CloverBootloader/rEFIt_UEFI/Platform/kernel_patcher.cpp
jief666 59d8cbad7f Refactoring KEXT_PATCH.
Change numerous CHAR8* CHAR16* to XString.
2020-08-12 18:15:47 +03:00

2857 lines
103 KiB
C++

/*
* Original idea of patching kernel by Evan Lojewsky, 2009
*
* Copyright (c) 2011-2012 Frank Peng. All rights reserved.
*
* 2012 - 2020 Correction and improvements by Clover team
*/
//#include <IndustryStardard/MachO-loader.h>
#include <UefiLoader.h>
#include "Platform.h"
//#include "LoaderUefi.h"
#include "Nvram.h"
#include "FixBiosDsdt.h"
#include "cpu.h"
#include "kext_inject.h"
#include "kernel_patcher.h"
//#include "sse3_patcher.h"
//#include "sse3_5_patcher.h"
#ifndef DEBUG_ALL
#define KERNEL_DEBUG 1
#else
#define KERNEL_DEBUG DEBUG_ALL
#endif
#if KERNEL_DEBUG == 2
#define DBG(...) printf(__VA_ARGS__);
#elif KERNEL_DEBUG == 1
#define DBG(...) DebugLog(KERNEL_DEBUG, __VA_ARGS__)
#else
#define DBG(...)
#endif
// runtime debug
//make it a member of LOADER_ENTRY class entry.DBG_RT(...)
//#define DBG_RT( ...) if ((KernelAndKextPatches != NULL) && KernelAndKextPatches.KPDebug) { printf(__VA_ARGS__); }
//EFI_PHYSICAL_ADDRESS KernelRelocBase = 0;
//BootArgs1 *bootArgs1 = NULL;
//BootArgs2 *bootArgs2 = NULL;
//CHAR8 *dtRoot = NULL;
//UINT32 *dtLength;
//UINT8 *KernelData = NULL;
//UINT32 KernelSlide = 0;
//BOOLEAN isKernelcache = FALSE;
//BOOLEAN is64BitKernel = FALSE;
//BOOLEAN SSSE3;
//BOOLEAN PatcherInited = FALSE;
//BOOLEAN gSNBEAICPUFixRequire = FALSE; // SandyBridge-E AppleIntelCpuPowerManagement patch require or not
//BOOLEAN gBDWEIOPCIFixRequire = FALSE; // Broadwell-E IOPCIFamily fix require or not
extern EFI_GUID gEfiAppleBootGuid;
/*
* the driver OsxAptioFixDrv is old and mostly not used in favour of its successors.
* anyway we will keep it for new investigations.
*/
VOID LOADER_ENTRY::SetKernelRelocBase()
{
// EFI_STATUS Status;
UINTN DataSize = sizeof(KernelRelocBase);
KernelRelocBase = 0;
// OsxAptioFixDrv will set this
/*Status = */gRT->GetVariable(L"OsxAptioFixDrv-RelocBase", &gEfiAppleBootGuid, NULL, &DataSize, &KernelRelocBase);
DeleteNvramVariable(L"OsxAptioFixDrv-RelocBase", &gEfiAppleBootGuid); // clean up the temporary variable
// KernelRelocBase is now either read or 0
return;
}
//Slice
// the purpose of the procedure is to find a table of symbols in the shifted kernel
EFI_STATUS LOADER_ENTRY::getVTable()
{
DBG("kernel at 0x%llx\n", (UINTN)KernelData);
// INT32 LinkAdr = FindBin(KernelData, 0x3000, (const UINT8 *)kLinkEditSegment, (UINT32)strlen(kLinkEditSegment));
// if (LinkAdr == -1) {
// DBG("no LinkEdit\n");
// return EFI_NOT_FOUND;
// }
// const UINT8 vtable[] = {0x04, 00,00,00, 0x0F, 0x08, 00, 00};
// const UINT8 vtableSur[] = {0x25, 00,00,00, 0x0F, 0x06, 00, 00};
//25000000 0F060000 940BFF00 80FFFFFF
//00FFFFFF FF0FFFFF 00000000 FFFFFFFF
// INT32 Tabble = FindBin(KernelData, 0x5000000, vtableSur, 8);
INT32 NTabble = FindBin(KernelData, KERNEL_MAX_SIZE, (const UINT8 *)ctor_used, (UINT32)strlen(ctor_used));
DBG("ctor_used found at 0x%x\n", NTabble);
if (NTabble < 0) {
return EFI_NOT_FOUND;
}
while (KernelData[NTabble] || KernelData[NTabble-1]) --NTabble;
NTabble &= ~0x03; //align, may be 0x07?
// NTabble -=4;
DBG(" NTabble=%x\n", NTabble);
// DBG("LinkAdr=%x NTabble=%x Tabble=%x\n",LinkAdr, NTabble, Tabble);
// SEGMENT *LinkSeg = (SEGMENT*)&KernelData[LinkAdr];
// AddrVtable = LinkSeg->AddrVtable;
// SizeVtable = LinkSeg->SizeVtable;
// NamesTable = LinkSeg->AddrNames;
//TODO find an origin of the shift
shift = NamesTable - NTabble;
// DBG_RT("AddrVtable=%x Size=%x AddrNames=%x shift=%x\n", AddrVtable, SizeVtable, NamesTable, shift);
NamesTable = NTabble;
AddrVtable -= shift;
// AddrVtable = Tabble;
DBG("AddrVtable=%x Size=%x AddrNames=%x shift=%x\n", AddrVtable, SizeVtable, NamesTable, shift);
SegVAddr = FindBin(KernelData+KernelOffset, 0x600, (const UINT8 *)kTextSegment, (UINT32)strlen(kTextSegment));
SegVAddr += KernelOffset;
DBG("SegVAddr=0x%x\n", SegVAddr);
return EFI_SUCCESS;
}
UINT32 LOADER_ENTRY::searchSectionByNum(UINT8 * binary, UINT32 Num)
{
UINT32 ncmds, cmdsize;
UINT32 binaryIndex;
UINT32 currsect = 0;
UINT32 nsect;
UINT32 textAddr = 0; // Init to avoid warning
struct segment_command_64 *loadCommand;
// struct symtab_command *symCmd;
if (!Num) {
return 0;
}
ncmds = MACH_GET_NCMDS(binary);
binaryIndex = sizeof(struct mach_header_64); //20
DBG("segSize=0x%lx secsize=0x%lx\n", sizeof(struct segment_command_64), sizeof(struct section_64)); //48, 50
for (UINTN cnt = 0; cnt < ncmds; cnt++) {
loadCommand = (struct segment_command_64 *)(binary + binaryIndex); //20, 158
cmdsize = loadCommand->cmdsize; //138, 278
switch (loadCommand->cmd) {
case LC_SEGMENT_64:
nsect = loadCommand->nsects; //3, 7,
if (currsect == 0) {
textAddr = binaryIndex + sizeof(struct segment_command_64); //20+48=68
}
if (currsect + nsect >= Num - 1) { //3+7 >= 9
UINT32 sectAddr = binaryIndex + sizeof(struct segment_command_64) + sizeof(struct section_64) * (Num - currsect - 1);
//158+48+50*
if (*(UINT32*)(binary + sectAddr) == 0x73625F5F) { //special case for __bss
DBG("__bss will be used as __text\n");
return textAddr;
}
return sectAddr;
}
currsect += nsect; //3
break;
default:
break;
}
binaryIndex += cmdsize; //20+138=158,
}
return 0;
}
UINTN LOADER_ENTRY::searchProcInDriver(UINT8 * driver, UINT32 driverLen, const XString8& procedure)
{
if (procedure.isEmpty()) {
return 0;
}
/*
INT32 LinkAdr = FindBin(driver, driverLen, (const UINT8 *)kLinkEditSegment, (UINT32)strlen(kLinkEditSegment));
if (LinkAdr == -1) {
return 0;
}
SEGMENT *LinkSeg = (SEGMENT*)&driver[LinkAdr];
// INT32 lAddrVtable = LinkSeg->AddrVtable;
INT32 lSizeVtable = LinkSeg->SizeVtable;
// INT32 lNamesTable = LinkSeg->AddrNames;
const char* Names = (const char*)(&driver[LinkSeg->AddrNames]);
VTABLE * vArray = (VTABLE*)(&driver[LinkSeg->AddrVtable]);
struct nlist_64 {
union {
uint32_t n_strx; // index into the string table //str_adr=stroff+n_strx
} n_un;
uint8_t n_type; // type flag, see below
uint8_t n_sect; // section number or NO_SECT
uint16_t n_desc; // see <mach-o/stab.h>
uint64_t n_value; // value of this symbol (or stab offset)
};
*/
DBG("search procedure %s\n", procedure.c_str());
struct nlist_64 * vArray = NULL;
INT32 lSizeVtable = 0;
const char* Names = NULL;
struct symtab_command *symCmd = NULL;
UINT32 symCmdOffset = Get_Symtab(driver);
DBG("symCmdOffset=0x%X\n", symCmdOffset); //0x418
if (symCmdOffset != 0) {
if ((((struct mach_header_64*)KernelData)->filetype) == MH_KERNEL_COLLECTION) {
symCmd = (struct symtab_command *)&driver[symCmdOffset];
vArray = (struct nlist_64*)(&KernelData[symCmd->symoff - shift]);
lSizeVtable = symCmd->nsyms;
Names = (const char*)(&KernelData[symCmd->stroff - shift]);
DBG("driverKC: AddrVtable=0x%x SizeVtable=0x%x NamesTable=0x%x\n",
symCmd->symoff - shift, lSizeVtable, symCmd->stroff - shift);
} else {
symCmd = (struct symtab_command *)&driver[symCmdOffset];
vArray = (struct nlist_64*)(&driver[symCmd->symoff]);
lSizeVtable = symCmd->nsyms;
Names = (const char*)(&driver[symCmd->stroff]);
DBG("driver: AddrVtable=0x%x SizeVtable=0x%x NamesTable=0x%x\n", symCmd->symoff, lSizeVtable, symCmd->stroff);
}
}
if (!vArray || !lSizeVtable || !Names) {
return 0;
}
INT32 i;
UINT32 Offset = 0; // Init to avoid warning
bool found = false;
for (i = 0; i < lSizeVtable; ++i) {
Offset = vArray[i].n_un.n_strx;
if (strstr(&Names[Offset], procedure.c_str())) {
found = true;
break;
}
}
if (!found) {
DBG("%s not found\n", procedure.c_str());
return 0;
}
DBG("found section %d at pos=%d\n", vArray[i].n_sect, i);
DBG("name offset=0x%x vtable_off=0x%lx\n", symCmd->stroff + Offset, symCmd->symoff + i * sizeof(struct nlist_64));
// INT32 textAddr = searchSectionByNum(driver, 1);
INT32 lSegVAddr = searchSectionByNum(driver, vArray[i].n_sect);
// DBG("section begin:\n");
// for (int j=0; j<20; ++j) {
// DBG("%02X", driver[lSegVAddr+j]);
// }
// DBG("\n");
/*
switch (vArray[i].Seg) {
case ID_SEG_DATA:
lSegVAddr = FindBin(driver, 0x1600, (const UINT8 *)kDataSegment, (UINT32)strlen(kDataSegment));
break;
case ID_SEG_DATA_CONST:
case ID_SEC_CONST:
lSegVAddr = FindSection(driver, 0x1600, (const UINT8 *)kDataSegment, (const UINT8 *)kConstSection);
break;
case ID_SEG_TEXT_CONST:
lSegVAddr = FindSection(driver, 0x1600, (const UINT8 *)kTextSegment, (const UINT8 *)kConstSection);
break;
case ID_SEG_DATA_COMMON:
lSegVAddr = FindSection(driver, 0x1600, (const UINT8 *)kDataSegment, (const UINT8 *)kCommonSection);
break;
case ID_SEG_DATA_DATA2:
case ID_SEG_DATA_DATA:
lSegVAddr = FindSection(driver, 0x1600, (const UINT8 *)kDataSegment, (const UINT8 *)kDataSection);
break;
case ID_SEG_KLD:
case ID_SEG_KLD2:
case ID_SEG_KLD3:
lSegVAddr = FindBin(driver, 0x2000, (const UINT8 *)kKldSegment, (UINT32)strlen(kKldSegment));
break;
// case ID_SEC_BSS:
// lSegVAddr = FindSection(driver, 0x1600, (const UINT8 *)kDataSegment, (const UINT8 *)kBssSection);
// break;
case ID_SEC_BSS: //it works this way
case ID_SEG_TEXT:
case ID_SEG_TEXT2:
lSegVAddr = FindSection(driver, 0x600, (const UINT8 *)kTextSegment, (const UINT8 *)kPrelinkTextSection);
break;
case ID_SEG_HIB:
lSegVAddr = FindBin(driver, 0x2000, (const UINT8 *)kHibSegment, (UINT32)strlen(kHibSegment));
break;
// lSegVAddr = FindBin(driver, 0x600, (const UINT8 *)kTextSegment, (UINT32)strlen(kTextSegment));
// break;
default:
return vArray[i].ProcAddr;
}
if (lSegVAddr == 0) {
lSegVAddr = 0x38;
}
SEGMENT *TextSeg = (SEGMENT*)&driver[lSegVAddr];
*/
struct section_64 *TextSeg = (struct section_64*)&driver[lSegVAddr];
UINT64 Absolut = TextSeg->addr;
UINT64 FileOff = TextSeg->offset;
DBG("Absolut=0x%llx Fileoff=0x%llx\n", Absolut, FileOff);
UINTN procAddr = vArray[i].n_value - Absolut + FileOff;
// UINT32 procAddr32 = (UINT32)(vArray[i].n_value); //it is not work
if ((((struct mach_header_64*)KernelData)->filetype) == MH_KERNEL_COLLECTION) {
procAddr -= shift;
}
DBG("procAddr=0x%llx\n", procAddr);
#if KERNEL_DEBUG
if (Absolut != 0) {
UINT8 *procVM;
if ((((struct mach_header_64*)KernelData)->filetype) == MH_KERNEL_COLLECTION) {
procVM = (UINT8*)&KernelData[procAddr];
} else {
procVM = (UINT8*)&driver[procAddr];
}
DBG("procedure begin:\n");
for (int j=0; j<30; ++j) {
DBG("%02X", procVM[j]);
}
DBG("\n");
}
#endif
return procAddr;
}
//static int N = 0;
//search a procedure by Name and return its offset in the kernel
UINTN LOADER_ENTRY::searchProc(const XString8& procedure)
{
if (procedure.isEmpty()) {
return 0;
}
DBG("search name in kernel: %s\n", procedure.c_str());
const char* Names = (const char*)(&KernelData[NamesTable]);
VTABLE * vArray = (VTABLE*)(&KernelData[AddrVtable]);
//search for the name
// gBS->Stall(9000000);
size_t i;
bool found = false;
for (i=0; i<SizeVtable; ++i) {
size_t Offset = vArray[i].NameOffset;
if (Offset == 0) break;
// if (N < 10) {
// DBG("Offset %lx Seg=%x\n", Offset, vArray[i].Seg);
// DBG("Name to compare %s\n", &Names[Offset]);
// N++;
// }
// DBG_RT("Offset %lx Seg=%x\n", Offset, vArray[i].Seg);
// DBG_RT("Name to compare %s\n", &Names[Offset]);
// Stall(3000000);
if (AsciiStrStr(&Names[Offset], procedure.c_str()) != NULL) {
found = true;
break;
}
}
if (!found) {
return 0;
}
// INT32 SegVAddr;
// DBG_RT(" segment %x \n", vArray[i].Seg);
/*
switch (vArray[i].Seg) {
case ID_SEG_TEXT:
SegVAddr = FindBin(kernel, 0x600, (const UINT8 *)kTextSegment, (UINT32)strlen(kTextSegment));
break;
case ID_SEG_DATA:
SegVAddr = FindBin(kernel, 0x1600, (const UINT8 *)kDataSegment, (UINT32)strlen(kDataSegment));
break;
case ID_SEG_DATA_CONST:
SegVAddr = FindBin(kernel, 0x2000, (const UINT8 *)kDataConstSegment, (UINT32)strlen(kDataConstSegment));
break;
case ID_SEG_KLD:
case ID_SEG_KLD2:
SegVAddr = FindBin(kernel, 0x2000, (const UINT8 *)kKldSegment, (UINT32)strlen(kKldSegment));
break;
default:
return 0;
}
*/
SEGMENT *TextSeg = (SEGMENT*)&KernelData[SegVAddr];
UINT64 Absolut = TextSeg->SegAddress; //KLD=C70000
UINT64 FileOff = TextSeg->fileoff; //950000
UINT64 procAddr = vArray[i].ProcAddr - Absolut + FileOff;
/*
UINT64 prevAddr;
if (i == 0) {
prevAddr = Absolut;
} else {
prevAddr = vArray[i-1].ProcAddr;
}
*procLen = vArray[i].ProcAddr - prevAddr; //never worked
*/
DBG("kernel: procAddr=0x%llx\n", procAddr);
return procAddr;
}
#if 0
//TimeWalker - extended and corrected for systems up to Yosemite
//TODO - Slice: no more needed
VOID LOADER_ENTRY::KernelPatcher_64()
{
UINT8 *bytes = KernelData;
UINT32 patchLocation=0, patchLocation1=0;
UINT32 i;
UINT32 switchaddr=0;
UINT32 mask_family=0, mask_model=0;
UINT32 cpuid_family_addr=0, cpuid_model_addr=0;
UINT64 os_version;
// DBG_RT( "Looking for _cpuid_set_info _panic ...\n");
