mirror of
https://github.com/CloverHackyColor/CloverBootloader.git
synced 2024-12-23 16:17:40 +01:00
7c0aa811ec
Signed-off-by: Sergey Isakov <isakov-sl@bk.ru>
1351 lines
44 KiB
C
1351 lines
44 KiB
C
/** @file
|
|
Elf64 convert solution
|
|
|
|
Copyright (c) 2010 - 2018, Intel Corporation. All rights reserved.<BR>
|
|
Portions copyright (c) 2013-2014, ARM Ltd. All rights reserved.<BR>
|
|
|
|
SPDX-License-Identifier: BSD-2-Clause-Patent
|
|
|
|
**/
|
|
|
|
#include "WinNtInclude.h"
|
|
|
|
#ifndef __GNUC__
|
|
#include <windows.h>
|
|
#include <io.h>
|
|
#endif
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
#include <ctype.h>
|
|
|
|
#include <Common/UefiBaseTypes.h>
|
|
#include <IndustryStandard/PeImage.h>
|
|
|
|
#include "PeCoffLib.h"
|
|
#include "EfiUtilityMsgs.h"
|
|
|
|
#include "GenFw.h"
|
|
#include "ElfConvert.h"
|
|
#include "Elf64Convert.h"
|
|
|
|
STATIC
|
|
VOID
|
|
ScanSections64 (
|
|
VOID
|
|
);
|
|
|
|
STATIC
|
|
BOOLEAN
|
|
WriteSections64 (
|
|
SECTION_FILTER_TYPES FilterType
|
|
);
|
|
|
|
STATIC
|
|
VOID
|
|
WriteRelocations64 (
|
|
VOID
|
|
);
|
|
|
|
STATIC
|
|
VOID
|
|
WriteDebug64 (
|
|
VOID
|
|
);
|
|
|
|
STATIC
|
|
VOID
|
|
SetImageSize64 (
|
|
VOID
|
|
);
|
|
|
|
STATIC
|
|
VOID
|
|
CleanUp64 (
|
|
VOID
|
|
);
|
|
|
|
//
|
|
// Rename ELF32 structures to common names to help when porting to ELF64.
|
|
//
|
|
typedef Elf64_Shdr Elf_Shdr;
|
|
typedef Elf64_Ehdr Elf_Ehdr;
|
|
typedef Elf64_Rel Elf_Rel;
|
|
typedef Elf64_Rela Elf_Rela;
|
|
typedef Elf64_Sym Elf_Sym;
|
|
typedef Elf64_Phdr Elf_Phdr;
|
|
typedef Elf64_Dyn Elf_Dyn;
|
|
#define ELFCLASS ELFCLASS64
|
|
#define ELF_R_TYPE(r) ELF64_R_TYPE(r)
|
|
#define ELF_R_SYM(r) ELF64_R_SYM(r)
|
|
|
|
//
|
|
// Well known ELF structures.
|
|
//
|
|
STATIC Elf_Ehdr *mEhdr;
|
|
STATIC Elf_Shdr *mShdrBase;
|
|
STATIC Elf_Phdr *mPhdrBase;
|
|
|
|
//
|
|
// GOT information
|
|
//
|
|
STATIC Elf_Shdr *mGOTShdr = NULL;
|
|
STATIC UINT32 mGOTShindex = 0;
|
|
STATIC UINT32 *mGOTCoffEntries = NULL;
|
|
STATIC UINT32 mGOTMaxCoffEntries = 0;
|
|
STATIC UINT32 mGOTNumCoffEntries = 0;
|
|
|
|
//
|
|
// Coff information
|
|
//
|
|
STATIC UINT32 mCoffAlignment = 0x20;
|
|
|
|
//
|
|
// PE section alignment.
|
|
//
|
|
STATIC const UINT16 mCoffNbrSections = 4;
|
|
|
|
//
|
|
// ELF sections to offset in Coff file.
|
|
//
|
|
STATIC UINT32 *mCoffSectionsOffset = NULL;
|
|
|
|
//
|
|
// Offsets in COFF file
|
|
//
|
|
STATIC UINT32 mNtHdrOffset;
|
|
STATIC UINT32 mTextOffset;
|
|
STATIC UINT32 mDataOffset;
|
|
STATIC UINT32 mHiiRsrcOffset;
|
|
STATIC UINT32 mRelocOffset;
|
|
STATIC UINT32 mDebugOffset;
|
|
|
|
//
|
|
// Initialization Function
|
|
//
|
|
BOOLEAN
|
|
InitializeElf64 (
|
|
UINT8 *FileBuffer,
|
|
ELF_FUNCTION_TABLE *ElfFunctions
|
|
)
|
|
{
|
|
//
|
|
// Initialize data pointer and structures.
|
|
//
|
|
VerboseMsg ("Set EHDR");
|
|
mEhdr = (Elf_Ehdr*) FileBuffer;
|
|
|
|
//
|
|
// Check the ELF64 specific header information.
|
|
//
|
|
VerboseMsg ("Check ELF64 Header Information");
|
|
if (mEhdr->e_ident[EI_CLASS] != ELFCLASS64) {
|
|
Error (NULL, 0, 3000, "Unsupported", "ELF EI_DATA not ELFCLASS64");
|
|
return FALSE;
|
|
}
|
|
if (mEhdr->e_ident[EI_DATA] != ELFDATA2LSB) {
|
|
Error (NULL, 0, 3000, "Unsupported", "ELF EI_DATA not ELFDATA2LSB");
|
|
return FALSE;
|
|
}
|
|
if ((mEhdr->e_type != ET_EXEC) && (mEhdr->e_type != ET_DYN)) {
|
|
Error (NULL, 0, 3000, "Unsupported", "ELF e_type not ET_EXEC or ET_DYN");
|
|
return FALSE;
|
|
}
|
|
if (!((mEhdr->e_machine == EM_X86_64) || (mEhdr->e_machine == EM_AARCH64))) {
|
|
Error (NULL, 0, 3000, "Unsupported", "ELF e_machine not EM_X86_64 or EM_AARCH64");
|
|
return FALSE;
|
|
}
|
|
if (mEhdr->e_version != EV_CURRENT) {
|
|
Error (NULL, 0, 3000, "Unsupported", "ELF e_version (%u) not EV_CURRENT (%d)", (unsigned) mEhdr->e_version, EV_CURRENT);
|
|
return FALSE;
|
|
}
|
|
|
|
//
|
|
// Update section header pointers
|
|
//
|
|
VerboseMsg ("Update Header Pointers");
|
|
mShdrBase = (Elf_Shdr *)((UINT8 *)mEhdr + mEhdr->e_shoff);
|
|
mPhdrBase = (Elf_Phdr *)((UINT8 *)mEhdr + mEhdr->e_phoff);
|
|
|
|
//
|
|
// Create COFF Section offset buffer and zero.
|
|
//
|
|
VerboseMsg ("Create COFF Section Offset Buffer");
|
|
mCoffSectionsOffset = (UINT32 *)malloc(mEhdr->e_shnum * sizeof (UINT32));
|
|
if (mCoffSectionsOffset == NULL) {
|
|
Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
|
|
return FALSE;
|
|
}
|
|
memset(mCoffSectionsOffset, 0, mEhdr->e_shnum * sizeof(UINT32));
|
|
|
|
//
|
|
// Fill in function pointers.
