/** @file
Main SEC phase code. Transitions to PEI.
Copyright (c) 2008 - 2015, Intel Corporation. All rights reserved.
(C) Copyright 2016 Hewlett Packard Enterprise Development LP
Copyright (c) 2020, Advanced Micro Devices, Inc. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "ProcessorBind.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "AmdSev.h"
#define SEC_IDT_ENTRY_COUNT 34
typedef struct _SEC_IDT_TABLE {
EFI_PEI_SERVICES *PeiService;
IA32_IDT_GATE_DESCRIPTOR IdtTable[SEC_IDT_ENTRY_COUNT];
} SEC_IDT_TABLE;
VOID
EFIAPI
SecStartupPhase2 (
IN VOID *Context
);
EFI_STATUS
EFIAPI
TemporaryRamMigration (
IN CONST EFI_PEI_SERVICES **PeiServices,
IN EFI_PHYSICAL_ADDRESS TemporaryMemoryBase,
IN EFI_PHYSICAL_ADDRESS PermanentMemoryBase,
IN UINTN CopySize
);
//
//
//
EFI_PEI_TEMPORARY_RAM_SUPPORT_PPI mTemporaryRamSupportPpi = {
TemporaryRamMigration
};
EFI_PEI_PPI_DESCRIPTOR mPrivateDispatchTableMp[] = {
{
(EFI_PEI_PPI_DESCRIPTOR_PPI),
&gEfiTemporaryRamSupportPpiGuid,
&mTemporaryRamSupportPpi
},
{
(EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
&gEfiPeiMpInitLibMpDepPpiGuid,
NULL
},
};
EFI_PEI_PPI_DESCRIPTOR mPrivateDispatchTableUp[] = {
{
(EFI_PEI_PPI_DESCRIPTOR_PPI),
&gEfiTemporaryRamSupportPpiGuid,
&mTemporaryRamSupportPpi
},
{
(EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),
&gEfiPeiMpInitLibUpDepPpiGuid,
NULL
},
};
//
// Template of an IDT entry pointing to 10:FFFFFFE4h.
//
IA32_IDT_GATE_DESCRIPTOR mIdtEntryTemplate = {
{ // Bits
0xffe4, // OffsetLow
0x10, // Selector
0x0, // Reserved_0
IA32_IDT_GATE_TYPE_INTERRUPT_32, // GateType
0xffff // OffsetHigh
}
};
/**
Locates the main boot firmware volume.
@param[in,out] BootFv On input, the base of the BootFv
On output, the decompressed main firmware volume
@retval EFI_SUCCESS The main firmware volume was located and decompressed
@retval EFI_NOT_FOUND The main firmware volume was not found
**/
EFI_STATUS
FindMainFv (
IN OUT EFI_FIRMWARE_VOLUME_HEADER **BootFv
)
{
EFI_FIRMWARE_VOLUME_HEADER *Fv;
UINTN Distance;
ASSERT (((UINTN)*BootFv & EFI_PAGE_MASK) == 0);
Fv = *BootFv;
Distance = (UINTN)(*BootFv)->FvLength;
do {
Fv = (EFI_FIRMWARE_VOLUME_HEADER *)((UINT8 *)Fv - EFI_PAGE_SIZE);
Distance += EFI_PAGE_SIZE;
if (Distance > SIZE_32MB) {
return EFI_NOT_FOUND;
}
if (Fv->Signature != EFI_FVH_SIGNATURE) {
continue;
}
if ((UINTN)Fv->FvLength > Distance) {
continue;
}
*BootFv = Fv;
return EFI_SUCCESS;
} while (TRUE);
}
/**
Locates a section within a series of sections
with the specified section type.
The Instance parameter indicates which instance of the section
type to return. (0 is first instance, 1 is second...)