// Determine location of _cpuid_set_info _panic call for reference
// basically looking for info_p->cpuid_model = bitfield32(reg[eax], 7, 4);
for (i=0; i<0x1000000; i++) {
if (bytes[i+ 0] == 0xC7 && bytes[i+ 1] == 0x05 && bytes[i+ 5] == 0x00 &&
bytes[i+ 6] == 0x07 && bytes[i+ 7] == 0x00 && bytes[i+ 8] == 0x00 && bytes[i+ 9] == 0x00 &&
bytes[i-5] == 0xE8) { // matching 0xE8 for _panic call start
patchLocation = i-5;
break;
}
}
if (!patchLocation) {
// DBG_RT( "_cpuid_set_info Unsupported CPU _panic not found \n");
return;
}
os_version = AsciiOSVersionToUint64(OSVersion);
// make sure only kernels for OSX 10.6.0 to 10.7.3 are being patched by this approach
if (os_version >= AsciiOSVersionToUint64("10.6") && os_version <= AsciiOSVersionToUint64("10.7.3")) {
// DBG_RT( "will patch kernel for macOS 10.6.0 to 10.7.3\n");
// remove tsc_init: unknown CPU family panic for kernels prior to 10.6.2 which still had Atom support
if (os_version < AsciiOSVersionToUint64("10.6.2")) {
for (i=0; i<0x1000000; i++) {
// find _tsc_init panic address by byte sequence 488d3df4632a00
if (bytes[i] == 0x48 && bytes[i+1] == 0x8D && bytes[i+2] == 0x3D && bytes[i+3] == 0xF4 &&
bytes[i+4] == 0x63 && bytes[i+5] == 0x2A && bytes[i+6] == 0x00) {
patchLocation1 = i+9;
// DBG_RT( "Found _tsc_init _panic address at 0x%08x\n",patchLocation1);
break;
}
}
// NOP _panic call
if (patchLocation1) {
bytes[patchLocation1 + 0] = 0x90;
bytes[patchLocation1 + 1] = 0x90;
bytes[patchLocation1 + 2] = 0x90;
bytes[patchLocation1 + 3] = 0x90;
bytes[patchLocation1 + 4] = 0x90;
}
}
else { // assume patching logic for OSX 10.6.2 to 10.7.3
/*
Here is our case from CPUID switch statement, it sets CPUFAMILY_UNKNOWN
C7051C2C5F0000000000 mov dword [ds:0xffffff80008a22c0], 0x0 (example from 10.7)
*/
switchaddr = patchLocation - 19;
// DBG_RT( "switch statement patch location is 0x%08x\n", (switchaddr+6));
if (bytes[switchaddr + 0] == 0xC7 && bytes[switchaddr + 1] == 0x05 &&
bytes[switchaddr + 5] == 0x00 && bytes[switchaddr + 6] == 0x00 &&
bytes[switchaddr + 7] == 0x00 && bytes[switchaddr + 8] == 0x00) {
// Determine cpuid_family address from above mov operation
cpuid_family_addr =
bytes[switchaddr + 2] << 0 |
bytes[switchaddr + 3] << 8 |
bytes[switchaddr + 4] << 16 |
bytes[switchaddr + 5] << 24;
cpuid_family_addr = cpuid_family_addr + (switchaddr + 10);
if (cpuid_family_addr) {
// Determine cpuid_model address
// for 10.6.2 kernels it's offset by 299 bytes from cpuid_family address
if (os_version == AsciiOSVersionToUint64("10.6.2")) {
cpuid_model_addr = cpuid_family_addr - 0X12B;
}
// for 10.6.3 to 10.6.7 it's offset by 303 bytes
else if (os_version <= AsciiOSVersionToUint64("10.6.7")) {
cpuid_model_addr = cpuid_family_addr - 0X12F;
}
// for 10.6.8 to 10.7.3 kernels - by 339 bytes
else {
cpuid_model_addr = cpuid_family_addr - 0X153;
}
// DBG_RT( "cpuid_family address: 0x%08x\n", cpuid_family_addr);
// DBG_RT( "cpuid_model address: 0x%08x\n", cpuid_model_addr);
switchaddr += 6; // offset 6 bytes in mov operation to write a dword instead of zero
// calculate mask for patching, cpuid_family mask not needed as we offset on a valid mask
mask_model = cpuid_model_addr - (switchaddr+14);
// DBG_RT( "model mask 0x%08x\n", mask_model);
// DBG_RT( "overriding cpuid_family and cpuid_model as CPUID_INTEL_PENRYN\n");
bytes[switchaddr+0] = (CPUFAMILY_INTEL_PENRYN & 0x000000FF) >> 0;
bytes[switchaddr+1] = (CPUFAMILY_INTEL_PENRYN & 0x0000FF00) >> 8;
bytes[switchaddr+2] = (CPUFAMILY_INTEL_PENRYN & 0x00FF0000) >> 16;
bytes[switchaddr+3] = (CPUFAMILY_INTEL_PENRYN & 0xFF000000) >> 24;
// mov dword [ds:0xffffff80008a216d], 0x2000117
bytes[switchaddr+4] = 0xC7;
bytes[switchaddr+5] = 0x05;
bytes[switchaddr+6] = (UINT8)((mask_model & 0x000000FF) >> 0);
bytes[switchaddr+7] = (UINT8)((mask_model & 0x0000FF00) >> 8);
bytes[switchaddr+8] = (UINT8)((mask_model & 0x00FF0000) >> 16);
bytes[switchaddr+9] = (UINT8)((mask_model & 0xFF000000) >> 24);
bytes[switchaddr+10] = 0x17; // cpuid_model (Penryn)
bytes[switchaddr+11] = 0x01; // cpuid_extmodel
bytes[switchaddr+12] = 0x00; // cpuid_extfamily
bytes[switchaddr+13] = 0x02; // cpuid_stepping
// fill remainder with 4 NOPs
for (i=14; i<18; i++) {
bytes[switchaddr+i] = 0x90;
}
}
}
else {
// DBG_RT( "Unable to determine cpuid_family address, patching aborted\n");
return;
}
}
// patch ssse3
if (!SSSE3 && (AsciiStrnCmp(OSVersion,"10.6",4)==0)) {
Patcher_SSE3_6((VOID*)bytes);
}
if (!SSSE3 && (AsciiStrnCmp(OSVersion,"10.7",4)==0)) {
Patcher_SSE3_7();
}
}
// all 10.7.4+ kernels share common CPUID switch statement logic,
// it needs to be exploited in diff manner due to the lack of space
else if (os_version >= AsciiOSVersionToUint64("10.7.4")) {
DBG_RT( "will patch kernel for macOS 10.7.4+\n");
/*
Here is our switchaddress location ... it should be case 20 from CPUID switch statement
833D78945F0000 cmp dword [ds:0xffffff80008a21d0], 0x0;
7417 je 0xffffff80002a8d71
*/
switchaddr = patchLocation-45;
DBG_RT( "switch statement patch location is 0x%08x\n", switchaddr);
if(bytes[switchaddr + 0] == 0x83 && bytes[switchaddr + 1] == 0x3D &&
bytes[switchaddr + 5] == 0x00 && bytes[switchaddr + 6] == 0x00 &&
bytes[switchaddr + 7] == 0x74) {
// Determine cpuid_family address
// 891D4F945F00 mov dword [ds:0xffffff80008a21a0], ebx
cpuid_family_addr =
bytes[switchaddr - 4] << 0 |
bytes[switchaddr - 3] << 8 |
bytes[switchaddr - 2] << 16 |
bytes[switchaddr - 1] << 24;
cpuid_family_addr = cpuid_family_addr + switchaddr;
if (cpuid_family_addr) {
// Determine cpuid_model address
// for 10.6.8+ kernels it's 339 bytes apart from cpuid_family address
cpuid_model_addr = cpuid_family_addr - 0X153;
DBG_RT( "cpuid_family address: 0x%08x\n", cpuid_family_addr);
DBG_RT( "cpuid_model address: 0x%08x\n", cpuid_model_addr);
// Calculate masks for patching
mask_family = cpuid_family_addr - (switchaddr +15);
mask_model = cpuid_model_addr - (switchaddr +25);
DBG_RT( "\nfamily mask: 0x%08x \nmodel mask: 0x%08x\n", mask_family, mask_model);
// retain original
// test ebx, ebx
bytes[switchaddr+0] = bytes[patchLocation-13];
bytes[switchaddr+1] = bytes[patchLocation-12];
// retain original, but move jump offset by 20 bytes forward
// jne for above test
bytes[switchaddr+2] = bytes[patchLocation-11];
bytes[switchaddr+3] = bytes[patchLocation-10]+0x20;
// mov ebx, 0x78ea4fbc
bytes[switchaddr+4] = 0xBB;
bytes[switchaddr+5] = (CPUFAMILY_INTEL_PENRYN & 0x000000FF) >> 0;
bytes[switchaddr+6] = (CPUFAMILY_INTEL_PENRYN & 0x0000FF00) >> 8;
bytes[switchaddr+7] = (CPUFAMILY_INTEL_PENRYN & 0x00FF0000) >> 16;
bytes[switchaddr+8] = (CPUFAMILY_INTEL_PENRYN & 0xFF000000) >> 24;
// mov dword, ebx
bytes[switchaddr+9] = 0x89;
bytes[switchaddr+10] = 0x1D;
// cpuid_cpufamily address 0xffffff80008a21a0
bytes[switchaddr+11] = (UINT8)((mask_family & 0x000000FF) >> 0);
bytes[switchaddr+12] = (UINT8)((mask_family & 0x0000FF00) >> 8);
bytes[switchaddr+13] = (UINT8)((mask_family & 0x00FF0000) >> 16);
bytes[switchaddr+14] = (UINT8)((mask_family & 0xFF000000) >> 24);
// mov dword
bytes[switchaddr+15] = 0xC7;
bytes[switchaddr+16] = 0x05;
// cpuid_model address 0xffffff80008b204d
bytes[switchaddr+17] = (UINT8)((mask_model & 0x000000FF) >> 0);
bytes[switchaddr+18] = (UINT8)((mask_model & 0x0000FF00) >> 8);
bytes[switchaddr+19] = (UINT8)((mask_model & 0x00FF0000) >> 16);
bytes[switchaddr+20] = (UINT8)((mask_model & 0xFF000000) >> 24);
bytes[switchaddr+21] = 0x17; // cpuid_model
bytes[switchaddr+22] = 0x01; // cpuid_extmodel
bytes[switchaddr+23] = 0x00; // cpuid_extfamily
bytes[switchaddr+24] = 0x02; // cpuid_stepping
// fill remainder with 25 NOPs
for (i=25; i<25+25; i++) {
bytes[switchaddr+i] = 0x90;
}
}
}
else {
DBG_RT( "Unable to determine cpuid_family address, patching aborted\n");
return;
}
}
}
VOID LOADER_ENTRY::KernelPatcher_32()
{
UINT8* bytes = KernelData;
UINT32 patchLocation=0, patchLocation1=0;
UINT32 i;
UINT32 jumpaddr;
DBG("Found _cpuid_set_info _panic Start\n");
// _cpuid_set_info _panic address
for (i=0; i<0x1000000; i++) {
if (bytes[i] == 0xC7 && bytes[i+1] == 0x05 && bytes[i+6] == 0x07 && bytes[i+7] == 0x00 &&
bytes[i+8] == 0x00 && bytes[i+9] == 0x00 && bytes[i+10] == 0xC7 && bytes[i+11] == 0x05 &&
bytes[i-5] == 0xE8) {
patchLocation = i-5;
DBG("Found _cpuid_set_info _panic address at 0x%08X\n",patchLocation);
break;
}
}
if (!patchLocation) {
DBG("Can't find _cpuid_set_info _panic address, patch kernel abort.\n"/*,i*/);
return;
}
// this for 10.6.0 and 10.6.1 kernel and remove tsc.c unknow cpufamily panic
// c70424540e5900
// find _tsc_init panic address
for (i=0; i<0x1000000; i++) {
// _cpuid_set_info _panic address
if (bytes[i] == 0xC7 && bytes[i+1] == 0x04 && bytes[i+2] == 0x24 &&
bytes[i+3] == 0x54 && bytes[i+4] == 0x0E && bytes[i+5] == 0x59 &&
bytes[i+6] == 0x00) {
patchLocation1 = i+7;
DBG("Found _tsc_init _panic address at 0x%08X\n",patchLocation1);
break;
}
}
// found _tsc_init panic addres and patch it
if (patchLocation1) {
bytes[patchLocation1 + 0] = 0x90;
bytes[patchLocation1 + 1] = 0x90;
bytes[patchLocation1 + 2] = 0x90;
bytes[patchLocation1 + 3] = 0x90;
bytes[patchLocation1 + 4] = 0x90;
}
// end tsc.c panic
//first move panic code total 5 bytes, if patch cpuid fail still can boot with kernel
bytes[patchLocation + 0] = 0x90;
bytes[patchLocation + 1] = 0x90;
bytes[patchLocation + 2] = 0x90;
bytes[patchLocation + 3] = 0x90;
bytes[patchLocation + 4] = 0x90;
jumpaddr = patchLocation;
for (i=0;i<500;i++) {
if (bytes[jumpaddr-i-3] == 0x85 && bytes[jumpaddr-i-2] == 0xC0 &&
bytes[jumpaddr-i-1] == 0x75 ) {
jumpaddr -= i;
bytes[jumpaddr-1] = 0x77;
if(bytes[patchLocation - 17] == 0xC7)
bytes[jumpaddr] -=10;
break;
}
}
if (jumpaddr == patchLocation) {
DBG("Can't Found jumpaddr address.\n");
return; //can't find jump location
}
// patch info_p->cpufamily to CPUFAMILY_INTEL_MEROM
if (bytes[patchLocation - 17] == 0xC7) {
bytes[patchLocation - 11] = (CPUFAMILY_INTEL_MEROM & 0x000000FF) >> 0;
bytes[patchLocation - 10] = (CPUFAMILY_INTEL_MEROM & 0x0000FF00) >> 8;
bytes[patchLocation - 9] = (CPUFAMILY_INTEL_MEROM & 0x00FF0000) >> 16;
bytes[patchLocation - 8] = (CPUFAMILY_INTEL_MEROM & 0xFF000000) >> 24;
}
//patch info->cpuid_cpufamily
bytes[patchLocation - 7] = 0xC7;
bytes[patchLocation - 6] = 0x05;
bytes[patchLocation - 5] = bytes[jumpaddr + 3];
bytes[patchLocation - 4] = bytes[jumpaddr + 4];
bytes[patchLocation - 3] = bytes[jumpaddr + 5];
bytes[patchLocation - 2] = bytes[jumpaddr + 6];
bytes[patchLocation - 1] = CPUIDFAMILY_DEFAULT; //cpuid_family need alway set 0x06
bytes[patchLocation + 0] = CPU_MODEL_MEROM; //cpuid_model set CPU_MODEL_MEROM
bytes[patchLocation + 1] = 0x01; //cpuid_extmodel alway set 0x01
bytes[patchLocation + 2] = 0x00; //cpuid_extfamily alway set 0x00
bytes[patchLocation + 3] = 0x90;
bytes[patchLocation + 4] = 0x90;
if (OSVersion) {
if (AsciiStrnCmp(OSVersion,"10.7",4)==0) return;
if (!SSSE3 && (AsciiStrnCmp(OSVersion,"10.6",4)==0)) {
Patcher_SSE3_6((VOID*)bytes);
}
if (!SSSE3 && (AsciiStrnCmp(OSVersion,"10.5",4)==0)) {
Patcher_SSE3_5((VOID*)bytes);
}
}
}
#endif
//Slice - FakeCPUID substitution, (c)2014
// _cpuid_set_info
//TODO remake to patterns
//procedure location
const UINT8 StrCpuid1_tigLeo[] = {0xb9, 0x01, 0x00, 0x00, 0x00, 0x89, 0xc8, 0x0f, 0xa2};
const UINT8 StrCpuid1_snowLeo[] = {0xb8, 0x01, 0x00, 0x00, 0x00, 0x31, 0xdb, 0x89, 0xd9, 0x89, 0xda, 0x0f, 0xa2};
const UINT8 StrMsr8b[] = {0xb9, 0x8b, 0x00, 0x00, 0x00, 0x0f, 0x32};
// Tiger/Leopard/Snow Leopard
/*
This patch searches
and eax, 0xf0 || and eax, 0x0f0000
shr eax, 0x04 || shr eax, 0x10
and replaces to
mov eax, FakeModel | mov eax, FakeExt
*/
const UINT8 TigLeoSLSearchModel[] = {0x25, 0xf0, 0x00, 0x00, 0x00, 0xc1, 0xe8, 0x04};
const UINT8 TigLeoSLSearchExt[] = {0x25, 0x00, 0x00, 0x0f, 0x00, 0xc1, 0xe8, 0x10};
const UINT8 TigLeoSLReplaceModel[] = {0xb8, 0x07, 0x00, 0x00, 0x00, 0x90, 0x90, 0x90};
// Lion
/*
This patch searches
mov ecx, eax
shr ecx, 0x04 || shr ecx, 0x10
and replaces to
mov ecx, FakeModel || mov ecx, FakeExt
*/
const UINT8 LionSearchModel[] = {0x89, 0xc1, 0xc1, 0xe9, 0x04};
const UINT8 LionSearchExt[] = {0x89, 0xc1, 0xc1, 0xe9, 0x10};
const UINT8 LionReplaceModel[] = {0xb9, 0x07, 0x00, 0x00, 0x00};
// Mountain Lion/Mavericks
/*
This patch searches
mov bl, al || shr eax, 0x10
shr bl, 0x04 || and al,0x0f
and replaces to
mov ebx, FakeModel || mov eax, FakeExt
*/
const UINT8 MLMavSearchModel[] = {0x88, 0xc3, 0xc0, 0xeb, 0x04};
const UINT8 MLMavSearchExt[] = {0xc1, 0xe8, 0x10, 0x24, 0x0f};
const UINT8 MLMavReplaceModel[] = {0xbb, 0x0a, 0x00, 0x00, 0x00};
const UINT8 MLMavReplaceExt[] = {0xb8, 0x02, 0x00, 0x00, 0x00};
// Yosemite/El Capitan/Sierra
/*