|
|
//
|
|
VerboseMsg ("Fill in Function Pointers");
|
|
ElfFunctions->ScanSections = ScanSections64;
|
|
ElfFunctions->WriteSections = WriteSections64;
|
|
ElfFunctions->WriteRelocations = WriteRelocations64;
|
|
ElfFunctions->WriteDebug = WriteDebug64;
|
|
ElfFunctions->SetImageSize = SetImageSize64;
|
|
ElfFunctions->CleanUp = CleanUp64;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
//
|
|
// Header by Index functions
|
|
//
|
|
STATIC
|
|
Elf_Shdr*
|
|
GetShdrByIndex (
|
|
UINT32 Num
|
|
)
|
|
{
|
|
if (Num >= mEhdr->e_shnum) {
|
|
Error (NULL, 0, 3000, "Invalid", "GetShdrByIndex: Index %u is too high.", Num);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
return (Elf_Shdr*)((UINT8*)mShdrBase + Num * mEhdr->e_shentsize);
|
|
}
|
|
|
|
STATIC
|
|
UINT32
|
|
CoffAlign (
|
|
UINT32 Offset
|
|
)
|
|
{
|
|
return (Offset + mCoffAlignment - 1) & ~(mCoffAlignment - 1);
|
|
}
|
|
|
|
STATIC
|
|
UINT32
|
|
DebugRvaAlign (
|
|
UINT32 Offset
|
|
)
|
|
{
|
|
return (Offset + 3) & ~3;
|
|
}
|
|
|
|
//
|
|
// filter functions
|
|
//
|
|
STATIC
|
|
BOOLEAN
|
|
IsTextShdr (
|
|
Elf_Shdr *Shdr
|
|
)
|
|
{
|
|
return (BOOLEAN) ((Shdr->sh_flags & (SHF_WRITE | SHF_ALLOC)) == SHF_ALLOC);
|
|
}
|
|
|
|
STATIC
|
|
BOOLEAN
|
|
IsHiiRsrcShdr (
|
|
Elf_Shdr *Shdr
|
|
)
|
|
{
|
|
Elf_Shdr *Namedr = GetShdrByIndex(mEhdr->e_shstrndx);
|
|
|
|
return (BOOLEAN) (strcmp((CHAR8*)mEhdr + Namedr->sh_offset + Shdr->sh_name, ELF_HII_SECTION_NAME) == 0);
|
|
}
|
|
|
|
STATIC
|
|
BOOLEAN
|
|
IsDataShdr (
|
|
Elf_Shdr *Shdr
|
|
)
|
|
{
|
|
if (IsHiiRsrcShdr(Shdr)) {
|
|
return FALSE;
|
|
}
|
|
return (BOOLEAN) (Shdr->sh_flags & (SHF_WRITE | SHF_ALLOC)) == (SHF_ALLOC | SHF_WRITE);
|
|
}
|
|
|
|
STATIC
|
|
BOOLEAN
|
|
IsStrtabShdr (
|
|
Elf_Shdr *Shdr
|
|
)
|
|
{
|
|
Elf_Shdr *Namedr = GetShdrByIndex(mEhdr->e_shstrndx);
|
|
|
|
return (BOOLEAN) (strcmp((CHAR8*)mEhdr + Namedr->sh_offset + Shdr->sh_name, ELF_STRTAB_SECTION_NAME) == 0);
|
|
}
|
|
|
|
STATIC
|
|
Elf_Shdr *
|
|
FindStrtabShdr (
|
|
VOID
|
|
)
|
|
{
|
|
UINT32 i;
|
|
for (i = 0; i < mEhdr->e_shnum; i++) {
|
|
Elf_Shdr *shdr = GetShdrByIndex(i);
|
|
if (IsStrtabShdr(shdr)) {
|
|
return shdr;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
STATIC
|
|
const UINT8 *
|
|
GetSymName (
|
|
Elf_Sym *Sym
|
|
)
|
|
{
|
|
Elf_Shdr *StrtabShdr;
|
|
UINT8 *StrtabContents;
|
|
BOOLEAN foundEnd;
|
|
UINT32 i;
|
|
|
|
if (Sym->st_name == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
StrtabShdr = FindStrtabShdr();
|
|
if (StrtabShdr == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
assert(Sym->st_name < StrtabShdr->sh_size);
|
|
|
|
StrtabContents = (UINT8*)mEhdr + StrtabShdr->sh_offset;
|
|
|
|
foundEnd = FALSE;
|
|
for (i= Sym->st_name; (i < StrtabShdr->sh_size) && !foundEnd; i++) {
|
|
foundEnd = (BOOLEAN)(StrtabContents[i] == 0);
|
|
}
|
|
assert(foundEnd);
|
|
|
|
return StrtabContents + Sym->st_name;
|
|
}
|
|
|
|
//
|
|
// Find the ELF section hosting the GOT from an ELF Rva
|
|
// of a single GOT entry. Normally, GOT is placed in
|
|
// ELF .text section, so assume once we find in which
|
|
// section the GOT is, all GOT entries are there, and
|
|
// just verify this.
|
|
//
|
|
STATIC
|
|
VOID
|
|
FindElfGOTSectionFromGOTEntryElfRva (
|
|
Elf64_Addr GOTEntryElfRva
|
|
)
|
|
{
|
|
UINT32 i;
|
|
if (mGOTShdr != NULL) {
|
|
if (GOTEntryElfRva >= mGOTShdr->sh_addr &&
|
|
GOTEntryElfRva < mGOTShdr->sh_addr + mGOTShdr->sh_size) {
|
|
return;
|
|
}
|
|
Error (NULL, 0, 3000, "Unsupported", "FindElfGOTSectionFromGOTEntryElfRva: GOT entries found in multiple sections.");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
for (i = 0; i < mEhdr->e_shnum; i++) {
|
|
Elf_Shdr *shdr = GetShdrByIndex(i);
|
|
if (GOTEntryElfRva >= shdr->sh_addr &&
|
|
GOTEntryElfRva < shdr->sh_addr + shdr->sh_size) {
|
|
mGOTShdr = shdr;
|
|
mGOTShindex = i;
|
|
return;
|
|
}
|
|
}
|
|
Error (NULL, 0, 3000, "Invalid", "FindElfGOTSectionFromGOTEntryElfRva: ElfRva 0x%016LX for GOT entry not found in any section.", GOTEntryElfRva);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
//
|
|
// Stores locations of GOT entries in COFF image.
|
|
// Returns TRUE if GOT entry is new.
|
|
// Simple implementation as number of GOT
|
|
// entries is expected to be low.
|
|
//
|
|
|
|
STATIC
|
|
BOOLEAN
|
|
AccumulateCoffGOTEntries (
|
|
UINT32 GOTCoffEntry
|
|
)
|
|
{
|
|
UINT32 i;
|
|
if (mGOTCoffEntries != NULL) {
|
|
for (i = 0; i < mGOTNumCoffEntries; i++) {
|
|
if (mGOTCoffEntries[i] == GOTCoffEntry) {
|
|
return FALSE;
|
|
}
|
|
}
|
|
}
|
|
if (mGOTCoffEntries == NULL) {
|
|
mGOTCoffEntries = (UINT32*)malloc(5 * sizeof *mGOTCoffEntries);
|
|
if (mGOTCoffEntries == NULL) {
|
|
Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
|
|
}
|
|
assert (mGOTCoffEntries != NULL);
|
|
mGOTMaxCoffEntries = 5;
|
|
mGOTNumCoffEntries = 0;
|
|
} else if (mGOTNumCoffEntries == mGOTMaxCoffEntries) {
|
|
mGOTCoffEntries = (UINT32*)realloc(mGOTCoffEntries, 2 * mGOTMaxCoffEntries * sizeof *mGOTCoffEntries);
|
|
if (mGOTCoffEntries == NULL) {
|
|
Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
|
|
}
|
|
assert (mGOTCoffEntries != NULL);
|
|
mGOTMaxCoffEntries += mGOTMaxCoffEntries;
|
|
}
|
|
mGOTCoffEntries[mGOTNumCoffEntries++] = GOTCoffEntry;
|
|
return TRUE;
|
|
}
|
|
|
|
//
|
|
// 32-bit Unsigned integer comparator for qsort.
