CloverBootloader/BaseTools/Source/C/Common/TianoCompress.c
Sergey Isakov b1264ef1e3 changes of BaseTools
Signed-off-by: Sergey Isakov <isakov-sl@bk.ru>
2019-09-04 23:02:41 +03:00

1747 lines
30 KiB
C
Executable File

/** @file
Compression routine. The compression algorithm is a mixture of LZ77 and Huffman
coding. LZ77 transforms the source data into a sequence of Original Characters
and Pointers to repeated strings. This sequence is further divided into Blocks
and Huffman codings are applied to each Block.
Copyright (c) 2006 - 2018, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "Compress.h"
//
// Macro Definitions
//
#undef UINT8_MAX
typedef INT32 NODE;
#define UINT8_MAX 0xff
#define UINT8_BIT 8
#define THRESHOLD 3
#define INIT_CRC 0
#define WNDBIT 19
#define WNDSIZ (1U << WNDBIT)
#define MAXMATCH 256
#define BLKSIZ (1U << 14) // 16 * 1024U
#define PERC_FLAG 0x80000000U
#define CODE_BIT 16
#define NIL 0
#define MAX_HASH_VAL (3 * WNDSIZ + (WNDSIZ / 512 + 1) * UINT8_MAX)
#define HASH(p, c) ((p) + ((c) << (WNDBIT - 9)) + WNDSIZ * 2)
#define CRCPOLY 0xA001
#define UPDATE_CRC(c) mCrc = mCrcTable[(mCrc ^ (c)) & 0xFF] ^ (mCrc >> UINT8_BIT)
//
// C: the Char&Len Set; P: the Position Set; T: the exTra Set
//
#define NC (UINT8_MAX + MAXMATCH + 2 - THRESHOLD)
#define CBIT 9
#define NP (WNDBIT + 1)
#define PBIT 5
#define NT (CODE_BIT + 3)
#define TBIT 5
#if NT > NP
#define NPT NT
#else
#define NPT NP
#endif
//
// Function Prototypes
//
STATIC
VOID
PutDword(
IN UINT32 Data
);
STATIC
EFI_STATUS
AllocateMemory (
VOID
);
STATIC
VOID
FreeMemory (
VOID
);
STATIC
VOID
InitSlide (
VOID
);
STATIC
NODE
Child (
IN NODE NodeQ,
IN UINT8 CharC
);
STATIC
VOID
MakeChild (
IN NODE NodeQ,
IN UINT8 CharC,
IN NODE NodeR
);
STATIC
VOID
Split (
IN NODE Old
);
STATIC
VOID
InsertNode (
VOID
);
STATIC
VOID
DeleteNode (
VOID
);
STATIC
VOID
GetNextMatch (
VOID
);
STATIC
EFI_STATUS
Encode (
VOID
);
STATIC
VOID
CountTFreq (
VOID
);
STATIC
VOID
WritePTLen (
IN INT32 Number,
IN INT32 nbit,
IN INT32 Special
);
STATIC
VOID
WriteCLen (
VOID
);
STATIC
VOID
EncodeC (
IN INT32 Value
);
STATIC
VOID
EncodeP (
IN UINT32 Value
);
STATIC
VOID
SendBlock (
VOID
);
STATIC
VOID
Output (
IN UINT32 c,
IN UINT32 p
);
STATIC
VOID
HufEncodeStart (
VOID
);
STATIC
VOID
HufEncodeEnd (
VOID
);
STATIC
VOID
MakeCrcTable (
VOID
);
STATIC
VOID
PutBits (
IN INT32 Number,
IN UINT32 Value
);
STATIC
INT32
FreadCrc (
OUT UINT8 *Pointer,
IN INT32 Number
);
STATIC
VOID
InitPutBits (
VOID
);
STATIC
VOID
CountLen (
IN INT32 Index
);
STATIC
VOID
MakeLen (
IN INT32 Root
);
STATIC
VOID
DownHeap (
IN INT32 Index
);
STATIC
VOID
MakeCode (
IN INT32 Number,
IN UINT8 Len[ ],
OUT UINT16 Code[]
);
STATIC
INT32
MakeTree (
IN INT32 NParm,
IN UINT16 FreqParm[],
OUT UINT8 LenParm[ ],
OUT UINT16 CodeParm[]
);
//
// Global Variables
//
STATIC UINT8 *mSrc, *mDst, *mSrcUpperLimit, *mDstUpperLimit;
STATIC UINT8 *mLevel, *mText, *mChildCount, *mBuf, mCLen[NC], mPTLen[NPT], *mLen;
STATIC INT16 mHeap[NC + 1];
STATIC INT32 mRemainder, mMatchLen, mBitCount, mHeapSize, mN;
STATIC UINT32 mBufSiz = 0, mOutputPos, mOutputMask, mSubBitBuf, mCrc;
STATIC UINT32 mCompSize, mOrigSize;
STATIC UINT16 *mFreq, *mSortPtr, mLenCnt[17], mLeft[2 * NC - 1], mRight[2 * NC - 1], mCrcTable[UINT8_MAX + 1],
mCFreq[2 * NC - 1], mCCode[NC], mPFreq[2 * NP - 1], mPTCode[NPT], mTFreq[2 * NT - 1];
STATIC NODE mPos, mMatchPos, mAvail, *mPosition, *mParent, *mPrev, *mNext = NULL;
//
// functions
//
EFI_STATUS
TianoCompress (
IN UINT8 *SrcBuffer,
IN UINT32 SrcSize,
IN UINT8 *DstBuffer,
IN OUT UINT32 *DstSize
)
/*++
Routine Description:
The internal implementation of [Efi/Tiano]Compress().
