Allocate QUERY REQUEST/QUERY RESPONSE UPIU for filling UTP TRD's command descriptor field. @param[in] Private The pointer to the UFS_PEIM_HC_PRIVATE_DATA data structure. @param[in] Packet The pointer to the UFS_DEVICE_MANAGEMENT_REQUEST_PACKET data structure. @param[in] Trd The pointer to the UTP Transfer Request Descriptor. @retval EFI_SUCCESS The creation succeed. @retval EFI_DEVICE_ERROR The creation failed. @retval EFI_OUT_OF_RESOURCES The memory resource is insufficient. @retval EFI_INVALID_PARAMETER The parameter passed in is invalid. **/ EFI_STATUS UfsCreateDMCommandDesc ( IN UFS_PEIM_HC_PRIVATE_DATA *Private, IN UFS_DEVICE_MANAGEMENT_REQUEST_PACKET *Packet, IN UTP_TRD *Trd ) { UINT8 *CommandDesc; UINTN TotalLen; UTP_QUERY_REQ_UPIU *QueryReqUpiu; UINT8 Opcode; UINT32 DataSize; UINT8 *Data; UINT8 DataDirection; ASSERT ((Private != NULL) && (Packet != NULL) && (Trd != NULL)); Opcode = Packet->Opcode; if ((Opcode > UtpQueryFuncOpcodeTogFlag) || (Opcode == UtpQueryFuncOpcodeNop)) { return EFI_INVALID_PARAMETER; } DataDirection = Packet->DataDirection; if (DataDirection == UfsDataIn) { DataSize = Packet->InTransferLength; Data = Packet->InDataBuffer; } else if (DataDirection == UfsDataOut) { DataSize = Packet->OutTransferLength; Data = Packet->OutDataBuffer; } else { DataSize = 0; Data = NULL; } if (((Opcode != UtpQueryFuncOpcodeSetFlag) && (Opcode != UtpQueryFuncOpcodeClrFlag) && (Opcode != UtpQueryFuncOpcodeTogFlag)) && ((DataSize == 0) || (Data == NULL))) { return EFI_INVALID_PARAMETER; } if (((Opcode == UtpQueryFuncOpcodeSetFlag) || (Opcode == UtpQueryFuncOpcodeClrFlag) || (Opcode == UtpQueryFuncOpcodeTogFlag)) && ((DataSize != 0) || (Data != NULL))) { return EFI_INVALID_PARAMETER; } if ((Opcode == UtpQueryFuncOpcodeWrAttr) && (DataSize != sizeof (UINT32))) { return EFI_INVALID_PARAMETER; } if ((Opcode == UtpQueryFuncOpcodeWrDesc) || (Opcode == UtpQueryFuncOpcodeRdDesc)) { TotalLen = ROUNDUP8 (sizeof (UTP_QUERY_REQ_UPIU)) + ROUNDUP8 (sizeof (UTP_QUERY_RESP_UPIU)) + ROUNDUP8 (DataSize); } else { TotalLen = ROUNDUP8 (sizeof (UTP_QUERY_REQ_UPIU)) + ROUNDUP8 (sizeof (UTP_QUERY_RESP_UPIU)); } CommandDesc = UfsPeimAllocateMem (Private->Pool, TotalLen); if (CommandDesc == NULL) { return EFI_OUT_OF_RESOURCES; } // // Initialize UTP QUERY REQUEST UPIU // QueryReqUpiu = (UTP_QUERY_REQ_UPIU*)CommandDesc; UfsInitQueryRequestUpiu ( QueryReqUpiu, Private->TaskTag++, Opcode, Packet->DescId, Packet->Index, Packet->Selector, DataSize, Data ); // // Fill UTP_TRD associated fields // NOTE: Some UFS host controllers request the Query Response UPIU *MUST* be located at a 64-bit aligned boundary. // Trd->Int = UFS_INTERRUPT_COMMAND; Trd->Dd = DataDirection; Trd->Ct = UFS_STORAGE_COMMAND_TYPE; Trd->Ocs = UFS_HC_TRD_OCS_INIT_VALUE; Trd->UcdBa = (UINT32)RShiftU64 ((UINT64)(UINTN)QueryReqUpiu, 7); Trd->UcdBaU = (UINT32)RShiftU64 ((UINT64)(UINTN)QueryReqUpiu, 32); if (Opcode == UtpQueryFuncOpcodeWrDesc) { Trd->RuL = (UINT16)DivU64x32 ((UINT64)ROUNDUP8 (sizeof (UTP_QUERY_RESP_UPIU)), sizeof (UINT32)); Trd->RuO = (UINT16)DivU64x32 ((UINT64)ROUNDUP8 (sizeof (UTP_QUERY_REQ_UPIU)) + ROUNDUP8 (DataSize), sizeof (UINT32)); } else { Trd->RuL = (UINT16)DivU64x32 ((UINT64)ROUNDUP8 (sizeof (UTP_QUERY_RESP_UPIU)) + ROUNDUP8 (DataSize), sizeof (UINT32)); Trd->RuO = (UINT16)DivU64x32 ((UINT64)ROUNDUP8 (sizeof (UTP_QUERY_REQ_UPIU)), sizeof (UINT32)); } return EFI_SUCCESS; } /** Allocate NOP IN and NOP OUT UPIU for filling UTP TRD's command descriptor field. @param[in] Private The pointer to the UFS_PEIM_HC_PRIVATE_DATA data structure. @param[in] Trd The pointer to the UTP Transfer Request Descriptor. @retval EFI_SUCCESS The creation succeed. @retval EFI_DEVICE_ERROR The creation failed. @retval EFI_OUT_OF_RESOURCES The