|
|
//
|
|
STATIC
|
|
int
|
|
UINT32Comparator (
|
|
const void* lhs,
|
|
const void* rhs
|
|
)
|
|
{
|
|
if (*(const UINT32*)lhs < *(const UINT32*)rhs) {
|
|
return -1;
|
|
}
|
|
return *(const UINT32*)lhs > *(const UINT32*)rhs;
|
|
}
|
|
|
|
//
|
|
// Emit accumulated Coff GOT entry relocations into
|
|
// Coff image. This function performs its job
|
|
// once and then releases the entry list, so
|
|
// it can safely be called multiple times.
|
|
//
|
|
STATIC
|
|
VOID
|
|
EmitGOTRelocations (
|
|
VOID
|
|
)
|
|
{
|
|
UINT32 i;
|
|
if (mGOTCoffEntries == NULL) {
|
|
return;
|
|
}
|
|
//
|
|
// Emit Coff relocations with Rvas ordered.
|
|
//
|
|
qsort(
|
|
mGOTCoffEntries,
|
|
mGOTNumCoffEntries,
|
|
sizeof *mGOTCoffEntries,
|
|
UINT32Comparator);
|
|
for (i = 0; i < mGOTNumCoffEntries; i++) {
|
|
VerboseMsg ("EFI_IMAGE_REL_BASED_DIR64 Offset: 0x%08X", mGOTCoffEntries[i]);
|
|
CoffAddFixup(
|
|
mGOTCoffEntries[i],
|
|
EFI_IMAGE_REL_BASED_DIR64);
|
|
}
|
|
free(mGOTCoffEntries);
|
|
mGOTCoffEntries = NULL;
|
|
mGOTMaxCoffEntries = 0;
|
|
mGOTNumCoffEntries = 0;
|
|
}
|
|
|
|
//
|
|
// Elf functions interface implementation
|
|
//
|
|
|
|
STATIC
|
|
VOID
|
|
ScanSections64 (
|
|
VOID
|
|
)
|
|
{
|
|
UINT32 i;
|
|
EFI_IMAGE_DOS_HEADER *DosHdr;
|
|
EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
|
|
UINT32 CoffEntry;
|
|
UINT32 SectionCount;
|
|
BOOLEAN FoundSection;
|
|
|
|
CoffEntry = 0;
|
|
mCoffOffset = 0;
|
|
|
|
//
|
|
// Coff file start with a DOS header.
|
|
//
|
|
mCoffOffset = sizeof(EFI_IMAGE_DOS_HEADER) + 0x40;
|
|
mNtHdrOffset = mCoffOffset;
|
|
switch (mEhdr->e_machine) {
|
|
case EM_X86_64:
|
|
case EM_AARCH64:
|
|
mCoffOffset += sizeof (EFI_IMAGE_NT_HEADERS64);
|
|
break;
|
|
default:
|
|
VerboseMsg ("%s unknown e_machine type %hu. Assume X64", mInImageName, mEhdr->e_machine);
|
|
mCoffOffset += sizeof (EFI_IMAGE_NT_HEADERS64);
|
|
break;
|
|
}
|
|
|
|
mTableOffset = mCoffOffset;
|
|
mCoffOffset += mCoffNbrSections * sizeof(EFI_IMAGE_SECTION_HEADER);
|
|
|
|
//
|
|
// Set mCoffAlignment to the maximum alignment of the input sections
|
|
// we care about
|
|
//
|
|
for (i = 0; i < mEhdr->e_shnum; i++) {
|
|
Elf_Shdr *shdr = GetShdrByIndex(i);
|
|
if (shdr->sh_addralign <= mCoffAlignment) {
|
|
continue;
|
|
}
|
|
if (IsTextShdr(shdr) || IsDataShdr(shdr) || IsHiiRsrcShdr(shdr)) {
|
|
mCoffAlignment = (UINT32)shdr->sh_addralign;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Check if mCoffAlignment is larger than MAX_COFF_ALIGNMENT
|
|
//
|
|
if (mCoffAlignment > MAX_COFF_ALIGNMENT) {
|
|
Error (NULL, 0, 3000, "Invalid", "Section alignment is larger than MAX_COFF_ALIGNMENT.");
|
|
assert (FALSE);
|
|
}
|
|
|
|
|
|
//
|
|
// Move the PE/COFF header right before the first section. This will help us
|
|
// save space when converting to TE.
|
|
//
|
|
if (mCoffAlignment > mCoffOffset) {
|
|
mNtHdrOffset += mCoffAlignment - mCoffOffset;
|
|
mTableOffset += mCoffAlignment - mCoffOffset;
|
|
mCoffOffset = mCoffAlignment;
|
|
}
|
|
|
|
//
|
|
// First text sections.
|
|
//
|
|
mCoffOffset = CoffAlign(mCoffOffset);
|
|
mTextOffset = mCoffOffset;
|
|
FoundSection = FALSE;
|
|
SectionCount = 0;
|
|
for (i = 0; i < mEhdr->e_shnum; i++) {
|
|
Elf_Shdr *shdr = GetShdrByIndex(i);
|
|
if (IsTextShdr(shdr)) {
|
|
if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
|
|
// the alignment field is valid
|
|
if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
|
|
// if the section address is aligned we must align PE/COFF
|
|
mCoffOffset = (UINT32) ((mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1));
|
|
} else {
|
|
Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment.");
|
|
}
|
|
}
|
|
|
|
/* Relocate entry. */
|
|
if ((mEhdr->e_entry >= shdr->sh_addr) &&
|
|
(mEhdr->e_entry < shdr->sh_addr + shdr->sh_size)) {
|
|
CoffEntry = (UINT32) (mCoffOffset + mEhdr->e_entry - shdr->sh_addr);
|
|
}
|
|
|
|
//
|
|
// Set mTextOffset with the offset of the first '.text' section
|
|
//
|
|
if (!FoundSection) {
|
|
mTextOffset = mCoffOffset;
|
|
FoundSection = TRUE;
|
|
}
|
|
|
|
mCoffSectionsOffset[i] = mCoffOffset;
|
|
mCoffOffset += (UINT32) shdr->sh_size;
|
|
SectionCount ++;
|
|
}
|
|
}
|
|
|
|
if (!FoundSection) {
|
|
Error (NULL, 0, 3000, "Invalid", "Did not find any '.text' section.");
|
|
assert (FALSE);
|
|
}
|
|
|
|
mDebugOffset = DebugRvaAlign(mCoffOffset);
|
|
mCoffOffset = CoffAlign(mCoffOffset);
|
|
|
|
if (SectionCount > 1 && mOutImageType == FW_EFI_IMAGE) {
|
|
Warning (NULL, 0, 0, NULL, "Multiple sections in %s are merged into 1 text section. Source level debug might not work correctly.", mInImageName);
|
|
}
|
|
|
|
//
|
|
// Then data sections.