This patch searches
mov cl, al || mov ecx, eax
shr cl, 0x04 || shr ecx, 0x10
and replaces to
mov ecx, FakeModel || mov ecx, FakeExt
*/
const UINT8 YosECSieSearchModel[] = {0x88, 0xc1, 0xc0, 0xe9, 0x04};
const UINT8 YosECSieSearchExt[] = {0x89, 0xc1, 0xc1, 0xe9, 0x10};
// Need to use LionReplaceModel
// High Sierra/Mojave @2c4baa {89 c1 c0 e9 04}
/*
This patch searches
mov ecx, ecx || mov ecx, eax
shr cl, 0x04 || shr ecx, 0x10
and replaces to
mov ecx, FakeModel || mov ecx, FakeExt
*/
const UINT8 HSieMojSearchModel[] = {0x89, 0xc1, 0xc0, 0xe9, 0x04};
// Need to use YosECSieSearchExt, LionReplaceModel
// Catalina
/*
This patch searches
mov eax, r12 || mov eax, r12
shr al, 0x4 || shr eax, 0x10
and replaces to
mov eax, FakeModel || mov eax, FakeExt
nop || nop
*/
const UINT8 CataSearchModel[] = {0x44, 0x89, 0xE0, 0xC0, 0xE8, 0x04};
const UINT8 CataSearchExt[] = {0x44, 0x89, 0xE0, 0xC1, 0xE8, 0x10};
const UINT8 CataReplaceMovEax[] = {0xB8, 0x00, 0x00, 0x00, 0x00, 0x90}; // mov eax, val || nop
BOOLEAN LOADER_ENTRY::PatchCPUID(const UINT8* Location, INT32 LenLoc,
const UINT8* Search4, const UINT8* Search10, const UINT8* ReplaceModel,
const UINT8* ReplaceExt, INT32 Len)
{
INT32 patchLocation=0, patchLocation1=0;
INT32 Adr = 0, Num;
BOOLEAN Patched = FALSE;
UINT8 FakeModel = (KernelAndKextPatches.FakeCPUID >> 4) & 0x0f;
UINT8 FakeExt = (KernelAndKextPatches.FakeCPUID >> 0x10) & 0x0f;
for (Num = 0; Num < 2; Num++) {
Adr = FindBin(&KernelData[Adr], 0x800000 - Adr, Location, (UINT32)LenLoc);
if (Adr < 0) {
break;
}
DBG_RT( "found location at %x\n", Adr);
patchLocation = FindBin(&KernelData[Adr], 0x100, Search4, (UINT32)Len);
if (patchLocation > 0 && patchLocation < 70) {
//found
DBG_RT( "found Model location at %x\n", Adr + patchLocation);
CopyMem(&KernelData[Adr + patchLocation], ReplaceModel, Len);
KernelData[Adr + patchLocation + 1] = FakeModel;
patchLocation1 = FindBin(&KernelData[Adr], 0x100, Search10, (UINT32)Len);
if (patchLocation1 > 0 && patchLocation1 < 100) {
DBG_RT( "found ExtModel location at %x\n", Adr + patchLocation1);
CopyMem(&KernelData[Adr + patchLocation1], ReplaceExt, Len);
KernelData[Adr + patchLocation1 + 1] = FakeExt;
}
Patched = TRUE;
}
}
return Patched;
}
VOID LOADER_ENTRY::KernelCPUIDPatch()
{
// Tiger/Leopard patterns
DBG_RT( "CPUID: try Tiger/Leopard patch...\n");
if (PatchCPUID(&StrCpuid1_tigLeo[0], sizeof(StrCpuid1_tigLeo), &TigLeoSLSearchModel[0],
&TigLeoSLSearchExt[0], &TigLeoSLReplaceModel[0], &TigLeoSLReplaceModel[0],
sizeof(TigLeoSLSearchModel))) {
DBG_RT( "...done!\n");
return;
}
// Snow Leopard patterns
DBG_RT( "CPUID: try Snow Leopard patch...\n");
if (PatchCPUID(&StrCpuid1_snowLeo[0], sizeof(StrCpuid1_snowLeo), &TigLeoSLSearchModel[0],
&TigLeoSLSearchExt[0], &TigLeoSLReplaceModel[0], &TigLeoSLReplaceModel[0],
sizeof(TigLeoSLSearchModel))) {
DBG_RT( "...done!\n");
return;
}
// Lion patterns
DBG_RT( "CPUID: try Lion patch...\n");
if (PatchCPUID(&StrMsr8b[0], sizeof(StrMsr8b), &LionSearchModel[0],
&LionSearchExt[0], &LionReplaceModel[0], &LionReplaceModel[0],
sizeof(LionSearchModel))) {
DBG_RT( "...done!\n");
return;
}
// Mountain Lion/Mavericks patterns
DBG_RT( "CPUID: try Mountain Lion/Mavericks patch...\n");
if (PatchCPUID(&StrMsr8b[0], sizeof(StrMsr8b), &MLMavSearchModel[0],
&MLMavSearchExt[0], &MLMavReplaceModel[0], &MLMavReplaceExt[0],
sizeof(MLMavSearchModel))) {
DBG_RT( "...done!\n");
return;
}
// Yosemite/El Capitan/Sierra patterns
DBG_RT( "CPUID: try Yosemite/El Capitan/Sierra patch...\n");
if (PatchCPUID(&StrMsr8b[0], sizeof(StrMsr8b), &YosECSieSearchModel[0],
&YosECSieSearchExt[0], &LionReplaceModel[0], &LionReplaceModel[0],
sizeof(YosECSieSearchModel))) {
DBG_RT( "...done!\n");
return;
}
// High Sierra/Mojave patterns
// Sherlocks: 10.13/10.14
DBG_RT( "CPUID: try High Sierra/Mojave patch...\n");
if (PatchCPUID(&StrMsr8b[0], sizeof(StrMsr8b), &HSieMojSearchModel[0],
&YosECSieSearchExt[0], &LionReplaceModel[0], &LionReplaceModel[0],
sizeof(HSieMojSearchModel))) {
DBG_RT( "...done!\n");
return;
}
// Catalina patterns
// PMheart: 10.15.DP1
DBG_RT( "CPUID: try Catalina patch...\n");
if (PatchCPUID(&StrMsr8b[0], sizeof(StrMsr8b), &CataSearchModel[0],
&CataSearchExt[0], &CataReplaceMovEax[0], &CataReplaceMovEax[0],
sizeof(CataSearchModel))) {
DBG_RT( "...done!\n");
return;
}
}
#define NEW_PM 1
BOOLEAN LOADER_ENTRY::KernelPatchPm()
{
DBG_RT("Patching kernel power management...\n");
#if NEW_PM
//Slice
//1. procedure xcpm_idle
// wrmsr 0xe2 twice
// B9E2000000 0F30 replace to eb05
// UINTN procLen = 0;
UINTN procLocation = searchProc("xcpm_idle"_XS8);
const UINT8 findJmp[] = {0xB9, 0xE2, 0x00, 0x00, 0x00, 0x0F, 0x30};
const UINT8 patchJmp[] = {0x90, 0x90, 0x90, 0x90, 0x90, 0x90, 0x90};
DBG_RT("==> xcpm_idle at %llx\n", procLocation);
INTN Num = SearchAndReplace(&KernelData[procLocation], 0x400, findJmp, sizeof(findJmp), patchJmp, 0);
DBG_RT("==> found %lld patterns\n", Num);
//2. procedure xcpm_init
// indirect call to _xcpm_core_scope_msrs and to _xcpm_SMT_scope_msrs
// 488D3DDA317600 lea rdi, qword [ds:_xcpm_core_scope_msrs]
// BE0B000000 mov esi, 0xb => replace to eb0a
// 31D2 xor edx, edx
// E87EFCFFFF call sub_ffffff80004fa610 => check e8?
// there are other occurence of _xcpm_core_scope_msrs so check 488D3D or E8 at .+7
// or restrict len = 0x200
procLocation = searchProc("xcpm_init"_XS8);
UINTN symbol1 = searchProc("xcpm_core_scope_msrs"_XS8);
UINTN patchLocation1 = FindRelative32(KernelData, procLocation, 0x200, symbol1);
if (patchLocation1 != 0) {
DBG_RT("=> xcpm_core_scope_msrs found at %llx\n", patchLocation1);
if (KernelData[patchLocation1 + 7] == 0xE8) {
DBG_RT("=> patch applied\n");
// for (int i=0; i < 0x10; ++i) {
// DBG_RT("%02x", KernelData[patchLocation1 + i]);
// }
// DBG_RT("\n");
KernelData[patchLocation1] = 0xEB;
KernelData[patchLocation1 + 1] = 0x0A;
} else {
DBG_RT("=> pattern not good\n");
// for (int i=0; i < 0x10; ++i) {
// DBG_RT("%02x", KernelData[patchLocation1 + i]);
// }
// DBG_RT("\n");
}
}
UINTN symbol2 = searchProc("xcpm_SMT_scope_msrs"_XS8);
patchLocation1 = FindRelative32(KernelData, procLocation, 0x200, symbol2);
if (patchLocation1 != 0) {
DBG_RT("=> xcpm_SMT_scope_msrs found at %llx\n", patchLocation1);
if (KernelData[patchLocation1 + 7] == 0xE8) {
DBG_RT("=> SMT patch applied\n");
KernelData[patchLocation1] = 0xEB;
KernelData[patchLocation1 + 1] = 0x0A;
} else {
DBG_RT("=> pattern not good\n");
}
}
Stall(10000000);
#else
// Credits to RehabMan for the kernel patch information
// new way by RehabMan 2017-08-13
// cleanup by Sherlocks 2020-03-23
#define CompareWithMask(x,m,c) (((x) & (m)) == (c))
//TODO - remake using CompareMemMask
UINT64* Ptr = (UINT64*)KernelData;
UINT64* End = Ptr + 0x1000000/sizeof(UINT64);
if (Ptr == NULL) {
return FALSE;
}
for (; Ptr < End; Ptr += 2) {
// check for xcpm_scope_msr common 0xE2 prologue
// E2000000 XX000000 00000000 00000000 00040000 00000000
// 10.8/10.9: 02,0C,10
// E2000000 XXXX0000 00000000 00000000 0F040000 00000000
// 10.10: 0200,4C00,9001, 10.11: 0200,4C00,9013, 10.12: 4C00,9033, 10.13-10.15.3: 4C00,9033,0040
// E2000000 XXXXXX00 00000000 00000000 0F040000 00000000
// 10.15.4+: 4C0000,903306,004000
// E2000000 XXXXXXXX 00000000 00000000 XX040000 00000000
// safe pattern for next macOS
if (CompareWithMask(Ptr[0], 0x00000000FFFFFFFF, 0x00000000000000E2) && 0 == Ptr[1] &&
CompareWithMask(Ptr[2], 0xFFFFFFFFFFFFFF00, 0x0000000000000400)) {
// 10.8 - 10.12
// 0700001E 00000000 00000000 00000000 00000000 00000000
// 0500001E 00000000 00000000 00000000 00000000 00000000
// 0800007E 00000000 00000000 00000000 00000000 00000000
// 10.13+
// 0500001E 00000000 00000000 00000000 00000000 00000000
// 0800007E 00000000 00000000 00000000 00000000 00000000
// 0300007E 00000000 00000000 00000000 00000000 00000000
// XX00001E 00000000 00000000 00000000 00000000 00000000
if (CompareWithMask(Ptr[3], 0xFFFFFFFFFFFFFF00, 0x000000001E000000) && 0 == Ptr[4] && 0 == Ptr[5]) {
// zero out 0xE2 MSR and CPU mask
Ptr[0] = 0;
DBG_RT("Kernel power management: entry 1E found and patched\n");
// XX00007E 00000000 00000000 00000000 00000000 00000000
} else if (CompareWithMask(Ptr[3], 0xFFFFFFFFFFFFFF00, 0x000000007E000000) && 0 == Ptr[4] && 0 == Ptr[5]) {
// zero out 0xE2 MSR and CPU mask
Ptr[0] = 0;
DBG_RT("Kernel power management: entry 7E found and patched\n");
}
}
}
if (KernelAndKextPatches.KPDebug) {
gBS->Stall(3000000);
}
#endif
return TRUE;
}
const UINT8 PanicNoKextDumpFind[] = {0x00, 0x25, 0x2E, 0x2A, 0x73, 0x00};
//STATIC UINT8 PanicNoKextDumpReplace[6] = {0x00, 0x00, 0x2E, 0x2A, 0x73, 0x00};
BOOLEAN LOADER_ENTRY::KernelPanicNoKextDump()
{
INT32 patchLocation;
patchLocation = FindBin(KernelData, 0xF00000, PanicNoKextDumpFind, 6);
if (patchLocation > 0) {
KernelData[patchLocation + 1] = 0;
return TRUE;
}
return FALSE;
}
BOOLEAN LOADER_ENTRY::KernelLapicPatch_64()
{
// Credits to donovan6000 and Sherlocks for providing the lapic kernel patch source used to build this function
UINT8 *bytes = KernelData;
UINTN patchLocation1 = 0, patchLocation2 = 0;
UINT32 i, y;
DBG_RT( "Looking for Lapic panic call (64-bit) Start\n");
//Slice - symbolic method
//start at lapic_interrupt ffffff80004e4950 => @2e4950
// found pattern: 1
// address: 002e4a2f
// bytes:658b04251c0000003b058bb97b00
// call _panic -> change to nop {90,90,90,90,90}
if (AsciiOSVersionToUint64(OSVersion) >= AsciiOSVersionToUint64("10.10"_XS8)) {
UINTN procAddr = searchProc("lapic_interrupt"_XS8);
patchLocation1 = searchProc("_panic"_XS8);
patchLocation2 = FindRelative32(KernelData, procAddr, 0x140, patchLocation1);
if (patchLocation2 != 0) {
KernelData[patchLocation2 - 5] = 0xEB;
KernelData[patchLocation2 - 4] = 0x03;
DBG_RT( "Lapic panic patched\n");
return true;
}
}
//else old method
for (i = 0; i < 0x1000000; i++) {
if (KernelData[i+0] == 0x65 && KernelData[i+1] == 0x8B && KernelData[i+2] == 0x04 && KernelData[i+3] == 0x25 &&
KernelData[i+4] == 0x3C && KernelData[i+5] == 0x00 && KernelData[i+6] == 0x00 && KernelData[i+7] == 0x00 &&
KernelData[i+45] == 0x65 && KernelData[i+46] == 0x8B && KernelData[i+47] == 0x04 && KernelData[i+48] == 0x25 &&
KernelData[i+49] == 0x3C && KernelData[i+50] == 0x00 && KernelData[i+51] == 0x00 && KernelData[i+52] == 0x00) {
patchLocation1 = i+40;
DBG_RT( "Found Lapic panic (10.6) at 0x%08llx\n", patchLocation1);
break;
} else if (KernelData[i+0] == 0x65 && KernelData[i+1] == 0x8B && KernelData[i+2] == 0x04 && KernelData[i+3] == 0x25 &&
KernelData[i+4] == 0x14 && KernelData[i+5] == 0x00 && KernelData[i+6] == 0x00 && KernelData[i+7] == 0x00 &&
KernelData[i+35] == 0x65 && KernelData[i+36] == 0x8B && KernelData[i+37] == 0x04 && KernelData[i+38] == 0x25 &&
KernelData[i+39] == 0x14 && KernelData[i+40] == 0x00 && KernelData[i+41] == 0x00 && KernelData[i+42] == 0x00) {
patchLocation1 = i+30;
DBG_RT( "Found Lapic panic (10.7 - 10.8) at 0x%08llx\n", patchLocation1);
break;
} else if (KernelData[i+0] == 0x65 && KernelData[i+1] == 0x8B && KernelData[i+2] == 0x04 && KernelData[i+3] == 0x25 &&
KernelData[i+4] == 0x1C && KernelData[i+5] == 0x00 && KernelData[i+6] == 0x00 && KernelData[i+7] == 0x00 &&
KernelData[i+36] == 0x65 && KernelData[i+37] == 0x8B && KernelData[i+38] == 0x04 && KernelData[i+39] == 0x25 &&
KernelData[i+40] == 0x1C && KernelData[i+41] == 0x00 && KernelData[i+42] == 0x00 && KernelData[i+43] == 0x00) {
patchLocation1 = i+31;
DBG_RT( "Found Lapic panic (10.9) at 0x%08llx\n", patchLocation1);
break;
// 00 29 C7 78 XX 31 DB 8D 47 FA 83
} else if (KernelData[i+0] == 0x00 && KernelData[i+1] == 0x29 && KernelData[i+2] == 0xC7 && KernelData[i+3] == 0x78 &&
//(bytes[i+4] == 0x3F || bytes[i+4] == 0x4F) && // 3F:10.10-10.12/4F:10.13+
bytes[i+5] == 0x31 && bytes[i+6] == 0xDB && bytes[i+7] == 0x8D && bytes[i+8] == 0x47 &&
bytes[i+9] == 0xFA && bytes[i+10] == 0x83) {
DBG_RT( "Found Lapic panic Base (10.10 - recent macOS)\n");
for (y = i; y < 0x1000000; y++) {
// Lapic panic patch, by vit9696
// mov eax, gs:XX
// cmp eax, cs:_master_cpu
// 65 8B 04 25 XX 00 00 00 3B 05 XX XX XX 00
if (bytes[y+0] == 0x65 && bytes[y+1] == 0x8B && bytes[y+2] == 0x04 && bytes[y+3] == 0x25 &&
//(bytes[y+4] == 0x1C || bytes[y+4] == 0x18) && // 1C:10.10-10.15.3/18:10.15.4+
bytes[y+5] == 0x00 && bytes[y+6] == 0x00 && bytes[y+7] == 0x00 &&
bytes[y+8] == 0x3B && bytes[y+9] == 0x05 && bytes[y+13] == 0x00) {
patchLocation1 = y;
DBG_RT( "Found Lapic panic (10.10 - recent macOS) at 0x%08llx\n", patchLocation1);
break;
}
}
break;
}
}
if (!patchLocation1) {
DBG_RT( "Can't find Lapic panic, kernel patch aborted.\n");
return FALSE;
}
// Already patched? May be running a non-vanilla kernel already?