memory resource is insufficient. **/ EFI_STATUS UfsCreateNopCommandDesc ( IN UFS_PEIM_HC_PRIVATE_DATA *Private, IN UTP_TRD *Trd ) { UINT8 *CommandDesc; UINTN TotalLen; UTP_NOP_OUT_UPIU *NopOutUpiu; ASSERT ((Private != NULL) && (Trd != NULL)); TotalLen = ROUNDUP8 (sizeof (UTP_NOP_OUT_UPIU)) + ROUNDUP8 (sizeof (UTP_NOP_IN_UPIU)); CommandDesc = UfsPeimAllocateMem (Private->Pool, TotalLen); if (CommandDesc == NULL) { return EFI_OUT_OF_RESOURCES; } NopOutUpiu = (UTP_NOP_OUT_UPIU*)CommandDesc; NopOutUpiu->TaskTag = Private->TaskTag++; // // Fill UTP_TRD associated fields // NOTE: Some UFS host controllers request the Nop Out UPIU *MUST* be located at a 64-bit aligned boundary. // Trd->Int = UFS_INTERRUPT_COMMAND; Trd->Dd = 0x00; Trd->Ct = UFS_STORAGE_COMMAND_TYPE; Trd->Ocs = UFS_HC_TRD_OCS_INIT_VALUE; Trd->UcdBa = (UINT32)RShiftU64 ((UINT64)(UINTN)NopOutUpiu, 7); Trd->UcdBaU = (UINT32)RShiftU64 ((UINT64)(UINTN)NopOutUpiu, 32); Trd->RuL = (UINT16)DivU64x32 ((UINT64)ROUNDUP8 (sizeof (UTP_NOP_IN_UPIU)), sizeof (UINT32)); Trd->RuO = (UINT16)DivU64x32 ((UINT64)ROUNDUP8 (sizeof (UTP_NOP_OUT_UPIU)), sizeof (UINT32)); return EFI_SUCCESS; } /** Find out available slot in transfer list of a UFS device. @param[in] Private The pointer to the UFS_PEIM_HC_PRIVATE_DATA data structure. @param[out] Slot The available slot. @retval EFI_SUCCESS The available slot was found successfully. **/ EFI_STATUS UfsFindAvailableSlotInTrl ( IN UFS_PEIM_HC_PRIVATE_DATA *Private, OUT UINT8 *Slot ) { ASSERT ((Private != NULL) && (Slot != NULL)); // // The simplest algo to always use slot 0. // TODO: enhance it to support async transfer with multiple slot. // *Slot = 0; return EFI_SUCCESS; } /** Start specified slot in transfer list of a UFS device. @param[in] Private The pointer to the UFS_PEIM_HC_PRIVATE_DATA data structure. @param[in] Slot The slot to be started. **/ VOID UfsStartExecCmd ( IN UFS_PEIM_HC_PRIVATE_DATA *Private, IN UINT8 Slot ) { UINTN UfsHcBase; UINTN Address; UINT32 Data; UfsHcBase = Private->UfsHcBase; Address = UfsHcBase + UFS_HC_UTRLRSR_OFFSET; Data = MmioRead32 (Address); if ((Data & UFS_HC_UTRLRSR) != UFS_HC_UTRLRSR) { MmioWrite32 (Address, UFS_HC_UTRLRSR); } Address = UfsHcBase + UFS_HC_UTRLDBR_OFFSET; MmioWrite32 (Address, BIT0 << Slot); } /** Stop specified slot in transfer list of a UFS device. @param[in] Private The pointer to the UFS_PEIM_HC_PRIVATE_DATA data structure. @param[in] Slot The slot to be stop. **/ VOID UfsStopExecCmd ( IN UFS_PEIM_HC_PRIVATE_DATA *Private, IN UINT8 Slot ) { UINTN UfsHcBase; UINTN Address; UINT32 Data; UfsHcBase = Private->UfsHcBase; Address = UfsHcBase + UFS_HC_UTRLDBR_OFFSET; Data = MmioRead32 (Address); if ((Data & (BIT0 << Slot)) != 0) { Address = UfsHcBase + UFS_HC_UTRLCLR_OFFSET; Data = MmioRead32 (Address); MmioWrite32 (Address, (Data & ~(BIT0 << Slot))); } } /** Read or write specified device descriptor of a UFS device. @param[in] Private The pointer to the UFS_PEIM_HC_PRIVATE_DATA data structure. @param[in] Read The boolean variable to show r/w direction. @param[in] DescId The ID of device descriptor. @param[in] Index The Index of device descriptor. @param[in] Selector The Selector of device descriptor. @param[in, out] Descriptor The buffer of device descriptor to be read or written. @param[in] DescSize The size of device descriptor buffer. @retval EFI_SUCCESS The device descriptor was read/written successfully. @retval EFI_DEVICE_ERROR A device error occurred while attempting to r/w the device descriptor. @retval EFI_TIMEOUT A timeout occurred while waiting for the completion of r/w the device descriptor. **/ EFI_STATUS UfsRwDeviceDesc ( IN UFS_PEIM_HC_PRIVATE_DATA *Private, IN BOOLEAN Read, IN UINT8 DescId, IN UINT8 Index, IN UINT8 Selector, IN OUT VOID *Descriptor, IN UINT32 DescSize ) { EFI_STATUS Status; UFS_DEVICE_MANAGEMENT_REQUEST_PACKET Packet; UINT8 Slot; UTP_TRD *Trd; UINTN Address; UTP_QUERY_RESP_UPIU *QueryResp; UINT8 *CmdDescBase; UINT32 CmdDescSize; UINT16 ReturnDataSize; ZeroMem (&Packet, sizeof (UFS_DEVICE_MANAGEMENT_REQUEST_PACKET)); if (Read) { Packet.DataDirection = UfsDataIn; Packet.InDataBuffer = Descriptor; Packet.InTransferLength = DescSize; Packet.Opcode = UtpQueryFuncOpcodeRdDesc; } else { Packet.DataDirection = UfsDataOut; Packet.OutDataBuffer = Descriptor; Packet.OutTransferLength = DescSize; Packet.Opcode = UtpQueryFuncOpcodeWrDesc; } Packet.DescId = DescId; Packet.Index = Index; Packet.Selector = Selector; Packet.Timeout = UFS_TIMEOUT; // // Find out which slot of transfer request list is available. // Status = UfsFindAvailableSlotInTrl (Private, &Slot); if (EFI_ERROR(Status)) { return Status; } Trd = ((UTP_TRD*)Private->UtpTrlBase) + Slot; // // Fill transfer request descriptor to this slot. // Status = UfsCreateDMCommandDesc (Private, &Packet, Trd); if (EFI_ERROR(Status)) { return Status; } // // Check the transfer request result. // CmdDescBase = (UINT8 *)(UINTN)(LShiftU64 ((UINT64)Trd->UcdBaU, 32) | LShiftU64 ((UINT64)Trd->UcdBa, 7)); QueryResp = (UTP_QUERY_RESP_UPIU*)(CmdDescBase + Trd->RuO * sizeof (UINT32)); CmdDescSize = Trd->RuO * sizeof (UINT32) + Trd->RuL * sizeof (UINT32); // // Start to execute the transfer request. // UfsStartExecCmd (Private, Slot); // // Wait for the completion of the transfer request. // Address = Private->UfsHcBase + UFS_HC_UTRLDBR_OFFSET; Status = UfsWaitMemSet (Address, BIT0 << Slot, 0, Packet.Timeout); if (EFI_ERROR(Status)) { goto Exit; } if (QueryResp->QueryResp != 0) { DumpQueryResponseResult (QueryResp->QueryResp); Status = EFI_DEVICE_ERROR; goto Exit; } if (Trd->Ocs == 0) { ReturnDataSize = QueryResp->Tsf.Length; SwapLittleEndianToBigEndian ((UINT8*)&ReturnDataSize, sizeof (UINT16)); if (Read) { // // Make sure the hardware device does not return more data than expected. // if (ReturnDataSize > Packet.InTransferLength) { Status = EFI_DEVICE_ERROR; goto Exit; } CopyMem(Packet.InDataBuffer, (QueryResp + 1), ReturnDataSize); Packet.InTransferLength = ReturnDataSize; } else { Packet.OutTransferLength = ReturnDataSize; } } else { Status = EFI_DEVICE_ERROR; } Exit: UfsStopExecCmd (Private, Slot); UfsPeimFreeMem (Private->Pool, CmdDescBase, CmdDescSize); return Status; } /** Read or write specified flag of a UFS device. @param[in] Private The pointer to the UFS_PEIM_HC_PRIVATE_DATA data structure. @param[in] Read The boolean variable to show r/w direction. @param[in] FlagId The ID of flag to be read or written. @param[in, out] Value The value to set or clear flag. @retval EFI_SUCCESS The flag was read/written successfully. @retval EFI_DEVICE_ERROR A device error occurred while attempting to r/w the flag. @retval EFI_TIMEOUT A timeout occurred while waiting for the completion of r/w the flag. **/ EFI_STATUS UfsRwFlags ( IN UFS_PEIM_HC_PRIVATE_DATA *Private, IN BOOLEAN Read, IN UINT8 FlagId, IN OUT UINT8 *Value ) { EFI_STATUS Status; UFS_DEVICE_MANAGEMENT_REQUEST_PACKET Packet; UINT8 Slot; UTP_TRD *Trd; UINTN Address; UTP_QUERY_RESP_UPIU *QueryResp; UINT8 *CmdDescBase; UINT32 CmdDescSize; if (Value == NULL) { return EFI_INVALID_PARAMETER; } ZeroMem (&Packet, sizeof (UFS_DEVICE_MANAGEMENT_REQUEST_PACKET)); if (Read) { ASSERT (Value != NULL); Packet.DataDirection = UfsDataIn; Packet.Opcode = UtpQueryFuncOpcodeRdFlag; } else { Packet.DataDirection = UfsDataOut; if (*Value == 1) { Packet.Opcode = UtpQueryFuncOpcodeSetFlag; } else if (*Value == 0) { Packet.Opcode = UtpQueryFuncOpcodeClrFlag; } else { return EFI_INVALID_PARAMETER; } } Packet.DescId = FlagId; Packet.Index = 