@param[in] Sections The sections to search
@param[in] SizeOfSections Total size of all sections
@param[in] SectionType The section type to locate
@param[in] Instance The section instance number
@param[out] FoundSection The FFS section if found
@retval EFI_SUCCESS The file and section was found
@retval EFI_NOT_FOUND The file and section was not found
@retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted
**/
EFI_STATUS
FindFfsSectionInstance (
IN VOID *Sections,
IN UINTN SizeOfSections,
IN EFI_SECTION_TYPE SectionType,
IN UINTN Instance,
OUT EFI_COMMON_SECTION_HEADER **FoundSection
)
{
EFI_PHYSICAL_ADDRESS CurrentAddress;
UINT32 Size;
EFI_PHYSICAL_ADDRESS EndOfSections;
EFI_COMMON_SECTION_HEADER *Section;
EFI_PHYSICAL_ADDRESS EndOfSection;
//
// Loop through the FFS file sections within the PEI Core FFS file
//
EndOfSection = (EFI_PHYSICAL_ADDRESS)(UINTN)Sections;
EndOfSections = EndOfSection + SizeOfSections;
for ( ; ;) {
if (EndOfSection == EndOfSections) {
break;
}
CurrentAddress = (EndOfSection + 3) & ~(3ULL);
if (CurrentAddress >= EndOfSections) {
return EFI_VOLUME_CORRUPTED;
}
Section = (EFI_COMMON_SECTION_HEADER *)(UINTN)CurrentAddress;
Size = SECTION_SIZE (Section);
if (Size < sizeof (*Section)) {
return EFI_VOLUME_CORRUPTED;
}
EndOfSection = CurrentAddress + Size;
if (EndOfSection > EndOfSections) {
return EFI_VOLUME_CORRUPTED;
}
//
// Look for the requested section type
//
if (Section->Type == SectionType) {
if (Instance == 0) {
*FoundSection = Section;
return EFI_SUCCESS;
} else {
Instance--;
}
}
}
return EFI_NOT_FOUND;
}
/**
Locates a section within a series of sections
with the specified section type.
@param[in] Sections The sections to search
@param[in] SizeOfSections Total size of all sections
@param[in] SectionType The section type to locate
@param[out] FoundSection The FFS section if found
@retval EFI_SUCCESS The file and section was found
@retval EFI_NOT_FOUND The file and section was not found
@retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted
**/
EFI_STATUS
FindFfsSectionInSections (
IN VOID *Sections,
IN UINTN SizeOfSections,
IN EFI_SECTION_TYPE SectionType,
OUT EFI_COMMON_SECTION_HEADER **FoundSection
)
{
return FindFfsSectionInstance (
Sections,
SizeOfSections,
SectionType,
0,
FoundSection
);
}
/**
Locates a FFS file with the specified file type and a section
within that file with the specified section type.
@param[in] Fv The firmware volume to search
@param[in] FileType The file type to locate
@param[in] SectionType The section type to locate
@param[out] FoundSection The FFS section if found
@retval EFI_SUCCESS The file and section was found
@retval EFI_NOT_FOUND The file and section was not found
@retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted
**/
EFI_STATUS
FindFfsFileAndSection (
IN EFI_FIRMWARE_VOLUME_HEADER *Fv,
IN EFI_FV_FILETYPE FileType,
IN EFI_SECTION_TYPE SectionType,
OUT EFI_COMMON_SECTION_HEADER **FoundSection
)
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS CurrentAddress;
EFI_PHYSICAL_ADDRESS EndOfFirmwareVolume;
EFI_FFS_FILE_HEADER *File;
UINT32 Size;
EFI_PHYSICAL_ADDRESS EndOfFile;
if (Fv->Signature != EFI_FVH_SIGNATURE) {
DEBUG ((DEBUG_ERROR, "FV at %p does not have FV header signature\n", Fv));
return EFI_VOLUME_CORRUPTED;
}
CurrentAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)Fv;
EndOfFirmwareVolume = CurrentAddress + Fv->FvLength;
//
// Loop through the FFS files in the Boot Firmware Volume
//
for (EndOfFile = CurrentAddress + Fv->HeaderLength; ; ) {
CurrentAddress = (EndOfFile + 7) & ~(7ULL);
if (CurrentAddress > EndOfFirmwareVolume) {
return EFI_VOLUME_CORRUPTED;
}
File = (EFI_FFS_FILE_HEADER *)(UINTN)CurrentAddress;
Size = FFS_FILE_SIZE (File);
if (Size < (sizeof (*File) + sizeof (EFI_COMMON_SECTION_HEADER))) {
return EFI_VOLUME_CORRUPTED;
}
EndOfFile = CurrentAddress + Size;
if (EndOfFile > EndOfFirmwareVolume) {
return EFI_VOLUME_CORRUPTED;
}
//
// Look for the request file type
//
if (File->Type != FileType) {
continue;
}
Status = FindFfsSectionInSections (
(VOID *)(File + 1),
(UINTN)EndOfFile - (UINTN)(File + 1),
SectionType,
FoundSection
);
if (!EFI_ERROR (Status) || (Status == EFI_VOLUME_CORRUPTED)) {
return Status;
}
}
}
/**
Locates the compressed main firmware volume and decompresses it.