if (bytes[patchLocation1 + 0] == 0x90 && bytes[patchLocation1 + 1] == 0x90 &&
bytes[patchLocation1 + 2] == 0x90 && bytes[patchLocation1 + 3] == 0x90 &&
bytes[patchLocation1 + 4] == 0x90) {
DBG_RT( "Lapic panic already patched, kernel file (10.6 - 10.9) manually patched?\n");
return FALSE;
} else if (bytes[patchLocation1 + 0] == 0x31 && bytes[patchLocation1 + 1] == 0xC0 &&
bytes[patchLocation1 + 2] == 0x90 && bytes[patchLocation1 + 3] == 0x90) {
DBG_RT( "Lapic panic already patched, kernel file (10.10 - recent macOS) manually patched?\n");
return FALSE;
} else {
if (bytes[patchLocation1 + 8] == 0x3B && bytes[patchLocation1 + 9] == 0x05 &&
bytes[patchLocation1 + 13] == 0x00) {
// 65 8B 04 25 XX 00 00 00 3B 05 XX XX XX 00
// 31 C0 90 90 90 90 90 90 90 90 90 90 90 90
DBG_RT( "Patched Lapic panic (10.10 - recent macOS)\n");
bytes[patchLocation1 + 0] = 0x31;
bytes[patchLocation1 + 1] = 0xC0;
for (i = 2; i < 14; i++) {
bytes[patchLocation1 + i] = 0x90;
}
for (i = 0; i < 0x1000000; i++) {
// 00 29 C7 78 XX 31 DB 8D 47 FA 83
if (bytes[i+0] == 0x00 && bytes[i+1] == 0x29 && bytes[i+2] == 0xC7 && bytes[i+3] == 0x78 &&
//(bytes[i+4] == 0x3F || bytes[i+4] == 0x4F) && // 3F:10.10-10.12/4F:10.13+
bytes[i+5] == 0x31 && bytes[i+6] == 0xDB && bytes[i+7] == 0x8D && bytes[i+8] == 0x47 &&
bytes[i+9] == 0xFA && bytes[i+10] == 0x83) {
DBG_RT( "Found Lapic panic master Base (10.10 - recent macOS)\n");
for (y = i; y < 0x1000000; y++) {
// Lapic panic master patch, by vit9696
// cmp cs:_debug_boot_arg, 0
// E8 XX XX FF FF 83 XX XX XX XX 00 00
if (bytes[y+0] == 0xE8 && bytes[y+3] == 0xFF && bytes[y+4] == 0xFF &&
bytes[y+5] == 0x83 && bytes[y+10] == 0x00 && bytes[y+11] == 0x00) {
patchLocation2 = y;
DBG_RT( "Found Lapic panic master (10.10 - recent macOS) at 0x%08llx\n", patchLocation2);
break;
}
}
break;
}
}
if (!patchLocation2) {
DBG_RT( "Can't find Lapic panic master (10.10 - recent macOS), kernel patch aborted.\n");
return FALSE;
}
// Already patched? May be running a non-vanilla kernel already?
if (bytes[patchLocation2 + 5] == 0x31 && bytes[patchLocation2 + 6] == 0xC0) {
DBG_RT( "Lapic panic master already patched, kernel file (10.10 - recent macOS) manually patched?\n");
return FALSE;
} else {
DBG_RT( "Patched Lapic panic master (10.10 - recent macOS)\n");
// E8 XX XX FF FF 83 XX XX XX XX 00 00
// E8 XX XX FF FF 31 C0 90 90 90 90 90 xor eax,eax; nop; nop;....
bytes[patchLocation2 + 5] = 0x31;
bytes[patchLocation2 + 6] = 0xC0;
for (i = 7; i < 12; i++) {
bytes[patchLocation2 + i] = 0x90;
}
}
} else {
DBG_RT( "Patched Lapic panic (10.6 - 10.9)\n");
for (i = 0; i < 5; i++) {
bytes[patchLocation1 + i] = 0x90;
}
}
}
// if (KernelAndKextPatches.KPDebug) {
Stall(3000000);
// }
return TRUE;
}
BOOLEAN LOADER_ENTRY::KernelLapicPatch_32()
{
// Credits to donovan6000 and Sherlocks for providing the lapic kernel patch source used to build this function
UINT8 *bytes = KernelData;
UINT32 patchLocation = 0;
UINT32 i;
DBG_RT( "Looking for Lapic panic call (32-bit) Start\n");
for (i = 0; i < 0x1000000; i++) {
if (bytes[i+0] == 0x65 && bytes[i+1] == 0xA1 && bytes[i+2] == 0x0C && bytes[i+3] == 0x00 &&
bytes[i+4] == 0x00 && bytes[i+5] == 0x00 &&
bytes[i+30] == 0x65 && bytes[i+31] == 0xA1 && bytes[i+32] == 0x0C && bytes[i+33] == 0x00 &&
bytes[i+34] == 0x00 && bytes[i+35] == 0x00) {
patchLocation = i+25;
DBG_RT( "Found Lapic panic at 0x%08x\n", patchLocation);
break;
}
}
if (!patchLocation) {
DBG_RT( "Can't find Lapic panic, kernel patch aborted.\n");
return FALSE;
}
// Already patched? May be running a non-vanilla kernel already?
if (bytes[patchLocation + 0] == 0x90 && bytes[patchLocation + 1] == 0x90 &&
bytes[patchLocation + 2] == 0x90 && bytes[patchLocation + 3] == 0x90 &&
bytes[patchLocation + 4] == 0x90) {
DBG_RT( "Lapic panic already patched, kernel file manually patched?\n");
return FALSE;
} else {
DBG_RT( "Patched Lapic panic (32-bit)\n");
for (i = 0; i < 5; i++) {
bytes[patchLocation + i] = 0x90;
}
}
// if (KernelAndKextPatches.KPDebug) {
Stall(3000000);
// }
return TRUE;
}
//
// syscl - EnableExtCpuXCPM(): enable extra(unsupport) Cpu XCPM function
// PowerManagement that will be enabled on:
// SandyBridge-E, Ivy Bridge, Ivy Bridge-E, Haswell Celeron/Pentium, Haswell-E, Broadwell-E, ...
// credit Pike R.Alpha, stinga11, syscl
//
//BOOLEAN (*EnableExtCpuXCPM)(VOID *kernelData);
//
// syscl - applyKernPatch a wrapper for SearchAndReplace() to make the CpuPM patch tidy and clean
//
VOID LOADER_ENTRY::applyKernPatch(const UINT8 *find, UINTN size, const UINT8 *repl, const CHAR8 *comment)
{
DBG("Searching %s...\n", comment);
if (SearchAndReplace(KernelData, KERNEL_MAX_SIZE, find, size, repl, 0)) {
DBG("Found %s\nApplied patch\n", comment);
} else {
DBG("%s no found, patched already?\n", comment);
}
}
// PMHeart
// Global XCPM patches compatibility
// Currently 10.8.5 - 10.15
//
static inline BOOLEAN IsXCPMOSVersionCompat(UINT64 os_version)
{
return (os_version >= AsciiOSVersionToUint64("10.8.5"_XS8)) && (os_version < AsciiOSVersionToUint64("11.1.0"_XS8));
}
//
// Enable Unsupported CPU PowerManagement
//
// syscl - SandyBridgeEPM(): enable PowerManagement on SandyBridge-E
//
BOOLEAN LOADER_ENTRY::SandyBridgeEPM()
{
// note: a dummy function that made patches consistency
return TRUE;
}
//
// syscl - Enable Haswell-E XCPM
// Hex data provided and polished (c) PMheart, idea (c) Pike R.Alpha
//
BOOLEAN LOADER_ENTRY::HaswellEXCPM()
{
DBG("HaswellEXCPM() ===>\n");
UINT8 *kern = KernelData;
XString8 comment;
// UINT32 i;
UINTN patchLocation;
UINT64 os_version = AsciiOSVersionToUint64(OSVersion);
// check OS version suit for patches
if (!IsXCPMOSVersionCompat(os_version)) {
DBG("HaswellEXCPM(): Unsupported macOS.\n");
DBG("HaswellEXCPM() <===FALSE\n");
return FALSE;
}
// _cpuid_set_info
comment = "_cpuid_set_info"_XS8;
if (os_version <= AsciiOSVersionToUint64("10.8.5"_XS8)) {
// 10.8.5
const UINT8 find[] = { 0x83, 0xF8, 0x3C, 0x74, 0x2D };
const UINT8 repl[] = { 0x83, 0xF8, 0x3F, 0x74, 0x2D };
applyKernPatch(find, sizeof(find), repl, comment.c_str());
} else if (os_version < AsciiOSVersionToUint64("10.10"_XS8)) {
// 10.9.x
const UINT8 find[] = { 0x83, 0xF8, 0x3C, 0x75, 0x07 };
const UINT8 repl[] = { 0x83, 0xF8, 0x3F, 0x75, 0x07 };
applyKernPatch(find, sizeof(find), repl, comment.c_str());
} else if (os_version <= AsciiOSVersionToUint64("10.10.1"_XS8)) {
// 10.10 - 10.10.1
const UINT8 find[] = { 0x74, 0x11, 0x83, 0xF8, 0x3C };
const UINT8 repl[] = { 0x74, 0x11, 0x83, 0xF8, 0x3F };
applyKernPatch(find, sizeof(find), repl, comment.c_str());
} // 10.10.2+: native support reached, no need to patch
// _xcpm_bootstrap
comment = "_xcpm_bootstrap"_XS8;
if (os_version <= AsciiOSVersionToUint64("10.8.5"_XS8)) {
// 10.8.5
const UINT8 find[] = { 0x83, 0xFB, 0x3C, 0x75, 0x54 };
const UINT8 repl[] = { 0x83, 0xFB, 0x3F, 0x75, 0x54 };
applyKernPatch(find, sizeof(find), repl, comment.c_str());
} else if (os_version < AsciiOSVersionToUint64("10.10"_XS8)) {
// 10.9.x
const UINT8 find[] = { 0x83, 0xFB, 0x3C, 0x75, 0x68 };
const UINT8 repl[] = { 0x83, 0xFB, 0x3F, 0x75, 0x68 };
applyKernPatch(find, sizeof(find), repl, comment.c_str());
} else if (os_version <= AsciiOSVersionToUint64("10.10.2"_XS8)) {
// 10.10 - 10.10.2
const UINT8 find[] = { 0x83, 0xFB, 0x3C, 0x75, 0x63 };
const UINT8 repl[] = { 0x83, 0xFB, 0x3F, 0x75, 0x63 };
applyKernPatch(find, sizeof(find), repl, comment.c_str());
} else if (os_version <= AsciiOSVersionToUint64("10.10.5"_XS8)) {
// 10.10.3 - 10.10.5
const UINT8 find[] = { 0x83, 0xC3, 0xC6, 0x83, 0xFB, 0x0D };
const UINT8 repl[] = { 0x83, 0xC3, 0xC3, 0x83, 0xFB, 0x0D };
applyKernPatch(find, sizeof(find), repl, comment.c_str());
} else if (os_version <= AsciiOSVersionToUint64("10.11"_XS8)) {
// 10.11 DB/PB - 10.11.0
const UINT8 find[] = { 0x83, 0xC3, 0xC6, 0x83, 0xFB, 0x0D };
const UINT8 repl[] = { 0x83, 0xC3, 0xC3, 0x83, 0xFB, 0x0D };
applyKernPatch(find, sizeof(find), repl, comment.c_str());
} else if (os_version <= AsciiOSVersionToUint64("10.11.6"_XS8)) {
// 10.11.1 - 10.11.6
const UINT8 find[] = { 0x83, 0xC3, 0xBB, 0x83, 0xFB, 0x09 };
const UINT8 repl[] = { 0x83, 0xC3, 0xB8, 0x83, 0xFB, 0x09 };
applyKernPatch(find, sizeof(find), repl, comment.c_str());
} else {
UINTN procLocation = searchProc(comment);
UINTN featureCall = searchProc("_cpuid_features"_XS8);
UINTN place = FindRelative32(KernelData, procLocation, 0x100, featureCall);
for (UINTN i = 10; i < 20; ++i) {
if (KernelData[place + i] == 0xC4) {
KernelData[place + i] = 0xC1;
if (KernelData[(place + i) - 5] == 0x3B) {
KernelData[(place + i) - 5] = 0x00;
}
break;
}
}
/*if (os_version <= AsciiOSVersionToUint64("10.12.5")) {
// 10.12 - 10.12.5
const UINT8 find[] = { 0x83, 0xC3, 0xC4, 0x83, 0xFB, 0x22 };
const UINT8 repl[] = { 0x83, 0xC3, 0xC1, 0x83, 0xFB, 0x22 };
applyKernPatch(find, sizeof(find), repl, comment);
} else if (os_version < AsciiOSVersionToUint64("10.13")) {
// 10.12.6
const UINT8 find[] = { 0x8D, 0x43, 0xC4, 0x83, 0xF8, 0x22 };
const UINT8 repl[] = { 0x8D, 0x43, 0xC1, 0x83, 0xF8, 0x22 };
applyKernPatch(find, sizeof(find), repl, comment);
// PMheart: attempt to add 10.14 compatibility
} else if (os_version < AsciiOSVersionToUint64("10.15")) {
// 10.13/10.14
const UINT8 find[] = { 0x89, 0xD8, 0x04, 0xC4, 0x3C, 0x22 };
const UINT8 repl[] = { 0x89, 0xD8, 0x04, 0xC1, 0x3C, 0x22 };
applyKernPatch(find, sizeof(find), repl, comment);
// PMheart: attempt to add 10.15 compatibility
} else if (os_version < AsciiOSVersionToUint64("10.15.4")) {
const UINT8 find[] = { 0x8D, 0x43, 0xC4, 0x3C, 0x22 };
const UINT8 repl[] = { 0x8D, 0x43, 0xC1, 0x3C, 0x22 };
applyKernPatch(find, sizeof(find), repl, comment);
} else if (os_version < AsciiOSVersionToUint64("10.16")) {
// vector sigma: 10.15.5 Beta 2 build 19F62f and 10.15.4 build 19E287
const UINT8 find[] = { 0x3B, 0x7E, 0x2E, 0x80, 0xC3, 0xC4, 0x80, 0xFB, 0x42 };
const UINT8 repl[] = { 0x00, 0x7E, 0x2E, 0x80, 0xC3, 0xC1, 0x80, 0xFB, 0x42 };
applyKernPatch(find, sizeof(find), repl, comment);
*/
}
DBG("Searching _xcpm_pkg_scope_msr ...\n");
comment = "_xcpm_pkg_scope_msrs"_XS8;
if (os_version <= AsciiOSVersionToUint64("10.8.5"_XS8)) {
// 10.8.5
const UINT8 find[] = {
0x48, 0x8D, 0x3D, 0x02, 0x71, 0x55, 0x00, 0xBE,
0x07, 0x00, 0x00, 0x00, 0xEB, 0x1F, 0x48, 0x8D,
0x3D, 0xF4, 0x70, 0x55, 0x00, 0xBE, 0x07, 0x00,
0x00, 0x00, 0x31, 0xD2, 0xE8, 0x28, 0x02, 0x00, 0x00
};
const UINT8 repl[] = {
0x48, 0x8D, 0x3D, 0x02, 0x71, 0x55, 0x00, 0xBE,
0x07, 0x00, 0x00, 0x00, 0x90, 0x90, 0x48, 0x8D,
0x3D, 0xF4, 0x70, 0x55, 0x00, 0xBE, 0x07, 0x00,
0x00, 0x00, 0x31, 0xD2, 0x90, 0x90, 0x90, 0x90, 0x90
};
applyKernPatch(find, sizeof(find), repl, comment.c_str());
} else if (os_version < AsciiOSVersionToUint64("10.10"_XS8)) {
// 10.9.x
const UINT8 find[] = { 0xBE, 0x07, 0x00, 0x00, 0x00, 0x74, 0x13, 0x31, 0xD2, 0xE8, 0x5F, 0x02, 0x00, 0x00 };