0; Packet.Selector = 0; Packet.Timeout = UFS_TIMEOUT; // // Find out which slot of transfer request list is available. // Status = UfsFindAvailableSlotInTrl (Private, &Slot); if (EFI_ERROR(Status)) { return Status; } // // Fill transfer request descriptor to this slot. // Trd = ((UTP_TRD*)Private->UtpTrlBase) + Slot; Status = UfsCreateDMCommandDesc (Private, &Packet, Trd); if (EFI_ERROR(Status)) { return Status; } // // Check the transfer request result. // CmdDescBase = (UINT8 *)(UINTN)(LShiftU64 ((UINT64)Trd->UcdBaU, 32) | LShiftU64 ((UINT64)Trd->UcdBa, 7)); QueryResp = (UTP_QUERY_RESP_UPIU*)(CmdDescBase + Trd->RuO * sizeof (UINT32)); CmdDescSize = Trd->RuO * sizeof (UINT32) + Trd->RuL * sizeof (UINT32); // // Start to execute the transfer request. // UfsStartExecCmd (Private, Slot); // // Wait for the completion of the transfer request. // Address = Private->UfsHcBase + UFS_HC_UTRLDBR_OFFSET; Status = UfsWaitMemSet (Address, BIT0 << Slot, 0, Packet.Timeout); if (EFI_ERROR(Status)) { goto Exit; } if (QueryResp->QueryResp != 0) { DumpQueryResponseResult (QueryResp->QueryResp); Status = EFI_DEVICE_ERROR; goto Exit; } if (Trd->Ocs == 0) { *Value = (UINT8)QueryResp->Tsf.Value; } else { Status = EFI_DEVICE_ERROR; } Exit: UfsStopExecCmd (Private, Slot); UfsPeimFreeMem (Private->Pool, CmdDescBase, CmdDescSize); return Status; } /** Set specified flag to 1 on a UFS device. @param[in] Private The pointer to the UFS_PEIM_HC_PRIVATE_DATA data structure. @param[in] FlagId The ID of flag to be set. @retval EFI_SUCCESS The flag was set successfully. @retval EFI_DEVICE_ERROR A device error occurred while attempting to set the flag. @retval EFI_TIMEOUT A timeout occurred while waiting for the completion of setting the flag. **/ EFI_STATUS UfsSetFlag ( IN UFS_PEIM_HC_PRIVATE_DATA *Private, IN UINT8 FlagId ) { EFI_STATUS Status; UINT8 Value; Value = 1; Status = UfsRwFlags (Private, FALSE, FlagId, &Value); return Status; } /** Sends NOP IN cmd to a UFS device for initialization process request. For more details, please refer to UFS 2.0 spec Figure 13.3. @param[in] Private The pointer to the UFS_PEIM_HC_PRIVATE_DATA data structure. @retval EFI_SUCCESS The NOP IN command was sent by the host. The NOP OUT response was received successfully. @retval EFI_DEVICE_ERROR A device error occurred while attempting to execute NOP IN command. @retval EFI_OUT_OF_RESOURCES The resource for transfer is not available. @retval EFI_TIMEOUT A timeout occurred while waiting for the NOP IN command to execute. **/ EFI_STATUS UfsExecNopCmds ( IN UFS_PEIM_HC_PRIVATE_DATA *Private ) { EFI_STATUS Status; UINT8 Slot; UTP_TRD *Trd; UTP_NOP_IN_UPIU *NopInUpiu; UINT8 *CmdDescBase; UINT32 CmdDescSize; UINTN Address; // // Find out which slot of transfer request list is available. // Status = UfsFindAvailableSlotInTrl (Private, &Slot); if (EFI_ERROR(Status)) { return Status; } Trd = ((UTP_TRD*)Private->UtpTrlBase) + Slot; Status = UfsCreateNopCommandDesc (Private, Trd); if (EFI_ERROR(Status)) { return Status; } // // Check the transfer request result. // CmdDescBase = (UINT8 *)(UINTN)(LShiftU64 ((UINT64)Trd->UcdBaU, 32) | LShiftU64 ((UINT64)Trd->UcdBa, 7)); NopInUpiu = (UTP_NOP_IN_UPIU*)(CmdDescBase + Trd->RuO * sizeof (UINT32)); CmdDescSize = Trd->RuO * sizeof (UINT32) + Trd->RuL * sizeof (UINT32); // // Start to execute the transfer request. // UfsStartExecCmd (Private, Slot); // // Wait for the completion of the transfer request. // Address = Private->UfsHcBase + UFS_HC_UTRLDBR_OFFSET; Status = UfsWaitMemSet (Address, BIT0 << Slot, 0, UFS_TIMEOUT); if (EFI_ERROR(Status)) { goto Exit; } if (NopInUpiu->Resp != 0) { Status = EFI_DEVICE_ERROR; } else { Status = EFI_SUCCESS; } Exit: UfsStopExecCmd (Private, Slot); UfsPeimFreeMem (Private->Pool, CmdDescBase, CmdDescSize); return Status; } /** Sends a UFS-supported SCSI Request Packet to a UFS device that is attached to the UFS host controller. @param[in] Private The pointer to the UFS_PEIM_HC_PRIVATE_DATA data structure. @param[in] Lun The LUN of the UFS device to send the SCSI Request Packet. @param[in, out] Packet A pointer to the SCSI Request Packet to send to a specified Lun of the UFS device. @retval EFI_SUCCESS The SCSI Request Packet was sent by the host. For bi-directional commands, InTransferLength bytes were transferred from InDataBuffer. For write and bi-directional commands, OutTransferLength bytes were transferred by OutDataBuffer. @retval EFI_DEVICE_ERROR A device error occurred while attempting to send the SCSI Request Packet. @retval EFI_OUT_OF_RESOURCES The resource for transfer is not available. @retval EFI_TIMEOUT A timeout occurred while waiting for the SCSI Request Packet to execute. **/ EFI_STATUS UfsExecScsiCmds ( IN UFS_PEIM_HC_PRIVATE_DATA *Private, IN UINT8 Lun, IN OUT UFS_SCSI_REQUEST_PACKET *Packet ) { EFI_STATUS Status; UINT8 Slot; UTP_TRD *Trd; UINTN Address; UINT8 *CmdDescBase; UINT32 CmdDescSize; UTP_RESPONSE_UPIU *Response; UINT16 SenseDataLen; UINT32 ResTranCount; VOID *PacketBufferMap; // // Find out which slot of transfer request list is available. // Status = UfsFindAvailableSlotInTrl (Private, &Slot); if (EFI_ERROR(Status)) { return Status; } Trd = ((UTP_TRD*)Private->UtpTrlBase) + Slot; PacketBufferMap = NULL; // // Fill transfer request descriptor to this slot. // Status = UfsCreateScsiCommandDesc (Private, Lun, Packet, Trd, &PacketBufferMap); if (EFI_ERROR(Status)) { return Status; } CmdDescBase = (UINT8*)(UINTN)(LShiftU64 ((UINT64)Trd->UcdBaU, 32) | LShiftU64 ((UINT64)Trd->UcdBa, 7)); CmdDescSize = Trd->PrdtO * sizeof (UINT32) + Trd->PrdtL * sizeof (UTP_TR_PRD); // // Start to execute the transfer request. // UfsStartExecCmd (Private, Slot); // // Wait for the completion of the transfer request. // Address = Private->UfsHcBase + UFS_HC_UTRLDBR_OFFSET; Status = UfsWaitMemSet (Address, BIT0 << Slot, 0, Packet->Timeout); if (EFI_ERROR(Status)) { goto Exit; } // // Get sense data if exists // Response = (UTP_RESPONSE_UPIU*)(CmdDescBase + Trd->RuO * sizeof (UINT32)); SenseDataLen = Response->SenseDataLen; SwapLittleEndianToBigEndian ((UINT8*)&SenseDataLen, sizeof (UINT16)); if ((Packet->SenseDataLength != 0) && (Packet->SenseData != NULL)) { // // Make sure the hardware device does not return more data than expected. // if (SenseDataLen <= Packet->SenseDataLength) { CopyMem(Packet->SenseData, Response->SenseData, SenseDataLen); Packet->SenseDataLength = (UINT8)SenseDataLen; } else { Packet->SenseDataLength = 0; } } // // Check the transfer request result. // if (Response->Response != 0) { DEBUG ((EFI_D_ERROR, "UfsExecScsiCmds() fails with Target Failure\n")); Status = EFI_DEVICE_ERROR; goto Exit; } if (Trd->Ocs == 0) { if (Packet->DataDirection == UfsDataIn) { if ((Response->Flags & BIT5) == BIT5) { ResTranCount = Response->ResTranCount; SwapLittleEndianToBigEndian ((UINT8*)&ResTranCount, sizeof (UINT32)); Packet->InTransferLength -= ResTranCount; } } else if (Packet->DataDirection == UfsDataOut) { if ((Response->Flags & BIT5) == BIT5) { ResTranCount = Response->ResTranCount; SwapLittleEndianToBigEndian ((UINT8*)&ResTranCount, sizeof (UINT32)); Packet->OutTransferLength -= ResTranCount; } } } else { Status = EFI_DEVICE_ERROR; } Exit: if (PacketBufferMap != NULL) { IoMmuUnmap (PacketBufferMap); } UfsStopExecCmd (Private, Slot); UfsPeimFreeMem (Private->Pool, CmdDescBase, CmdDescSize); return Status; } /** Sent UIC DME_LINKSTARTUP command to start the link startup procedure. @param[in] Private The pointer to the UFS_PEIM_HC_PRIVATE_DATA data