@param[in,out] Fv On input, the firmware volume to search
On output, the decompressed BOOT/PEI FV
@retval EFI_SUCCESS The file and section was found
@retval EFI_NOT_FOUND The file and section was not found
@retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted
**/
EFI_STATUS
DecompressMemFvs (
IN OUT EFI_FIRMWARE_VOLUME_HEADER **Fv
)
{
EFI_STATUS Status;
EFI_GUID_DEFINED_SECTION *Section;
UINT32 OutputBufferSize;
UINT32 ScratchBufferSize;
UINT16 SectionAttribute;
UINT32 AuthenticationStatus;
VOID *OutputBuffer;
VOID *ScratchBuffer;
EFI_COMMON_SECTION_HEADER *FvSection;
EFI_FIRMWARE_VOLUME_HEADER *PeiMemFv;
EFI_FIRMWARE_VOLUME_HEADER *DxeMemFv;
UINT32 FvHeaderSize;
UINT32 FvSectionSize;
FvSection = (EFI_COMMON_SECTION_HEADER *)NULL;
Status = FindFfsFileAndSection (
*Fv,
EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE,
EFI_SECTION_GUID_DEFINED,
(EFI_COMMON_SECTION_HEADER **)&Section
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Unable to find GUID defined section\n"));
return Status;
}
Status = ExtractGuidedSectionGetInfo (
Section,
&OutputBufferSize,
&ScratchBufferSize,
&SectionAttribute
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Unable to GetInfo for GUIDed section\n"));
return Status;
}
OutputBuffer = (VOID *)((UINT8 *)(UINTN)PcdGet32 (PcdOvmfDxeMemFvBase) + SIZE_1MB);
ScratchBuffer = ALIGN_POINTER ((UINT8 *)OutputBuffer + OutputBufferSize, SIZE_1MB);
DEBUG ((
DEBUG_VERBOSE,
"%a: OutputBuffer@%p+0x%x ScratchBuffer@%p+0x%x "
"PcdOvmfDecompressionScratchEnd=0x%x\n",
__func__,
OutputBuffer,
OutputBufferSize,
ScratchBuffer,
ScratchBufferSize,
PcdGet32 (PcdOvmfDecompressionScratchEnd)
));
ASSERT (
(UINTN)ScratchBuffer + ScratchBufferSize ==
PcdGet32 (PcdOvmfDecompressionScratchEnd)
);
Status = ExtractGuidedSectionDecode (
Section,
&OutputBuffer,
ScratchBuffer,
&AuthenticationStatus
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Error during GUID section decode\n"));
return Status;
}
Status = FindFfsSectionInstance (
OutputBuffer,
OutputBufferSize,
EFI_SECTION_FIRMWARE_VOLUME_IMAGE,
0,
&FvSection
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Unable to find PEI FV section\n"));
return Status;
}
ASSERT (
SECTION_SIZE (FvSection) ==
(PcdGet32 (PcdOvmfPeiMemFvSize) + sizeof (*FvSection))
);
ASSERT (FvSection->Type == EFI_SECTION_FIRMWARE_VOLUME_IMAGE);
PeiMemFv = (EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)PcdGet32 (PcdOvmfPeiMemFvBase);
CopyMem (PeiMemFv, (VOID *)(FvSection + 1), PcdGet32 (PcdOvmfPeiMemFvSize));
if (PeiMemFv->Signature != EFI_FVH_SIGNATURE) {
DEBUG ((DEBUG_ERROR, "Extracted FV at %p does not have FV header signature\n", PeiMemFv));
CpuDeadLoop ();
return EFI_VOLUME_CORRUPTED;
}
Status = FindFfsSectionInstance (
OutputBuffer,
OutputBufferSize,
EFI_SECTION_FIRMWARE_VOLUME_IMAGE,
1,
&FvSection
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Unable to find DXE FV section\n"));
return Status;
}
ASSERT (FvSection->Type == EFI_SECTION_FIRMWARE_VOLUME_IMAGE);
if (IS_SECTION2 (FvSection)) {
FvSectionSize = SECTION2_SIZE (FvSection);
