CloverBootloader/OvmfPkg/IoMmuDxe/IoMmuBuffer.c

521 lines
16 KiB
C

/** @file
Copyright (c) 2022, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/DebugLib.h>
#include <Library/MemoryAllocationLib.h>
#include <Library/MemEncryptSevLib.h>
#include <Library/MemEncryptTdxLib.h>
#include <Library/PcdLib.h>
#include <Library/SynchronizationLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include "IoMmuInternal.h"
extern BOOLEAN mReservedSharedMemSupported;
#define SIZE_OF_MEM_RANGE(MemRange) (MemRange->HeaderSize + MemRange->DataSize)
#define RESERVED_MEM_BITMAP_4K_MASK 0xf
#define RESERVED_MEM_BITMAP_32K_MASK 0xff0
#define RESERVED_MEM_BITMAP_128K_MASK 0x3000
#define RESERVED_MEM_BITMAP_1M_MASK 0x40000
#define RESERVED_MEM_BITMAP_2M_MASK 0x180000
#define RESERVED_MEM_BITMAP_MASK 0x1fffff
/**
* mReservedMemRanges describes the layout of the reserved memory.
* The reserved memory consists of disfferent size of memory region.
* The pieces of memory with the same size are managed by one entry
* in the mReservedMemRanges. All the pieces of memories are managed by
* mReservedMemBitmap which is a UINT32. It means it can manage at most
* 32 pieces of memory. Because of the layout of CommonBuffer
* (1-page header + n-page data), a piece of reserved memory consists of
* 2 parts: Header + Data.
*
* So put all these together, mReservedMemRanges and mReservedMemBitmap
* are designed to manage the reserved memory.
*
* Use the second entry of mReservedMemRanges as an example.
* { RESERVED_MEM_BITMAP_32K_MASK, 4, 8, SIZE_32KB, SIZE_4KB, 0 },
* - RESERVED_MEM_BITMAP_32K_MASK is 0xff0. It means bit4-11 in mReservedMemBitmap
* is reserved for 32K size memory.
* - 4 is the shift of mReservedMemBitmap.
* - 8 means there are 8 pieces of 32K size memory.
* - SIZE_32KB indicates the size of Data part.
* - SIZE_4KB is the size of Header part.
* - 0 is the start address of this memory range which will be populated when
* the reserved memory is initialized.
*
* The size and count of the memory region are derived from the experience. For
* a typical grub boot, there are about 5100 IoMmu/DMA operation. Most of these
* DMA operation require the memory with size less than 32K (~5080). But we find
* in grub boot there may be 2 DMA operation which require for the memory larger
* than 1M. And these 2 DMA operation occur concurrently. So we reserve 2 pieces
* of memory with size of SIZE_2MB. This is for the best boot performance.
*
* If all the reserved memory are exausted, then it will fall back to the legacy
* memory allocation as before.
*/
STATIC IOMMU_RESERVED_MEM_RANGE mReservedMemRanges[] = {
{ RESERVED_MEM_BITMAP_4K_MASK, 0, 4, SIZE_4KB, SIZE_4KB, 0 },
{ RESERVED_MEM_BITMAP_32K_MASK, 4, 8, SIZE_32KB, SIZE_4KB, 0 },
{ RESERVED_MEM_BITMAP_128K_MASK, 12, 2, SIZE_128KB, SIZE_4KB, 0 },
{ RESERVED_MEM_BITMAP_1M_MASK, 14, 1, SIZE_1MB, SIZE_4KB, 0 },
{ RESERVED_MEM_BITMAP_2M_MASK, 15, 2, SIZE_2MB, SIZE_4KB, 0 },
};
//
// Bitmap of the allocation of reserved memory.
//
STATIC UINT32 mReservedMemBitmap = 0;
//
// Start address of the reserved memory region.
//
STATIC EFI_PHYSICAL_ADDRESS mReservedSharedMemAddress = 0;
//
// Total size of the reserved memory region.
//
STATIC UINT32 mReservedSharedMemSize = 0;
/**
* Calculate the size of reserved memory.
*
* @retval UINT32 Size of the reserved memory
*/
STATIC
UINT32
CalcuateReservedMemSize (
VOID
)
{
UINT32 Index;
IOMMU_RESERVED_MEM_RANGE *MemRange;
if (mReservedSharedMemSize != 0) {
return mReservedSharedMemSize;
}
for (Index = 0; Index < ARRAY_SIZE (mReservedMemRanges); Index++) {
MemRange = &mReservedMemRanges[Index];
mReservedSharedMemSize += (SIZE_OF_MEM_RANGE (MemRange) * MemRange->Slots);
}
return mReservedSharedMemSize;
}
/**
* Allocate a memory region and convert it to be shared. This memory region will be
* used in the DMA operation.