structure. @param[in] UicOpcode The opcode of the UIC command. @param[in] Arg1 The value for 1st argument of the UIC command. @param[in] Arg2 The value for 2nd argument of the UIC command. @param[in] Arg3 The value for 3rd argument of the UIC command. @return EFI_SUCCESS Successfully execute this UIC command and detect attached UFS device. @return EFI_DEVICE_ERROR Fail to execute this UIC command and detect attached UFS device. @return EFI_NOT_FOUND The presence of the UFS device isn't detected. **/ EFI_STATUS UfsExecUicCommands ( IN UFS_PEIM_HC_PRIVATE_DATA *Private, IN UINT8 UicOpcode, IN UINT32 Arg1, IN UINT32 Arg2, IN UINT32 Arg3 ) { EFI_STATUS Status; UINTN Address; UINT32 Data; UINTN UfsHcBase; UfsHcBase = Private->UfsHcBase; Address = UfsHcBase + UFS_HC_IS_OFFSET; Data = MmioRead32 (Address); if ((Data & UFS_HC_IS_UCCS) == UFS_HC_IS_UCCS) { // // Clear IS.BIT10 UIC Command Completion Status (UCCS) at first. // MmioWrite32 (Address, Data); } // // When programming UIC command registers, host software shall set the register UICCMD // only after all the UIC command argument registers (UICCMDARG1, UICCMDARG2 and UICCMDARG3) // are set. // Address = UfsHcBase + UFS_HC_UCMD_ARG1_OFFSET; MmioWrite32 (Address, Arg1); Address = UfsHcBase + UFS_HC_UCMD_ARG2_OFFSET; MmioWrite32 (Address, Arg2); Address = UfsHcBase + UFS_HC_UCMD_ARG3_OFFSET; MmioWrite32 (Address, Arg3); // // Host software shall only set the UICCMD if HCS.UCRDY is set to 1. // Address = Private->UfsHcBase + UFS_HC_STATUS_OFFSET; Status = UfsWaitMemSet (Address, UFS_HC_HCS_UCRDY, UFS_HC_HCS_UCRDY, UFS_TIMEOUT); if (EFI_ERROR(Status)) { return Status; } Address = UfsHcBase + UFS_HC_UIC_CMD_OFFSET; MmioWrite32 (Address, (UINT32)UicOpcode); // // UFS 2.0 spec section 5.3.1 Offset:0x20 IS.Bit10 UIC Command Completion Status (UCCS) // This bit is set to '1' by the host controller upon completion of a UIC command. // Address = UfsHcBase + UFS_HC_IS_OFFSET; Data = MmioRead32 (Address); Status = UfsWaitMemSet (Address, UFS_HC_IS_UCCS, UFS_HC_IS_UCCS, UFS_TIMEOUT); if (EFI_ERROR(Status)) { return Status; } if (UicOpcode != UfsUicDmeReset) { Address = UfsHcBase + UFS_HC_UCMD_ARG2_OFFSET; Data = MmioRead32 (Address); if ((Data & 0xFF) != 0) { DEBUG_CODE_BEGIN(); DumpUicCmdExecResult (UicOpcode, (UINT8)(Data & 0xFF)); DEBUG_CODE_END(); return EFI_DEVICE_ERROR; } } // // Check value of HCS.DP and make sure that there is a device attached to the Link. // Address = UfsHcBase + UFS_HC_STATUS_OFFSET; Data = MmioRead32 (Address); if ((Data & UFS_HC_HCS_DP) == 0) { Address = UfsHcBase + UFS_HC_IS_OFFSET; Status = UfsWaitMemSet (Address, UFS_HC_IS_ULSS, UFS_HC_IS_ULSS, UFS_TIMEOUT); if (EFI_ERROR(Status)) { return EFI_DEVICE_ERROR; } return EFI_NOT_FOUND; } DEBUG ((EFI_D_INFO, "UfsblockioPei: found a attached UFS device\n")); return EFI_SUCCESS; } /** Enable the UFS host controller for accessing. @param[in] Private The pointer to the UFS_PEIM_HC_PRIVATE_DATA data structure. @retval EFI_SUCCESS The UFS host controller enabling was executed successfully. @retval EFI_DEVICE_ERROR A device error occurred while enabling the UFS host controller. **/ EFI_STATUS UfsEnableHostController ( IN UFS_PEIM_HC_PRIVATE_DATA *Private ) { EFI_STATUS Status; UINTN Address; UINT32 Data; // // UFS 2.0 spec section 7.1.1 - Host Controller Initialization // // Reinitialize the UFS host controller if HCE bit of HC register is set. // Address = Private->UfsHcBase + UFS_HC_ENABLE_OFFSET; Data = MmioRead32 (Address); if ((Data & UFS_HC_HCE_EN) == UFS_HC_HCE_EN) { // // Write a 0 to the HCE register at first to disable the host controller. // MmioWrite32 (Address, 0); // // Wait until HCE is read as '0' before continuing. // Status = UfsWaitMemSet (Address, UFS_HC_HCE_EN, 