|
|
//
|
|
mDataOffset = mCoffOffset;
|
|
FoundSection = FALSE;
|
|
SectionCount = 0;
|
|
for (i = 0; i < mEhdr->e_shnum; i++) {
|
|
Elf_Shdr *shdr = GetShdrByIndex(i);
|
|
if (IsDataShdr(shdr)) {
|
|
if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
|
|
// the alignment field is valid
|
|
if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
|
|
// if the section address is aligned we must align PE/COFF
|
|
mCoffOffset = (UINT32) ((mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1));
|
|
} else {
|
|
Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment.");
|
|
}
|
|
}
|
|
|
|
//
|
|
// Set mDataOffset with the offset of the first '.data' section
|
|
//
|
|
if (!FoundSection) {
|
|
mDataOffset = mCoffOffset;
|
|
FoundSection = TRUE;
|
|
}
|
|
mCoffSectionsOffset[i] = mCoffOffset;
|
|
mCoffOffset += (UINT32) shdr->sh_size;
|
|
SectionCount ++;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Make room for .debug data in .data (or .text if .data is empty) instead of
|
|
// putting it in a section of its own. This is explicitly allowed by the
|
|
// PE/COFF spec, and prevents bloat in the binary when using large values for
|
|
// section alignment.
|
|
//
|
|
if (SectionCount > 0) {
|
|
mDebugOffset = DebugRvaAlign(mCoffOffset);
|
|
}
|
|
mCoffOffset = mDebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY) +
|
|
sizeof(EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY) +
|
|
strlen(mInImageName) + 1;
|
|
|
|
mCoffOffset = CoffAlign(mCoffOffset);
|
|
if (SectionCount == 0) {
|
|
mDataOffset = mCoffOffset;
|
|
}
|
|
|
|
if (SectionCount > 1 && mOutImageType == FW_EFI_IMAGE) {
|
|
Warning (NULL, 0, 0, NULL, "Multiple sections in %s are merged into 1 data section. Source level debug might not work correctly.", mInImageName);
|
|
}
|
|
|
|
//
|
|
// The HII resource sections.
|
|
//
|
|
mHiiRsrcOffset = mCoffOffset;
|
|
for (i = 0; i < mEhdr->e_shnum; i++) {
|
|
Elf_Shdr *shdr = GetShdrByIndex(i);
|
|
if (IsHiiRsrcShdr(shdr)) {
|
|
if ((shdr->sh_addralign != 0) && (shdr->sh_addralign != 1)) {
|
|
// the alignment field is valid
|
|
if ((shdr->sh_addr & (shdr->sh_addralign - 1)) == 0) {
|
|
// if the section address is aligned we must align PE/COFF
|
|
mCoffOffset = (UINT32) ((mCoffOffset + shdr->sh_addralign - 1) & ~(shdr->sh_addralign - 1));
|
|
} else {
|
|
Error (NULL, 0, 3000, "Invalid", "Section address not aligned to its own alignment.");
|
|
}
|
|
}
|
|
if (shdr->sh_size != 0) {
|
|
mHiiRsrcOffset = mCoffOffset;
|
|
mCoffSectionsOffset[i] = mCoffOffset;
|
|
mCoffOffset += (UINT32) shdr->sh_size;
|
|
mCoffOffset = CoffAlign(mCoffOffset);
|
|
SetHiiResourceHeader ((UINT8*) mEhdr + shdr->sh_offset, mHiiRsrcOffset);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
mRelocOffset = mCoffOffset;
|
|
|
|
//
|
|
// Allocate base Coff file. Will be expanded later for relocations.
|
|
//
|
|
mCoffFile = (UINT8 *)malloc(mCoffOffset);
|
|
if (mCoffFile == NULL) {
|
|
Error (NULL, 0, 4001, "Resource", "memory cannot be allocated!");
|
|
}
|
|
assert (mCoffFile != NULL);
|
|
memset(mCoffFile, 0, mCoffOffset);
|
|
|
|
//
|
|
// Fill headers.
|
|
//
|
|
DosHdr = (EFI_IMAGE_DOS_HEADER *)mCoffFile;
|
|
DosHdr->e_magic = EFI_IMAGE_DOS_SIGNATURE;
|
|
DosHdr->e_lfanew = mNtHdrOffset;
|
|
|
|
NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION*)(mCoffFile + mNtHdrOffset);
|
|
|
|
NtHdr->Pe32Plus.Signature = EFI_IMAGE_NT_SIGNATURE;
|
|
|
|
switch (mEhdr->e_machine) {
|
|
case EM_X86_64:
|
|
NtHdr->Pe32Plus.FileHeader.Machine = EFI_IMAGE_MACHINE_X64;
|
|
NtHdr->Pe32Plus.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC;
|
|
break;
|
|
case EM_AARCH64:
|
|
NtHdr->Pe32Plus.FileHeader.Machine = EFI_IMAGE_MACHINE_AARCH64;
|
|
NtHdr->Pe32Plus.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC;
|
|
break;
|
|
default:
|
|
VerboseMsg ("%s unknown e_machine type. Assume X64", (UINTN)mEhdr->e_machine);
|
|
NtHdr->Pe32Plus.FileHeader.Machine = EFI_IMAGE_MACHINE_X64;
|
|
NtHdr->Pe32Plus.OptionalHeader.Magic = EFI_IMAGE_NT_OPTIONAL_HDR64_MAGIC;
|
|
}
|
|
|
|
NtHdr->Pe32Plus.FileHeader.NumberOfSections = mCoffNbrSections;
|
|
NtHdr->Pe32Plus.FileHeader.TimeDateStamp = (UINT32) time(NULL);
|
|
mImageTimeStamp = NtHdr->Pe32Plus.FileHeader.TimeDateStamp;
|
|
NtHdr->Pe32Plus.FileHeader.PointerToSymbolTable = 0;
|
|
NtHdr->Pe32Plus.FileHeader.NumberOfSymbols = 0;
|
|
NtHdr->Pe32Plus.FileHeader.SizeOfOptionalHeader = sizeof(NtHdr->Pe32Plus.OptionalHeader);
|
|
NtHdr->Pe32Plus.FileHeader.Characteristics = EFI_IMAGE_FILE_EXECUTABLE_IMAGE
|
|
| EFI_IMAGE_FILE_LINE_NUMS_STRIPPED
|
|
| EFI_IMAGE_FILE_LOCAL_SYMS_STRIPPED
|
|
| EFI_IMAGE_FILE_LARGE_ADDRESS_AWARE;
|
|
|
|
NtHdr->Pe32Plus.OptionalHeader.SizeOfCode = mDataOffset - mTextOffset;
|
|
NtHdr->Pe32Plus.OptionalHeader.SizeOfInitializedData = mRelocOffset - mDataOffset;
|
|
NtHdr->Pe32Plus.OptionalHeader.SizeOfUninitializedData = 0;
|
|
NtHdr->Pe32Plus.OptionalHeader.AddressOfEntryPoint = CoffEntry;
|
|
|
|
NtHdr->Pe32Plus.OptionalHeader.BaseOfCode = mTextOffset;
|
|
|
|
NtHdr->Pe32Plus.OptionalHeader.ImageBase = 0;
|
|
NtHdr->Pe32Plus.OptionalHeader.SectionAlignment = mCoffAlignment;
|
|
NtHdr->Pe32Plus.OptionalHeader.FileAlignment = mCoffAlignment;
|
|
NtHdr->Pe32Plus.OptionalHeader.SizeOfImage = 0;
|
|
|
|
NtHdr->Pe32Plus.OptionalHeader.SizeOfHeaders = mTextOffset;
|
|
NtHdr->Pe32Plus.OptionalHeader.NumberOfRvaAndSizes = EFI_IMAGE_NUMBER_OF_DIRECTORY_ENTRIES;
|
|
|
|
//
|
|
// Section headers.