Arguments:
SrcBuffer - The buffer storing the source data
SrcSize - The size of source data
DstBuffer - The buffer to store the compressed data
DstSize - On input, the size of DstBuffer; On output,
the size of the actual compressed data.
Version - The version of de/compression algorithm.
Version 1 for UEFI 2.0 de/compression algorithm.
Version 2 for Tiano de/compression algorithm.
Returns:
EFI_BUFFER_TOO_SMALL - The DstBuffer is too small. In this case,
DstSize contains the size needed.
EFI_SUCCESS - Compression is successful.
EFI_OUT_OF_RESOURCES - No resource to complete function.
EFI_INVALID_PARAMETER - Parameter supplied is wrong.
--*/
{
EFI_STATUS Status;
//
// Initializations
//
mBufSiz = 0;
mBuf = NULL;
mText = NULL;
mLevel = NULL;
mChildCount = NULL;
mPosition = NULL;
mParent = NULL;
mPrev = NULL;
mNext = NULL;
mSrc = SrcBuffer;
mSrcUpperLimit = mSrc + SrcSize;
mDst = DstBuffer;
mDstUpperLimit = mDst +*DstSize;
PutDword (0L);
PutDword (0L);
MakeCrcTable ();
mOrigSize = mCompSize = 0;
mCrc = INIT_CRC;
//
// Compress it
//
Status = Encode ();
if (EFI_ERROR (Status)) {
return EFI_OUT_OF_RESOURCES;
}
//
// Null terminate the compressed data
//
if (mDst < mDstUpperLimit) {
*mDst++ = 0;
}
//
// Fill in compressed size and original size
//
mDst = DstBuffer;
PutDword (mCompSize + 1);
PutDword (mOrigSize);
//
// Return
//
if (mCompSize + 1 + 8 > *DstSize) {
*DstSize = mCompSize + 1 + 8;
return EFI_BUFFER_TOO_SMALL;
} else {
*DstSize = mCompSize + 1 + 8;
return EFI_SUCCESS;
}
}
STATIC
VOID
PutDword (
IN UINT32 Data
)
/*++
Routine Description:
Put a dword to output stream
Arguments:
Data - the dword to put
Returns: (VOID)
--*/
{
if (mDst < mDstUpperLimit) {
*mDst++ = (UINT8) (((UINT8) (Data)) & 0xff);
}
if (mDst < mDstUpperLimit) {
*mDst++ = (UINT8) (((UINT8) (Data >> 0x08)) & 0xff);
}
if (mDst < mDstUpperLimit) {
*mDst++ = (UINT8) (((UINT8) (Data >> 0x10)) & 0xff);
}
if (mDst < mDstUpperLimit) {
*mDst++ = (UINT8) (((UINT8) (Data >> 0x18)) & 0xff);
}
}
STATIC
EFI_STATUS
AllocateMemory (
VOID
)
/*++
Routine Description:
Allocate memory spaces for data structures used in compression process
Arguments:
VOID
Returns:
EFI_SUCCESS - Memory is allocated successfully
EFI_OUT_OF_RESOURCES - Allocation fails
--*/
{
UINT32 Index;
mText = malloc (WNDSIZ * 2 + MAXMATCH);
if (mText == NULL) {
return EFI_OUT_OF_RESOURCES;
}
for (Index = 0; Index < WNDSIZ * 2 + MAXMATCH; Index++) {
mText[Index] = 0;
}
mLevel = malloc ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mLevel));
mChildCount = malloc ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mChildCount));
mPosition = malloc ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mPosition));
mParent = malloc (WNDSIZ * 2 * sizeof (*mParent));
mPrev = malloc (WNDSIZ * 2 * sizeof (*mPrev));
mNext = malloc ((MAX_HASH_VAL + 1) * sizeof (*mNext));
if (mLevel == NULL || mChildCount == NULL || mPosition == NULL ||
mParent == NULL || mPrev == NULL || mNext == NULL) {
return EFI_OUT_OF_RESOURCES;
}
mBufSiz = BLKSIZ;
mBuf = malloc (mBufSiz);
while (mBuf == NULL) {
mBufSiz = (mBufSiz / 10U) * 9U;
if (mBufSiz < 4 * 1024U) {
return EFI_OUT_OF_RESOURCES;
}
mBuf = malloc (mBufSiz);
}
mBuf[0] = 0;
return EFI_SUCCESS;
}
VOID
FreeMemory (
VOID
)
/*++
Routine Description:
Called when compression is completed to free memory previously allocated.