0, UFS_TIMEOUT); if (EFI_ERROR(Status)) { return EFI_DEVICE_ERROR; } } // // Write a 1 to the HCE register to enable the UFS host controller. // MmioWrite32 (Address, UFS_HC_HCE_EN); // // Wait until HCE is read as '1' before continuing. // Status = UfsWaitMemSet (Address, UFS_HC_HCE_EN, UFS_HC_HCE_EN, UFS_TIMEOUT); if (EFI_ERROR(Status)) { return EFI_DEVICE_ERROR; } return EFI_SUCCESS; } /** Detect if a UFS device attached. @param[in] Private The pointer to the UFS_PEIM_HC_PRIVATE_DATA data structure. @retval EFI_SUCCESS The UFS device detection was executed successfully. @retval EFI_NOT_FOUND Not found a UFS device attached. @retval EFI_DEVICE_ERROR A device error occurred while detecting the UFS device. **/ EFI_STATUS UfsDeviceDetection ( IN UFS_PEIM_HC_PRIVATE_DATA *Private ) { UINTN Retry; EFI_STATUS Status; // // Start UFS device detection. // Try up to 3 times for establishing data link with device. // for (Retry = 0; Retry < 3; Retry++) { Status = UfsExecUicCommands (Private, UfsUicDmeLinkStartup, 0, 0, 0); if (!EFI_ERROR(Status)) { break; } if (Status == EFI_NOT_FOUND) { continue; } return EFI_DEVICE_ERROR; } if (Retry == 3) { return EFI_NOT_FOUND; } return EFI_SUCCESS; } /** Initialize UFS task management request list related h/w context. @param[in] Private The pointer to the UFS_PEIM_HC_PRIVATE_DATA data structure. @retval EFI_SUCCESS The UFS task management list was initialzed successfully. @retval EFI_DEVICE_ERROR The initialization fails. **/ EFI_STATUS UfsInitTaskManagementRequestList ( IN UFS_PEIM_HC_PRIVATE_DATA *Private ) { UINTN Address; UINT32 Data; UINT8 Nutmrs; VOID *CmdDescHost; EFI_PHYSICAL_ADDRESS CmdDescPhyAddr; VOID *CmdDescMapping; EFI_STATUS Status; // // Initial h/w and s/w context for future operations. // Address = Private->UfsHcBase + UFS_HC_CAP_OFFSET; Data = MmioRead32 (Address); Private->Capabilities = Data; // // Allocate and initialize UTP Task Management Request List. // Nutmrs = (UINT8) (RShiftU64 ((Private->Capabilities & UFS_HC_CAP_NUTMRS), 16) + 1); Status = IoMmuAllocateBuffer ( EFI_SIZE_TO_PAGES (Nutmrs * sizeof (UTP_TMRD)), &CmdDescHost, &CmdDescPhyAddr, &CmdDescMapping ); if (EFI_ERROR(Status)) { return EFI_DEVICE_ERROR; } ZeroMem (CmdDescHost, EFI_PAGES_TO_SIZE (EFI_SIZE_TO_PAGES (Nutmrs * sizeof (UTP_TMRD)))); // // Program the UTP Task Management Request List Base Address and UTP Task Management // Request List Base Address with a 64-bit address allocated at step 6. // Address = Private->UfsHcBase + UFS_HC_UTMRLBA_OFFSET; MmioWrite32 (Address, (UINT32)(UINTN)CmdDescPhyAddr); Address = Private->UfsHcBase + UFS_HC_UTMRLBAU_OFFSET; MmioWrite32 (Address, (UINT32)RShiftU64 ((UINT64)CmdDescPhyAddr, 32)); Private->UtpTmrlBase = (VOID*)(UINTN)CmdDescHost; Private->Nutmrs = Nutmrs; Private->TmrlMapping = CmdDescMapping; // // Enable the UTP Task Management Request List by setting the UTP Task Management // Request List RunStop Register (UTMRLRSR) to '1'. // Address = Private->UfsHcBase + UFS_HC_UTMRLRSR_OFFSET; MmioWrite32 (Address, UFS_HC_UTMRLRSR); return EFI_SUCCESS; } /** Initialize UFS transfer request list related h/w context. @param[in] Private The pointer to the UFS_PEIM_HC_PRIVATE_DATA data structure. @retval EFI_SUCCESS The UFS transfer list was initialzed successfully. @retval EFI_DEVICE_ERROR The initialization fails. **/ EFI_STATUS UfsInitTransferRequestList ( IN UFS_PEIM_HC_PRIVATE_DATA *Private ) { UINTN Address; UINT32 Data; UINT8 Nutrs; VOID *CmdDescHost; EFI_PHYSICAL_ADDRESS CmdDescPhyAddr; VOID *CmdDescMapping; EFI_STATUS Status; // // Initial h/w and s/w context for future operations. // Address = Private->UfsHcBase + UFS_HC_CAP_OFFSET; Data = MmioRead32 (Address); Private->Capabilities = Data; // // Allocate and initialize