|
|
//
|
|
if ((mDataOffset - mTextOffset) > 0) {
|
|
CreateSectionHeader (".text", mTextOffset, mDataOffset - mTextOffset,
|
|
EFI_IMAGE_SCN_CNT_CODE
|
|
| EFI_IMAGE_SCN_MEM_EXECUTE
|
|
| EFI_IMAGE_SCN_MEM_READ);
|
|
} else {
|
|
// Don't make a section of size 0.
|
|
NtHdr->Pe32Plus.FileHeader.NumberOfSections--;
|
|
}
|
|
|
|
if ((mHiiRsrcOffset - mDataOffset) > 0) {
|
|
CreateSectionHeader (".data", mDataOffset, mHiiRsrcOffset - mDataOffset,
|
|
EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
|
|
| EFI_IMAGE_SCN_MEM_WRITE
|
|
| EFI_IMAGE_SCN_MEM_READ);
|
|
} else {
|
|
// Don't make a section of size 0.
|
|
NtHdr->Pe32Plus.FileHeader.NumberOfSections--;
|
|
}
|
|
|
|
if ((mRelocOffset - mHiiRsrcOffset) > 0) {
|
|
CreateSectionHeader (".rsrc", mHiiRsrcOffset, mRelocOffset - mHiiRsrcOffset,
|
|
EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
|
|
| EFI_IMAGE_SCN_MEM_READ);
|
|
|
|
NtHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].Size = mRelocOffset - mHiiRsrcOffset;
|
|
NtHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_RESOURCE].VirtualAddress = mHiiRsrcOffset;
|
|
} else {
|
|
// Don't make a section of size 0.
|
|
NtHdr->Pe32Plus.FileHeader.NumberOfSections--;
|
|
}
|
|
|
|
}
|
|
|
|
STATIC
|
|
BOOLEAN
|
|
WriteSections64 (
|
|
SECTION_FILTER_TYPES FilterType
|
|
)
|
|
{
|
|
UINT32 Idx;
|
|
Elf_Shdr *SecShdr;
|
|
UINT32 SecOffset;
|
|
BOOLEAN (*Filter)(Elf_Shdr *);
|
|
Elf64_Addr GOTEntryRva;
|
|
|
|
//
|
|
// Initialize filter pointer
|
|
//
|
|
switch (FilterType) {
|
|
case SECTION_TEXT:
|
|
Filter = IsTextShdr;
|
|
break;
|
|
case SECTION_HII:
|
|
Filter = IsHiiRsrcShdr;
|
|
break;
|
|
case SECTION_DATA:
|
|
Filter = IsDataShdr;
|
|
break;
|
|
default:
|
|
return FALSE;
|
|
}
|
|
|
|
//
|
|
// First: copy sections.
|
|
//
|
|
for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) {
|
|
Elf_Shdr *Shdr = GetShdrByIndex(Idx);
|
|
if ((*Filter)(Shdr)) {
|
|
switch (Shdr->sh_type) {
|
|
case SHT_PROGBITS:
|
|
/* Copy. */
|
|
if (Shdr->sh_offset + Shdr->sh_size > mFileBufferSize) {
|
|
return FALSE;
|
|
}
|
|
memcpy(mCoffFile + mCoffSectionsOffset[Idx],
|
|
(UINT8*)mEhdr + Shdr->sh_offset,
|
|
(size_t) Shdr->sh_size);
|
|
break;
|
|
|
|
case SHT_NOBITS:
|
|
memset(mCoffFile + mCoffSectionsOffset[Idx], 0, (size_t) Shdr->sh_size);
|
|
break;
|
|
|
|
default:
|
|
//
|
|
// Ignore for unknown section type.
|
|
//
|
|
VerboseMsg ("%s unknown section type %x. We ignore this unknown section type.", mInImageName, (unsigned)Shdr->sh_type);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Second: apply relocations.
|
|
//
|
|
VerboseMsg ("Applying Relocations...");
|
|
for (Idx = 0; Idx < mEhdr->e_shnum; Idx++) {
|
|
//
|
|
// Determine if this is a relocation section.
|
|
//
|
|
Elf_Shdr *RelShdr = GetShdrByIndex(Idx);
|
|
if ((RelShdr->sh_type != SHT_REL) && (RelShdr->sh_type != SHT_RELA)) {
|
|
continue;
|
|
}
|
|
|
|
//
|
|
// If this is a ET_DYN (PIE) executable, we will encounter a dynamic SHT_RELA
|
|
// section that applies to the entire binary, and which will have its section
|
|
// index set to #0 (which is a NULL section with the SHF_ALLOC bit cleared).
|
|
//
|
|
// In the absence of GOT based relocations,
|
|
// this RELA section will contain redundant R_xxx_RELATIVE relocations, one
|
|
// for every R_xxx_xx64 relocation appearing in the per-section RELA sections.
|
|
// (i.e., .rela.text and .rela.data)
|
|
//
|
|
if (RelShdr->sh_info == 0) {
|
|
continue;
|
|
}
|
|
|
|
//
|
|
// Relocation section found. Now extract section information that the relocations
|
|
// apply to in the ELF data and the new COFF data.
|
|
//
|
|
SecShdr = GetShdrByIndex(RelShdr->sh_info);
|
|
SecOffset = mCoffSectionsOffset[RelShdr->sh_info];
|
|
|
|
//
|
|
// Only process relocations for the current filter type.
|
|
//
|
|
if (RelShdr->sh_type == SHT_RELA && (*Filter)(SecShdr)) {
|
|
UINT64 RelIdx;
|
|
|
|
//
|
|
// Determine the symbol table referenced by the relocation data.
|
|
//
|
|
Elf_Shdr *SymtabShdr = GetShdrByIndex(RelShdr->sh_link);
|
|
UINT8 *Symtab = (UINT8*)mEhdr + SymtabShdr->sh_offset;
|
|
|
|
//
|
|
// Process all relocation entries for this section.
|
|
//
|
|
for (RelIdx = 0; RelIdx < RelShdr->sh_size; RelIdx += (UINT32) RelShdr->sh_entsize) {
|
|
|
|
//
|
|
// Set pointer to relocation entry
|
|
//
|
|
Elf_Rela *Rel = (Elf_Rela *)((UINT8*)mEhdr + RelShdr->sh_offset + RelIdx);
|
|
|
|
//
|
|
// Set pointer to symbol table entry associated with the relocation entry.
|
|
//
|
|
Elf_Sym *Sym = (Elf_Sym *)(Symtab + ELF_R_SYM(Rel->r_info) * SymtabShdr->sh_entsize);
|
|
|
|
Elf_Shdr *SymShdr;
|
|
UINT8 *Targ;
|
|
|
|
//
|
|
// Check section header index found in symbol table and get the section
|
|
// header location.
|
|
//
|
|
if (Sym->st_shndx == SHN_UNDEF
|
|
|| Sym->st_shndx >= mEhdr->e_shnum) {
|
|
const UINT8 *SymName = GetSymName(Sym);
|
|
if (SymName == NULL) {
|
|
SymName = (const UINT8 *)"<unknown>";
|
|
}
|
|
|
|
Error (NULL, 0, 3000, "Invalid",
|
|
"%s: Bad definition for symbol '%s'@%#llx or unsupported symbol type. "
|
|
"For example, absolute and undefined symbols are not supported.",
|
|
mInImageName, SymName, Sym->st_value);
|
|
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
SymShdr = GetShdrByIndex(Sym->st_shndx);
|
|
|
|
//
|
|
// Convert the relocation data to a pointer into the coff file.