const UINT8 repl[] = { 0xBE, 0x07, 0x00, 0x00, 0x00, 0x90, 0x90, 0x31, 0xD2, 0x90, 0x90, 0x90, 0x90, 0x90 };
applyKernPatch(find, sizeof(find), repl, comment.c_str());
} else {
// 10.10+
/* patchLocation = 0; // clean out the value just in case
for (i = 0; i < 0x1000000; i++) {
if (kern[i+0] == 0xBE && kern[i+1] == 0x07 && kern[i+2] == 0x00 && kern[i+3] == 0x00 &&
kern[i+4] == 0x00 && kern[i+5] == 0x31 && kern[i+6] == 0xD2 && kern[i+7] == 0xE8) {
patchLocation = i+7;
DBG("Found _xcpm_pkg_scope_msr\n");
break;
}
} */
UINTN procLocation = searchProc("xcpm_init"_XS8);
UINTN symbol1 = searchProc("_xcpm_pkg_scope_msrs"_XS8);
patchLocation = FindRelative32(KernelData, procLocation, 0x100, symbol1);
if (patchLocation) {
for (UINTN i = 7; i < 12; i++) {
kern[patchLocation+i] = 0x90;
}
DBG("Applied _xcpm_pkg_scope_msr patch\n");
} else {
DBG("_xcpm_pkg_scope_msr not found, patch aborted\n");
DBG("HaswellEXCPM() <===FALSE\n");
return FALSE;
}
}
DBG("HaswellEXCPM() <===\n");
return TRUE;
}
//
// Enable Broadwell-E/EP PowerManagement on 10.12+ by syscl
//
BOOLEAN LOADER_ENTRY::BroadwellEPM()
{
DBG("BroadwellEPM() ===>\n");
UINT32 i;
UINTN patchLocation;
UINT64 os_version = AsciiOSVersionToUint64(OSVersion);
// check OS version suit for patches
if (!IsXCPMOSVersionCompat(os_version)) {
DBG("BroadwellEPM(): Unsupported macOS.\n");
DBG("BroadwellEPM() <===FALSE\n");
return FALSE;
}
KernelAndKextPatches.FakeCPUID = (UINT32)(os_version < AsciiOSVersionToUint64("10.10.3"_XS8) ? 0x0306C0 : 0x040674);
KernelCPUIDPatch();
DBG("Searching _xcpm_pkg_scope_msr ...\n");
// proc: _xcpm_init @4687b0
// ffffff8000468825 488D3D54527F00 lea rdi, qword [ds:_xcpm_pkg_scope_msrs]
// ffffff800046882c BE07000000 mov esi, 0x7
// ffffff8000468831 31D2 xor edx, edx
// ffffff8000468833 E838FDFFFF call sub_ffffff8000468570
if (os_version >= AsciiOSVersionToUint64("10.12"_XS8)) {
// 10.12+
// patchLocation = 0; // clean out the value just in case
// for (i = 0; i < 0x1000000; i++) {
// if (kern[i+0] == 0xBE && kern[i+1] == 0x07 && kern[i+2] == 0x00 && kern[i+3] == 0x00 &&
// kern[i+4] == 0x00 && kern[i+5] == 0x31 && kern[i+6] == 0xD2 && kern[i+7] == 0xE8) {
// patchLocation = i+7;
// DBG("Found _xcpm_pkg_scope_msr\n");
// break;
// }
UINTN procLocation = searchProc("xcpm_init"_XS8);
UINTN symbol1 = searchProc("_xcpm_pkg_scope_msrs"_XS8);
patchLocation = FindRelative32(KernelData, procLocation, 0x100, symbol1);
if (patchLocation) {
for (i = 7; i < 12; i++) {
KernelData[patchLocation+i] = 0x90;
}
DBG("Applied _xcpm_pkg_scope_msr patch\n");
} else {
DBG("_xcpm_pkg_scope_msr not found, patch aborted\n");
DBG("BroadwellEPM() <===FALSE\n");
return FALSE;
}
}
DBG("BroadwellEPM() <===\n");
return TRUE;
}
//
// syscl - this patch provides XCPM support for Haswell low-end(HSWLowEnd) and platforms later than Haswell
// implemented by syscl
// credit also Pike R.Alpha, stinga11, Sherlocks, vit9696
//
BOOLEAN LOADER_ENTRY::HaswellLowEndXCPM()
{
DBG("HaswellLowEndXCPM() ===>\n");
UINT64 os_version = AsciiOSVersionToUint64(OSVersion);
XString8 comment;
// check OS version suit for patches
if (!IsXCPMOSVersionCompat(os_version)) {
DBG("HaswellLowEndXCPM(): Unsupported macOS.\n");
DBG("HaswellLowEndXCPM() <===FALSE\n");
return FALSE;
}
KernelAndKextPatches.FakeCPUID = (UINT32)(0x0306A0); // correct FakeCPUID
KernelCPUIDPatch();
// 10.8.5 - 10.11.x no need the following kernel patches on Haswell Celeron/Pentium
if (os_version >= AsciiOSVersionToUint64("10.8.5"_XS8) && os_version < AsciiOSVersionToUint64("10.12"_XS8)) {
DBG("HaswellLowEndXCPM() <===\n");
return TRUE;
}
// _xcpm_idle //this is a part of KernelPM
/* if (use_xcpm_idle) {
DBG("HWPEnable - ON.\n");
comment = "_xcpm_idle";
const UINT8 find[] = { 0xB9, 0xE2, 0x00, 0x00, 0x00, 0x0F, 0x30 };
const UINT8 repl[] = { 0xB9, 0xE2, 0x00, 0x00, 0x00, 0x90, 0x90 };
applyKernPatch(find, sizeof(find), repl, comment);
}
*/
comment = "_xcpm_bootstrap"_XS8;
UINTN procLocation = searchProc(comment);
UINTN featureCall = searchProc("_cpuid_features"_XS8);
UINTN place = FindRelative32(KernelData, procLocation, 0x100, featureCall);
for (UINTN i = 10; i < 20; ++i) {
if (KernelData[place + i] == 0xC4) {
KernelData[place + i] = 0xC6;
if (KernelData[(place + i) - 5] == 0x3B) {
KernelData[(place + i) - 5] = 0x00;
}
break;
}
}
/*
if (os_version <= AsciiOSVersionToUint64("10.12.5")) {
// 10.12 - 10.12.5
const UINT8 find[] = { 0x83, 0xC3, 0xC4, 0x83, 0xFB, 0x22 };
const UINT8 repl[] = { 0x83, 0xC3, 0xC6, 0x83, 0xFB, 0x22 };
applyKernPatch(find, sizeof(find), repl, comment);
} else if (os_version < AsciiOSVersionToUint64("10.13")) {
// 10.12.6
const UINT8 find[] = { 0x8D, 0x43, 0xC4, 0x83, 0xF8, 0x22 };
const UINT8 repl[] = { 0x8D, 0x43, 0xC6, 0x83, 0xF8, 0x22 };
applyKernPatch(find, sizeof(find), repl, comment);
} else if (os_version < AsciiOSVersionToUint64("10.15")) {
// 10.13/10.14
// ; Basic Block Input Regs: rbx - Killed Regs: rax
// ffffff80004fa0f7 89D8 mov eax, ebx
// ffffff80004fa0f9 04C4 add al, 0xc4
// ffffff80004fa0fb 3C22 cmp al, 0x22
// ffffff80004fa0fd 7722 jnbe 0xffffff80004fa121
const UINT8 find[] = { 0x89, 0xD8, 0x04, 0xC4, 0x3C, 0x22 };
const UINT8 repl[] = { 0x89, 0xD8, 0x04, 0xC6, 0x3C, 0x22 };
applyKernPatch(find, sizeof(find), repl, comment);
// PMheart: attempt to add 10.15 compatibility
} else if (os_version < AsciiOSVersionToUint64("10.15.4")) {
const UINT8 find[] = { 0x8D, 0x43, 0xC4, 0x3C, 0x22 };
const UINT8 repl[] = { 0x8D, 0x43, 0xC6, 0x3C, 0x22 };
applyKernPatch(find, sizeof(find), repl, comment);
} else if (os_version < AsciiOSVersionToUint64("10.16")) {
// vector sigma: 10.15.5 Beta 2 build 19F62f and 10.15.4 build 19E287
const UINT8 find[] = { 0x3B, 0x7E, 0x2E, 0x80, 0xC3, 0xC4, 0x80, 0xFB, 0x42 };
const UINT8 repl[] = { 0x00, 0x7E, 0x2E, 0x80, 0xC3, 0xC6, 0x80, 0xFB, 0x42 };
applyKernPatch(find, sizeof(find), repl, comment);
}
*/
comment = "_cpuid_set_info_rdmsr"_XS8;
// PMheart: bytes seem stable as of 10.12
if (os_version >= AsciiOSVersionToUint64("10.12"_XS8)) {
// 10.12+
const UINT8 find[] = { 0xB9, 0xA0, 0x01, 0x00, 0x00, 0x0F, 0x32 };
const UINT8 repl[] = { 0xB9, 0xA0, 0x01, 0x00, 0x00, 0x31, 0xC0 };
applyKernPatch(find, sizeof(find), repl, comment.c_str());
}
DBG("HaswellLowEndXCPM() <===\n");
return TRUE;
}
//
// this patch provides XCPM support for Ivy Bridge. by PMheart
//
BOOLEAN LOADER_ENTRY::KernelIvyBridgeXCPM()
{
XString8 comment;
// UINT32 i;
UINTN patchLocation;
UINT64 os_version = AsciiOSVersionToUint64(OSVersion);
// check whether Ivy Bridge
if (gCPUStructure.Model != CPU_MODEL_IVY_BRIDGE) {
DBG("KernelIvyBridgeXCPM(): Unsupported platform.\nRequires Ivy Bridge, aborted\n");
DBG("KernelIvyBridgeXCPM() <===FALSE\n");
return FALSE;
}
// check OS version suit for patches
// PMheart: attempt to add 10.14 compatibility
if (!IsXCPMOSVersionCompat(os_version)) {
DBG("KernelIvyBridgeXCPM():Unsupported macOS.\n");
DBG("KernelIvyBridgeXCPM() <===FALSE\n");
return FALSE;
} else if (os_version >= AsciiOSVersionToUint64("10.8.5"_XS8) && os_version < AsciiOSVersionToUint64("10.12"_XS8)) {
// 10.8.5 - 10.11.x no need the following kernel patches on Ivy Bridge - we just use -xcpm boot-args
DBG("KernelIvyBridgeXCPM() <===\n");
return TRUE;
}
DBG("Searching _xcpm_pkg_scope_msr ...\n");
if (os_version >= AsciiOSVersionToUint64("10.12"_XS8)) {
// 10.12+
/* patchLocation = 0; // clean out the value just in case
for (i = 0; i < 0x1000000; i++) {
if (kern[i+0] == 0xBE && kern[i+1] == 0x07 && kern[i+2] == 0x00 && kern[i+3] == 0x00 &&
kern[i+4] == 0x00 && kern[i+5] == 0x31 && kern[i+6] == 0xD2 && kern[i+7] == 0xE8) {
patchLocation = i+7;
DBG("Found _xcpm_pkg_scope_msr\n");
break;
}
} */
UINTN procLocation = searchProc("xcpm_init"_XS8);
UINTN symbol1 = searchProc("_xcpm_pkg_scope_msrs"_XS8);
patchLocation = FindRelative32(KernelData, procLocation, 0x100, symbol1);
if (patchLocation) {
for (int i = 7; i < 12; i++) {
KernelData[patchLocation+i] = 0x90;
}
DBG("Applied _xcpm_pkg_scope_msr patch\n");
} else {
DBG("_xcpm_pkg_scope_msr not found, patch aborted\n");
DBG("KernelIvyBridgeXCPM() <===FALSE\n");
return FALSE;
}
}
comment = "_xcpm_bootstrap"_XS8;
UINTN procLocation = searchProc(comment);
UINTN featureCall = searchProc("_cpuid_features"_XS8);
UINTN place = FindRelative32(KernelData, procLocation, 0x100, featureCall);
for (UINTN i = 10; i < 20; ++i) {
if (KernelData[place + i] == 0xC4) {
KernelData[place + i] = 0xC6;
if (KernelData[(place + i) - 5] == 0x3B) {
KernelData[(place + i) - 5] = 0x00;
}
break;
}
}
/*
if (os_version <= AsciiOSVersionToUint64("10.12.5")) {
// 10.12 - 10.12.5
const UINT8 find[] = { 0x83, 0xC3, 0xC4, 0x83, 0xFB, 0x22 };
const UINT8 repl[] = { 0x83, 0xC3, 0xC6, 0x83, 0xFB, 0x22 };
applyKernPatch(find, sizeof(find), repl, comment);
} else if (os_version < AsciiOSVersionToUint64("10.13")) {
// 10.12.6
const UINT8 find[] = { 0x8D, 0x43, 0xC4, 0x83, 0xF8, 0x22 };
const UINT8 repl[] = { 0x8D, 0x43, 0xC6, 0x83, 0xF8, 0x22 };
applyKernPatch(find, sizeof(find), repl, comment);
// PMheart: attempt to add 10.14 compatibility
} else if (os_version < AsciiOSVersionToUint64("10.15")) {
// 10.13/10.14
const UINT8 find[] = { 0x89, 0xD8, 0x04, 0xC4, 0x3C, 0x22 };
const UINT8 repl[] = { 0x89, 0xD8, 0x04, 0xC6, 0x3C, 0x22 };
applyKernPatch(find, sizeof(find), repl, comment);
// PMheart: attempt to add 10.15 compatibility
} else if (os_version < AsciiOSVersionToUint64("10.15.4")) {
const UINT8 find[] = { 0x8D, 0x43, 0xC4, 0x3C, 0x22 };
const UINT8 repl[] = { 0x8D, 0x43, 0xC6, 0x3C, 0x22 };
applyKernPatch(find, sizeof(find), repl, comment);
} else if (os_version < AsciiOSVersionToUint64("10.16")) {
// vector sigma: 10.15.5 Beta 2 build 19F62f and 10.15.4 build 19E287
const UINT8 find[] = { 0x3B, 0x7E, 0x2E, 0x80, 0xC3, 0xC4, 0x80, 0xFB, 0x42 };
const UINT8 repl[] = { 0x00, 0x7E, 0x2E, 0x80, 0xC3, 0xC6, 0x80, 0xFB, 0x42 };
applyKernPatch(find, sizeof(find), repl, comment);
}
*/
DBG("KernelIvyBridgeXCPM() <===\n");
return TRUE;
}
//
// this patch provides XCPM support for Ivy Bridge-E. by PMheart
// attempt to enable XCPM for Ivy-E, still need to test further
//
BOOLEAN LOADER_ENTRY::KernelIvyE5XCPM()
{
UINT8 *kern = (UINT8*)KernelData;
XString8 comment;
// UINT32 i;
UINTN patchLocation;
UINT64 os_version = AsciiOSVersionToUint64(OSVersion);
// check whether Ivy Bridge-E5
if (gCPUStructure.Model != CPU_MODEL_IVY_BRIDGE_E5) {
DBG("KernelIvyE5XCPM(): Unsupported platform.\nRequires Ivy Bridge-E, aborted\n");
DBG("KernelIvyE5XCPM() <===FALSE\n");
return FALSE;
}
// check OS version suit for patches
// PMheart: attempt to add 10.15 compatibility
if (!IsXCPMOSVersionCompat(os_version)) {
DBG("KernelIvyE5XCPM(): Unsupported macOS.\n");
DBG("KernelIvyE5XCPM() <===FALSE\n");
return FALSE;
}
// _cpuid_set_info
// TODO: should we use FakeCPUID instead?
