/** @file CPU DXE Module. Copyright (c) 2008 - 2012, Intel Corporation. All rights reserved.
This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ #include "CpuDxe.h" #define USE_MTRR 0 // // Global Variables // IA32_IDT_GATE_DESCRIPTOR gIdtTable[INTERRUPT_VECTOR_NUMBER] = { { { 0 } } }; EFI_CPU_INTERRUPT_HANDLER ExternalVectorTable[0x100]; BOOLEAN InterruptState = FALSE; EFI_HANDLE mCpuHandle = NULL; BOOLEAN mIsFlushingGCD; #if USE_MTRR UINT64 mValidMtrrAddressMask = MTRR_LIB_CACHE_VALID_ADDRESS; UINT64 mValidMtrrBitsMask = MTRR_LIB_MSR_VALID_MASK; #endif IA32_IDT_GATE_DESCRIPTOR *mOrigIdtEntry = NULL; UINT16 mOrigIdtEntryCount = 0; #if USE_MTRR FIXED_MTRR mFixedMtrrTable[] = { { MTRR_LIB_IA32_MTRR_FIX64K_00000, 0, 0x10000 }, { MTRR_LIB_IA32_MTRR_FIX16K_80000, 0x80000, 0x4000 }, { MTRR_LIB_IA32_MTRR_FIX16K_A0000, 0xA0000, 0x4000 }, { MTRR_LIB_IA32_MTRR_FIX4K_C0000, 0xC0000, 0x1000 }, { MTRR_LIB_IA32_MTRR_FIX4K_C8000, 0xC8000, 0x1000 }, { MTRR_LIB_IA32_MTRR_FIX4K_D0000, 0xD0000, 0x1000 }, { MTRR_LIB_IA32_MTRR_FIX4K_D8000, 0xD8000, 0x1000 }, { MTRR_LIB_IA32_MTRR_FIX4K_E0000, 0xE0000, 0x1000 }, { MTRR_LIB_IA32_MTRR_FIX4K_E8000, 0xE8000, 0x1000 }, { MTRR_LIB_IA32_MTRR_FIX4K_F0000, 0xF0000, 0x1000 }, { MTRR_LIB_IA32_MTRR_FIX4K_F8000, 0xF8000, 0x1000 }, }; #endif EFI_CPU_ARCH_PROTOCOL gCpu = { CpuFlushCpuDataCache, CpuEnableInterrupt, CpuDisableInterrupt, CpuGetInterruptState, CpuInit, CpuRegisterInterruptHandler, CpuGetTimerValue, CpuSetMemoryAttributes, 1, // NumberOfTimers 4 // DmaBufferAlignment }; // // Error code flag indicating whether or not an error code will be // pushed on the stack if an exception occurs. // // 1 means an error code will be pushed, otherwise 0 // // bit 0 - exception 0 // bit 1 - exception 1 // etc. // UINT32 mErrorCodeFlag = 0x00027d00; EFI_EVENT IdleLoopEvent; // // Local function prototypes // /** Set Interrupt Descriptor Table Handler Address. @param Index The Index of the interrupt descriptor table handle. @param Handler Handler address. **/ VOID SetInterruptDescriptorTableHandlerAddress ( IN UINTN Index, IN VOID *Handler OPTIONAL ); // // CPU Arch Protocol Functions // /** Common exception handler. @param InterruptType Exception type @param SystemContext EFI_SYSTEM_CONTEXT **/ VOID EFIAPI CommonExceptionHandler ( IN EFI_EXCEPTION_TYPE InterruptType, IN EFI_SYSTEM_CONTEXT SystemContext ) { #if defined (MDE_CPU_IA32) DEBUG (( EFI_D_ERROR, "!!!! IA32 Exception Type - %08x !!!!\n", InterruptType )); if ((mErrorCodeFlag & (1 << InterruptType)) != 0) { DEBUG (( EFI_D_ERROR, "ExceptionData - %08x\n", SystemContext.SystemContextIa32->ExceptionData )); } DEBUG (( EFI_D_ERROR, "CS - %04x, EIP - %08x, EFL - %08x, SS - %04x\n", SystemContext.SystemContextIa32->Cs, SystemContext.SystemContextIa32->Eip, SystemContext.SystemContextIa32->Eflags, SystemContext.SystemContextIa32->Ss )); DEBUG (( EFI_D_ERROR, "DS - %04x, ES - %04x, FS - %04x, GS - %04x\n", SystemContext.SystemContextIa32->Ds, SystemContext.SystemContextIa32->Es, SystemContext.SystemContextIa32->Fs, SystemContext.SystemContextIa32->Gs )); DEBUG (( EFI_D_ERROR, "EAX - %08x, EBX - %08x, ECX - %08x, EDX - %08x\n", SystemContext.SystemContextIa32->Eax, SystemContext.SystemContextIa32->Ebx, SystemContext.SystemContextIa32->Ecx, SystemContext.SystemContextIa32->Edx )); DEBUG (( EFI_D_ERROR, "ESP - %08x, EBP - %08x, ESI - %08x, EDI - %08x\n", SystemContext.SystemContextIa32->Esp, SystemContext.SystemContextIa32->Ebp, SystemContext.SystemContextIa32->Esi, SystemContext.SystemContextIa32->Edi )); DEBUG (( EFI_D_ERROR, "GDT - %08x LIM - %04x, IDT - %08x LIM - %04x\n", SystemContext.SystemContextIa32->Gdtr[0], SystemContext.SystemContextIa32->Gdtr[1], SystemContext.SystemContextIa32->Idtr[0], SystemContext.SystemContextIa32->Idtr[1] )); DEBUG (( EFI_D_ERROR, "LDT - %08x, TR - %08x\n", SystemContext.SystemContextIa32->Ldtr, SystemContext.SystemContextIa32->Tr )); DEBUG (( EFI_D_ERROR, "CR0 - %08x, CR2 - %08x, CR3 - %08x, CR4 - %08x\n", SystemContext.SystemContextIa32->Cr0, SystemContext.SystemContextIa32->Cr2, SystemContext.SystemContextIa32->Cr3, SystemContext.SystemContextIa32->Cr4 )); DEBUG (( EFI_D_ERROR, "DR0 - %08x, DR1 - %08x, DR2 - %08x, DR3 - %08x\n", SystemContext.SystemContextIa32->Dr0, SystemContext.SystemContextIa32->Dr1, SystemContext.SystemContextIa32->Dr2, SystemContext.SystemContextIa32->Dr3 )); DEBUG (( EFI_D_ERROR, "DR6 - %08x, DR7 - %08x\n", SystemContext.SystemContextIa32->Dr6, SystemContext.SystemContextIa32->Dr7 )); #elif defined (MDE_CPU_X64) DEBUG (( EFI_D_ERROR, "!!!! X64 Exception Type - %016lx !!!!\n", (UINT64)InterruptType )); if ((mErrorCodeFlag & (1 << InterruptType)) != 0) { DEBUG (( EFI_D_ERROR, "ExceptionData - %016lx\n", SystemContext.SystemContextX64->ExceptionData )); } DEBUG (( EFI_D_ERROR, "RIP - %016lx, RFL - %016lx\n", SystemContext.SystemContextX64->Rip, SystemContext.SystemContextX64->Rflags )); DEBUG (( EFI_D_ERROR, "RAX - %016lx, RCX - %016lx, RDX - %016lx\n", SystemContext.SystemContextX64->Rax, SystemContext.SystemContextX64->Rcx, SystemContext.SystemContextX64->Rdx )); DEBUG (( EFI_D_ERROR, "RBX - %016lx, RSP - %016lx, RBP - %016lx\n", SystemContext.SystemContextX64->Rbx, SystemContext.SystemContextX64->Rsp, SystemContext.SystemContextX64->Rbp )); DEBUG (( EFI_D_ERROR, "RSI - %016lx, RDI - %016lx\n", SystemContext.SystemContextX64->Rsi, SystemContext.SystemContextX64->Rdi )); DEBUG (( EFI_D_ERROR, "R8 - %016lx, R9 - %016lx, R10 - %016lx\n", SystemContext.SystemContextX64->R8, SystemContext.SystemContextX64->R9, SystemContext.SystemContextX64->R10 )); DEBUG (( EFI_D_ERROR, "R11 - %016lx, R12 - %016lx, R13 - %016lx\n", SystemContext.SystemContextX64->R11, SystemContext.SystemContextX64->R12, SystemContext.SystemContextX64->R13 )); DEBUG (( EFI_D_ERROR, "R14 - %016lx, R15 - %016lx\n", SystemContext.SystemContextX64->R14, SystemContext.SystemContextX64->R15 )); DEBUG (( EFI_D_ERROR, "CS - %04lx, DS - %04lx, ES - %04lx, FS - %04lx, GS - %04lx, SS - %04lx\n", SystemContext.SystemContextX64->Cs, SystemContext.SystemContextX64->Ds, SystemContext.SystemContextX64->Es, SystemContext.SystemContextX64->Fs, SystemContext.SystemContextX64->Gs, SystemContext.SystemContextX64->Ss )); DEBUG (( EFI_D_ERROR, "GDT - %016lx; %04lx, IDT - %016lx; %04lx\n", SystemContext.SystemContextX64->Gdtr[0], SystemContext.SystemContextX64->Gdtr[1], SystemContext.SystemContextX64->Idtr[0], SystemContext.SystemContextX64->Idtr[1] )); DEBUG (( EFI_D_ERROR, "LDT - %016lx, TR - %016lx\n", SystemContext.SystemContextX64->Ldtr, SystemContext.SystemContextX64->Tr )); DEBUG (( EFI_D_ERROR, "CR0 - %016lx, CR2 - %016lx, CR3 - %016lx\n", SystemContext.SystemContextX64->Cr0, SystemContext.SystemContextX64->Cr2, SystemContext.SystemContextX64->Cr3 )); DEBUG (( EFI_D_ERROR, "CR4 - %016lx, CR8 - %016lx\n", SystemContext.SystemContextX64->Cr4, SystemContext.SystemContextX64->Cr8 )); DEBUG (( EFI_D_ERROR, "DR0 - %016lx, DR1 - %016lx, DR2 - %016lx\n", SystemContext.SystemContextX64->Dr0, SystemContext.SystemContextX64->Dr1, SystemContext.SystemContextX64->Dr2 )); DEBUG (( EFI_D_ERROR, "DR3 - %016lx, DR6 - %016lx, DR7 - %016lx\n", SystemContext.SystemContextX64->Dr3, SystemContext.SystemContextX64->Dr6, SystemContext.SystemContextX64->Dr7 )); //#else //#error CPU type not supported for exception information dump! #endif // // Hang the system with CpuSleep so the processor will enter a lower power // state. // while (TRUE) { CpuSleep (); }; } /** Flush