|
|
//
|
|
// Note:
|
|
// r_offset is the virtual address of the storage unit to be relocated.
|
|
// sh_addr is the virtual address for the base of the section.
|
|
//
|
|
// r_offset in a memory address.
|
|
// Convert it to a pointer in the coff file.
|
|
//
|
|
Targ = mCoffFile + SecOffset + (Rel->r_offset - SecShdr->sh_addr);
|
|
|
|
//
|
|
// Determine how to handle each relocation type based on the machine type.
|
|
//
|
|
if (mEhdr->e_machine == EM_X86_64) {
|
|
switch (ELF_R_TYPE(Rel->r_info)) {
|
|
case R_X86_64_NONE:
|
|
break;
|
|
case R_X86_64_64:
|
|
//
|
|
// Absolute relocation.
|
|
//
|
|
VerboseMsg ("R_X86_64_64");
|
|
VerboseMsg ("Offset: 0x%08X, Addend: 0x%016LX",
|
|
(UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)),
|
|
*(UINT64 *)Targ);
|
|
*(UINT64 *)Targ = *(UINT64 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx];
|
|
VerboseMsg ("Relocation: 0x%016LX", *(UINT64*)Targ);
|
|
break;
|
|
case R_X86_64_32:
|
|
VerboseMsg ("R_X86_64_32");
|
|
VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X",
|
|
(UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)),
|
|
*(UINT32 *)Targ);
|
|
*(UINT32 *)Targ = (UINT32)((UINT64)(*(UINT32 *)Targ) - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]);
|
|
VerboseMsg ("Relocation: 0x%08X", *(UINT32*)Targ);
|
|
break;
|
|
case R_X86_64_32S:
|
|
VerboseMsg ("R_X86_64_32S");
|
|
VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X",
|
|
(UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)),
|
|
*(UINT32 *)Targ);
|
|
*(INT32 *)Targ = (INT32)((INT64)(*(INT32 *)Targ) - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx]);
|
|
VerboseMsg ("Relocation: 0x%08X", *(UINT32*)Targ);
|
|
break;
|
|
|
|
case R_X86_64_PLT32:
|
|
//
|
|
// Treat R_X86_64_PLT32 relocations as R_X86_64_PC32: this is
|
|
// possible since we know all code symbol references resolve to
|
|
// definitions in the same module (UEFI has no shared libraries),
|
|
// and so there is never a reason to jump via a PLT entry,
|
|
// allowing us to resolve the reference using the symbol directly.
|
|
//
|
|
VerboseMsg ("Treating R_X86_64_PLT32 as R_X86_64_PC32 ...");
|
|
/* fall through */
|
|
case R_X86_64_PC32:
|
|
//
|
|
// Relative relocation: Symbol - Ip + Addend
|
|
//
|
|
VerboseMsg ("R_X86_64_PC32");
|
|
VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X",
|
|
(UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)),
|
|
*(UINT32 *)Targ);
|
|
*(UINT32 *)Targ = (UINT32) (*(UINT32 *)Targ
|
|
+ (mCoffSectionsOffset[Sym->st_shndx] - SymShdr->sh_addr)
|
|
- (SecOffset - SecShdr->sh_addr));
|
|
VerboseMsg ("Relocation: 0x%08X", *(UINT32 *)Targ);
|
|
break;
|
|
case R_X86_64_GOTPCREL:
|
|
case R_X86_64_GOTPCRELX:
|
|
case R_X86_64_REX_GOTPCRELX:
|
|
VerboseMsg ("R_X86_64_GOTPCREL family");
|
|
VerboseMsg ("Offset: 0x%08X, Addend: 0x%08X",
|
|
(UINT32)(SecOffset + (Rel->r_offset - SecShdr->sh_addr)),
|
|
*(UINT32 *)Targ);
|
|
GOTEntryRva = Rel->r_offset - Rel->r_addend + *(INT32 *)Targ;
|
|
FindElfGOTSectionFromGOTEntryElfRva(GOTEntryRva);
|
|
*(UINT32 *)Targ = (UINT32) (*(UINT32 *)Targ
|
|
+ (mCoffSectionsOffset[mGOTShindex] - mGOTShdr->sh_addr)
|
|
- (SecOffset - SecShdr->sh_addr));
|
|
VerboseMsg ("Relocation: 0x%08X", *(UINT32 *)Targ);
|
|
GOTEntryRva += (mCoffSectionsOffset[mGOTShindex] - mGOTShdr->sh_addr); // ELF Rva -> COFF Rva
|
|
if (AccumulateCoffGOTEntries((UINT32)GOTEntryRva)) {
|
|
//
|
|
// Relocate GOT entry if it's the first time we run into it
|
|
//
|
|
Targ = mCoffFile + GOTEntryRva;
|
|
//
|
|
// Limitation: The following three statements assume memory
|
|
// at *Targ is valid because the section containing the GOT
|
|
// has already been copied from the ELF image to the Coff image.
|
|
// This pre-condition presently holds because the GOT is placed
|
|
// in section .text, and the ELF text sections are all copied
|
|
// prior to reaching this point.
|
|
// If the pre-condition is violated in the future, this fixup
|
|
// either needs to be deferred after the GOT section is copied
|
|
// to the Coff image, or the fixup should be performed on the
|
|
// source Elf image instead of the destination Coff image.
|
|
//
|
|
VerboseMsg ("Offset: 0x%08X, Addend: 0x%016LX",
|
|
(UINT32)GOTEntryRva,
|
|
*(UINT64 *)Targ);
|
|
*(UINT64 *)Targ = *(UINT64 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx];
|
|
VerboseMsg ("Relocation: 0x%016LX", *(UINT64*)Targ);
|
|
}
|
|
break;
|
|
default:
|
|
Error (NULL, 0, 3000, "Invalid", "%s unsupported ELF EM_X86_64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
|
|
}
|
|
} else if (mEhdr->e_machine == EM_AARCH64) {
|
|
|
|
switch (ELF_R_TYPE(Rel->r_info)) {
|
|
|
|
case R_AARCH64_ADR_PREL_PG_HI21:
|
|
//
|
|
// AArch64 PG_H21 relocations are typically paired with ABS_LO12
|
|
// relocations, where a PC-relative reference with +/- 4 GB range is
|
|
// split into a relative high part and an absolute low part. Since
|
|
// the absolute low part represents the offset into a 4 KB page, we
|
|
// either have to convert the ADRP into an ADR instruction, or we
|
|
// need to use a section alignment of at least 4 KB, so that the
|
|
// binary appears at a correct offset at runtime. In any case, we
|
|
// have to make sure that the 4 KB relative offsets of both the
|
|
// section containing the reference as well as the section to which
|
|
// it refers have not been changed during PE/COFF conversion (i.e.,
|
|
// in ScanSections64() above).
|
|
//
|
|
if (mCoffAlignment < 0x1000) {
|
|
//
|
|
// Attempt to convert the ADRP into an ADR instruction.
|
|
// This is only possible if the symbol is within +/- 1 MB.
