/** @file
Unaligned access functions of BaseLib for ARM.
volatile was added to work around optimization issues.
Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.
Portions copyright (c) 2008 - 2009, Apple Inc. All rights reserved.
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "BaseLibInternals.h"
/**
Reads a 16-bit value from memory that may be unaligned.
This function returns the 16-bit value pointed to by Buffer. The function
guarantees that the read operation does not produce an alignment fault.
If the Buffer is NULL, then ASSERT().
@param Buffer The pointer to a 16-bit value that may be unaligned.
@return The 16-bit value read from Buffer.
**/
UINT16
EFIAPI
ReadUnaligned16 (
IN CONST UINT16 *Buffer
)
{
volatile UINT8 LowerByte;
volatile UINT8 HigherByte;
ASSERT (Buffer != NULL);
LowerByte = ((UINT8*)Buffer)[0];
HigherByte = ((UINT8*)Buffer)[1];
return (UINT16)(LowerByte | (HigherByte << 8));
}
/**
Writes a 16-bit value to memory that may be unaligned.
This function writes the 16-bit value specified by Value to Buffer. Value is
returned. The function guarantees that the write operation does not produce
an alignment fault.
If the Buffer is NULL, then ASSERT().
@param Buffer The pointer to a 16-bit value that may be unaligned.
@param Value 16-bit value to write to Buffer.
@return The 16-bit value to write to Buffer.
**/
UINT16
EFIAPI
WriteUnaligned16 (
OUT UINT16 *Buffer,
IN UINT16 Value
)
{
ASSERT (Buffer != NULL);
((volatile UINT8*)Buffer)[0] = (UINT8)Value;
((volatile UINT8*)Buffer)[1] = (UINT8)(Value >> 8);
return Value;
}
/**
Reads a 24-bit value from memory that may be unaligned.
This function returns the 24-bit value pointed to by Buffer. The function
guarantees that the read operation does not produce an alignment fault.
If the Buffer is NULL, then ASSERT().
@param Buffer The pointer to a 24-bit value that may be unaligned.
@return The 24-bit value read from Buffer.
**/
UINT32
EFIAPI
ReadUnaligned24 (
IN CONST UINT32 *Buffer
)
{
ASSERT (Buffer != NULL);
return (UINT32)(
ReadUnaligned16 ((UINT16*)Buffer) |
(((UINT8*)Buffer)[2] << 16)
);
}
/**
Writes a 24-bit value to memory that may be unaligned.
This function writes the 24-bit value specified by Value to Buffer. Value is
returned. The function guarantees that the write operation does not produce
an alignment fault.
If the Buffer is NULL, then ASSERT().
@param Buffer The pointer to a 24-bit value that may be unaligned.
@param Value 24-bit value to write to Buffer.
@return The 24-bit value to write to Buffer.
**/
UINT32
EFIAPI
WriteUnaligned24 (
OUT UINT32 *Buffer,
IN UINT32 Value
)
{
ASSERT (Buffer != NULL);
WriteUnaligned16 ((UINT16*)Buffer, (UINT16)Value);
*(UINT8*)((UINT16*)Buffer + 1) = (UINT8)(Value >> 16);
return Value;
}
/**
Reads a 32-bit value from memory that may be unaligned.
This function returns the 32-bit value pointed to by Buffer. The function
guarantees that the read operation does not produce an alignment fault.
If the Buffer is NULL, then ASSERT().
@param Buffer The pointer to a 32-bit value that may be unaligned.
@return The 32-bit value read from Buffer.
**/
UINT32
EFIAPI
ReadUnaligned32 (
IN CONST UINT32 *Buffer
)
{
UINT16 LowerBytes;
UINT16 HigherBytes;
ASSERT (Buffer != NULL);
LowerBytes = ReadUnaligned16 ((UINT16*) Buffer);
HigherBytes = ReadUnaligned16 ((UINT16*) Buffer + 1);
return (UINT32) (LowerBytes | (HigherBytes << 16));
}
/**
Writes a 32-bit value to memory that may be unaligned.
This function writes the 32-bit value specified by Value to Buffer. Value is
returned. The function guarantees that the write operation does not produce
an alignment fault.
If the Buffer is NULL, then ASSERT().
@param Buffer The pointer to a 32-bit value that may be unaligned.
@param Value 32-bit value to write to Buffer.
@return The 32-bit value to write to Buffer.
**/
UINT32
EFIAPI
WriteUnaligned32 (
OUT UINT32 *Buffer,
IN UINT32 Value
)
{
ASSERT (Buffer != NULL);
WriteUnaligned16 ((UINT16*)Buffer, (UINT16)Value);
WriteUnaligned16 ((UINT16*)Buffer + 1, (UINT16)(Value >> 16));
return Value;
}
/**
Reads a 64-bit value from memory that may be unaligned.
This function returns the 64-bit value pointed to by Buffer. The function
guarantees that the read operation does not produce an alignment fault.
If the Buffer is NULL, then ASSERT().
@param Buffer The pointer to a 64-bit value that may be unaligned.
@return The 64-bit value read from Buffer.
**/
UINT64
EFIAPI
ReadUnaligned64 (
IN CONST UINT64 *Buffer
)
{
UINT32 LowerBytes;
UINT32 HigherBytes;
ASSERT (Buffer != NULL);
LowerBytes = ReadUnaligned32 ((UINT32*) Buffer);
HigherBytes = ReadUnaligned32 ((UINT32*) Buffer + 1);
return (UINT64) (LowerBytes | LShiftU64 (HigherBytes, 32));
}
/**
Writes a 64-bit value to memory that may be unaligned.
This function writes the 64-bit value specified by Value to Buffer. Value is
returned. The function guarantees that the write operation does not produce
an alignment fault.
If the Buffer is NULL, then ASSERT().
@param Buffer The pointer to a 64-bit value that may be unaligned.
@param Value 64-bit value to write to Buffer.
@return The 64-bit value to write to Buffer.
**/
UINT64
EFIAPI
WriteUnaligned64 (
OUT UINT64 *Buffer,
IN UINT64 Value
)
{
ASSERT (Buffer != NULL);
WriteUnaligned32 ((UINT32*)Buffer, (UINT32)Value);
WriteUnaligned32 ((UINT32*)Buffer + 1, (UINT32)RShiftU64 (Value, 32));
return Value;
}