FvHeaderSize = sizeof (EFI_COMMON_SECTION_HEADER2);
} else {
FvSectionSize = SECTION_SIZE (FvSection);
FvHeaderSize = sizeof (EFI_COMMON_SECTION_HEADER);
}
ASSERT (FvSectionSize == (PcdGet32 (PcdOvmfDxeMemFvSize) + FvHeaderSize));
DxeMemFv = (EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)PcdGet32 (PcdOvmfDxeMemFvBase);
CopyMem (DxeMemFv, (VOID *)((UINTN)FvSection + FvHeaderSize), PcdGet32 (PcdOvmfDxeMemFvSize));
if (DxeMemFv->Signature != EFI_FVH_SIGNATURE) {
DEBUG ((DEBUG_ERROR, "Extracted FV at %p does not have FV header signature\n", DxeMemFv));
CpuDeadLoop ();
return EFI_VOLUME_CORRUPTED;
}
*Fv = PeiMemFv;
return EFI_SUCCESS;
}
/**
Locates the PEI Core entry point address
@param[in] Fv The firmware volume to search
@param[out] PeiCoreEntryPoint The entry point of the PEI Core image
@retval EFI_SUCCESS The file and section was found
@retval EFI_NOT_FOUND The file and section was not found
@retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted
**/
EFI_STATUS
FindPeiCoreImageBaseInFv (
IN EFI_FIRMWARE_VOLUME_HEADER *Fv,
OUT EFI_PHYSICAL_ADDRESS *PeiCoreImageBase,
OUT UINT32 *PeiCoreImageSize
)
{
EFI_STATUS Status;
EFI_COMMON_SECTION_HEADER *Section;
Status = FindFfsFileAndSection (
Fv,
EFI_FV_FILETYPE_PEI_CORE,
EFI_SECTION_PE32,
&Section
);
if (EFI_ERROR (Status)) {
DEBUG ((DEBUG_ERROR, "Unable to find PEI Core image\n"));
return Status;
}
*PeiCoreImageBase = (EFI_PHYSICAL_ADDRESS)(UINTN)(Section + 1);
// FIXME: Size check, common API?
*PeiCoreImageSize = SECTION_SIZE (Section) - sizeof (*Section);
return EFI_SUCCESS;
}
/**
Reads 8-bits of CMOS data.
Reads the 8-bits of CMOS data at the location specified by Index.
The 8-bit read value is returned.
@param Index The CMOS location to read.
@return The value read.
**/
STATIC
UINT8
CmosRead8 (
IN UINTN Index
)
{
IoWrite8 (0x70, (UINT8)Index);
return IoRead8 (0x71);
}
STATIC
BOOLEAN
IsS3Resume (
VOID
)
{
return (CmosRead8 (0xF) == 0xFE);
}
STATIC
EFI_STATUS
GetS3ResumePeiFv (
IN OUT EFI_FIRMWARE_VOLUME_HEADER **PeiFv
)
{
*PeiFv = (EFI_FIRMWARE_VOLUME_HEADER *)(UINTN)PcdGet32 (PcdOvmfPeiMemFvBase);
return EFI_SUCCESS;
}
/**
Locates the PEI Core entry point address
@param[in,out] Fv The firmware volume to search
@param[out] PeiCoreEntryPoint The entry point of the PEI Core image
@retval EFI_SUCCESS The file and section was found
@retval EFI_NOT_FOUND The file and section was not found
@retval EFI_VOLUME_CORRUPTED The firmware volume was corrupted
**/
VOID
FindPeiCoreImageBase (
IN OUT EFI_FIRMWARE_VOLUME_HEADER **BootFv,
OUT EFI_PHYSICAL_ADDRESS *PeiCoreImageBase,
OUT UINT32 *PeiCoreImageSize
)
{
BOOLEAN S3Resume;
*PeiCoreImageBase = 0;
S3Resume = IsS3Resume ();
if (S3Resume && !FeaturePcdGet (PcdSmmSmramRequire)) {
//
// A malicious runtime OS may have injected something into our previously
// decoded PEI FV, but we don't care about that unless SMM/SMRAM is required.
//
DEBUG ((DEBUG_VERBOSE, "SEC: S3 resume\n"));
GetS3ResumePeiFv (BootFv);
} else {
//
// We're either not resuming, or resuming "securely" -- we'll decompress
// both PEI FV and DXE FV from pristine flash.