CPU data cache. If the instruction cache is fully coherent with all DMA operations then function can just return EFI_SUCCESS. @param This Protocol instance structure @param Start Physical address to start flushing from. @param Length Number of bytes to flush. Round up to chipset granularity. @param FlushType Specifies the type of flush operation to perform. @retval EFI_SUCCESS If cache was flushed @retval EFI_UNSUPPORTED If flush type is not supported. @retval EFI_DEVICE_ERROR If requested range could not be flushed. **/ EFI_STATUS EFIAPI CpuFlushCpuDataCache ( IN EFI_CPU_ARCH_PROTOCOL *This, IN EFI_PHYSICAL_ADDRESS Start, IN UINT64 Length, IN EFI_CPU_FLUSH_TYPE FlushType ) { if (FlushType == EfiCpuFlushTypeWriteBackInvalidate) { AsmWbinvd (); return EFI_SUCCESS; } else if (FlushType == EfiCpuFlushTypeInvalidate) { AsmInvd (); return EFI_SUCCESS; } else { return EFI_UNSUPPORTED; } } /** Enables CPU interrupts. @param This Protocol instance structure @retval EFI_SUCCESS If interrupts were enabled in the CPU @retval EFI_DEVICE_ERROR If interrupts could not be enabled on the CPU. **/ EFI_STATUS EFIAPI CpuEnableInterrupt ( IN EFI_CPU_ARCH_PROTOCOL *This ) { EnableInterrupts (); InterruptState = TRUE; return EFI_SUCCESS; } /** Disables CPU interrupts. @param This Protocol instance structure @retval EFI_SUCCESS If interrupts were disabled in the CPU. @retval EFI_DEVICE_ERROR If interrupts could not be disabled on the CPU. **/ EFI_STATUS EFIAPI CpuDisableInterrupt ( IN EFI_CPU_ARCH_PROTOCOL *This ) { DisableInterrupts (); InterruptState = FALSE; return EFI_SUCCESS; } /** Return the state of interrupts. @param This Protocol instance structure @param State Pointer to the CPU's current interrupt state @retval EFI_SUCCESS If interrupts were disabled in the CPU. @retval EFI_INVALID_PARAMETER State is NULL. **/ EFI_STATUS EFIAPI CpuGetInterruptState ( IN EFI_CPU_ARCH_PROTOCOL *This, OUT BOOLEAN *State ) { if (State == NULL) { return EFI_INVALID_PARAMETER; } *State = InterruptState; return EFI_SUCCESS; } /** Generates an INIT to the CPU. @param This Protocol instance structure @param InitType Type of CPU INIT to perform @retval EFI_SUCCESS If CPU INIT occurred. This value should never be seen. @retval EFI_DEVICE_ERROR If CPU INIT failed. @retval EFI_UNSUPPORTED Requested type of CPU INIT not supported. **/ EFI_STATUS EFIAPI CpuInit ( IN EFI_CPU_ARCH_PROTOCOL *This, IN EFI_CPU_INIT_TYPE InitType ) { return EFI_UNSUPPORTED; } /** Registers a function to be called from the CPU interrupt handler. @param This Protocol instance structure @param InterruptType Defines which interrupt to hook. IA-32 valid range is 0x00 through 0xFF @param InterruptHandler A pointer to a function of type EFI_CPU_INTERRUPT_HANDLER that is called when a processor interrupt occurs. A null pointer is an error condition. @retval EFI_SUCCESS If handler installed or uninstalled. @retval EFI_ALREADY_STARTED InterruptHandler is not NULL, and a handler for InterruptType was previously installed. @retval EFI_INVALID_PARAMETER InterruptHandler is NULL, and a handler for InterruptType was not previously installed. @retval EFI_UNSUPPORTED The interrupt specified by InterruptType is not supported. **/ EFI_STATUS EFIAPI CpuRegisterInterruptHandler ( IN EFI_CPU_ARCH_PROTOCOL *This, IN EFI_EXCEPTION_TYPE InterruptType, IN EFI_CPU_INTERRUPT_HANDLER InterruptHandler ) { if (InterruptType < 0 || InterruptType > 0xff) { return EFI_UNSUPPORTED; } if (InterruptHandler == NULL && ExternalVectorTable[InterruptType] == NULL) { return EFI_INVALID_PARAMETER; } if (InterruptHandler != NULL && ExternalVectorTable[InterruptType] != NULL) { return EFI_ALREADY_STARTED; } if (InterruptHandler != NULL) { SetInterruptDescriptorTableHandlerAddress ((UINTN)InterruptType, NULL); } else { // // Restore the original IDT handler address if InterruptHandler is NULL. // RestoreInterruptDescriptorTableHandlerAddress ((UINTN)InterruptType); } ExternalVectorTable[InterruptType] = InterruptHandler; return EFI_SUCCESS; } /** Returns a timer value from one of the CPU's internal timers. There is no inherent time interval between ticks but is a function of the CPU frequency. @param This - Protocol instance structure. @param TimerIndex - Specifies which CPU timer is requested. @param TimerValue - Pointer to the returned timer value. @param TimerPeriod - A pointer to the amount of time that passes in femtoseconds (10-15) for each increment of TimerValue. If TimerValue does not increment at a predictable rate, then 0 is returned. The amount of time that has passed between two calls to GetTimerValue() can be calculated with the formula (TimerValue2 - TimerValue1) * TimerPeriod. This parameter is optional and may be NULL. @retval EFI_SUCCESS - If the CPU timer count was returned. @retval EFI_UNSUPPORTED - If the CPU does not have any readable timers. @retval EFI_DEVICE_ERROR - If an error occurred while reading the timer. @retval EFI_INVALID_PARAMETER - TimerIndex is not valid or TimerValue is NULL. **/ EFI_STATUS EFIAPI CpuGetTimerValue ( IN EFI_CPU_ARCH_PROTOCOL *This, IN UINT32 TimerIndex, OUT UINT64 *TimerValue, OUT UINT64 *TimerPeriod OPTIONAL ) { if (TimerValue == NULL) { return EFI_INVALID_PARAMETER; } if (TimerIndex != 0) { return EFI_INVALID_PARAMETER; } *TimerValue = AsmReadTsc (); if (TimerPeriod != NULL) { // // BugBug: Hard coded. Don't know how to do this generically // //Slice: Don't wonder. This value is for Tsc timer. // using ACPI, HPET or TMR timer we will use other value for TimerPeriod. // ;) *TimerPeriod = 1000000000; } return EFI_SUCCESS; } /** Implementation of SetMemoryAttributes() service of CPU Architecture Protocol. This function modifies the attributes for the memory region specified by BaseAddress and Length from their current attributes to the attributes specified by Attributes. @param This The EFI_CPU_ARCH_PROTOCOL instance. @param BaseAddress The physical address that is the start address of a memory region. @param Length The size in bytes of the memory region. @param Attributes The bit mask of attributes to set for the memory region. @retval EFI_SUCCESS The attributes were set for the memory region. @retval EFI_ACCESS_DENIED The attributes for the memory resource range specified by BaseAddress and Length cannot be modified. @retval EFI_INVALID_PARAMETER Length is zero. Attributes specified an illegal combination of attributes that cannot be set together. @retval EFI_OUT_OF_RESOURCES There are not enough system resources to modify the attributes of the memory resource range. @retval EFI_UNSUPPORTED The processor does not support one or more bytes of the memory resource range specified by BaseAddress and Length. The bit mask of attributes is not support for the memory resource range specified by BaseAddress and Length. **/ EFI_STATUS EFIAPI CpuSetMemoryAttributes ( IN EFI_CPU_ARCH_PROTOCOL *This, IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN UINT64 Attributes ) { return EFI_UNSUPPORTED; #if USE_MTRR /*this is extra bug, we need no it */ RETURN_STATUS Status; MTRR_MEMORY_CACHE_TYPE CacheType; if (!IsMtrrSupported ()) { return EFI_UNSUPPORTED; } // // If this function is called because GCD SetMemorySpaceAttributes () is called // by RefreshGcdMemoryAttributes (), then we are just synchronzing GCD memory // map with MTRR values. So there is no need to modify MTRRs, just return immediately // to avoid unnecessary computing. // if (mIsFlushingGCD) { DEBUG((EFI_D_ERROR, " Flushing