comment = "_cpuid_set_info"_XS8;
if (os_version <= AsciiOSVersionToUint64("10.8.5"_XS8)) {
// 10.8.5
const UINT8 find[] = { 0x83, 0xF8, 0x3C, 0x74, 0x2D };
const UINT8 repl[] = { 0x83, 0xF8, 0x3E, 0x74, 0x2D };
applyKernPatch(find, sizeof(find), repl, comment.c_str());
} else if (os_version == AsciiOSVersionToUint64("10.9"_XS8) || os_version == AsciiOSVersionToUint64("10.9.1"_XS8)) {
// 10.9.0 - 10.9.1
const UINT8 find[] = { 0x83, 0xF8, 0x3C, 0x75, 0x07 };
const UINT8 repl[] = { 0x83, 0xF8, 0x3E, 0x75, 0x07 };
applyKernPatch(find, sizeof(find), repl, comment.c_str());
} // 10.9.2+: native support reached, no need to patch
// _xcpm_pkg_scope_msrs
DBG("Searching _xcpm_pkg_scope_msrs ...\n");
comment = "_xcpm_pkg_scope_msrs"_XS8;
if (os_version <= AsciiOSVersionToUint64("10.8.5"_XS8)) {
// 10.8.5
const UINT8 find[] = {
0x48, 0x8D, 0x3D, 0x02, 0x71, 0x55, 0x00, 0xBE,
0x07, 0x00, 0x00, 0x00, 0xEB, 0x1F, 0x48, 0x8D,
0x3D, 0xF4, 0x70, 0x55, 0x00, 0xBE, 0x07, 0x00,
0x00, 0x00, 0x31, 0xD2, 0xE8, 0x28, 0x02, 0x00, 0x00
};
const UINT8 repl[] = {
0x48, 0x8D, 0x3D, 0x02, 0x71, 0x55, 0x00, 0xBE,
0x07, 0x00, 0x00, 0x00, 0x90, 0x90, 0x48, 0x8D,
0x3D, 0xF4, 0x70, 0x55, 0x00, 0xBE, 0x07, 0x00,
0x00, 0x00, 0x31, 0xD2, 0x90, 0x90, 0x90, 0x90, 0x90
};
applyKernPatch(find, sizeof(find), repl, comment.c_str());
} else if (os_version < AsciiOSVersionToUint64("10.10"_XS8)) {
// 10.9.x
const UINT8 find[] = { 0xBE, 0x07, 0x00, 0x00, 0x00, 0x74, 0x13, 0x31, 0xD2, 0xE8, 0x5F, 0x02, 0x00, 0x00 };
const UINT8 repl[] = { 0xBE, 0x07, 0x00, 0x00, 0x00, 0x90, 0x90, 0x31, 0xD2, 0x90, 0x90, 0x90, 0x90, 0x90 };
applyKernPatch(find, sizeof(find), repl, comment.c_str());
} else {
// 10.10+
// patchLocation = 0; // clean out the value just in case
UINTN procLocation = searchProc("xcpm_init"_XS8);
UINTN symbol1 = searchProc(comment);
patchLocation = FindRelative32(kern, procLocation, 0x100, symbol1);
/* for (i = 0; i < 0x1000000; i++) {
if (kern[i+0] == 0xBE && kern[i+1] == 0x07 && kern[i+2] == 0x00 && kern[i+3] == 0x00 &&
kern[i+4] == 0x00 && kern[i+5] == 0x31 && kern[i+6] == 0xD2 && kern[i+7] == 0xE8) {
patchLocation = i+7;
DBG("Found _xcpm_pkg_scope_msr\n");
break;
}
} */
if (patchLocation) {
for (int i = 7; i < 12; i++) {
kern[patchLocation+i] = 0x90;
}
DBG("Applied _xcpm_pkg_scope_msr patch\n");
} else {
// DBG("_xcpm_pkg_scope_msr not found, patch aborted\n");
DBG("KernelIvyE5XCPM() <===FALSE\n");
return FALSE;
}
}
// _xcpm_bootstrap
comment = "_xcpm_bootstrap"_XS8;
if (os_version <= AsciiOSVersionToUint64("10.8.5"_XS8)) {
// 10.8.5
const UINT8 find[] = { 0x83, 0xFB, 0x3C, 0x75, 0x54 };
const UINT8 repl[] = { 0x83, 0xFB, 0x3E, 0x75, 0x54 };
applyKernPatch(find, sizeof(find), repl, comment.c_str());
} else if (os_version < AsciiOSVersionToUint64("10.10"_XS8)) {
// 10.9.x
const UINT8 find[] = { 0x83, 0xFB, 0x3C, 0x75, 0x68 };
const UINT8 repl[] = { 0x83, 0xFB, 0x3E, 0x75, 0x68 };
applyKernPatch(find, sizeof(find), repl, comment.c_str());
} else if (os_version <= AsciiOSVersionToUint64("10.10.2"_XS8)) {
// 10.10 - 10.10.2
const UINT8 find[] = { 0x83, 0xFB, 0x3C, 0x75, 0x63 };
const UINT8 repl[] = { 0x83, 0xFB, 0x3E, 0x75, 0x63 };
applyKernPatch(find, sizeof(find), repl, comment.c_str());
} else if (os_version <= AsciiOSVersionToUint64("10.10.5"_XS8)) {
// 10.10.3 - 10.10.5
const UINT8 find[] = { 0x83, 0xC3, 0xC6, 0x83, 0xFB, 0x0D };
const UINT8 repl[] = { 0x83, 0xC3, 0xC4, 0x83, 0xFB, 0x0D };
applyKernPatch(find, sizeof(find), repl, comment.c_str());
} else if (os_version <= AsciiOSVersionToUint64("10.11"_XS8)) {
// 10.11 DB/PB - 10.11.0
const UINT8 find[] = { 0x83, 0xC3, 0xC6, 0x83, 0xFB, 0x0D };
const UINT8 repl[] = { 0x83, 0xC3, 0xC4, 0x83, 0xFB, 0x0D };
applyKernPatch(find, sizeof(find), repl, comment.c_str());
} else if (os_version <= AsciiOSVersionToUint64("10.11.6"_XS8)) {
// 10.11.1 - 10.11.6
const UINT8 find[] = { 0x83, 0xC3, 0xBB, 0x83, 0xFB, 0x09 };
const UINT8 repl[] = { 0x83, 0xC3, 0xB9, 0x83, 0xFB, 0x09 };
applyKernPatch(find, sizeof(find), repl, comment.c_str());
} else {
UINTN procLocation = searchProc(comment);
UINTN featureCall = searchProc("_cpuid_features"_XS8);
UINTN place = FindRelative32(KernelData, procLocation, 0x100, featureCall);
for (UINTN i = 10; i < 20; ++i) {
if (KernelData[place + i] == 0xC4) {
KernelData[place + i] = 0xC1;
if (KernelData[(place + i) - 5] == 0x3B) {
KernelData[(place + i) - 5] = 0x00;
}
break;
}
}
/* if (os_version <= AsciiOSVersionToUint64("10.12.5")) {
// 10.12 - 10.12.5
const UINT8 find[] = { 0x83, 0xC3, 0xC4, 0x83, 0xFB, 0x22 };
const UINT8 repl[] = { 0x83, 0xC3, 0xC2, 0x83, 0xFB, 0x22 };
applyKernPatch(find, sizeof(find), repl, comment);
} else if (os_version < AsciiOSVersionToUint64("10.13")) {
// 10.12.6
const UINT8 find[] = { 0x8D, 0x43, 0xC4, 0x83, 0xF8, 0x22 };
const UINT8 repl[] = { 0x8D, 0x43, 0xC2, 0x83, 0xF8, 0x22 };
applyKernPatch(find, sizeof(find), repl, comment);
// PMheart: attempt to add 10.14 compatibility
} else if (os_version < AsciiOSVersionToUint64("10.15")) {
// 10.13/10.14
const UINT8 find[] = { 0x89, 0xD8, 0x04, 0xC4, 0x3C, 0x22 };
const UINT8 repl[] = { 0x89, 0xD8, 0x04, 0xC1, 0x3C, 0x22 };
applyKernPatch(find, sizeof(find), repl, comment);
// PMheart: attempt to add 10.15 compatibility
} else if (os_version < AsciiOSVersionToUint64("10.15.4")) {
const UINT8 find[] = { 0x8D, 0x43, 0xC4, 0x3C, 0x22 };
const UINT8 repl[] = { 0x8D, 0x43, 0xC1, 0x3C, 0x22 };
applyKernPatch(find, sizeof(find), repl, comment);
} else if (os_version < AsciiOSVersionToUint64("10.16")) {
// vector sigma: 10.15.5 Beta 2 build 19F62f and 10.15.4 build 19E287
const UINT8 find[] = { 0x3B, 0x7E, 0x2E, 0x80, 0xC3, 0xC4, 0x80, 0xFB, 0x42 };
const UINT8 repl[] = { 0x00, 0x7E, 0x2E, 0x80, 0xC3, 0xC1, 0x80, 0xFB, 0x42 };
applyKernPatch(find, sizeof(find), repl, comment);
*/
}
DBG("KernelIvyE5XCPM() <===\n");
return TRUE;
}
#if 0
VOID Patcher_SSE3_6(VOID* kernelData)
{
UINT8* bytes = (UINT8*)kernelData;
UINT32 patchLocation1 = 0;
UINT32 patchLocation2 = 0;
UINT32 patchlast = 0;
UINT32 i;
//UINT32 Length = sizeof(kernelData);
// DBG("Start find SSE3 address\n");
i=0;
//for (i=0;i<Length;i++)
while(TRUE) {
if (bytes[i] == 0x66 && bytes[i+1] == 0x0F && bytes[i+2] == 0x6F &&
bytes[i+3] == 0x44 && bytes[i+4] == 0x0E && bytes[i+5] == 0xF1 &&
bytes[i-1664-32] == 0x55
) {
patchLocation1 = i-1664-32;
// DBG("Found SSE3 data address at 0x%08X\n",patchLocation1);
}
// hasSSE2+..... title
if (bytes[i] == 0xE3 && bytes[i+1] == 0x07 && bytes[i+2] == 0x00 &&
bytes[i+3] == 0x00 && bytes[i+4] == 0x80 && bytes[i+5] == 0x07 &&
bytes[i+6] == 0xFF && bytes[i+7] == 0xFF && bytes[i+8] == 0x24 &&
bytes[i+9] == 0x01) {
patchLocation2 = i;
// DBG("Found SSE3 Title address at 0x%08X\n",patchLocation2);
break;
}
i++;
}
if (!patchLocation1 || !patchLocation2) {
// DBG("Can't found SSE3 data addres or Title address at 0x%08X 0x%08X\n", patchLocation1, patchLocation2);
return;
}
// DBG("Found SSE3 last data addres Start\n");
i = patchLocation1 + 1500;
//for (i=(patchLocation1+1500); i<(patchLocation1+3000); i++)
while(TRUE) {
if (bytes[i] == 0x90 && bytes[i+1] == 0x90 && bytes[i+2] == 0x55 ) {
patchlast = (i+1) - patchLocation1;
// DBG("Found SSE3 last data addres at 0x%08X\n", patchlast);
break;
}
i++;
}
if (!patchlast) {
// DBG("Can't found SSE3 data last addres at 0x%08X\n", patchlast);
return;
}
// patch sse3_64 data
for (i=0; i<patchlast; i++) {
if (i<sizeof(sse3_patcher)) {
bytes[patchLocation1 + i] = sse3_patcher[i];
} else {
bytes[patchLocation1 + i] = 0x90;
}
}
// patch kHasSSE3 title
bytes[patchLocation2 + 0] = 0xFC;
bytes[patchLocation2 + 1] = 0x05;
bytes[patchLocation2 + 8] = 0x2C;
bytes[patchLocation2 + 9] = 0x00;
}
VOID Patcher_SSE3_5(VOID* kernelData)
{
UINT8* bytes = (UINT8*)kernelData;
UINT32 patchLocation1 = 0;
UINT32 patchLocation2 = 0;
UINT32 patchlast=0;
UINT32 Length = sizeof(kernelData);
UINT32 i;
// DBG("Start find SSE3 address\n");
for (i=256; i<(Length-256); i++) {
if (bytes[i] == 0x66 && bytes[i+1] == 0x0F && bytes[i+2] == 0x6F &&
bytes[i+3] == 0x44 && bytes[i+4] == 0x0E && bytes[i+5] == 0xF1 &&
bytes[i-1680-32] == 0x55) {
patchLocation1 = i-1680-32;
// DBG("Found SSE3 data address at 0x%08X\n",patchLocation1);
}
// khasSSE2+..... title
if (bytes[i] == 0xF3 && bytes[i+1] == 0x07 && bytes[i+2] == 0x00 &&
bytes[i+3] == 0x00 && bytes[i+4] == 0x80 && bytes[i+5] == 0x07 &&
bytes[i+6] == 0xFF && bytes[i+7] == 0xFF && bytes[i+8] == 0x24 &&
bytes[i+9] == 0x01) {
patchLocation2 = i;
// DBG("Found SSE3 Title address at 0x%08X\n",patchLocation2);
break;
}
}
if (!patchLocation1 || !patchLocation2) {
// DBG("Can't found SSE3 data addres or Title address at 0x%08X 0x%08X\n", patchLocation1, patchLocation2);
return;
}
// DBG("Found SSE3 last data addres Start\n");
for (i=(patchLocation1+1500);i<Length;i++) {
if (bytes[i] == 0x90 && bytes[i+1] == 0x90 && bytes[i+2] == 0x55) {
patchlast = (i+1) - patchLocation1;
// DBG("Found SSE3 last data addres at 0x%08X\n", patchlast);
break;
}
}
if (!patchlast) {
// DBG("Can't found SSE3 data last addres at 0x%08X\n", patchlast);
return;
}
// patech sse3_64 data
for (i=0; i<patchlast; i++) {
if (i<sizeof(sse3_5_patcher)) {
bytes[patchLocation1 + i] = sse3_5_patcher[i];
} else {
bytes[patchLocation1 + i] = 0x90;
}
}
// patch kHasSSE3 title
bytes[patchLocation2 + 0] = 0x0C;
bytes[patchLocation2 + 1] = 0x06;
bytes[patchLocation2 + 8] = 0x2C;
bytes[patchLocation2 + 9] = 0x00;
}
VOID Patcher_SSE3_7()
{
// not support yet
return;
}
#endif
UINT32 LOADER_ENTRY::Get_Symtab(UINT8* binary)
{
UINT32 ncmds, cmdsize;
UINT32 binaryIndex;
UINTN cnt;
// UINT8* binary = &KernelData[KernelOffset];
struct load_command *loadCommand;
// struct symtab_command *symCmd;
if (MACH_GET_MAGIC(binary) != MH_MAGIC_64 ) {
DBG("wrong binary at 0x%llX\n", (UINTN)binary);
return 0;
}
ncmds = MACH_GET_NCMDS(binary);
binaryIndex = sizeof(struct mach_header_64);
DBG("ncmd = %d\n", ncmds);
for (int j=0; j<20; ++j) {
DBG("%02x", binary[j]);
}
DBG("\n");
if (ncmds > 1000) ncmds = 0;
for (cnt = 0; cnt < ncmds; cnt++) {
loadCommand = (struct load_command *)(binary + binaryIndex);
cmdsize = loadCommand->cmdsize;
switch (loadCommand->cmd) {
case LC_SYMTAB:
// *symCmd = binaryIndex;
// struct symtab_command {
// uint32_t cmd; /* LC_SYMTAB == 2 */
// uint32_t cmdsize; /* sizeof(struct symtab_command) */
// uint32_t symoff; /* symbol table offset */
// uint32_t nsyms; /* number of symbol table entries */
// uint32_t stroff; /* string table offset */
// uint32_t strsize; /* string table size in bytes */
// };
//AddrVtable = symCmd->symoff;
//SizeVtable = symCmd->nsyms;
//NamesTable = symCmd->stroff;
//DBG("SymTab: AddrVtable=0x%x SizeVtable=0x%x NamesTable=0x%x\n", AddrVtable, SizeVtable, NamesTable);
return binaryIndex; //continue search for last command? or return here?