*
* The pre-alloc memory contains pieces of memory regions with different size. The
* allocation of the shared memory regions are indicated by a 32-bit bitmap (mReservedMemBitmap).
*
* The memory regions are consumed by IoMmuAllocateBuffer (in which CommonBuffer is allocated) and
* IoMmuMap (in which bounce buffer is allocated).
*
* The CommonBuffer contains 2 parts, one page for CommonBufferHeader which is private memory,
* the other part is shared memory. So the layout of a piece of memory region after initialization
* looks like:
*
* |------------|----------------------------|
* | Header | Data | <-- a piece of pre-alloc memory region
* | 4k, private| 4k/32k/128k/etc, shared |
* |-----------------------------------------|
*
* @retval EFI_SUCCESS Successfully initialize the reserved memory.
* @retval EFI_UNSUPPORTED This feature is not supported.
*/
EFI_STATUS
IoMmuInitReservedSharedMem (
VOID
)
{
EFI_STATUS Status;
UINT32 Index1, Index2;
UINTN TotalPages;
IOMMU_RESERVED_MEM_RANGE *MemRange;
EFI_PHYSICAL_ADDRESS PhysicalAddress;
UINT64 SharedAddress;
if (!mReservedSharedMemSupported) {
return EFI_UNSUPPORTED;
}
TotalPages = EFI_SIZE_TO_PAGES (CalcuateReservedMemSize ());
PhysicalAddress = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePages (TotalPages);
DEBUG ((
DEBUG_VERBOSE,
"%a: ReservedMem (%d pages) address = 0x%llx\n",
__func__,
TotalPages,
PhysicalAddress
));
mReservedMemBitmap = 0;
mReservedSharedMemAddress = PhysicalAddress;
for (Index1 = 0; Index1 < ARRAY_SIZE (mReservedMemRanges); Index1++) {
MemRange = &mReservedMemRanges[Index1];
MemRange->StartAddressOfMemRange = PhysicalAddress;
for (Index2 = 0; Index2 < MemRange->Slots; Index2++) {
SharedAddress = (UINT64)(UINTN)(MemRange->StartAddressOfMemRange + Index2 * SIZE_OF_MEM_RANGE (MemRange) + MemRange->HeaderSize);
if (CC_GUEST_IS_SEV (PcdGet64 (PcdConfidentialComputingGuestAttr))) {
Status = MemEncryptSevClearPageEncMask (
0,
SharedAddress,
EFI_SIZE_TO_PAGES (MemRange->DataSize)
);
ASSERT (!EFI_ERROR (Status));
} else if (CC_GUEST_IS_TDX (PcdGet64 (PcdConfidentialComputingGuestAttr))) {
Status = MemEncryptTdxSetPageSharedBit (
0,
SharedAddress,
EFI_SIZE_TO_PAGES (MemRange->DataSize)
);
ASSERT (!EFI_ERROR (Status));
} else {
ASSERT (FALSE);
}
}
PhysicalAddress += (MemRange->Slots * SIZE_OF_MEM_RANGE (MemRange));
}
return EFI_SUCCESS;
}
/**
* Release the pre-alloc shared memory.
*
* @retval EFI_SUCCESS Successfully release the shared memory
*/
EFI_STATUS
IoMmuReleaseReservedSharedMem (
BOOLEAN MemoryMapLocked
)
{
EFI_STATUS Status;
UINT32 Index1, Index2;
IOMMU_RESERVED_MEM_RANGE *MemRange;
UINT64 SharedAddress;
if (!mReservedSharedMemSupported) {
return EFI_SUCCESS;
}
for (Index1 = 0; Index1 < ARRAY_SIZE (mReservedMemRanges); Index1++) {
MemRange = &mReservedMemRanges[Index1];
for (Index2 = 0; Index2 < MemRange->Slots; Index2++) {
SharedAddress = (UINT64)(UINTN)(MemRange->StartAddressOfMemRange + Index2 * SIZE_OF_MEM_RANGE (MemRange) + MemRange->HeaderSize);
if (CC_GUEST_IS_SEV (PcdGet64 (PcdConfidentialComputingGuestAttr))) {
Status = MemEncryptSevSetPageEncMask (
0,
SharedAddress,
EFI_SIZE_TO_PAGES (MemRange->DataSize)
);
ASSERT (!EFI_ERROR (Status));
} else if (CC_GUEST_IS_TDX (PcdGet64 (PcdConfidentialComputingGuestAttr))) {
Status = MemEncryptTdxClearPageSharedBit (
0,
SharedAddress,
EFI_SIZE_TO_PAGES (MemRange->DataSize)
);
ASSERT (!EFI_ERROR (Status));
} else {
ASSERT (FALSE);
}
}
}
if (!MemoryMapLocked) {
FreePages ((VOID *)(UINTN)mReservedSharedMemAddress, EFI_SIZE_TO_PAGES (CalcuateReservedMemSize ()));
mReservedSharedMemAddress = 0;
mReservedMemBitmap = 0;
}
mReservedSharedMemSupported = FALSE;
return EFI_SUCCESS;
}
/**
* Allocate from the reserved memory pool.