GCD\n")); return EFI_SUCCESS; } switch (Attributes) { case EFI_MEMORY_UC: CacheType = CacheUncacheable; break; case EFI_MEMORY_WC: CacheType = CacheWriteCombining; break; case EFI_MEMORY_WT: CacheType = CacheWriteThrough; break; case EFI_MEMORY_WP: CacheType = CacheWriteProtected; break; case EFI_MEMORY_WB: CacheType = CacheWriteBack; break; case EFI_MEMORY_UCE: case EFI_MEMORY_RP: case EFI_MEMORY_XP: case EFI_MEMORY_RUNTIME: return EFI_UNSUPPORTED; default: return EFI_INVALID_PARAMETER; } // // call MTRR libary function // Status = MtrrSetMemoryAttribute ( BaseAddress, Length, CacheType ); return (EFI_STATUS) Status; #endif } /** Initializes the valid bits mask and valid address mask for MTRRs. This function initializes the valid bits mask and valid address mask for MTRRs. **/ #if USE_MTRR VOID InitializeMtrrMask ( VOID ) { UINT32 RegEax; UINT8 PhysicalAddressBits; AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL); if (RegEax >= 0x80000008) { AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL); PhysicalAddressBits = (UINT8) RegEax; mValidMtrrBitsMask = LShiftU64 (1, PhysicalAddressBits) - 1; mValidMtrrAddressMask = mValidMtrrBitsMask & 0xfffffffffffff000ULL; } else { mValidMtrrBitsMask = MTRR_LIB_MSR_VALID_MASK; mValidMtrrAddressMask = MTRR_LIB_CACHE_VALID_ADDRESS; } } #endif /** Gets GCD Mem Space type from MTRR Type. This function gets GCD Mem Space type from MTRR Type. @param MtrrAttributes MTRR memory type @return GCD Mem Space type **/ #if USE_MTRR UINT64 GetMemorySpaceAttributeFromMtrrType ( IN UINT8 MtrrAttributes ) { switch (MtrrAttributes) { case MTRR_CACHE_UNCACHEABLE: return EFI_MEMORY_UC; case MTRR_CACHE_WRITE_COMBINING: return EFI_MEMORY_WC; case MTRR_CACHE_WRITE_THROUGH: return EFI_MEMORY_WT; case MTRR_CACHE_WRITE_PROTECTED: return EFI_MEMORY_WP; case MTRR_CACHE_WRITE_BACK: return EFI_MEMORY_WB; default: return 0; } } #endif /** Searches memory descriptors covered by given memory range. This function searches into the Gcd Memory Space for descriptors (from StartIndex to EndIndex) that contains the memory range specified by BaseAddress and Length. @param MemorySpaceMap Gcd Memory Space Map as array. @param NumberOfDescriptors Number of descriptors in map. @param BaseAddress BaseAddress for the requested range. @param Length Length for the requested range. @param StartIndex Start index into the Gcd Memory Space Map. @param EndIndex End index into the Gcd Memory Space Map. @retval EFI_SUCCESS Search successfully. @retval EFI_NOT_FOUND The requested descriptors does not exist. **/ EFI_STATUS SearchGcdMemorySpaces ( IN EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap, IN UINTN NumberOfDescriptors, IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, OUT UINTN *StartIndex, OUT UINTN *EndIndex ) { UINTN Index; *StartIndex = 0; *EndIndex = 0; for (Index = 0; Index < NumberOfDescriptors; Index++) { if (BaseAddress >= MemorySpaceMap[Index].BaseAddress && BaseAddress < MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length) { *StartIndex = Index; } if (BaseAddress + Length - 1 >= MemorySpaceMap[Index].BaseAddress && BaseAddress + Length - 1 < MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length) { *EndIndex = Index; return EFI_SUCCESS; } } return EFI_NOT_FOUND; } /** Sets the attributes for a specified range in Gcd Memory Space Map. This function sets the attributes for a specified range in Gcd Memory Space Map. @param MemorySpaceMap Gcd Memory Space Map as array @param NumberOfDescriptors Number of descriptors in map @param BaseAddress BaseAddress for the range @param Length Length for the range @param Attributes Attributes to set @retval EFI_SUCCESS Memory attributes set successfully @retval EFI_NOT_FOUND The specified