default:
break;
}
binaryIndex += cmdsize;
}
return 0;
}
void DumpSeg(struct segment_command_64 *segCmd64)
{
DBG("segCmd64->segname = %s\n",segCmd64->segname);
DBG("segCmd64->vmaddr = 0x%08llX\n",segCmd64->vmaddr);
DBG("segCmd64->vmsize = 0x%08llX\n",segCmd64->vmsize);
DBG("fileoff = 0x%08llX\n",segCmd64->fileoff);
DBG("filesize = 0x%08llX\n",segCmd64->filesize);
//DBG("maxprot = 0x%08X\n",segCmd64->maxprot);
//DBG("initprot = 0x%08X\n",segCmd64->initprot);
//DBG("nsects = 0x%08X\n",segCmd64->nsects);
DBG("flags = 0x%08X\n",segCmd64->flags);
}
UINT32 LOADER_ENTRY::GetTextExec()
{
UINT32 ncmds, cmdsize;
UINT32 binaryIndex;
struct segment_command_64 *segCmd64;
ncmds = MACH_GET_NCMDS(KernelData);
binaryIndex = sizeof(struct mach_header_64);
for (UINTN cnt = 0; cnt < ncmds; cnt++) {
segCmd64 = (struct segment_command_64 *)(KernelData + binaryIndex);
cmdsize = segCmd64->cmdsize;
switch (segCmd64->cmd) {
case LC_SEGMENT_64: //19
if (strcmp(segCmd64->segname, kTextExecSegment) == 0) {
return (UINT32)(segCmd64->fileoff);
}
break;
default:
break;
}
binaryIndex += cmdsize;
}
return 0;
}
void LOADER_ENTRY::Get_PreLink()
{
UINT32 ncmds, cmdsize;
UINT32 binaryIndex;
UINT8* binary = &KernelData[0];
struct load_command *loadCommand;
// struct segment_command *segCmd;
struct segment_command_64 *segCmd64;
// struct symtab_command *symCmd;
UINTN kernelvmAddr = 0;
if (is64BitKernel) {
binaryIndex = sizeof(struct mach_header_64);
} else {
binaryIndex = sizeof(struct mach_header);
}
ncmds = MACH_GET_NCMDS(binary);
for (UINTN cnt = 0; cnt < ncmds; cnt++) {
loadCommand = (struct load_command *)(binary + binaryIndex);
cmdsize = loadCommand->cmdsize;
switch (loadCommand->cmd) {
case LC_SEGMENT_64: //19
segCmd64 = (struct segment_command_64 *)loadCommand;
if (strcmp(segCmd64->segname, kTextSegment) == 0) {
kernelvmAddr = segCmd64->vmaddr;
}
if (strcmp(segCmd64->segname, kPrelinkTextSegment) == 0) {
// DBG("Found PRELINK_TEXT, 64bit\n");
if (segCmd64->vmsize > 0) {
// 64bit segCmd64->vmaddr is 0xffffff80xxxxxxxx
// PrelinkTextAddr = xxxxxxxx + KernelRelocBase
//? PrelinkTextAddr = (UINT32)(segCmd64->vmaddr ? (segCmd64->vmaddr - kernelvmAddr) + KernelRelocBase : 0);
PrelinkTextAddr = (UINT32)(segCmd64->vmaddr ? segCmd64->vmaddr + KernelRelocBase : 0);
PrelinkTextSize = (UINT32)(segCmd64->filesize);
PrelinkTextLoadCmdAddr = binaryIndex; //(UINT32)(UINTN)segCmd64;
}
#if KERNEL_DEBUG
DumpSeg(segCmd64);
DBG("PrelinkTextLoadCmdAddr = 0x%X, PrelinkTextAddr = 0x%X, PrelinkTextSize = 0x%X\n",
PrelinkTextLoadCmdAddr, PrelinkTextAddr, PrelinkTextSize);
UINT32 PrelinkTextAddr32 = (UINT32)(segCmd64->vmaddr - kernelvmAddr);
for (int j=0; j<30; ++j) {
DBG("%02x", binary[PrelinkTextAddr32+j]);
}
DBG("\n");
#endif
}
if (strcmp(segCmd64->segname, kPrelinkInfoSegment) == 0) {
UINT32 sectionIndex;
struct section_64 *sect;
DumpSeg(segCmd64);
sectionIndex = sizeof(struct segment_command_64);
while(sectionIndex < segCmd64->cmdsize) {
sect = (struct section_64 *)((UINT8*)segCmd64 + sectionIndex);
if(strcmp(sect->sectname, kPrelinkInfoSection) == 0 && strcmp(sect->segname, kPrelinkInfoSegment) == 0) {
if (sect->size > 0) {
// 64bit sect->addr is 0xffffff80xxxxxxxx
// PrelinkInfoAddr = xxxxxxxx + KernelRelocBase
PrelinkInfoLoadCmdAddr = binaryIndex + sectionIndex; //(UINT32)(UINTN)sect;
PrelinkInfoAddr = (UINT32)(sect->addr ? sect->addr + KernelRelocBase : 0);
PrelinkInfoSize = (UINT32)sect->size;
}
DBG("__info found at 0x%llx: addr = 0x%x, size = 0x%llx\n", (UINTN)sect, sect->offset, sect->size);
DBG("PrelinkInfoLoadCmdAddr = 0x%X, PrelinkInfoAddr = 0x%X, PrelinkInfoSize = 0x%X\n",
PrelinkInfoLoadCmdAddr, PrelinkInfoAddr, PrelinkInfoSize);
}
sectionIndex += sizeof(struct section_64);
}
}
break;
#if 0 //exclude 32bit
case LC_SEGMENT:
segCmd = (struct segment_command *)loadCommand;
//DBG("segCmd->segname = %s\n",segCmd->segname);
//DBG("segCmd->vmaddr = 0x%08X\n",segCmd->vmaddr)
//DBG("segCmd->vmsize = 0x%08X\n",segCmd->vmsize);
if (strcmp(segCmd->segname, kPrelinkTextSegment) == 0) {
//DBG("Found PRELINK_TEXT, 32bit\n");
if (segCmd->vmsize > 0) {
// PrelinkTextAddr = vmaddr + KernelRelocBase
PrelinkTextAddr = (UINT32)(segCmd->vmaddr ? segCmd->vmaddr + KernelRelocBase : 0);
PrelinkTextSize = (UINT32)segCmd->vmsize;
PrelinkTextLoadCmdAddr = (UINT32)(UINTN)segCmd;
}
//DBG("at 0x%llx: vmaddr = 0x%x, vmsize = 0x%x\n", (UINTN)segCmd, segCmd->vmaddr, segCmd->vmsize);
//DBG("PrelinkTextLoadCmdAddr = 0x%X, PrelinkTextAddr = 0x%X, PrelinkTextSize = 0x%X\n",
// PrelinkTextLoadCmdAddr, PrelinkTextAddr, PrelinkTextSize);
//gBS->Stall(30*1000000);
}
if (strcmp(segCmd->segname, kPrelinkInfoSegment) == 0) {
UINT32 sectionIndex;
struct section *sect;
//DBG("Found PRELINK_INFO, 32bit\n");
//DBG("cmd = 0x%08X\n",segCmd->cmd);
//DBG("cmdsize = 0x%08X\n",segCmd->cmdsize);
//DBG("vmaddr = 0x%08X\n",segCmd->vmaddr);
//DBG("vmsize = 0x%08X\n",segCmd->vmsize);
//DBG("fileoff = 0x%08X\n",segCmd->fileoff);
//DBG("filesize = 0x%08X\n",segCmd->filesize);
//DBG("maxprot = 0x%08X\n",segCmd->maxprot);
//DBG("initprot = 0x%08X\n",segCmd->initprot);
//DBG("nsects = 0x%08X\n",segCmd->nsects);
//DBG("flags = 0x%08X\n",segCmd->flags);
sectionIndex = sizeof(struct segment_command);
while(sectionIndex < segCmd->cmdsize) {
sect = (struct section *)((UINT8*)segCmd + sectionIndex);
sectionIndex += sizeof(struct section);
if(strcmp(sect->sectname, kPrelinkInfoSection) == 0 && strcmp(sect->segname, kPrelinkInfoSegment) == 0) {
if (sect->size > 0) {
// PrelinkInfoAddr = sect->addr + KernelRelocBase
PrelinkInfoLoadCmdAddr = (UINT32)(UINTN)sect;
PrelinkInfoAddr = (UINT32)(sect->addr ? sect->addr + KernelRelocBase : 0);
PrelinkInfoSize = (UINT32)sect->size;
}
//DBG("__info found at 0x%llx: addr = 0x%x, size = 0x%x\n", (UINTN)sect, sect->addr, sect->size);
//DBG("PrelinkInfoLoadCmdAddr = 0x%X, PrelinkInfoAddr = 0x%X, PrelinkInfoSize = 0x%X\n",
// PrelinkInfoLoadCmdAddr, PrelinkInfoAddr, PrelinkInfoSize);
//gBS->Stall(30*1000000);
}
}
}
break;
#endif
default:
break;
}
binaryIndex += cmdsize;
}
//gBS->Stall(20*1000000);
return;
}
VOID
LOADER_ENTRY::FindBootArgs()
{
UINT8 *ptr;
UINT8 archMode = sizeof(UINTN) * 8;
// start searching from 0x200000.
ptr = (UINT8*)0x200000ull;
while(TRUE) {
// check bootargs for 10.7 and up
bootArgs2 = (BootArgs2*)ptr;
if (bootArgs2->Version==2 && (bootArgs2->Revision==0 || bootArgs2->Revision==1)
// plus additional checks - some values are not inited by boot.efi yet
&& bootArgs2->efiMode == archMode
&& bootArgs2->kaddr == 0 && bootArgs2->ksize == 0
&& bootArgs2->efiSystemTable == 0
) {
// set vars
dtRoot = (CHAR8*)(UINTN)bootArgs2->deviceTreeP;
dtLength = &bootArgs2->deviceTreeLength;
KernelSlide = bootArgs2->kslide;
DBG_RT( "Found bootArgs2 at 0x%llX, DevTree at 0x%llX\n", (UINTN)ptr, (UINTN)bootArgs2->deviceTreeP);
//DBG_RT("bootArgs2->kaddr = 0x%llX and bootArgs2->ksize = 0x%llX\n", bootArgs2->kaddr, bootArgs2->ksize);
//DBG("bootArgs2->efiMode = 0x%02X\n", bootArgs2->efiMode);
DBG_RT( "bootArgs2->CommandLine = %s\n", bootArgs2->CommandLine);
DBG_RT( "bootArgs2->flags = 0x%hx\n", bootArgs2->flags);
DBG_RT( "bootArgs2->kslide = 0x%x\n", bootArgs2->kslide);
DBG_RT( "bootArgs2->bootMemStart = 0x%llx\n", bootArgs2->bootMemStart);
// if (KernelAndKextPatches && KernelAndKextPatches.KPDebug)
Stall(5000000);
// disable other pointer
bootArgs1 = NULL;
break;
}
// check bootargs for 10.4 - 10.6.x
/*
bootArgs1 = (BootArgs1*)ptr;
if (bootArgs1->Version==1
&& (bootArgs1->Revision==6 || bootArgs1->Revision==5 || bootArgs1->Revision==4)
// plus additional checks - some values are not inited by boot.efi yet
&& bootArgs1->efiMode == archMode
&& bootArgs1->kaddr == 0 && bootArgs1->ksize == 0
&& bootArgs1->efiSystemTable == 0
) {
// set vars
dtRoot = (CHAR8*)(UINTN)bootArgs1->deviceTreeP;
dtLength = &bootArgs1->deviceTreeLength;
DBG_RT( "Found bootArgs1 at 0x%8s, DevTree at %p\n", ptr, dtRoot);
//DBG("bootArgs1->kaddr = 0x%08X and bootArgs1->ksize = 0x%08X\n", bootArgs1->kaddr, bootArgs1->ksize);
//DBG("bootArgs1->efiMode = 0x%02X\n", bootArgs1->efiMode);
// disable other pointer
bootArgs2 = NULL;
break;
}
*/
ptr += 0x1000;
if ((UINTN)ptr > 0x70000000ull) {
DBG_RT("bootArgs not found\n");
bootArgs2 = 0;
break;
}
}
}
BOOLEAN
LOADER_ENTRY::KernelUserPatch()
{
INTN Num, y = 0;
// old confuse
// We are using KernelAndKextPatches as set by Custom Entries.
// while config patches go to gSettings.KernelAndKextPatches
// how to resolve it?