Arguments: (VOID)
Returns: (VOID)
--*/
{
if (mText != NULL) {
free (mText);
}
if (mLevel != NULL) {
free (mLevel);
}
if (mChildCount != NULL) {
free (mChildCount);
}
if (mPosition != NULL) {
free (mPosition);
}
if (mParent != NULL) {
free (mParent);
}
if (mPrev != NULL) {
free (mPrev);
}
if (mNext != NULL) {
free (mNext);
}
if (mBuf != NULL) {
free (mBuf);
}
return ;
}
STATIC
VOID
InitSlide (
VOID
)
/*++
Routine Description:
Initialize String Info Log data structures
Arguments: (VOID)
Returns: (VOID)
--*/
{
NODE Index;
for (Index = WNDSIZ; Index <= WNDSIZ + UINT8_MAX; Index++) {
mLevel[Index] = 1;
mPosition[Index] = NIL; /* sentinel */
}
for (Index = WNDSIZ; Index < WNDSIZ * 2; Index++) {
mParent[Index] = NIL;
}
mAvail = 1;
for (Index = 1; Index < WNDSIZ - 1; Index++) {
mNext[Index] = (NODE) (Index + 1);
}
mNext[WNDSIZ - 1] = NIL;
for (Index = WNDSIZ * 2; Index <= MAX_HASH_VAL; Index++) {
mNext[Index] = NIL;
}
}
STATIC
NODE
Child (
IN NODE NodeQ,
IN UINT8 CharC
)
/*++
Routine Description:
Find child node given the parent node and the edge character
Arguments:
NodeQ - the parent node
CharC - the edge character
Returns:
The child node (NIL if not found)
--*/
{
NODE NodeR;
NodeR = mNext[HASH (NodeQ, CharC)];
//
// sentinel
//
mParent[NIL] = NodeQ;
while (mParent[NodeR] != NodeQ) {
NodeR = mNext[NodeR];
}
return NodeR;
}
STATIC
VOID
MakeChild (
IN NODE Parent,
IN UINT8 CharC,
IN NODE Child
)
/*++
Routine Description:
Create a new child for a given parent node.
Arguments:
Parent - the parent node
CharC - the edge character
Child - the child node
Returns: (VOID)
--*/
{
NODE Node1;
NODE Node2;
Node1 = (NODE) HASH (Parent, CharC);
Node2 = mNext[Node1];
mNext[Node1] = Child;
mNext[Child] = Node2;
mPrev[Node2] = Child;
mPrev[Child] = Node1;
mParent[Child] = Parent;
mChildCount[Parent]++;
}
STATIC
VOID
Split (
NODE Old
)
/*++
Routine Description:
Split a node.
Arguments:
Old - the node to split
Returns: (VOID)
--*/
{
NODE New;
NODE TempNode;
New = mAvail;
mAvail = mNext[New];
mChildCount[New] = 0;
TempNode = mPrev[Old];
mPrev[New] = TempNode;
mNext[TempNode] = New;
TempNode = mNext[Old];
mNext[New] = TempNode;
mPrev[TempNode] = New;
mParent[New] = mParent[Old];
mLevel[New] = (UINT8) mMatchLen;
mPosition[New] = mPos;
MakeChild (New, mText[mMatchPos + mMatchLen], Old);
MakeChild (New, mText[mPos + mMatchLen], mPos);
}
STATIC
VOID
InsertNode (
VOID
)
/*++
Routine Description:
Insert string info for current position into the String Info Log
Arguments: (VOID)
Returns: (VOID)
--*/
{
NODE NodeQ;
NODE NodeR;
NODE Index2;
NODE NodeT;
UINT8 CharC;
UINT8 *t1;
UINT8 *t2;
if (mMatchLen >= 4) {
//
// We have just got a long match, the target tree
// can be located by MatchPos + 1. Traverse the tree
// from bottom up to get to a proper starting point.