range does not exist in Gcd Memory Space **/ EFI_STATUS SetGcdMemorySpaceAttributes ( IN EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap, IN UINTN NumberOfDescriptors, IN EFI_PHYSICAL_ADDRESS BaseAddress, IN UINT64 Length, IN UINT64 Attributes ) { EFI_STATUS Status; UINTN Index; UINTN StartIndex; UINTN EndIndex; EFI_PHYSICAL_ADDRESS RegionStart; UINT64 RegionLength; // // Get all memory descriptors covered by the memory range // Status = SearchGcdMemorySpaces ( MemorySpaceMap, NumberOfDescriptors, BaseAddress, Length, &StartIndex, &EndIndex ); if (EFI_ERROR (Status)) { return Status; } // // Go through all related descriptors and set attributes accordingly // for (Index = StartIndex; Index <= EndIndex; Index++) { if (MemorySpaceMap[Index].GcdMemoryType == EfiGcdMemoryTypeNonExistent) { continue; } // // Calculate the start and end address of the overlapping range // if (BaseAddress >= MemorySpaceMap[Index].BaseAddress) { RegionStart = BaseAddress; } else { RegionStart = MemorySpaceMap[Index].BaseAddress; } if (BaseAddress + Length - 1 < MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length) { RegionLength = BaseAddress + Length - RegionStart; } else { RegionLength = MemorySpaceMap[Index].BaseAddress + MemorySpaceMap[Index].Length - RegionStart; } // // Set memory attributes according to MTRR attribute and the original attribute of descriptor // gDS->SetMemorySpaceAttributes ( RegionStart, RegionLength, (MemorySpaceMap[Index].Attributes & ~EFI_MEMORY_CACHETYPE_MASK) | (MemorySpaceMap[Index].Capabilities & Attributes) ); } return EFI_SUCCESS; } /** Refreshes the GCD Memory Space attributes according to MTRRs. This function refreshes the GCD Memory Space attributes according to MTRRs. **/ #if USE_MTRR VOID RefreshGcdMemoryAttributes ( VOID ) { EFI_STATUS Status; UINTN Index; UINTN SubIndex; UINT64 RegValue; EFI_PHYSICAL_ADDRESS BaseAddress; UINT64 Length; UINT64 Attributes; UINT64 CurrentAttributes; UINT8 MtrrType; UINTN NumberOfDescriptors; EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap; UINT64 DefaultAttributes; VARIABLE_MTRR VariableMtrr[MTRR_NUMBER_OF_VARIABLE_MTRR]; MTRR_FIXED_SETTINGS MtrrFixedSettings; UINT32 FirmwareVariableMtrrCount; UINT8 DefaultMemoryType; if (!IsMtrrSupported ()) { return; } FirmwareVariableMtrrCount = GetFirmwareVariableMtrrCount (); ASSERT (FirmwareVariableMtrrCount <= MTRR_NUMBER_OF_VARIABLE_MTRR); mIsFlushingGCD = TRUE; MemorySpaceMap = NULL; // // Initialize the valid bits mask and valid address mask for MTRRs // InitializeMtrrMask (); // // Get the memory attribute of variable MTRRs // MtrrGetMemoryAttributeInVariableMtrr ( mValidMtrrBitsMask, mValidMtrrAddressMask, VariableMtrr ); // // Get the memory space map from GCD // Status = gDS->GetMemorySpaceMap ( &NumberOfDescriptors, &MemorySpaceMap ); ASSERT_EFI_ERROR (Status); DefaultMemoryType = (UINT8) MtrrGetDefaultMemoryType (); DefaultAttributes = GetMemorySpaceAttributeFromMtrrType (DefaultMemoryType); // // Set default attributes to all spaces. // for (Index = 0; Index < NumberOfDescriptors; Index++) { if (MemorySpaceMap[Index].GcdMemoryType == EfiGcdMemoryTypeNonExistent) { continue; } gDS->SetMemorySpaceAttributes ( MemorySpaceMap[Index].BaseAddress, MemorySpaceMap[Index].Length, (MemorySpaceMap[Index].Attributes & ~EFI_MEMORY_CACHETYPE_MASK) | (MemorySpaceMap[Index].Capabilities & DefaultAttributes) ); } // // Go for variable MTRRs with WB attribute // for (Index = 0; Index < FirmwareVariableMtrrCount; Index++) { if (VariableMtrr[Index].Valid && VariableMtrr[Index].Type == MTRR_CACHE_WRITE_BACK) { SetGcdMemorySpaceAttributes ( MemorySpaceMap, NumberOfDescriptors, VariableMtrr[Index].BaseAddress, VariableMtrr[Index].Length, EFI_MEMORY_WB ); } } // // Go for variable MTRRs with the attribute except for WB and UC attributes // for (Index = 0; Index < FirmwareVariableMtrrCount; Index++) { if (VariableMtrr[Index].Valid && VariableMtrr[Index].Type != MTRR_CACHE_WRITE_BACK && VariableMtrr[Index].Type != MTRR_CACHE_UNCACHEABLE) { Attributes = GetMemorySpaceAttributeFromMtrrType ((UINT8) VariableMtrr[Index].Type); SetGcdMemorySpaceAttributes ( MemorySpaceMap, NumberOfDescriptors, VariableMtrr[Index].BaseAddress, VariableMtrr[Index].Length, Attributes ); } } // // Go for variable MTRRs with UC attribute // for (Index = 0; Index < FirmwareVariableMtrrCount; Index++) { if (VariableMtrr[Index].Valid && VariableMtrr[Index].Type == MTRR_CACHE_UNCACHEABLE) { SetGcdMemorySpaceAttributes ( MemorySpaceMap, NumberOfDescriptors, VariableMtrr[Index].BaseAddress, VariableMtrr[Index].Length, EFI_MEMORY_UC ); } } // // Go for fixed MTRRs // Attributes = 0; BaseAddress = 0; Length = 0; MtrrGetFixedMtrr (&MtrrFixedSettings); for (Index = 0; Index < MTRR_NUMBER_OF_FIXED_MTRR; Index++) { RegValue = MtrrFixedSettings.Mtrr[Index]; // // Check for continuous fixed MTRR sections // for (SubIndex = 0; SubIndex < 8; SubIndex++) { MtrrType = (UINT8) RShiftU64 (RegValue, SubIndex * 8); CurrentAttributes = GetMemorySpaceAttributeFromMtrrType (MtrrType); if (Length == 0) { // // A new MTRR attribute begins // Attributes = CurrentAttributes; } else { // // If fixed MTRR attribute changed, then set memory attribute for previous atrribute // if (CurrentAttributes != Attributes) { SetGcdMemorySpaceAttributes ( MemorySpaceMap, NumberOfDescriptors, BaseAddress, Length, Attributes ); BaseAddress = mFixedMtrrTable[Index].BaseAddress + mFixedMtrrTable[Index].Length * SubIndex; Length = 0; Attributes = CurrentAttributes; } } Length += mFixedMtrrTable[Index].Length; } } // // Handle the last fixed MTRR region // SetGcdMemorySpaceAttributes ( MemorySpaceMap, NumberOfDescriptors, BaseAddress, Length, Attributes ); // // Free memory space map allocated by GCD service GetMemorySpaceMap () // if (MemorySpaceMap != NULL) { FreePool (MemorySpaceMap); } mIsFlushingGCD = FALSE; } #endif /** Set Interrupt Descriptor Table Handler Address. @param Index The Index of the interrupt descriptor table handle. @param Handler Handler address. **/ VOID SetInterruptDescriptorTableHandlerAddress ( IN UINTN Index, IN VOID *Handler OPTIONAL ) { UINTN UintnHandler; if (Handler != NULL) { UintnHandler = (UINTN) Handler; } else { UintnHandler = ((UINTN) AsmIdtVector00) + (8 * Index); } gIdtTable[Index].Bits.OffsetLow = (UINT16)UintnHandler; gIdtTable[Index].Bits.Reserved_0 = 0; gIdtTable[Index].Bits.GateType = IA32_IDT_GATE_TYPE_INTERRUPT_32; gIdtTable[Index].Bits.OffsetHigh = (UINT16)(UintnHandler >> 16); #if defined (MDE_CPU_X64) gIdtTable[Index].Bits.OffsetUpper = (UINT32)(UintnHandler >> 32); gIdtTable[Index].Bits.Reserved_1 = 0; #endif } /** Restore original Interrupt Descriptor Table Handler Address. @param Index The Index of the interrupt descriptor table handle. **/ VOID RestoreInterruptDescriptorTableHandlerAddress ( IN UINTN Index ) { if (Index < mOrigIdtEntryCount) { gIdtTable[Index].Bits.OffsetLow = mOrigIdtEntry[Index].Bits.OffsetLow; gIdtTable[Index].Bits.OffsetHigh = mOrigIdtEntry[Index].Bits.OffsetHigh; #if defined (MDE_CPU_X64) gIdtTable[Index].Bits.OffsetUpper = mOrigIdtEntry[Index].Bits.OffsetUpper; #endif } if (Index >= mOrigIdtEntryCount) return; CopyMem(gIdtTable + Index, mOrigIdtEntry + Index, sizeof(gIdtTable[Index])); } /** Initialize Interrupt Descriptor Table for interrupt handling. **/ VOID InitInterruptDescriptorTable ( VOID ) { EFI_STATUS Status; IA32_DESCRIPTOR OldIdtPtr; IA32_IDT_GATE_DESCRIPTOR *OldIdt; UINTN OldIdtSize; VOID *IdtPtrAlignmentBuffer; IA32_DESCRIPTOR *IdtPtr; UINTN Index; UINT16 CurrentCs; VOID *IntHandler; SetMem (ExternalVectorTable, sizeof(ExternalVectorTable), 0); // // Get original IDT address and size. // AsmReadIdtr ((IA32_DESCRIPTOR *) &OldIdtPtr); if ((OldIdtPtr.Base != 0) && ((OldIdtPtr.Limit & 7) == 7)) { OldIdt = (IA32_IDT_GATE_DESCRIPTOR*) OldIdtPtr.Base; OldIdtSize = (OldIdtPtr.Limit + 1) / sizeof (IA32_IDT_GATE_DESCRIPTOR); // // Save original IDT entry and IDT entry count. // mOrigIdtEntry = AllocateCopyPool (OldIdtPtr.Limit + 1, (VOID *) OldIdtPtr.Base); // ASSERT (mOrigIdtEntry != NULL); mOrigIdtEntryCount = (UINT16) OldIdtSize; } else { OldIdt = NULL; OldIdtSize = 0; } // // Intialize IDT // CurrentCs = AsmReadCs(); for (Index = 0; Index < INTERRUPT_VECTOR_NUMBER; Index ++) { // // If the old IDT had a handler for this interrupt, then // preserve it. // if (Index < OldIdtSize) { IntHandler = (VOID*) ( OldIdt[Index].Bits.OffsetLow + (((UINTN) OldIdt[Index].Bits.OffsetHigh) << 16) #if defined (MDE_CPU_X64) + (((UINTN) OldIdt[Index].Bits.OffsetUpper) << 32) #endif ); } else { IntHandler = NULL; } #if 1 //patch by nms42 for AMD CPU if (Index == 0x6F) { IntHandler = NULL; } #endif gIdtTable[Index].Bits.Selector = CurrentCs; gIdtTable[Index].Bits.Reserved_0 = 0; gIdtTable[Index].Bits.GateType = IA32_IDT_GATE_TYPE_INTERRUPT_32; SetInterruptDescriptorTableHandlerAddress (Index, IntHandler); } // // Load IDT Pointer // IdtPtrAlignmentBuffer = AllocatePool (sizeof (*IdtPtr) + 16); IdtPtr = ALIGN_POINTER (IdtPtrAlignmentBuffer, 16); // IdtPtr->Base = (UINT32)(((UINTN)(VOID*) gIdtTable) & (BASE_4GB-1)); IdtPtr->Base = (UINTN)(VOID*) gIdtTable; IdtPtr->Limit = (UINT16) (sizeof (gIdtTable) - 1); AsmWriteIdtr (IdtPtr); FreePool (IdtPtrAlignmentBuffer); // // Initialize Exception Handlers // for (Index = OldIdtSize; Index < 32; Index++) { Status = CpuRegisterInterruptHandler (&gCpu, Index, CommonExceptionHandler); // ASSERT_EFI_ERROR (Status); } // // Set the pointer to the array of C based exception handling routines. // InitializeExternalVectorTablePtr (ExternalVectorTable); } /** Callback function for idle events. @param Event Event whose notification function is being invoked. @param Context The pointer to the notification function's context, which is implementation-dependent. **/ VOID EFIAPI IdleLoopEventCallback ( IN EFI_EVENT Event, IN VOID *Context ) { CpuSleep (); } /** Initialize the state information for the CPU Architectural Protocol. @param ImageHandle Image handle this driver. @param SystemTable Pointer to the System Table. @retval EFI_SUCCESS Thread can be successfully created @retval EFI_OUT_OF_RESOURCES Cannot allocate protocol data structure @retval EFI_DEVICE_ERROR Cannot create the thread **/ EFI_STATUS EFIAPI InitializeCpu ( IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable ) { EFI_STATUS Status; // InitializeFloatingPointUnits (); //nah // // Make sure interrupts are disabled // DisableInterrupts (); // // Init GDT for DXE // InitGlobalDescriptorTable (); // // Setup IDT pointer, IDT and interrupt entry points // InitInterruptDescriptorTable (); // // Enable the local APIC for Virtual Wire Mode. // ProgramVirtualWireMode (); // // Install CPU Architectural Protocol // Status = gBS->InstallMultipleProtocolInterfaces ( &mCpuHandle, &gEfiCpuArchProtocolGuid, &gCpu, NULL ); // ASSERT_EFI_ERROR (Status); if (EFI_ERROR (Status)) { return Status; } // // Refresh GCD memory space map according to MTRR value. // // RefreshGcdMemoryAttributes (); // // Setup a callback for idle events // Status = gBS->CreateEventEx ( EVT_NOTIFY_SIGNAL, TPL_NOTIFY, IdleLoopEventCallback, NULL, &gIdleLoopEventGuid, &IdleLoopEvent ); // ASSERT_EFI_ERROR (Status); return Status; }