/**@file
Initialize Secure Encrypted Virtualization (SEV) support
Copyright (c) 2017 - 2020, Advanced Micro Devices. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
//
// The package level header files this module uses
//
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "Platform.h"
STATIC
UINT64
GetHypervisorFeature (
VOID
);
/**
Initialize SEV-SNP support if running as an SEV-SNP guest.
**/
STATIC
VOID
AmdSevSnpInitialize (
VOID
)
{
EFI_PEI_HOB_POINTERS Hob;
EFI_HOB_RESOURCE_DESCRIPTOR *ResourceHob;
UINT64 HvFeatures;
EFI_STATUS PcdStatus;
if (!MemEncryptSevSnpIsEnabled ()) {
return;
}
//
// Query the hypervisor feature using the CcExitVmgExit and set the value in the
// hypervisor features PCD.
//
HvFeatures = GetHypervisorFeature ();
PcdStatus = PcdSet64S (PcdGhcbHypervisorFeatures, HvFeatures);
ASSERT_RETURN_ERROR (PcdStatus);
//
// Iterate through the system RAM and validate it.
//
for (Hob.Raw = GetHobList (); !END_OF_HOB_LIST (Hob); Hob.Raw = GET_NEXT_HOB (Hob)) {
if ((Hob.Raw != NULL) && (GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR)) {
ResourceHob = Hob.ResourceDescriptor;
if (ResourceHob->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY) {
if (ResourceHob->PhysicalStart >= SIZE_4GB) {
ResourceHob->ResourceType = BZ3937_EFI_RESOURCE_MEMORY_UNACCEPTED;
continue;
}
MemEncryptSevSnpPreValidateSystemRam (
ResourceHob->PhysicalStart,
EFI_SIZE_TO_PAGES ((UINTN)ResourceHob->ResourceLength)
);
}
}
}
}
/**
Handle an SEV-SNP/GHCB protocol check failure.
Notify the hypervisor using the VMGEXIT instruction that the SEV-SNP guest
wishes to be terminated.
@param[in] ReasonCode Reason code to provide to the hypervisor for the
termination request.
**/
STATIC
VOID
SevEsProtocolFailure (
IN UINT8 ReasonCode
)
{
MSR_SEV_ES_GHCB_REGISTER Msr;
//
// Use the GHCB MSR Protocol to request termination by the hypervisor
//
Msr.GhcbPhysicalAddress = 0;
Msr.GhcbTerminate.Function = GHCB_INFO_TERMINATE_REQUEST;
Msr.GhcbTerminate.ReasonCodeSet = GHCB_TERMINATE_GHCB;
Msr.GhcbTerminate.ReasonCode = ReasonCode;
AsmWriteMsr64 (MSR_SEV_ES_GHCB, Msr.GhcbPhysicalAddress);
AsmVmgExit ();
ASSERT (FALSE);
CpuDeadLoop ();
}
/**
Get the hypervisor features bitmap
**/
STATIC
UINT64
GetHypervisorFeature (
VOID
)
{
UINT64 Status;
GHCB *Ghcb;
MSR_SEV_ES_GHCB_REGISTER Msr;
BOOLEAN InterruptState;
UINT64 Features;
Msr.GhcbPhysicalAddress = AsmReadMsr64 (MSR_SEV_ES_GHCB);
Ghcb = Msr.Ghcb;
//
// Initialize the GHCB
//
CcExitVmgInit (Ghcb, &InterruptState);
//
// Query the Hypervisor Features.
//
Status = CcExitVmgExit (Ghcb, SVM_EXIT_HYPERVISOR_FEATURES, 0, 0);
if ((Status != 0)) {
SevEsProtocolFailure (GHCB_TERMINATE_GHCB_GENERAL);
}
Features = Ghcb->SaveArea.SwExitInfo2;
CcExitVmgDone (Ghcb, InterruptState);
return Features;
}
/**
This function can be used to register the GHCB GPA.
@param[in] Address The physical address to be registered.