//
DEBUG ((
DEBUG_VERBOSE,
"SEC: %a\n",
S3Resume ? "S3 resume (with PEI decompression)" : "Normal boot"
));
FindMainFv (BootFv);
DecompressMemFvs (BootFv);
}
FindPeiCoreImageBaseInFv (*BootFv, PeiCoreImageBase, PeiCoreImageSize);
}
/**
Find core image base.
**/
EFI_STATUS
FindImageBase (
IN EFI_FIRMWARE_VOLUME_HEADER *BootFirmwareVolumePtr,
OUT EFI_PHYSICAL_ADDRESS *SecCoreImageBase,
OUT UINT32 *SecCoreImageSize
)
{
EFI_PHYSICAL_ADDRESS CurrentAddress;
EFI_PHYSICAL_ADDRESS EndOfFirmwareVolume;
EFI_FFS_FILE_HEADER *File;
UINT32 Size;
EFI_PHYSICAL_ADDRESS EndOfFile;
EFI_COMMON_SECTION_HEADER *Section;
EFI_PHYSICAL_ADDRESS EndOfSection;
*SecCoreImageBase = 0;
*SecCoreImageSize = 0;
CurrentAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)BootFirmwareVolumePtr;
EndOfFirmwareVolume = CurrentAddress + BootFirmwareVolumePtr->FvLength;
//
// Loop through the FFS files in the Boot Firmware Volume
//
for (EndOfFile = CurrentAddress + BootFirmwareVolumePtr->HeaderLength; ; ) {
CurrentAddress = (EndOfFile + 7) & 0xfffffffffffffff8ULL;
if (CurrentAddress > EndOfFirmwareVolume) {
return EFI_NOT_FOUND;
}
File = (EFI_FFS_FILE_HEADER *)(UINTN)CurrentAddress;
Size = FFS_FILE_SIZE (File);
if (Size < sizeof (*File)) {
return EFI_NOT_FOUND;
}
EndOfFile = CurrentAddress + Size;
if (EndOfFile > EndOfFirmwareVolume) {
return EFI_NOT_FOUND;
}
//
// Look for SEC Core
//
if (File->Type != EFI_FV_FILETYPE_SECURITY_CORE) {
continue;
}
//
// Loop through the FFS file sections within the FFS file
//
EndOfSection = (EFI_PHYSICAL_ADDRESS)(UINTN)(File + 1);
for ( ; ;) {
CurrentAddress = (EndOfSection + 3) & 0xfffffffffffffffcULL;
Section = (EFI_COMMON_SECTION_HEADER *)(UINTN)CurrentAddress;
Size = SECTION_SIZE (Section);
if (Size < sizeof (*Section)) {
return EFI_NOT_FOUND;
}
EndOfSection = CurrentAddress + Size;
if (EndOfSection > EndOfFile) {
return EFI_NOT_FOUND;
}
//
// Look for executable sections
//
if (Section->Type == EFI_SECTION_PE32) {
if (File->Type == EFI_FV_FILETYPE_SECURITY_CORE) {
*SecCoreImageBase = (PHYSICAL_ADDRESS)(UINTN)(Section + 1);
*SecCoreImageSize = Size - sizeof (*Section);
}
break;
}
}
//
// SEC Core image found
//
if (*SecCoreImageBase != 0) {
return EFI_SUCCESS;
}
}
}
/*
Find and return Pei Core entry point.
It also find SEC and PEI Core file debug information. It will report them if
remote debug is enabled.