for (size_t i = 0 ; i < KernelAndKextPatches.KernelPatches.size(); ++i) {
DBG( "Patch[%zu]: %s\n", i, KernelAndKextPatches.KernelPatches[i].Label.c_str());
if (!KernelAndKextPatches.KernelPatches[i].MenuItem.BValue) {
//DBG_RT( "Patch[%d]: %a :: is not allowed for booted OS %a\n", i, KernelAndKextPatches.KernelPatches[i].Label, OSVersion);
DBG( "==> disabled\n");
continue;
}
// if we modify directly KernelAndKextPatches.KernelPatches[i].SearchLen, it will wrong for next driver
UINTN SearchLen = KernelAndKextPatches.KernelPatches[i].SearchLen;
bool once = false;
UINTN procLen = 0;
UINTN procAddr = searchProc(KernelAndKextPatches.KernelPatches[i].ProcedureName);
DBG("procedure %s found at 0x%llx\n", KernelAndKextPatches.KernelPatches[i].ProcedureName.c_str(), procAddr);
if (SearchLen == 0) {
SearchLen = KERNEL_MAX_SIZE;
procLen = KERNEL_MAX_SIZE - procAddr;
once = true;
} else {
procLen = SearchLen;
}
UINT8 * curs = &KernelData[procAddr];
UINTN j = 0;
while (j < KERNEL_MAX_SIZE) {
if (!KernelAndKextPatches.KernelPatches[i].StartPattern || //old behavior
CompareMemMask((const UINT8*)curs,
KernelAndKextPatches.KernelPatches[i].StartPattern.data(),
KernelAndKextPatches.KernelPatches[i].StartPattern.size(),
KernelAndKextPatches.KernelPatches[i].StartMask.data(),
KernelAndKextPatches.KernelPatches[i].StartPattern.size())) {
DBG( " StartPattern found\n");
Num = SearchAndReplaceMask(curs,
procLen,
(const UINT8*)KernelAndKextPatches.KernelPatches[i].Data.data(),
(const UINT8*)KernelAndKextPatches.KernelPatches[i].MaskFind.data(),
KernelAndKextPatches.KernelPatches[i].Data.size(),
(const UINT8*)KernelAndKextPatches.KernelPatches[i].Patch.data(),
(const UINT8*)KernelAndKextPatches.KernelPatches[i].MaskReplace.data(),
KernelAndKextPatches.KernelPatches[i].Count
);
if (Num) {
y++;
curs += SearchLen - 1;
j += SearchLen - 1;
}
DBG( "==> %s : %lld replaces done\n", Num ? "Success" : "Error", Num);
if (once ||
!KernelAndKextPatches.KernelPatches[i].StartPattern ||
!KernelAndKextPatches.KernelPatches[i].StartPattern.size()) {
break;
}
}
j++; curs++;
}
}
if (KernelAndKextPatches.KPDebug) {
gBS->Stall(2000000);
}
return (y != 0);
}
BOOLEAN
LOADER_ENTRY::BooterPatch(IN UINT8 *BooterData, IN UINT64 BooterSize)
{
INTN Num, y = 0;
for (size_t i = 0 ; i < KernelAndKextPatches.BootPatches.size(); ++i)
{
// if we modify directly KernelAndKextPatches.BootPatches[i].SearchLen, it will wrong for next driver
UINTN SearchLen = KernelAndKextPatches.BootPatches[i].SearchLen;
if (!SearchLen) {
SearchLen = BooterSize;
}
DBG( "Patch[%zu]: %s\n", i, KernelAndKextPatches.BootPatches[i].Label.c_str());
if (!KernelAndKextPatches.BootPatches[i].MenuItem.BValue) {
DBG( "==> disabled\n");
continue;
}
UINT8 * curs = BooterData;
UINTN j = 0;
while (j < BooterSize) {
if (!KernelAndKextPatches.BootPatches[i].StartPattern || //old behavior
CompareMemMask((const UINT8*)curs,
(const UINT8*)KernelAndKextPatches.BootPatches[i].StartPattern.data(),
KernelAndKextPatches.BootPatches[i].StartPattern.size(),
(const UINT8*)KernelAndKextPatches.BootPatches[i].StartMask.data(),
KernelAndKextPatches.BootPatches[i].StartPattern.size())) {
DBG( " StartPattern found\n");
Num = SearchAndReplaceMask(curs,
SearchLen,
(const UINT8*)KernelAndKextPatches.BootPatches[i].Data.data(),
(const UINT8*)KernelAndKextPatches.BootPatches[i].MaskFind.data(),
KernelAndKextPatches.BootPatches[i].Data.size(),
(const UINT8*)KernelAndKextPatches.BootPatches[i].Patch.data(),
(const UINT8*)KernelAndKextPatches.BootPatches[i].MaskReplace.data(),
KernelAndKextPatches.BootPatches[i].Count
);
if (Num) {
y++;
curs += SearchLen - 1;
j += SearchLen - 1;
}
DBG( "==> %s : %lld replaces done\n", Num ? "Success" : "Error", Num);
if (!KernelAndKextPatches.BootPatches[i].StartPattern ||
!KernelAndKextPatches.BootPatches[i].StartPattern.size()) {
break;
}
}
j++; curs++;
}
}
// if (KernelAndKextPatches.KPDebug) {
// gBS->Stall(2000000);
// }
Stall(2000000);
return (y != 0);
}
VOID
LOADER_ENTRY::KernelAndKextPatcherInit()
{
if (PatcherInited) {
DBG("patcher inited\n");
return;
}
PatcherInited = TRUE;
// KernelRelocBase will normally be 0
// but if OsxAptioFixDrv is used, then it will be > 0
SetKernelRelocBase();
DBG("KernelRelocBase = %llx\n", KernelRelocBase);
// Find bootArgs - we need then for proper detection
// of kernel Mach-O header
FindBootArgs();
if (bootArgs1 == NULL && bootArgs2 == NULL) {
DBG_RT("BootArgs not found - skipping patches!\n");
return;
}
// Find kernel Mach-O header:
// for 10.4 - 10.5: 0x00111000
// for 10.6 - 10.7: 0x00200000
// for ML: bootArgs2->kslide + 0x00200000
// for AptioFix booting - it's always at KernelRelocBase + 0x00200000
// UINT64 os_version = AsciiOSVersionToUint64(OSVersion);
DBG("os_version=%s\n", OSVersion.c_str());
// if (os_version < AsciiOSVersionToUint64("10.6")) {
// KernelData = (UINT8*)(UINTN)(KernelSlide + KernelRelocBase + 0x00111000);
// } else {
KernelData = (UINT8*)(UINTN)(KernelSlide + KernelRelocBase + 0x00200000);
// }
// check that it is Mach-O header and detect architecture
if(MACH_GET_MAGIC(KernelData) == MH_MAGIC || MACH_GET_MAGIC(KernelData) == MH_CIGAM) {
DBG("Found 32 bit kernel at 0x%llx\n", (UINTN)KernelData);
is64BitKernel = FALSE;
} else if (MACH_GET_MAGIC(KernelData) == MH_MAGIC_64 || MACH_GET_MAGIC(KernelData) == MH_CIGAM_64) {
DBG( "Found 64 bit kernel at 0x%llx\n", (UINTN)KernelData);
// DBG_RT("text section is: %s\n", (const char*)&KernelData[0x28]);
/*
KernelOffset = 0;
while (KernelOffset < KERNEL_MAX_SIZE) {
if ((MACH_GET_MAGIC(KernelData+KernelOffset) == MH_MAGIC_64 ) || (MACH_GET_MAGIC(KernelData+KernelOffset) == MH_CIGAM_64)) {
DBG("dump at offset 0x%x\n", KernelOffset);
for (int j = 0; j<20; ++j) {
DBG("%02x ", KernelData[KernelOffset+j]);
}
DBG("\n");
if ((((struct mach_header_64*)(KernelData+KernelOffset))->filetype) == MH_EXECUTE) {
DBG("execute found\n");
break;
}
}
KernelOffset += 4;
}
*/
if ((((struct mach_header_64*)KernelData)->filetype) == MH_KERNEL_COLLECTION) {
// BigSur
KernelOffset = GetTextExec();
// DBG("BigSur: KernelOffset =0x%X\n", KernelOffset);
}
is64BitKernel = TRUE;
} else {
// not valid Mach-O header - exiting
DBG( "Kernel not found at 0x%llx - skipping patches!\n", (UINTN)KernelData);
KernelData = NULL;
return;
}
DBG( " kernel offset at 0x%x\n", KernelOffset);
// find __PRELINK_TEXT and __PRELINK_INFO
if ((((struct mach_header_64*)KernelData)->filetype) == MH_KERNEL_COLLECTION) {
Get_PreLink(); // BigSur
} else {
Get_PreLink();
}
//find symbol tables
struct symtab_command *symCmd = NULL;
UINT32 symCmdOffset = Get_Symtab(&KernelData[KernelOffset]);
if (symCmdOffset != 0) {
symCmd = (struct symtab_command *)&KernelData[KernelOffset + symCmdOffset];
AddrVtable = symCmd->symoff; //this offset relative to KernelData+0
SizeVtable = symCmd->nsyms;
NamesTable = symCmd->stroff;
DBG("Kernel: AddrVtable=0x%x SizeVtable=0x%x NamesTable=0x%x\n", AddrVtable, SizeVtable, NamesTable);
}
/*
for (UINTN i=0x00200000; i<0x30000000; i+=4) {
UINT32 *KD = (UINT32 *)i;
if ((KD[0] == MH_MAGIC_64) && (KD[0x0a] == 0x45545F5F)){
DBG_RT( "Found MAGIC at %llx, text=%s\n", i, (const char*)&KD[0x0a]);
DBG( "Found MAGIC at %llx, text=%s\n", i, (const char*)&KD[0x0a]);
KernelData = (UINT8*)KD;
DBG( "Found new kernel at 0x%llx\n", (UINTN)KernelData);
break;
}
}
*/
if (EFI_ERROR(getVTable())) {
DBG("error getting vtable: \n");
}
isKernelcache = (PrelinkTextSize > 0) && (PrelinkInfoSize > 0);
DBG( "isKernelcache: %ls\n", isKernelcache ? L"Yes" : L"No");
}
VOID
LOADER_ENTRY::KernelAndKextsPatcherStart()
{
BOOLEAN KextPatchesNeeded, patchedOk;
/*
* it was intended for custom entries but not work if no custom entries used
* so set common until better solution invented
*/
//KernelAndKextPatches = (KERNEL_AND_KEXT_PATCHES *)(((UINTN)&gSettings) + OFFSET_OF(SETTINGS_DATA, KernelAndKextPatches));
// CopyKernelAndKextPatches(&KernelAndKextPatches, &gSettings.KernelAndKextPatches);
KernelAndKextPatches = gSettings.KernelAndKextPatches;
PatcherInited = false;
KernelAndKextPatcherInit();
KextPatchesNeeded = (
KernelAndKextPatches.KPAppleIntelCPUPM ||
KernelAndKextPatches.KPAppleRTC ||
KernelAndKextPatches.EightApple ||
KernelAndKextPatches.KPDELLSMBIOS ||
KernelAndKextPatches.KPATIConnectorsPatch != NULL ||
KernelAndKextPatches.KextPatches.size() > 0
);
// DBG_RT("\nKernelToPatch: ");
// DBG_RT("Kernels patches: %d\n", KernelAndKextPatches.KernelPatches.size());
if (gSettings.KernelPatchesAllowed && KernelAndKextPatches.KernelPatches.notEmpty()) {
// DBG_RT("Enabled: \n");
DBG("Kernels patches: enabled \n");
// KernelAndKextPatcherInit();
// if (KernelData == NULL) goto NoKernelData;
if (EFI_ERROR(getVTable())) {
// DBG_RT("error getting vtable: \n");
goto NoKernelData;
}
patchedOk = KernelUserPatch();
// DBG_RT(patchedOk ? " OK\n" : " FAILED!\n");
// gBS->Stall(5000000);
} else {
// DBG_RT("Disabled\n");
}
/*
DBG_RT( "\nKernelCpu patch: ");
if (KernelAndKextPatches.KPKernelCpu) {
//
// Kernel patches
//
DBG_RT( "Enabled: \n");
KernelAndKextPatcherInit();
if (KernelData == NULL) goto NoKernelData;
if(is64BitKernel) {
DBG_RT( "64 bit patch ...\n");
KernelPatcher_64();
} else {
DBG_RT( "32 bit patch ...\n");
KernelPatcher_32();
}
DBG_RT( " OK\n");
} else {
DBG_RT( "Disabled\n");
}
*/
//other method for KernelCPU patch is FakeCPUID
DBG_RT( "\nFakeCPUID patch: ");
if (KernelAndKextPatches.FakeCPUID) {
DBG_RT( "Enabled: 0x%06x\n", KernelAndKextPatches.FakeCPUID);
// KernelAndKextPatcherInit();
// if (KernelData == NULL) goto NoKernelData;
KernelCPUIDPatch();
} else {
DBG_RT( "Disabled\n");
}
// CPU power management patch for CPU with locked msr
DBG_RT( "\nKernelPm patch: ");
if (KernelAndKextPatches.KPKernelPm || KernelAndKextPatches.KPKernelXCPM) {
DBG_RT( "Enabled: \n");
DBG( "KernelPm patch: Enabled\n");
// KernelAndKextPatcherInit();
// if (KernelData == NULL) goto NoKernelData;
patchedOk = FALSE;
if (is64BitKernel) {
patchedOk = KernelPatchPm();
}
DBG_RT( patchedOk ? " OK\n" : " FAILED!\n");
} else {
DBG_RT( "Disabled\n");
}
// Patch to not dump kext at panic (c)vit9696
DBG_RT( "\nPanicNoKextDump patch: ");
if (KernelAndKextPatches.KPPanicNoKextDump) {
DBG_RT( "Enabled: \n");
// KernelAndKextPatcherInit();
// if (KernelData == NULL) goto NoKernelData;
patchedOk = KernelPanicNoKextDump();
DBG_RT( patchedOk ? " OK\n" : " FAILED!\n");
} else {
DBG_RT( "Disabled\n");
}
// Lapic Panic Kernel Patch
DBG_RT( "\nKernelLapic patch: ");
if (KernelAndKextPatches.KPKernelLapic) {
DBG_RT( "Enabled: \n");
// KernelAndKextPatcherInit();
// if (KernelData == NULL) goto NoKernelData;
if(is64BitKernel) {
DBG_RT( "64-bit patch ...\n");
patchedOk = KernelLapicPatch_64();
} else {
DBG_RT( "32-bit patch ...\n");
patchedOk = KernelLapicPatch_32();
}
DBG_RT( patchedOk ? " OK\n" : " FAILED!\n");
} else {
DBG_RT( "Disabled\n");
}
if (KernelAndKextPatches.KPKernelXCPM) {
//
// syscl - EnableExtCpuXCPM: Enable unsupported CPU's PowerManagement
//
// EnableExtCpuXCPM = NULL;
patchedOk = FALSE;
// BOOLEAN apply_idle_patch = (gCPUStructure.Model >= CPU_MODEL_SKYLAKE_U) && gSettings.HWP;
// KernelAndKextPatcherInit();
// if (KernelData == NULL) goto NoKernelData;
// syscl - now enable extra Cpu's PowerManagement
// only Intel support this feature till now
// move below code outside the if condition if AMD supports
// XCPM later on
if (gCPUStructure.Vendor == CPU_VENDOR_INTEL) {
switch (gCPUStructure.Model) {
case CPU_MODEL_JAKETOWN:
// SandyBridge-E LGA2011
patchedOk = SandyBridgeEPM();
gSNBEAICPUFixRequire = TRUE; // turn on SandyBridge-E AppleIntelCPUPowerManagement Fix
break;
case CPU_MODEL_IVY_BRIDGE:
// IvyBridge
patchedOk = KernelIvyBridgeXCPM();
break;
case CPU_MODEL_IVY_BRIDGE_E5:
// IvyBridge-E
patchedOk = KernelIvyE5XCPM();
break;
case CPU_MODEL_HASWELL_E:
// Haswell-E
patchedOk = HaswellEXCPM();
break;
case CPU_MODEL_BROADWELL_E5:
case CPU_MODEL_BROADWELL_DE:
// Broadwell-E/EP
patchedOk = BroadwellEPM();
gBDWEIOPCIFixRequire = TRUE;
break;
default:
if (gCPUStructure.Model >= CPU_MODEL_HASWELL &&
(AsciiStrStr(gCPUStructure.BrandString, "Celeron") ||
AsciiStrStr(gCPUStructure.BrandString, "Pentium"))) {
// Haswell+ low-end CPU
patchedOk = HaswellLowEndXCPM();
}
break;
}
}
DBG_RT( "EnableExtCpuXCPM - %s!\n", patchedOk? "OK" : "FAILED");
}
Stall(2000000);
//
// Kext patches
//
// we need to scan kexts if "InjectKexts true and CheckFakeSMC"
if (/*OSFLAG_ISSET(Flags, OSFLAG_WITHKEXTS) || */
OSFLAG_ISSET(Flags, OSFLAG_CHECKFAKESMC)) {
DBG_RT( "\nAllowing kext patching to check if FakeSMC is present\n");
gSettings.KextPatchesAllowed = TRUE;
KextPatchesNeeded = TRUE;
}
DBG_RT( "\nKextPatches Needed: %c, Allowed: %c ... ",
(KextPatchesNeeded ? L'Y' : L'n'),
(gSettings.KextPatchesAllowed ? L'Y' : L'n')
);
if (KextPatchesNeeded && gSettings.KextPatchesAllowed) {
// DBG_RT( "\nKext patching INIT\n");
// KernelAndKextPatcherInit();
// if (KernelData == NULL) goto NoKernelData;
DBG_RT( "\nKext patching STARTED\n");
KextPatcherStart(); //is FakeSMC found in cache then inject will be disabled
DBG_RT( "\nKext patching ENDED\n");
} else {
DBG_RT( "Disabled\n");
}
Stall(1000000);
//
// Kext add
//
// if (KernelAndKextPatches.KPDebug) {
// if (OSFLAG_ISSET(Entry->Flags, OSFLAG_CHECKFAKESMC) &&
// OSFLAG_ISUNSET(Entry->Flags, OSFLAG_WITHKEXTS)) {
// disabled kext injection if FakeSMC is already present
// Entry->Flags = OSFLAG_UNSET(Entry->Flags, OSFLAG_WITHKEXTS); //Slice - we are already here
//
// DBG_RT( "\nInjectKexts: disabled because FakeSMC is already present and InjectKexts option set to Detect\n");
// gBS->Stall(500000);
// }
// }
if (OSFLAG_ISSET(Flags, OSFLAG_WITHKEXTS)) {
UINT32 deviceTreeP;
UINT32 *deviceTreeLength;
EFI_STATUS Status;
UINTN DataSize;
// check if FSInject already injected kexts
DataSize = 0;
Status = gRT->GetVariable (L"FSInject.KextsInjected", &gEfiGlobalVariableGuid, NULL, &DataSize, NULL);
if (Status == EFI_BUFFER_TOO_SMALL) {
// var exists - just exit
DBG_RT( "\nInjectKexts: skipping, FSInject already injected them\n");
Stall(500000);
return;
}
// KernelAndKextPatcherInit();
// if (KernelData == NULL) goto NoKernelData;
if (bootArgs1 != NULL) {
deviceTreeP = bootArgs1->deviceTreeP;
deviceTreeLength = &bootArgs1->deviceTreeLength;
} else if (bootArgs2 != NULL) {
deviceTreeP = bootArgs2->deviceTreeP;
deviceTreeLength = &bootArgs2->deviceTreeLength;
} else return;
Status = InjectKexts(deviceTreeP, deviceTreeLength);
DBG_RT("Inject kexts done at 0x%llx\n", (UINTN)deviceTreeP);
if (!EFI_ERROR(Status)) KernelBooterExtensionsPatch();
}
return;
NoKernelData:
Stall(5000000);
}