* If the reserved shared memory is exausted or there is no suitalbe size, it turns
* to the LegacyAllocateBuffer.
*
* @param Type Allocate type
* @param MemoryType The memory type to be allocated
* @param Pages Pages to be allocated.
* @param ReservedMemBitmap Bitmap of the allocated memory region
* @param PhysicalAddress Pointer to the data part of allocated memory region
*
* @retval EFI_SUCCESS Successfully allocate the buffer
* @retval Other As the error code indicates
*/
STATIC
EFI_STATUS
InternalAllocateBuffer (
IN EFI_ALLOCATE_TYPE Type,
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN Pages,
OUT UINT32 *ReservedMemBit,
IN OUT EFI_PHYSICAL_ADDRESS *PhysicalAddress
)
{
UINT32 MemBitmap;
UINT32 ReservedMemBitmap;
UINT8 Index;
IOMMU_RESERVED_MEM_RANGE *MemRange;
UINTN PagesOfLastMemRange;
*ReservedMemBit = 0;
if (Pages == 0) {
ASSERT (FALSE);
return EFI_INVALID_PARAMETER;
}
if (!mReservedSharedMemSupported) {
goto LegacyAllocateBuffer;
}
if (mReservedSharedMemAddress == 0) {
goto LegacyAllocateBuffer;
}
PagesOfLastMemRange = 0;
for (Index = 0; Index < ARRAY_SIZE (mReservedMemRanges); Index++) {
if ((Pages > PagesOfLastMemRange) && (Pages <= EFI_SIZE_TO_PAGES (mReservedMemRanges[Index].DataSize))) {
break;
}
PagesOfLastMemRange = EFI_SIZE_TO_PAGES (mReservedMemRanges[Index].DataSize);
}
if (Index == ARRAY_SIZE (mReservedMemRanges)) {
// There is no suitable size of reserved memory. Turn to legacy allocate.
goto LegacyAllocateBuffer;
}
MemRange = &mReservedMemRanges[Index];
do {
ReservedMemBitmap = mReservedMemBitmap;
if ((ReservedMemBitmap & MemRange->BitmapMask) == MemRange->BitmapMask) {
// The reserved memory is exhausted. Turn to legacy allocate.
goto LegacyAllocateBuffer;
}
MemBitmap = (ReservedMemBitmap & MemRange->BitmapMask) >> MemRange->Shift;
for (Index = 0; Index < MemRange->Slots; Index++) {
if ((MemBitmap & (UINT8)(1<<Index)) == 0) {
break;
}
}
ASSERT (Index != MemRange->Slots);
*PhysicalAddress = MemRange->StartAddressOfMemRange + Index * SIZE_OF_MEM_RANGE (MemRange) + MemRange->HeaderSize;
*ReservedMemBit = (UINT32)(1 << (Index + MemRange->Shift));
} while (ReservedMemBitmap != InterlockedCompareExchange32 (
&mReservedMemBitmap,
ReservedMemBitmap,
ReservedMemBitmap | *ReservedMemBit
));
DEBUG ((
DEBUG_VERBOSE,
"%a: range-size: %lx, start-address=0x%llx, pages=0x%llx, bits=0x%lx, bitmap: %lx => %lx\n",
__func__,
MemRange->DataSize,
*PhysicalAddress,
Pages,
*ReservedMemBit,
ReservedMemBitmap,
ReservedMemBitmap | *ReservedMemBit
));
return EFI_SUCCESS;
LegacyAllocateBuffer:
*ReservedMemBit = 0;
return gBS->AllocatePages (Type, MemoryType, Pages, PhysicalAddress);
}
/**
* Allocate reserved shared memory for bounce buffer.