**/
VOID
FindAndReportEntryPoints (
IN EFI_FIRMWARE_VOLUME_HEADER **BootFirmwareVolumePtr,
OUT EFI_PEI_CORE_ENTRY_POINT *PeiCoreEntryPoint
)
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS SecCoreImageBase;
UINT32 SecCoreImageSize;
EFI_PHYSICAL_ADDRESS PeiCoreImageBase;
UINT32 PeiCoreImageSize;
UEFI_IMAGE_LOADER_IMAGE_CONTEXT ImageContext;
//
// Find SEC Core and PEI Core image base
//
Status = FindImageBase (*BootFirmwareVolumePtr, &SecCoreImageBase, &SecCoreImageSize);
ASSERT_EFI_ERROR (Status);
FindPeiCoreImageBase (BootFirmwareVolumePtr, &PeiCoreImageBase, &PeiCoreImageSize);
//
// Report SEC Core debug information when remote debug is enabled
//
Status = UefiImageInitializeContext (
&ImageContext,
(VOID *) (UINTN) SecCoreImageBase,
SecCoreImageSize,
UEFI_IMAGE_SOURCE_FV,
UefiImageOriginFv
);
ASSERT_EFI_ERROR (Status);
Status = UefiImageLoadImageInplace (&ImageContext);
ASSERT_EFI_ERROR (Status);
UefiImageLoaderRelocateImageExtraAction (&ImageContext);
//
// Find PEI Core entry point
//
Status = UefiImageInitializeContext (
&ImageContext,
(VOID *) (UINTN) PeiCoreImageBase,
PeiCoreImageSize,
UEFI_IMAGE_SOURCE_FV,
UefiImageOriginFv
);
ASSERT_EFI_ERROR (Status);
Status = UefiImageLoadImageInplace (&ImageContext);
ASSERT_EFI_ERROR (Status);
//
// Report PEI Core debug information when remote debug is enabled
//
UefiImageLoaderRelocateImageExtraAction (&ImageContext);
*PeiCoreEntryPoint = (EFI_PEI_CORE_ENTRY_POINT)(UINTN)(UefiImageLoaderGetImageEntryPoint (&ImageContext));
return;
}
VOID
EFIAPI
SecCoreStartupWithStack (
IN EFI_FIRMWARE_VOLUME_HEADER *BootFv,
IN VOID *TopOfCurrentStack
)
{
EFI_SEC_PEI_HAND_OFF SecCoreData;
SEC_IDT_TABLE IdtTableInStack;
IA32_DESCRIPTOR IdtDescriptor;
UINT32 Index;
volatile UINT8 *Table;
#if defined (TDX_GUEST_SUPPORTED)
if (CcProbe () == CcGuestTypeIntelTdx) {
//
// From the security perspective all the external input should be measured before
// it is consumed. TdHob and Configuration FV (Cfv) image are passed from VMM
// and should be measured here.
//
if (EFI_ERROR (TdxHelperMeasureTdHob ())) {
CpuDeadLoop ();
}
if (EFI_ERROR (TdxHelperMeasureCfvImage ())) {
CpuDeadLoop ();
}
//
// For Td guests, the memory map info is in TdHobLib. It should be processed
// first so that the memory is accepted. Otherwise access to the unaccepted
// memory will trigger tripple fault.
//
if (TdxHelperProcessTdHob () != EFI_SUCCESS) {
CpuDeadLoop ();
}
}
#endif
//
// To ensure SMM can't be compromised on S3 resume, we must force re-init of
// the BaseExtractGuidedSectionLib. Since this is before library contructors
// are called, we must use a loop rather than SetMem.
//
Table = (UINT8 *)(UINTN)FixedPcdGet64 (PcdGuidedExtractHandlerTableAddress);
for (Index = 0;
Index < FixedPcdGet32 (PcdGuidedExtractHandlerTableSize);
++Index)
{
Table[Index] = 0;
}
//
// Initialize IDT - Since this is before library constructors are called,
// we use a loop rather than CopyMem.
//
IdtTableInStack.PeiService = NULL;
for (Index = 0; Index < SEC_IDT_ENTRY_COUNT; Index++) {
//
// Declare the local variables that actually move the data elements as
// volatile to prevent the optimizer from replacing this function with
// the intrinsic memcpy()
//
CONST UINT8 *Src;
volatile UINT8 *Dst;
UINTN Byte;
Src = (CONST UINT8 *)&mIdtEntryTemplate;
Dst = (volatile UINT8 *)&IdtTableInStack.IdtTable[Index];
for (Byte = 0; Byte < sizeof (mIdtEntryTemplate); Byte++) {
Dst[Byte] = Src[Byte];
}
}
IdtDescriptor.Base = (UINTN)&IdtTableInStack.IdtTable;
IdtDescriptor.Limit = (UINT16)(sizeof (IdtTableInStack.IdtTable) - 1);
if (SevEsIsEnabled ()) {
SevEsProtocolCheck ();
//
// For SEV-ES guests, the exception handler is needed before calling
// ProcessLibraryConstructorList() because some of the library constructors
// perform some functions that result in #VC exceptions being generated.
//
// Due to this code executing before library constructors, *all* library
// API calls are theoretically interface contract violations. However,
// because this is SEC (executing in flash), those constructors cannot
// write variables with static storage duration anyway. Furthermore, only
// a small, restricted set of APIs, such as AsmWriteIdtr() and
// InitializeCpuExceptionHandlers(), are called, where we require that the
// underlying library not require constructors to have been invoked and
// that the library instance not trigger any #VC exceptions.