// The usage of PERC_FLAG ensures proper node deletion
// in DeleteNode() later.
//
mMatchLen--;
NodeR = (NODE) ((mMatchPos + 1) | WNDSIZ);
NodeQ = mParent[NodeR];
while (NodeQ == NIL) {
NodeR = mNext[NodeR];
NodeQ = mParent[NodeR];
}
while (mLevel[NodeQ] >= mMatchLen) {
NodeR = NodeQ;
NodeQ = mParent[NodeQ];
}
NodeT = NodeQ;
while (mPosition[NodeT] < 0) {
mPosition[NodeT] = mPos;
NodeT = mParent[NodeT];
}
if (NodeT < WNDSIZ) {
mPosition[NodeT] = (NODE) (mPos | (UINT32) PERC_FLAG);
}
} else {
//
// Locate the target tree
//
NodeQ = (NODE) (mText[mPos] + WNDSIZ);
CharC = mText[mPos + 1];
NodeR = Child (NodeQ, CharC);
if (NodeR == NIL) {
MakeChild (NodeQ, CharC, mPos);
mMatchLen = 1;
return ;
}
mMatchLen = 2;
}
//
// Traverse down the tree to find a match.
// Update Position value along the route.
// Node split or creation is involved.
//
for (;;) {
if (NodeR >= WNDSIZ) {
Index2 = MAXMATCH;
mMatchPos = NodeR;
} else {
Index2 = mLevel[NodeR];
mMatchPos = (NODE) (mPosition[NodeR] & (UINT32)~PERC_FLAG);
}
if (mMatchPos >= mPos) {
mMatchPos -= WNDSIZ;
}
t1 = &mText[mPos + mMatchLen];
t2 = &mText[mMatchPos + mMatchLen];
while (mMatchLen < Index2) {
if (*t1 != *t2) {
Split (NodeR);
return ;
}
mMatchLen++;
t1++;
t2++;
}
if (mMatchLen >= MAXMATCH) {
break;
}
mPosition[NodeR] = mPos;
NodeQ = NodeR;
NodeR = Child (NodeQ, *t1);
if (NodeR == NIL) {
MakeChild (NodeQ, *t1, mPos);
return ;
}
mMatchLen++;
}
NodeT = mPrev[NodeR];
mPrev[mPos] = NodeT;
mNext[NodeT] = mPos;
NodeT = mNext[NodeR];
mNext[mPos] = NodeT;
mPrev[NodeT] = mPos;
mParent[mPos] = NodeQ;
mParent[NodeR] = NIL;
//
// Special usage of 'next'
//
mNext[NodeR] = mPos;
}
STATIC
VOID
DeleteNode (
VOID
)
/*++
Routine Description:
Delete outdated string info. (The Usage of PERC_FLAG
ensures a clean deletion)
Arguments: (VOID)
Returns: (VOID)
--*/
{
NODE NodeQ;
NODE NodeR;
NODE NodeS;
NODE NodeT;
NODE NodeU;
if (mParent[mPos] == NIL) {
return ;
}
NodeR = mPrev[mPos];
NodeS = mNext[mPos];
mNext[NodeR] = NodeS;
mPrev[NodeS] = NodeR;
NodeR = mParent[mPos];
mParent[mPos] = NIL;
if (NodeR >= WNDSIZ) {
return ;
}
mChildCount[NodeR]--;
if (mChildCount[NodeR] > 1) {
return ;
}
NodeT = (NODE) (mPosition[NodeR] & (UINT32)~PERC_FLAG);
if (NodeT >= mPos) {
NodeT -= WNDSIZ;
}
NodeS = NodeT;
NodeQ = mParent[NodeR];
NodeU = mPosition[NodeQ];
while (NodeU & (UINT32) PERC_FLAG) {
NodeU &= (UINT32)~PERC_FLAG;
if (NodeU >= mPos) {
NodeU -= WNDSIZ;
}
if (NodeU > NodeS) {
NodeS = NodeU;
}
mPosition[NodeQ] = (NODE) (NodeS | WNDSIZ);
NodeQ = mParent[NodeQ];
NodeU = mPosition[NodeQ];
}
if (NodeQ < WNDSIZ) {
if (NodeU >= mPos) {
NodeU -= WNDSIZ;
}
if (NodeU > NodeS) {
NodeS = NodeU;
}
mPosition[NodeQ] = (NODE) (NodeS | WNDSIZ | (UINT32) PERC_FLAG);
}
NodeS = Child (NodeR, mText[NodeT + mLevel[NodeR]]);
NodeT = mPrev[NodeS];
NodeU = mNext[NodeS];
mNext[NodeT] = NodeU;
mPrev[NodeU] = NodeT;
NodeT = mPrev[NodeR];
mNext[NodeT] = NodeS;
mPrev[NodeS] = NodeT;
NodeT = mNext[NodeR];
mPrev[NodeT] = NodeS;
mNext[NodeS] = NodeT;
mParent[NodeS] = mParent[NodeR];
mParent[NodeR] = NIL;
mNext[NodeR] = mAvail;
mAvail = NodeR;
}
STATIC
VOID
GetNextMatch (
VOID
)
/*++
Routine Description:
Advance the current position (read in new data if needed).