**/
STATIC
VOID
GhcbRegister (
IN EFI_PHYSICAL_ADDRESS Address
)
{
MSR_SEV_ES_GHCB_REGISTER Msr;
MSR_SEV_ES_GHCB_REGISTER CurrentMsr;
//
// Save the current MSR Value
//
CurrentMsr.GhcbPhysicalAddress = AsmReadMsr64 (MSR_SEV_ES_GHCB);
//
// Use the GHCB MSR Protocol to request to register the GPA.
//
Msr.GhcbPhysicalAddress = Address & ~EFI_PAGE_MASK;
Msr.GhcbGpaRegister.Function = GHCB_INFO_GHCB_GPA_REGISTER_REQUEST;
AsmWriteMsr64 (MSR_SEV_ES_GHCB, Msr.GhcbPhysicalAddress);
AsmVmgExit ();
Msr.GhcbPhysicalAddress = AsmReadMsr64 (MSR_SEV_ES_GHCB);
//
// If hypervisor responded with a different GPA than requested then fail.
//
if ((Msr.GhcbGpaRegister.Function != GHCB_INFO_GHCB_GPA_REGISTER_RESPONSE) ||
((Msr.GhcbPhysicalAddress & ~EFI_PAGE_MASK) != Address))
{
SevEsProtocolFailure (GHCB_TERMINATE_GHCB_GENERAL);
}
//
// Restore the MSR
//
AsmWriteMsr64 (MSR_SEV_ES_GHCB, CurrentMsr.GhcbPhysicalAddress);
}
/**
Initialize SEV-ES support if running as an SEV-ES guest.
**/
STATIC
VOID
AmdSevEsInitialize (
IN EFI_HOB_PLATFORM_INFO *PlatformInfoHob
)
{
UINT8 *GhcbBase;
PHYSICAL_ADDRESS GhcbBasePa;
UINTN GhcbPageCount;
UINT8 *GhcbBackupBase;
UINT8 *GhcbBackupPages;
UINTN GhcbBackupPageCount;
SEV_ES_PER_CPU_DATA *SevEsData;
UINTN PageCount;
RETURN_STATUS Status;
IA32_DESCRIPTOR Gdtr;
VOID *Gdt;
if (!MemEncryptSevEsIsEnabled ()) {
return;
}
Status = PcdSetBoolS (PcdSevEsIsEnabled, TRUE);
ASSERT_RETURN_ERROR (Status);
//
// Allocate GHCB and per-CPU variable pages.
// Since the pages must survive across the UEFI to OS transition
// make them reserved.
//
GhcbPageCount = PlatformInfoHob->PcdCpuMaxLogicalProcessorNumber * 2;
GhcbBase = AllocateReservedPages (GhcbPageCount);
ASSERT (GhcbBase != NULL);
GhcbBasePa = (PHYSICAL_ADDRESS)(UINTN)GhcbBase;
//
// Each vCPU gets two consecutive pages, the first is the GHCB and the
// second is the per-CPU variable page. Loop through the allocation and
// only clear the encryption mask for the GHCB pages.
//
for (PageCount = 0; PageCount < GhcbPageCount; PageCount += 2) {
Status = MemEncryptSevClearPageEncMask (
0,
GhcbBasePa + EFI_PAGES_TO_SIZE (PageCount),
1
);
ASSERT_RETURN_ERROR (Status);
}
ZeroMem (GhcbBase, EFI_PAGES_TO_SIZE (GhcbPageCount));
Status = PcdSet64S (PcdGhcbBase, GhcbBasePa);
ASSERT_RETURN_ERROR (Status);
PlatformInfoHob->GhcbBase = GhcbBasePa;
Status = PcdSet64S (PcdGhcbSize, EFI_PAGES_TO_SIZE (GhcbPageCount));
ASSERT_RETURN_ERROR (Status);
DEBUG ((
DEBUG_INFO,
"SEV-ES is enabled, %lu GHCB pages allocated starting at 0x%p\n",
(UINT64)GhcbPageCount,
GhcbBase
));
//
// Allocate #VC recursion backup pages. The number of backup pages needed is
// one less than the maximum VC count.