//
AsmWriteIdtr (&IdtDescriptor);
InitializeCpuExceptionHandlers (NULL);
}
ProcessLibraryConstructorList (NULL, NULL);
if (!SevEsIsEnabled ()) {
//
// For non SEV-ES guests, just load the IDTR.
//
AsmWriteIdtr (&IdtDescriptor);
} else {
//
// Under SEV-ES, the hypervisor can't modify CR0 and so can't enable
// caching in order to speed up the boot. Enable caching early for
// an SEV-ES guest.
//
AsmEnableCache ();
}
#if defined (TDX_GUEST_SUPPORTED)
if (CcProbe () == CcGuestTypeIntelTdx) {
//
// InitializeCpuExceptionHandlers () should be called in Td guests so that
// #VE exceptions can be handled correctly.
//
InitializeCpuExceptionHandlers (NULL);
}
#endif
DEBUG ((
DEBUG_INFO,
"SecCoreStartupWithStack(0x%x, 0x%x)\n",
(UINT32)(UINTN)BootFv,
(UINT32)(UINTN)TopOfCurrentStack
));
//
// Initialize floating point operating environment
// to be compliant with UEFI spec.
//
InitializeFloatingPointUnits ();
#if defined (MDE_CPU_X64)
//
// ASSERT that the Page Tables were set by the reset vector code to
// the address we expect.
//
ASSERT (AsmReadCr3 () == (UINTN)PcdGet32 (PcdOvmfSecPageTablesBase));
#endif
//
// |-------------| <-- TopOfCurrentStack
// | Stack | 32k
// |-------------|
// | Heap | 32k
// |-------------| <-- SecCoreData.TemporaryRamBase
//
ASSERT (
(UINTN)(PcdGet32 (PcdOvmfSecPeiTempRamBase) +
PcdGet32 (PcdOvmfSecPeiTempRamSize)) ==
(UINTN)TopOfCurrentStack
);
//
// Initialize SEC hand-off state
//
SecCoreData.DataSize = sizeof (EFI_SEC_PEI_HAND_OFF);
SecCoreData.TemporaryRamSize = (UINTN)PcdGet32 (PcdOvmfSecPeiTempRamSize);
SecCoreData.TemporaryRamBase = (VOID *)((UINT8 *)TopOfCurrentStack - SecCoreData.TemporaryRamSize);
SecCoreData.PeiTemporaryRamBase = SecCoreData.TemporaryRamBase;
SecCoreData.PeiTemporaryRamSize = SecCoreData.TemporaryRamSize >> 1;
SecCoreData.StackBase = (UINT8 *)SecCoreData.TemporaryRamBase + SecCoreData.PeiTemporaryRamSize;
SecCoreData.StackSize = SecCoreData.TemporaryRamSize >> 1;
SecCoreData.BootFirmwareVolumeBase = BootFv;
SecCoreData.BootFirmwareVolumeSize = (UINTN)BootFv->FvLength;
//
// Validate the System RAM used in the SEC Phase
//
SecValidateSystemRam ();
//
// Make sure the 8259 is masked before initializing the Debug Agent and the debug timer is enabled
//
IoWrite8 (0x21, 0xff);
IoWrite8 (0xA1, 0xff);
//
// Initialize Local APIC Timer hardware and disable Local APIC Timer
// interrupts before initializing the Debug Agent and the debug timer is
// enabled.
//
InitializeApicTimer (0, MAX_UINT32, TRUE, 5);
DisableApicTimerInterrupt ();
//
// Initialize Debug Agent to support source level debug in SEC/PEI phases before memory ready.
//
InitializeDebugAgent (DEBUG_AGENT_INIT_PREMEM_SEC, &SecCoreData, SecStartupPhase2);
}
/**
Caller provided function to be invoked at the end of InitializeDebugAgent().
Entry point to the C language phase of SEC. After the SEC assembly
code has initialized some temporary memory and set up the stack,
the control is transferred to this function.
@param[in] Context The first input parameter of InitializeDebugAgent().
**/
VOID
EFIAPI
SecStartupPhase2 (
IN VOID *Context
)
{
EFI_SEC_PEI_HAND_OFF *SecCoreData;
EFI_FIRMWARE_VOLUME_HEADER *BootFv;
EFI_PEI_CORE_ENTRY_POINT PeiCoreEntryPoint;
EFI_PEI_PPI_DESCRIPTOR *EfiPeiPpiDescriptor;
SecCoreData = (EFI_SEC_PEI_HAND_OFF *)Context;
//
// Find PEI Core entry point. It will report SEC and Pei Core debug information if remote debug
// is enabled.