Delete outdated string info. Find a match string for current position.
Arguments: (VOID)
Returns: (VOID)
--*/
{
INT32 Number;
mRemainder--;
mPos++;
if (mPos == WNDSIZ * 2) {
memmove (&mText[0], &mText[WNDSIZ], WNDSIZ + MAXMATCH);
Number = FreadCrc (&mText[WNDSIZ + MAXMATCH], WNDSIZ);
mRemainder += Number;
mPos = WNDSIZ;
}
DeleteNode ();
InsertNode ();
}
STATIC
EFI_STATUS
Encode (
VOID
)
/*++
Routine Description:
The main controlling routine for compression process.
Arguments: (VOID)
Returns:
EFI_SUCCESS - The compression is successful
EFI_OUT_0F_RESOURCES - Not enough memory for compression process
--*/
{
EFI_STATUS Status;
INT32 LastMatchLen;
NODE LastMatchPos;
Status = AllocateMemory ();
if (EFI_ERROR (Status)) {
FreeMemory ();
return Status;
}
InitSlide ();
HufEncodeStart ();
mRemainder = FreadCrc (&mText[WNDSIZ], WNDSIZ + MAXMATCH);
mMatchLen = 0;
mPos = WNDSIZ;
InsertNode ();
if (mMatchLen > mRemainder) {
mMatchLen = mRemainder;
}
while (mRemainder > 0) {
LastMatchLen = mMatchLen;
LastMatchPos = mMatchPos;
GetNextMatch ();
if (mMatchLen > mRemainder) {
mMatchLen = mRemainder;
}
if (mMatchLen > LastMatchLen || LastMatchLen < THRESHOLD) {
//
// Not enough benefits are gained by outputting a pointer,
// so just output the original character
//
Output (mText[mPos - 1], 0);
} else {
if (LastMatchLen == THRESHOLD) {
if (((mPos - LastMatchPos - 2) & (WNDSIZ - 1)) > (1U << 11)) {
Output (mText[mPos - 1], 0);
continue;
}
}
//
// Outputting a pointer is beneficial enough, do it.
//
Output (
LastMatchLen + (UINT8_MAX + 1 - THRESHOLD),
(mPos - LastMatchPos - 2) & (WNDSIZ - 1)
);
LastMatchLen--;
while (LastMatchLen > 0) {
GetNextMatch ();
LastMatchLen--;
}
if (mMatchLen > mRemainder) {
mMatchLen = mRemainder;
}
}
}
HufEncodeEnd ();
FreeMemory ();
return EFI_SUCCESS;
}
STATIC
VOID
CountTFreq (
VOID
)
/*++
Routine Description:
Count the frequencies for the Extra Set
Arguments: (VOID)
Returns: (VOID)
--*/
{
INT32 Index;
INT32 Index3;
INT32 Number;
INT32 Count;
for (Index = 0; Index < NT; Index++) {
mTFreq[Index] = 0;
}
Number = NC;
while (Number > 0 && mCLen[Number - 1] == 0) {
Number--;
}
Index = 0;
while (Index < Number) {
Index3 = mCLen[Index++];
if (Index3 == 0) {
Count = 1;
while (Index < Number && mCLen[Index] == 0) {
Index++;
Count++;
}
if (Count <= 2) {
mTFreq[0] = (UINT16) (mTFreq[0] + Count);
} else if (Count <= 18) {
mTFreq[1]++;
} else if (Count == 19) {
mTFreq[0]++;
mTFreq[1]++;
} else {
mTFreq[2]++;
}
} else {
mTFreq[Index3 + 2]++;
}
}
}
STATIC
VOID
WritePTLen (
IN INT32 Number,
IN INT32 nbit,
IN INT32 Special
)
/*++
Routine Description:
Outputs the code length array for the Extra Set or the Position Set.