//
GhcbBackupPageCount = PlatformInfoHob->PcdCpuMaxLogicalProcessorNumber * (VMGEXIT_MAXIMUM_VC_COUNT - 1);
GhcbBackupBase = AllocatePages (GhcbBackupPageCount);
ASSERT (GhcbBackupBase != NULL);
GhcbBackupPages = GhcbBackupBase;
for (PageCount = 1; PageCount < GhcbPageCount; PageCount += 2) {
SevEsData =
(SEV_ES_PER_CPU_DATA *)(GhcbBase + EFI_PAGES_TO_SIZE (PageCount));
SevEsData->GhcbBackupPages = GhcbBackupPages;
GhcbBackupPages += EFI_PAGE_SIZE * (VMGEXIT_MAXIMUM_VC_COUNT - 1);
}
DEBUG ((
DEBUG_INFO,
"SEV-ES is enabled, %lu GHCB backup pages allocated starting at 0x%p\n",
(UINT64)GhcbBackupPageCount,
GhcbBackupBase
));
//
// SEV-SNP guest requires that GHCB GPA must be registered before using it.
//
if (MemEncryptSevSnpIsEnabled ()) {
GhcbRegister (GhcbBasePa);
}
AsmWriteMsr64 (MSR_SEV_ES_GHCB, GhcbBasePa);
//
// Now that the PEI GHCB is set up, the SEC GHCB page is no longer necessary
// to keep shared. Later, it is exposed to the OS as EfiConventionalMemory, so
// it needs to be marked private. The size of the region is hardcoded in
// OvmfPkg/ResetVector/ResetVector.nasmb in the definition of
// SNP_SEC_MEM_BASE_DESC_2.
//
Status = MemEncryptSevSetPageEncMask (
0, // Cr3 -- use system Cr3
FixedPcdGet32 (PcdOvmfSecGhcbBase), // BaseAddress
1 // NumPages
);
ASSERT_RETURN_ERROR (Status);
//
// The SEV support will clear the C-bit from non-RAM areas. The early GDT
// lives in a non-RAM area, so when an exception occurs (like a #VC) the GDT
// will be read as un-encrypted even though it was created before the C-bit
// was cleared (encrypted). This will result in a failure to be able to
// handle the exception.
//
AsmReadGdtr (&Gdtr);
Gdt = AllocatePages (EFI_SIZE_TO_PAGES ((UINTN)Gdtr.Limit + 1));
ASSERT (Gdt != NULL);
CopyMem (Gdt, (VOID *)Gdtr.Base, Gdtr.Limit + 1);
Gdtr.Base = (UINTN)Gdt;
AsmWriteGdtr (&Gdtr);
}
/**
Function checks if SEV support is available, if present then it sets
the dynamic PcdPteMemoryEncryptionAddressOrMask with memory encryption mask.
**/
VOID
AmdSevInitialize (
IN OUT EFI_HOB_PLATFORM_INFO *PlatformInfoHob
)
{
UINT64 EncryptionMask;
RETURN_STATUS PcdStatus;
//
// Check if SEV is enabled
//
if (!MemEncryptSevIsEnabled ()) {
return;
}
//
// Check and perform SEV-SNP initialization if required. This need to be
// done before the GHCB page is made shared in the AmdSevEsInitialize(). This
// is because the system RAM must be validated before it is made shared.
// The AmdSevSnpInitialize() validates the system RAM.
//
AmdSevSnpInitialize ();
//
// Set Memory Encryption Mask PCD
//
EncryptionMask = MemEncryptSevGetEncryptionMask ();
PcdStatus = PcdSet64S (PcdPteMemoryEncryptionAddressOrMask, EncryptionMask);
ASSERT_RETURN_ERROR (PcdStatus);
PlatformInfoHob->PteMemoryEncryptionAddressOrMask = EncryptionMask;
DEBUG ((DEBUG_INFO, "SEV is enabled (mask 0x%lx)\n", EncryptionMask));
//
// Set Pcd to Deny the execution of option ROM when security
// violation.