*
* @param Type Allocate type
* @param MemoryType The memory type to be allocated
* @param MapInfo Pointer to the MAP_INFO
*
* @retval EFI_SUCCESS Successfully allocate the bounce buffer
* @retval Other As the error code indicates
*/
EFI_STATUS
IoMmuAllocateBounceBuffer (
IN EFI_ALLOCATE_TYPE Type,
IN EFI_MEMORY_TYPE MemoryType,
IN OUT MAP_INFO *MapInfo
)
{
EFI_STATUS Status;
Status = InternalAllocateBuffer (
Type,
MemoryType,
MapInfo->NumberOfPages,
&MapInfo->ReservedMemBitmap,
&MapInfo->PlainTextAddress
);
ASSERT (Status == EFI_SUCCESS);
return Status;
}
/**
* Clear a bit in the reserved memory bitmap in a thread safe manner
*
* @param ReservedMemBit The bit to clear
*/
STATIC
VOID
ClearReservedMemBit (
IN UINT32 ReservedMemBit
)
{
UINT32 ReservedMemBitmap;
do {
ReservedMemBitmap = mReservedMemBitmap;
} while (ReservedMemBitmap != InterlockedCompareExchange32 (
&mReservedMemBitmap,
ReservedMemBitmap,
ReservedMemBitmap & ~ReservedMemBit
));
}
/**
* Free the bounce buffer allocated in IoMmuAllocateBounceBuffer.
*
* @param MapInfo Pointer to the MAP_INFO
* @return EFI_SUCCESS Successfully free the bounce buffer.
*/
EFI_STATUS
IoMmuFreeBounceBuffer (
IN OUT MAP_INFO *MapInfo
)
{
if (MapInfo->ReservedMemBitmap == 0) {
gBS->FreePages (MapInfo->PlainTextAddress, MapInfo->NumberOfPages);
} else {
DEBUG ((
DEBUG_VERBOSE,
"%a: PlainTextAddress=0x%Lx, bits=0x%Lx, bitmap: %Lx => %Lx\n",
__func__,
MapInfo->PlainTextAddress,
MapInfo->ReservedMemBitmap,
mReservedMemBitmap,
mReservedMemBitmap & ((UINT32)(~MapInfo->ReservedMemBitmap))
));
ClearReservedMemBit (MapInfo->ReservedMemBitmap);
MapInfo->PlainTextAddress = 0;
MapInfo->ReservedMemBitmap = 0;
}
return EFI_SUCCESS;
}
/**
* Allocate CommonBuffer from pre-allocated shared memory.
*
* @param MemoryType Memory type
* @param CommonBufferPages Pages of CommonBuffer
* @param PhysicalAddress Allocated physical address
* @param ReservedMemBitmap Bitmap which indicates the allocation of reserved memory
*
* @retval EFI_SUCCESS Successfully allocate the common buffer
* @retval Other As the error code indicates
*/
EFI_STATUS
IoMmuAllocateCommonBuffer (
IN EFI_MEMORY_TYPE MemoryType,
IN UINTN CommonBufferPages,
OUT EFI_PHYSICAL_ADDRESS *PhysicalAddress,
OUT UINT32 *ReservedMemBitmap
)
{
EFI_STATUS Status;
Status = InternalAllocateBuffer (
AllocateMaxAddress,
MemoryType,
CommonBufferPages,
ReservedMemBitmap,
PhysicalAddress
);
ASSERT (Status == EFI_SUCCESS);
if (*ReservedMemBitmap != 0) {
*PhysicalAddress -= SIZE_4KB;
}
return Status;
}
/**
* Free CommonBuffer which is allocated by IoMmuAllocateCommonBuffer().
*
* @param CommonBufferHeader Pointer to the CommonBufferHeader
* @param CommonBufferPages Pages of CommonBuffer
*
* @retval EFI_SUCCESS Successfully free the common buffer
* @retval Other As the error code indicates
*/
EFI_STATUS
IoMmuFreeCommonBuffer (
IN COMMON_BUFFER_HEADER *CommonBufferHeader,
IN UINTN CommonBufferPages
)
{
if (!mReservedSharedMemSupported) {
goto LegacyFreeCommonBuffer;
}
if (CommonBufferHeader->ReservedMemBitmap == 0) {
goto LegacyFreeCommonBuffer;
}
DEBUG ((
DEBUG_VERBOSE,
"%a: CommonBuffer=0x%Lx, bits=0x%Lx, bitmap: %Lx => %Lx\n",
__func__,
(UINT64)(UINTN)CommonBufferHeader + SIZE_4KB,
CommonBufferHeader->ReservedMemBitmap,
mReservedMemBitmap,
mReservedMemBitmap & ((UINT32)(~CommonBufferHeader->ReservedMemBitmap))
));
ClearReservedMemBit (CommonBufferHeader->ReservedMemBitmap);
return EFI_SUCCESS;
LegacyFreeCommonBuffer:
return gBS->FreePages ((UINTN)CommonBufferHeader, CommonBufferPages);
}