|
|
//
|
|
INT64 Offset;
|
|
|
|
// Decode the ADRP instruction
|
|
Offset = (INT32)((*(UINT32 *)Targ & 0xffffe0) << 8);
|
|
Offset = (Offset << (6 - 5)) | ((*(UINT32 *)Targ & 0x60000000) >> (29 - 12));
|
|
|
|
//
|
|
// ADRP offset is relative to the previous page boundary,
|
|
// whereas ADR offset is relative to the instruction itself.
|
|
// So fix up the offset so it points to the page containing
|
|
// the symbol.
|
|
//
|
|
Offset -= (UINTN)(Targ - mCoffFile) & 0xfff;
|
|
|
|
if (Offset < -0x100000 || Offset > 0xfffff) {
|
|
Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s due to its size (> 1 MB), this module requires 4 KB section alignment.",
|
|
mInImageName);
|
|
break;
|
|
}
|
|
|
|
// Re-encode the offset as an ADR instruction
|
|
*(UINT32 *)Targ &= 0x1000001f;
|
|
*(UINT32 *)Targ |= ((Offset & 0x1ffffc) << (5 - 2)) | ((Offset & 0x3) << 29);
|
|
}
|
|
/* fall through */
|
|
|
|
case R_AARCH64_ADD_ABS_LO12_NC:
|
|
case R_AARCH64_LDST8_ABS_LO12_NC:
|
|
case R_AARCH64_LDST16_ABS_LO12_NC:
|
|
case R_AARCH64_LDST32_ABS_LO12_NC:
|
|
case R_AARCH64_LDST64_ABS_LO12_NC:
|
|
case R_AARCH64_LDST128_ABS_LO12_NC:
|
|
if (((SecShdr->sh_addr ^ SecOffset) & 0xfff) != 0 ||
|
|
((SymShdr->sh_addr ^ mCoffSectionsOffset[Sym->st_shndx]) & 0xfff) != 0) {
|
|
Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s AARCH64 small code model requires identical ELF and PE/COFF section offsets modulo 4 KB.",
|
|
mInImageName);
|
|
break;
|
|
}
|
|
/* fall through */
|
|
|
|
case R_AARCH64_ADR_PREL_LO21:
|
|
case R_AARCH64_CONDBR19:
|
|
case R_AARCH64_LD_PREL_LO19:
|
|
case R_AARCH64_CALL26:
|
|
case R_AARCH64_JUMP26:
|
|
case R_AARCH64_PREL64:
|
|
case R_AARCH64_PREL32:
|
|
case R_AARCH64_PREL16:
|
|
//
|
|
// The GCC toolchains (i.e., binutils) may corrupt section relative
|
|
// relocations when emitting relocation sections into fully linked
|
|
// binaries. More specifically, they tend to fail to take into
|
|
// account the fact that a '.rodata + XXX' relocation needs to have
|
|
// its addend recalculated once .rodata is merged into the .text
|
|
// section, and the relocation emitted into the .rela.text section.
|
|
//
|
|
// We cannot really recover from this loss of information, so the
|
|
// only workaround is to prevent having to recalculate any relative
|
|
// relocations at all, by using a linker script that ensures that
|
|
// the offset between the Place and the Symbol is the same in both
|
|
// the ELF and the PE/COFF versions of the binary.
|
|
//
|
|
if ((SymShdr->sh_addr - SecShdr->sh_addr) !=
|
|
(mCoffSectionsOffset[Sym->st_shndx] - SecOffset)) {
|
|
Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s AARCH64 relative relocations require identical ELF and PE/COFF section offsets",
|
|
mInImageName);
|
|
}
|
|
break;
|
|
|
|
// Absolute relocations.
|
|
case R_AARCH64_ABS64:
|
|
*(UINT64 *)Targ = *(UINT64 *)Targ - SymShdr->sh_addr + mCoffSectionsOffset[Sym->st_shndx];
|
|
break;
|
|
|
|
default:
|
|
Error (NULL, 0, 3000, "Invalid", "WriteSections64(): %s unsupported ELF EM_AARCH64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
|
|
}
|
|
} else {
|
|
Error (NULL, 0, 3000, "Invalid", "Not a supported machine type");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
STATIC
|
|
VOID
|
|
WriteRelocations64 (
|
|
VOID
|
|
)
|
|
{
|
|
UINT32 Index;
|
|
EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
|
|
EFI_IMAGE_DATA_DIRECTORY *Dir;
|
|
|
|
for (Index = 0; Index < mEhdr->e_shnum; Index++) {
|
|
Elf_Shdr *RelShdr = GetShdrByIndex(Index);
|
|
if ((RelShdr->sh_type == SHT_REL) || (RelShdr->sh_type == SHT_RELA)) {
|
|
Elf_Shdr *SecShdr = GetShdrByIndex (RelShdr->sh_info);
|
|
if (IsTextShdr(SecShdr) || IsDataShdr(SecShdr)) {
|
|
UINT64 RelIdx;
|
|
|
|
for (RelIdx = 0; RelIdx < RelShdr->sh_size; RelIdx += RelShdr->sh_entsize) {
|
|
Elf_Rela *Rel = (Elf_Rela *)((UINT8*)mEhdr + RelShdr->sh_offset + RelIdx);
|
|
|
|
if (mEhdr->e_machine == EM_X86_64) {
|
|
switch (ELF_R_TYPE(Rel->r_info)) {
|
|
case R_X86_64_NONE:
|
|
case R_X86_64_PC32:
|
|
case R_X86_64_PLT32:
|
|
case R_X86_64_GOTPCREL:
|
|
case R_X86_64_GOTPCRELX:
|
|
case R_X86_64_REX_GOTPCRELX:
|
|
break;
|
|
case R_X86_64_64:
|
|
VerboseMsg ("EFI_IMAGE_REL_BASED_DIR64 Offset: 0x%08X",
|
|
mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr));
|
|
CoffAddFixup(
|
|
(UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
|
|
+ (Rel->r_offset - SecShdr->sh_addr)),
|
|
EFI_IMAGE_REL_BASED_DIR64);
|
|
break;
|
|
//
|
|
// R_X86_64_32 and R_X86_64_32S are ELF64 relocations emitted when using
|
|
// the SYSV X64 ABI small non-position-independent code model.
|
|
// R_X86_64_32 is used for unsigned 32-bit immediates with a 32-bit operand
|
|
// size. The value is either not extended, or zero-extended to 64 bits.
|
|
// R_X86_64_32S is used for either signed 32-bit non-rip-relative displacements
|
|
// or signed 32-bit immediates with a 64-bit operand size. The value is
|
|
// sign-extended to 64 bits.
|
|
// EFI_IMAGE_REL_BASED_HIGHLOW is a PE relocation that uses 32-bit arithmetic
|
|
// for rebasing an image.
|
|
// EFI PE binaries declare themselves EFI_IMAGE_FILE_LARGE_ADDRESS_AWARE and
|
|
// may load above 2GB. If an EFI PE binary with a converted R_X86_64_32S
|
|
// relocation is loaded above 2GB, the value will get sign-extended to the
|
|
// negative part of the 64-bit address space. The negative part of the 64-bit
|
|
// address space is unmapped, so accessing such an address page-faults.
|
|
// In order to support R_X86_64_32S, it is necessary to unset
|
|
// EFI_IMAGE_FILE_LARGE_ADDRESS_AWARE, and the EFI PE loader must implement
|
|
// this flag and abstain from loading such a PE binary above 2GB.
|
|
// Since this feature is not supported, support for R_X86_64_32S (and hence
|
|
// the small non-position-independent code model) is disabled.