UTP Transfer Request List. // Nutrs = (UINT8)((Private->Capabilities & UFS_HC_CAP_NUTRS) + 1); Status = IoMmuAllocateBuffer ( EFI_SIZE_TO_PAGES (Nutrs * sizeof (UTP_TRD)), &CmdDescHost, &CmdDescPhyAddr, &CmdDescMapping ); if (EFI_ERROR(Status)) { return EFI_DEVICE_ERROR; } ZeroMem (CmdDescHost, EFI_PAGES_TO_SIZE (EFI_SIZE_TO_PAGES (Nutrs * sizeof (UTP_TRD)))); // // Program the UTP Transfer Request List Base Address and UTP Transfer Request List // Base Address with a 64-bit address allocated at step 8. // Address = Private->UfsHcBase + UFS_HC_UTRLBA_OFFSET; MmioWrite32 (Address, (UINT32)(UINTN)CmdDescPhyAddr); Address = Private->UfsHcBase + UFS_HC_UTRLBAU_OFFSET; MmioWrite32 (Address, (UINT32)RShiftU64 ((UINT64)CmdDescPhyAddr, 32)); Private->UtpTrlBase = (VOID*)(UINTN)CmdDescHost; Private->Nutrs = Nutrs; Private->TrlMapping = CmdDescMapping; // // Enable the UTP Transfer Request List by setting the UTP Transfer Request List // RunStop Register (UTRLRSR) to '1'. // Address = Private->UfsHcBase + UFS_HC_UTRLRSR_OFFSET; MmioWrite32 (Address, UFS_HC_UTRLRSR); return EFI_SUCCESS; } /** Initialize the UFS host controller. @param[in] Private The pointer to the UFS_PEIM_HC_PRIVATE_DATA data structure. @retval EFI_SUCCESS The Ufs Host Controller is initialized successfully. @retval Others A device error occurred while initializing the controller. **/ EFI_STATUS UfsControllerInit ( IN UFS_PEIM_HC_PRIVATE_DATA *Private ) { EFI_STATUS Status; Status = UfsEnableHostController (Private); if (EFI_ERROR(Status)) { DEBUG ((EFI_D_ERROR, "UfsDevicePei: Enable Host Controller Fails, Status = %r\n", Status)); return Status; } Status = UfsDeviceDetection (Private); if (EFI_ERROR(Status)) { DEBUG ((EFI_D_ERROR, "UfsDevicePei: Device Detection Fails, Status = %r\n", Status)); return Status; } Status = UfsInitTaskManagementRequestList (Private); if (EFI_ERROR(Status)) { DEBUG ((EFI_D_ERROR, "UfsDevicePei: Task management list initialization Fails, Status = %r\n", Status)); return Status; } Status = UfsInitTransferRequestList (Private); if (EFI_ERROR(Status)) { DEBUG ((EFI_D_ERROR, "UfsDevicePei: Transfer list initialization Fails, Status = %r\n", Status)); if (Private->TmrlMapping != NULL) { IoMmuFreeBuffer ( EFI_SIZE_TO_PAGES (Private->Nutmrs * sizeof (UTP_TMRD)), Private->UtpTmrlBase, Private->TmrlMapping ); Private->TmrlMapping = NULL; } return Status; } DEBUG ((EFI_D_INFO, "UfsDevicePei Finished\n")); return EFI_SUCCESS; } /** Stop the UFS host controller. @param[in] Private The pointer to the UFS_PEIM_HC_PRIVATE_DATA data structure. @retval EFI_SUCCESS The Ufs Host Controller is stopped successfully. @retval Others A device error occurred while stopping the controller. **/ EFI_STATUS UfsControllerStop ( IN UFS_PEIM_HC_PRIVATE_DATA *Private ) { EFI_STATUS Status; UINTN Address; UINT32 Data; // // Enable the UTP Task Management Request List by setting the UTP Task Management // Request List RunStop Register (UTMRLRSR) to '1'. // Address = Private->UfsHcBase + UFS_HC_UTMRLRSR_OFFSET; MmioWrite32 (Address, 0); // // Enable the UTP Transfer Request List by setting the UTP Transfer Request List // RunStop Register (UTRLRSR) to '1'. // Address = Private->UfsHcBase + UFS_HC_UTRLRSR_OFFSET; MmioWrite32 (Address, 0); // // Write a 0 to the HCE register in order to disable the host controller. // Address = Private->UfsHcBase + UFS_HC_ENABLE_OFFSET; Data = MmioRead32 (Address); ASSERT ((Data & UFS_HC_HCE_EN) == UFS_HC_HCE_EN); MmioWrite32 (Address, 0); // // Wait until HCE is read as '0' before continuing. // Status = UfsWaitMemSet (Address, UFS_HC_HCE_EN, 0, UFS_TIMEOUT); if (EFI_ERROR(Status)) { return EFI_DEVICE_ERROR; } DEBUG ((EFI_D_INFO, "UfsDevicePei: Stop the UFS Host Controller\n")); return EFI_SUCCESS; }