Arguments:
Number - the number of symbols
nbit - the number of bits needed to represent 'n'
Special - the special symbol that needs to be take care of
Returns: (VOID)
--*/
{
INT32 Index;
INT32 Index3;
while (Number > 0 && mPTLen[Number - 1] == 0) {
Number--;
}
PutBits (nbit, Number);
Index = 0;
while (Index < Number) {
Index3 = mPTLen[Index++];
if (Index3 <= 6) {
PutBits (3, Index3);
} else {
PutBits (Index3 - 3, (1U << (Index3 - 3)) - 2);
}
if (Index == Special) {
while (Index < 6 && mPTLen[Index] == 0) {
Index++;
}
PutBits (2, (Index - 3) & 3);
}
}
}
STATIC
VOID
WriteCLen (
VOID
)
/*++
Routine Description:
Outputs the code length array for Char&Length Set
Arguments: (VOID)
Returns: (VOID)
--*/
{
INT32 Index;
INT32 Index3;
INT32 Number;
INT32 Count;
Number = NC;
while (Number > 0 && mCLen[Number - 1] == 0) {
Number--;
}
PutBits (CBIT, Number);
Index = 0;
while (Index < Number) {
Index3 = mCLen[Index++];
if (Index3 == 0) {
Count = 1;
while (Index < Number && mCLen[Index] == 0) {
Index++;
Count++;
}
if (Count <= 2) {
for (Index3 = 0; Index3 < Count; Index3++) {
PutBits (mPTLen[0], mPTCode[0]);
}
} else if (Count <= 18) {
PutBits (mPTLen[1], mPTCode[1]);
PutBits (4, Count - 3);
} else if (Count == 19) {
PutBits (mPTLen[0], mPTCode[0]);
PutBits (mPTLen[1], mPTCode[1]);
PutBits (4, 15);
} else {
PutBits (mPTLen[2], mPTCode[2]);
PutBits (CBIT, Count - 20);
}
} else {
PutBits (mPTLen[Index3 + 2], mPTCode[Index3 + 2]);
}
}
}
STATIC
VOID
EncodeC (
IN INT32 Value
)
{
PutBits (mCLen[Value], mCCode[Value]);
}
STATIC
VOID
EncodeP (
IN UINT32 Value
)
{
UINT32 Index;
UINT32 NodeQ;
Index = 0;
NodeQ = Value;
while (NodeQ) {
NodeQ >>= 1;
Index++;
}
PutBits (mPTLen[Index], mPTCode[Index]);
if (Index > 1) {
PutBits (Index - 1, Value & (0xFFFFFFFFU >> (32 - Index + 1)));
}
}
STATIC
VOID
SendBlock (
VOID
)
/*++
Routine Description:
Huffman code the block and output it.
Arguments:
(VOID)
Returns:
(VOID)
--*/
{
UINT32 Index;
UINT32 Index2;
UINT32 Index3;
UINT32 Flags;
UINT32 Root;
UINT32 Pos;
UINT32 Size;
Flags = 0;
Root = MakeTree (NC, mCFreq, mCLen, mCCode);
Size = mCFreq[Root];
PutBits (16, Size);
if (Root >= NC) {
CountTFreq ();
Root = MakeTree (NT, mTFreq, mPTLen, mPTCode);
if (Root >= NT) {
WritePTLen (NT, TBIT, 3);
} else {
PutBits (TBIT, 0);
PutBits (TBIT, Root);
}
WriteCLen ();
} else {
PutBits (TBIT, 0);
PutBits (TBIT, 0);
PutBits (CBIT, 0);
PutBits (CBIT, Root);
}
Root = MakeTree (NP, mPFreq, mPTLen, mPTCode);
if (Root >= NP) {
WritePTLen (NP, PBIT, -1);
} else {
PutBits (PBIT, 0);
PutBits (PBIT, Root);
}
Pos = 0;
for (Index = 0; Index < Size; Index++) {
if (Index % UINT8_BIT == 0) {
Flags = mBuf[Pos++];
} else {
Flags <<= 1;
}
if (Flags & (1U << (UINT8_BIT - 1))) {
EncodeC (mBuf[Pos++] + (1U << UINT8_BIT));
Index3 = mBuf[Pos++];
for (Index2 = 0; Index2 < 3; Index2++) {
Index3 <<= UINT8_BIT;
Index3 += mBuf[Pos++];
}
EncodeP (Index3);
} else {
EncodeC (mBuf[Pos++]);
}
}
for (Index = 0; Index < NC; Index++) {
mCFreq[Index] = 0;
}
for (Index = 0; Index < NP; Index++) {
mPFreq[Index] = 0;
}
}
STATIC
VOID
Output (
IN UINT32 CharC,
IN UINT32 Pos
)
/*++
Routine Description:
Outputs an Original Character or a Pointer
Arguments:
CharC - The original character or the 'String Length' element of a Pointer
Pos - The 'Position' field of a Pointer
Returns: (VOID)
--*/
{
STATIC UINT32 CPos;
if ((mOutputMask >>= 1) == 0) {
mOutputMask = 1U << (UINT8_BIT - 1);
//
// Check the buffer overflow per outputing UINT8_BIT symbols
// which is an Original Character or a Pointer. The biggest
// symbol is a Pointer which occupies 5 bytes.