|
|
//
|
|
// case R_X86_64_32S:
|
|
case R_X86_64_32:
|
|
VerboseMsg ("EFI_IMAGE_REL_BASED_HIGHLOW Offset: 0x%08X",
|
|
mCoffSectionsOffset[RelShdr->sh_info] + (Rel->r_offset - SecShdr->sh_addr));
|
|
CoffAddFixup(
|
|
(UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
|
|
+ (Rel->r_offset - SecShdr->sh_addr)),
|
|
EFI_IMAGE_REL_BASED_HIGHLOW);
|
|
break;
|
|
default:
|
|
Error (NULL, 0, 3000, "Invalid", "%s unsupported ELF EM_X86_64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
|
|
}
|
|
} else if (mEhdr->e_machine == EM_AARCH64) {
|
|
|
|
switch (ELF_R_TYPE(Rel->r_info)) {
|
|
case R_AARCH64_ADR_PREL_LO21:
|
|
case R_AARCH64_CONDBR19:
|
|
case R_AARCH64_LD_PREL_LO19:
|
|
case R_AARCH64_CALL26:
|
|
case R_AARCH64_JUMP26:
|
|
case R_AARCH64_PREL64:
|
|
case R_AARCH64_PREL32:
|
|
case R_AARCH64_PREL16:
|
|
case R_AARCH64_ADR_PREL_PG_HI21:
|
|
case R_AARCH64_ADD_ABS_LO12_NC:
|
|
case R_AARCH64_LDST8_ABS_LO12_NC:
|
|
case R_AARCH64_LDST16_ABS_LO12_NC:
|
|
case R_AARCH64_LDST32_ABS_LO12_NC:
|
|
case R_AARCH64_LDST64_ABS_LO12_NC:
|
|
case R_AARCH64_LDST128_ABS_LO12_NC:
|
|
//
|
|
// No fixups are required for relative relocations, provided that
|
|
// the relative offsets between sections have been preserved in
|
|
// the ELF to PE/COFF conversion. We have already asserted that
|
|
// this is the case in WriteSections64 ().
|
|
//
|
|
break;
|
|
|
|
case R_AARCH64_ABS64:
|
|
CoffAddFixup(
|
|
(UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
|
|
+ (Rel->r_offset - SecShdr->sh_addr)),
|
|
EFI_IMAGE_REL_BASED_DIR64);
|
|
break;
|
|
|
|
case R_AARCH64_ABS32:
|
|
CoffAddFixup(
|
|
(UINT32) ((UINT64) mCoffSectionsOffset[RelShdr->sh_info]
|
|
+ (Rel->r_offset - SecShdr->sh_addr)),
|
|
EFI_IMAGE_REL_BASED_HIGHLOW);
|
|
break;
|
|
|
|
default:
|
|
Error (NULL, 0, 3000, "Invalid", "WriteRelocations64(): %s unsupported ELF EM_AARCH64 relocation 0x%x.", mInImageName, (unsigned) ELF_R_TYPE(Rel->r_info));
|
|
}
|
|
} else {
|
|
Error (NULL, 0, 3000, "Not Supported", "This tool does not support relocations for ELF with e_machine %u (processor type).", (unsigned) mEhdr->e_machine);
|
|
}
|
|
}
|
|
if (mEhdr->e_machine == EM_X86_64 && RelShdr->sh_info == mGOTShindex) {
|
|
//
|
|
// Tack relocations for GOT entries after other relocations for
|
|
// the section the GOT is in, as it's usually found at the end
|
|
// of the section. This is done in order to maintain Rva order
|
|
// of Coff relocations.
|
|
//
|
|
EmitGOTRelocations();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (mEhdr->e_machine == EM_X86_64) {
|
|
//
|
|
// This is a safety net just in case the GOT is in a section
|
|
// with no other relocations and the first invocation of
|
|
// EmitGOTRelocations() above was skipped. This invocation
|
|
// does not maintain Rva order of Coff relocations.
|
|
// At present, with a single text section, all references to
|
|
// the GOT and the GOT itself reside in section .text, so
|
|
// if there's a GOT at all, the first invocation above
|
|
// is executed.
|
|
//
|
|
EmitGOTRelocations();
|
|
}
|
|
//
|
|
// Pad by adding empty entries.
|
|
//
|
|
while (mCoffOffset & (mCoffAlignment - 1)) {
|
|
CoffAddFixupEntry(0);
|
|
}
|
|
|
|
NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset);
|
|
Dir = &NtHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_BASERELOC];
|
|
Dir->Size = mCoffOffset - mRelocOffset;
|
|
if (Dir->Size == 0) {
|
|
// If no relocations, null out the directory entry and don't add the .reloc section
|
|
Dir->VirtualAddress = 0;
|
|
NtHdr->Pe32Plus.FileHeader.NumberOfSections--;
|
|
} else {
|
|
Dir->VirtualAddress = mRelocOffset;
|
|
CreateSectionHeader (".reloc", mRelocOffset, mCoffOffset - mRelocOffset,
|
|
EFI_IMAGE_SCN_CNT_INITIALIZED_DATA
|
|
| EFI_IMAGE_SCN_MEM_DISCARDABLE
|
|
| EFI_IMAGE_SCN_MEM_READ);
|
|
}
|
|
}
|
|
|
|
STATIC
|
|
VOID
|
|
WriteDebug64 (
|
|
VOID
|
|
)
|
|
{
|
|
UINT32 Len;
|
|
EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
|
|
EFI_IMAGE_DATA_DIRECTORY *DataDir;
|
|
EFI_IMAGE_DEBUG_DIRECTORY_ENTRY *Dir;
|
|
EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY *Nb10;
|
|
|
|
Len = strlen(mInImageName) + 1;
|
|
|
|
Dir = (EFI_IMAGE_DEBUG_DIRECTORY_ENTRY*)(mCoffFile + mDebugOffset);
|
|
Dir->Type = EFI_IMAGE_DEBUG_TYPE_CODEVIEW;
|
|
Dir->SizeOfData = sizeof(EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY) + Len;
|
|
Dir->RVA = mDebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY);
|
|
Dir->FileOffset = mDebugOffset + sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY);
|
|
|
|
Nb10 = (EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY*)(Dir + 1);
|
|
Nb10->Signature = CODEVIEW_SIGNATURE_NB10;
|
|
strcpy ((char *)(Nb10 + 1), mInImageName);
|
|
|
|
|
|
NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset);
|
|
DataDir = &NtHdr->Pe32Plus.OptionalHeader.DataDirectory[EFI_IMAGE_DIRECTORY_ENTRY_DEBUG];
|
|
DataDir->VirtualAddress = mDebugOffset;
|
|
DataDir->Size = sizeof(EFI_IMAGE_DEBUG_DIRECTORY_ENTRY);
|
|
}
|
|
|
|
STATIC
|
|
VOID
|
|
SetImageSize64 (
|
|
VOID
|
|
)
|
|
{
|
|
EFI_IMAGE_OPTIONAL_HEADER_UNION *NtHdr;
|
|
|
|
//
|
|
// Set image size
|
|
//
|
|
NtHdr = (EFI_IMAGE_OPTIONAL_HEADER_UNION *)(mCoffFile + mNtHdrOffset);
|
|
NtHdr->Pe32Plus.OptionalHeader.SizeOfImage = mCoffOffset;
|
|
}
|
|
|
|
STATIC
|
|
VOID
|
|
CleanUp64 (
|
|
VOID
|
|
)
|
|
{
|
|
if (mCoffSectionsOffset != NULL) {
|
|
free (mCoffSectionsOffset);
|
|
}
|
|
}
|
|
|
|
|