//
BootFv = (EFI_FIRMWARE_VOLUME_HEADER *)SecCoreData->BootFirmwareVolumeBase;
FindAndReportEntryPoints (&BootFv, &PeiCoreEntryPoint);
SecCoreData->BootFirmwareVolumeBase = BootFv;
SecCoreData->BootFirmwareVolumeSize = (UINTN)BootFv->FvLength;
//
// Td guest is required to use the MpInitLibUp (unique-processor version).
// Other guests use the MpInitLib (multi-processor version).
//
if (CcProbe () == CcGuestTypeIntelTdx) {
EfiPeiPpiDescriptor = (EFI_PEI_PPI_DESCRIPTOR *)&mPrivateDispatchTableUp;
} else {
EfiPeiPpiDescriptor = (EFI_PEI_PPI_DESCRIPTOR *)&mPrivateDispatchTableMp;
}
//
// Transfer the control to the PEI core
//
(*PeiCoreEntryPoint)(SecCoreData, EfiPeiPpiDescriptor);
//
// If we get here then the PEI Core returned, which is not recoverable.
//
ASSERT (FALSE);
CpuDeadLoop ();
}
EFI_STATUS
EFIAPI
TemporaryRamMigration (
IN CONST EFI_PEI_SERVICES **PeiServices,
IN EFI_PHYSICAL_ADDRESS TemporaryMemoryBase,
IN EFI_PHYSICAL_ADDRESS PermanentMemoryBase,
IN UINTN CopySize
)
{
IA32_DESCRIPTOR IdtDescriptor;
VOID *OldHeap;
VOID *NewHeap;
VOID *OldStack;
VOID *NewStack;
DEBUG_AGENT_CONTEXT_POSTMEM_SEC DebugAgentContext;
BOOLEAN OldStatus;
BASE_LIBRARY_JUMP_BUFFER JumpBuffer;
DEBUG ((
DEBUG_INFO,
"TemporaryRamMigration(0x%Lx, 0x%Lx, 0x%Lx)\n",
TemporaryMemoryBase,
PermanentMemoryBase,
(UINT64)CopySize
));
OldHeap = (VOID *)(UINTN)TemporaryMemoryBase;
NewHeap = (VOID *)((UINTN)PermanentMemoryBase + (CopySize >> 1));
OldStack = (VOID *)((UINTN)TemporaryMemoryBase + (CopySize >> 1));
NewStack = (VOID *)(UINTN)PermanentMemoryBase;
DebugAgentContext.HeapMigrateOffset = (UINTN)NewHeap - (UINTN)OldHeap;
DebugAgentContext.StackMigrateOffset = (UINTN)NewStack - (UINTN)OldStack;
OldStatus = SaveAndSetDebugTimerInterrupt (FALSE);
InitializeDebugAgent (DEBUG_AGENT_INIT_POSTMEM_SEC, (VOID *)&DebugAgentContext, NULL);
//
// Migrate Heap
//
CopyMem (NewHeap, OldHeap, CopySize >> 1);
//
// Migrate Stack
//
CopyMem (NewStack, OldStack, CopySize >> 1);
//
// Rebase IDT table in permanent memory
//
AsmReadIdtr (&IdtDescriptor);
IdtDescriptor.Base = IdtDescriptor.Base - (UINTN)OldStack + (UINTN)NewStack;
AsmWriteIdtr (&IdtDescriptor);
//
// Use SetJump()/LongJump() to switch to a new stack.
//
if (SetJump (&JumpBuffer) == 0) {
#if defined (MDE_CPU_IA32)
JumpBuffer.Esp = JumpBuffer.Esp + DebugAgentContext.StackMigrateOffset;
JumpBuffer.Ebp = JumpBuffer.Ebp + DebugAgentContext.StackMigrateOffset;
#endif
#if defined (MDE_CPU_X64)
JumpBuffer.Rsp = JumpBuffer.Rsp + DebugAgentContext.StackMigrateOffset;
JumpBuffer.Rbp = JumpBuffer.Rbp + DebugAgentContext.StackMigrateOffset;
#endif
LongJump (&JumpBuffer, (UINTN)-1);
}
SaveAndSetDebugTimerInterrupt (OldStatus);
return EFI_SUCCESS;
}