//
if (mOutputPos >= mBufSiz - 5 * UINT8_BIT) {
SendBlock ();
mOutputPos = 0;
}
CPos = mOutputPos++;
mBuf[CPos] = 0;
}
mBuf[mOutputPos++] = (UINT8) CharC;
mCFreq[CharC]++;
if (CharC >= (1U << UINT8_BIT)) {
mBuf[CPos] |= mOutputMask;
mBuf[mOutputPos++] = (UINT8) (Pos >> 24);
mBuf[mOutputPos++] = (UINT8) (Pos >> 16);
mBuf[mOutputPos++] = (UINT8) (Pos >> (UINT8_BIT));
mBuf[mOutputPos++] = (UINT8) Pos;
CharC = 0;
while (Pos) {
Pos >>= 1;
CharC++;
}
mPFreq[CharC]++;
}
}
STATIC
VOID
HufEncodeStart (
VOID
)
{
INT32 Index;
for (Index = 0; Index < NC; Index++) {
mCFreq[Index] = 0;
}
for (Index = 0; Index < NP; Index++) {
mPFreq[Index] = 0;
}
mOutputPos = mOutputMask = 0;
InitPutBits ();
return ;
}
STATIC
VOID
HufEncodeEnd (
VOID
)
{
SendBlock ();
//
// Flush remaining bits
//
PutBits (UINT8_BIT - 1, 0);
return ;
}
STATIC
VOID
MakeCrcTable (
VOID
)
{
UINT32 Index;
UINT32 Index2;
UINT32 Temp;
for (Index = 0; Index <= UINT8_MAX; Index++) {
Temp = Index;
for (Index2 = 0; Index2 < UINT8_BIT; Index2++) {
if (Temp & 1) {
Temp = (Temp >> 1) ^ CRCPOLY;
} else {
Temp >>= 1;
}
}
mCrcTable[Index] = (UINT16) Temp;
}
}
STATIC
VOID
PutBits (
IN INT32 Number,
IN UINT32 Value
)
/*++
Routine Description:
Outputs rightmost n bits of x
Arguments:
Number - the rightmost n bits of the data is used
x - the data
Returns: (VOID)
--*/
{
UINT8 Temp;
while (Number >= mBitCount) {
//
// Number -= mBitCount should never equal to 32
//
Temp = (UINT8) (mSubBitBuf | (Value >> (Number -= mBitCount)));
if (mDst < mDstUpperLimit) {
*mDst++ = Temp;
}
mCompSize++;
mSubBitBuf = 0;
mBitCount = UINT8_BIT;
}
mSubBitBuf |= Value << (mBitCount -= Number);
}
STATIC
INT32
FreadCrc (
OUT UINT8 *Pointer,
IN INT32 Number
)
/*++
Routine Description:
Read in source data
Arguments:
Pointer - the buffer to hold the data
Number - number of bytes to read
Returns:
number of bytes actually read
--*/
{
INT32 Index;
for (Index = 0; mSrc < mSrcUpperLimit && Index < Number; Index++) {
*Pointer++ = *mSrc++;
}
Number = Index;
Pointer -= Number;
mOrigSize += Number;
Index--;
while (Index >= 0) {
UPDATE_CRC (*Pointer++);
Index--;
}
return Number;
}
STATIC
VOID
InitPutBits (
VOID
)
{
mBitCount = UINT8_BIT;
mSubBitBuf = 0;
}
STATIC
VOID
CountLen (
IN INT32 Index
)
/*++
Routine Description:
Count the number of each code length for a Huffman tree.