//
PcdStatus = PcdSet32S (PcdOptionRomImageVerificationPolicy, 0x4);
ASSERT_RETURN_ERROR (PcdStatus);
//
// When SMM is required, cover the pages containing the initial SMRAM Save
// State Map with a memory allocation HOB:
//
// There's going to be a time interval between our decrypting those pages for
// SMBASE relocation and re-encrypting the same pages after SMBASE
// relocation. We shall ensure that the DXE phase stay away from those pages
// until after re-encryption, in order to prevent an information leak to the
// hypervisor.
//
if (PlatformInfoHob->SmmSmramRequire && (PlatformInfoHob->BootMode != BOOT_ON_S3_RESUME)) {
RETURN_STATUS LocateMapStatus;
UINTN MapPagesBase;
UINTN MapPagesCount;
LocateMapStatus = MemEncryptSevLocateInitialSmramSaveStateMapPages (
&MapPagesBase,
&MapPagesCount
);
ASSERT_RETURN_ERROR (LocateMapStatus);
if (PlatformInfoHob->Q35SmramAtDefaultSmbase) {
//
// The initial SMRAM Save State Map has been covered as part of a larger
// reserved memory allocation in InitializeRamRegions().
//
ASSERT (SMM_DEFAULT_SMBASE <= MapPagesBase);
ASSERT (
(MapPagesBase + EFI_PAGES_TO_SIZE (MapPagesCount) <=
SMM_DEFAULT_SMBASE + MCH_DEFAULT_SMBASE_SIZE)
);
} else {
BuildMemoryAllocationHob (
MapPagesBase, // BaseAddress
EFI_PAGES_TO_SIZE (MapPagesCount), // Length
EfiBootServicesData // MemoryType
);
}
}
//
// Check and perform SEV-ES initialization if required.
//
AmdSevEsInitialize (PlatformInfoHob);
//
// Set the Confidential computing attr PCD to communicate which SEV
// technology is active.
//
if (MemEncryptSevSnpIsEnabled ()) {
PcdStatus = PcdSet64S (PcdConfidentialComputingGuestAttr, CCAttrAmdSevSnp);
PlatformInfoHob->PcdConfidentialComputingGuestAttr = CCAttrAmdSevSnp;
} else if (MemEncryptSevEsIsEnabled ()) {
PcdStatus = PcdSet64S (PcdConfidentialComputingGuestAttr, CCAttrAmdSevEs);
PlatformInfoHob->PcdConfidentialComputingGuestAttr = CCAttrAmdSevEs;
} else {
PcdStatus = PcdSet64S (PcdConfidentialComputingGuestAttr, CCAttrAmdSev);
PlatformInfoHob->PcdConfidentialComputingGuestAttr = CCAttrAmdSev;
}
ASSERT_RETURN_ERROR (PcdStatus);
}
/**
The function performs SEV specific region initialization.
**/
VOID
SevInitializeRam (
VOID
)
{
if (MemEncryptSevSnpIsEnabled ()) {
//
// If SEV-SNP is enabled, reserve the Secrets and CPUID memory area.
//
// This memory range is given to the PSP by the hypervisor to populate
// the information used during the SNP VM boots, and it need to persist
// across the kexec boots. Mark it as EfiReservedMemoryType so that
// the guest firmware and OS does not use it as a system memory.
//
BuildMemoryAllocationHob (
(EFI_PHYSICAL_ADDRESS)(UINTN)PcdGet32 (PcdOvmfSnpSecretsBase),
(UINT64)(UINTN)PcdGet32 (PcdOvmfSnpSecretsSize),
EfiReservedMemoryType
);
BuildMemoryAllocationHob (
(EFI_PHYSICAL_ADDRESS)(UINTN)PcdGet32 (PcdOvmfCpuidBase),
(UINT64)(UINTN)PcdGet32 (PcdOvmfCpuidSize),
EfiReservedMemoryType
);
}
}