Arguments:
Index - the top node
Returns: (VOID)
--*/
{
STATIC INT32 Depth = 0;
if (Index < mN) {
mLenCnt[(Depth < 16) ? Depth : 16]++;
} else {
Depth++;
CountLen (mLeft[Index]);
CountLen (mRight[Index]);
Depth--;
}
}
STATIC
VOID
MakeLen (
IN INT32 Root
)
/*++
Routine Description:
Create code length array for a Huffman tree
Arguments:
Root - the root of the tree
Returns:
VOID
--*/
{
INT32 Index;
INT32 Index3;
UINT32 Cum;
for (Index = 0; Index <= 16; Index++) {
mLenCnt[Index] = 0;
}
CountLen (Root);
//
// Adjust the length count array so that
// no code will be generated longer than its designated length
//
Cum = 0;
for (Index = 16; Index > 0; Index--) {
Cum += mLenCnt[Index] << (16 - Index);
}
while (Cum != (1U << 16)) {
mLenCnt[16]--;
for (Index = 15; Index > 0; Index--) {
if (mLenCnt[Index] != 0) {
mLenCnt[Index]--;
mLenCnt[Index + 1] += 2;
break;
}
}
Cum--;
}
for (Index = 16; Index > 0; Index--) {
Index3 = mLenCnt[Index];
Index3--;
while (Index3 >= 0) {
mLen[*mSortPtr++] = (UINT8) Index;
Index3--;
}
}
}
STATIC
VOID
DownHeap (
IN INT32 Index
)
{
INT32 Index2;
INT32 Index3;
//
// priority queue: send Index-th entry down heap
//
Index3 = mHeap[Index];
Index2 = 2 * Index;
while (Index2 <= mHeapSize) {
if (Index2 < mHeapSize && mFreq[mHeap[Index2]] > mFreq[mHeap[Index2 + 1]]) {
Index2++;
}
if (mFreq[Index3] <= mFreq[mHeap[Index2]]) {
break;
}
mHeap[Index] = mHeap[Index2];
Index = Index2;
Index2 = 2 * Index;
}
mHeap[Index] = (INT16) Index3;
}
STATIC
VOID
MakeCode (
IN INT32 Number,
IN UINT8 Len[ ],
OUT UINT16 Code[]
)
/*++
Routine Description:
Assign code to each symbol based on the code length array
Arguments:
Number - number of symbols
Len - the code length array
Code - stores codes for each symbol
Returns: (VOID)
--*/
{
INT32 Index;
UINT16 Start[18];
Start[1] = 0;
for (Index = 1; Index <= 16; Index++) {
Start[Index + 1] = (UINT16) ((Start[Index] + mLenCnt[Index]) << 1);
}
for (Index = 0; Index < Number; Index++) {
Code[Index] = Start[Len[Index]]++;
}
}
STATIC
INT32
MakeTree (
IN INT32 NParm,
IN UINT16 FreqParm[],
OUT UINT8 LenParm[ ],
OUT UINT16 CodeParm[]
)
/*++
Routine Description:
Generates Huffman codes given a frequency distribution of symbols
Arguments:
NParm - number of symbols
FreqParm - frequency of each symbol
LenParm - code length for each symbol
CodeParm - code for each symbol
Returns:
Root of the Huffman tree.
--*/
{
INT32 Index;
INT32 Index2;
INT32 Index3;
INT32 Avail;
//
// make tree, calculate len[], return root
//
mN = NParm;
mFreq = FreqParm;
mLen = LenParm;
Avail = mN;
mHeapSize = 0;
mHeap[1] = 0;
for (Index = 0; Index < mN; Index++) {
mLen[Index] = 0;
if (mFreq[Index]) {
mHeapSize++;
mHeap[mHeapSize] = (INT16) Index;
}
}
if (mHeapSize < 2) {
CodeParm[mHeap[1]] = 0;
return mHeap[1];
}
for (Index = mHeapSize / 2; Index >= 1; Index--) {
//
// make priority queue
//
DownHeap (Index);
}
mSortPtr = CodeParm;
do {
Index = mHeap[1];
if (Index < mN) {
*mSortPtr++ = (UINT16) Index;
}
mHeap[1] = mHeap[mHeapSize--];
DownHeap (1);
Index2 = mHeap[1];
if (Index2 < mN) {
*mSortPtr++ = (UINT16) Index2;
}
Index3 = Avail++;
mFreq[Index3] = (UINT16) (mFreq[Index] + mFreq[Index2]);
mHeap[1] = (INT16) Index3;
DownHeap (1);
mLeft[Index3] = (UINT16) Index;
mRight[Index3] = (UINT16) Index2;
} while (mHeapSize > 1);
mSortPtr = CodeParm;
MakeLen (Index3);
MakeCode (NParm, LenParm, CodeParm);
//
// return root
//
return Index3;
}