CloverBootloader/ArmPkg/Drivers/CpuDxe/Arm/Mmu.c
Slice 84f41b2b58 prepare to arm
Signed-off-by: Slice <sergey.slice@gmail.com>
2023-07-04 19:53:11 +03:00

519 lines
20 KiB
C

/*++
Copyright (c) 2009, Hewlett-Packard Company. All rights reserved.<BR>
Portions copyright (c) 2010, Apple Inc. All rights reserved.<BR>
Portions copyright (c) 2013-2021, Arm Limited. All rights reserved.<BR>
Copyright (c) 2017, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
--*/
#include <Library/MemoryAllocationLib.h>
#include "CpuDxe.h"
EFI_STATUS
SectionToGcdAttributes (
IN UINT32 SectionAttributes,
OUT UINT64 *GcdAttributes
)
{
*GcdAttributes = 0;
// determine cacheability attributes
switch (SectionAttributes & TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK) {
case TT_DESCRIPTOR_SECTION_CACHE_POLICY_STRONGLY_ORDERED:
*GcdAttributes |= EFI_MEMORY_UC;
break;
case TT_DESCRIPTOR_SECTION_CACHE_POLICY_SHAREABLE_DEVICE:
*GcdAttributes |= EFI_MEMORY_UC;
break;
case TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_THROUGH_NO_ALLOC:
*GcdAttributes |= EFI_MEMORY_WT;
break;
case TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_BACK_NO_ALLOC:
*GcdAttributes |= EFI_MEMORY_WB;
break;
case TT_DESCRIPTOR_SECTION_CACHE_POLICY_NON_CACHEABLE:
*GcdAttributes |= EFI_MEMORY_WC;
break;
case TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_BACK_ALLOC:
*GcdAttributes |= EFI_MEMORY_WB;
break;
case TT_DESCRIPTOR_SECTION_CACHE_POLICY_NON_SHAREABLE_DEVICE:
*GcdAttributes |= EFI_MEMORY_UC;
break;
default:
return EFI_UNSUPPORTED;
}
// determine protection attributes
switch (SectionAttributes & TT_DESCRIPTOR_SECTION_AP_MASK) {
case TT_DESCRIPTOR_SECTION_AP_NO_NO: // no read, no write
// *GcdAttributes |= EFI_MEMORY_RO | EFI_MEMORY_RP;
break;
case TT_DESCRIPTOR_SECTION_AP_RW_NO:
case TT_DESCRIPTOR_SECTION_AP_RW_RW:
// normal read/write access, do not add additional attributes
break;
// read only cases map to write-protect
case TT_DESCRIPTOR_SECTION_AP_RO_NO:
case TT_DESCRIPTOR_SECTION_AP_RO_RO:
*GcdAttributes |= EFI_MEMORY_RO;
break;
default:
return EFI_UNSUPPORTED;
}
// now process eXectue Never attribute
if ((SectionAttributes & TT_DESCRIPTOR_SECTION_XN_MASK) != 0 ) {
*GcdAttributes |= EFI_MEMORY_XP;
}
return EFI_SUCCESS;
}
EFI_STATUS
PageToGcdAttributes (
IN UINT32 PageAttributes,
OUT UINT64 *GcdAttributes
)
{
*GcdAttributes = 0;
// determine cacheability attributes
switch (PageAttributes & TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK) {
case TT_DESCRIPTOR_PAGE_CACHE_POLICY_STRONGLY_ORDERED:
*GcdAttributes |= EFI_MEMORY_UC;
break;
case TT_DESCRIPTOR_PAGE_CACHE_POLICY_SHAREABLE_DEVICE:
*GcdAttributes |= EFI_MEMORY_UC;
break;
case TT_DESCRIPTOR_PAGE_CACHE_POLICY_WRITE_THROUGH_NO_ALLOC:
*GcdAttributes |= EFI_MEMORY_WT;
break;
case TT_DESCRIPTOR_PAGE_CACHE_POLICY_WRITE_BACK_NO_ALLOC:
*GcdAttributes |= EFI_MEMORY_WB;
break;
case TT_DESCRIPTOR_PAGE_CACHE_POLICY_NON_CACHEABLE:
*GcdAttributes |= EFI_MEMORY_WC;
break;
case TT_DESCRIPTOR_PAGE_CACHE_POLICY_WRITE_BACK_ALLOC:
*GcdAttributes |= EFI_MEMORY_WB;
break;
case TT_DESCRIPTOR_PAGE_CACHE_POLICY_NON_SHAREABLE_DEVICE:
*GcdAttributes |= EFI_MEMORY_UC;
break;
default:
return EFI_UNSUPPORTED;
}
// determine protection attributes
switch (PageAttributes & TT_DESCRIPTOR_PAGE_AP_MASK) {
case TT_DESCRIPTOR_PAGE_AP_NO_NO: // no read, no write
// *GcdAttributes |= EFI_MEMORY_RO | EFI_MEMORY_RP;
break;
case TT_DESCRIPTOR_PAGE_AP_RW_NO:
case TT_DESCRIPTOR_PAGE_AP_RW_RW:
// normal read/write access, do not add additional attributes
break;
// read only cases map to write-protect
case TT_DESCRIPTOR_PAGE_AP_RO_NO:
case TT_DESCRIPTOR_PAGE_AP_RO_RO:
*GcdAttributes |= EFI_MEMORY_RO;
break;
default:
return EFI_UNSUPPORTED;
}
// now process eXectue Never attribute
if ((PageAttributes & TT_DESCRIPTOR_PAGE_XN_MASK) != 0 ) {
*GcdAttributes |= EFI_MEMORY_XP;
}
return EFI_SUCCESS;
}
EFI_STATUS
SyncCacheConfigPage (
IN UINT32 SectionIndex,
IN UINT32 FirstLevelDescriptor,
IN UINTN NumberOfDescriptors,
IN EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap,
IN OUT EFI_PHYSICAL_ADDRESS *NextRegionBase,
IN OUT UINT64 *NextRegionLength,
IN OUT UINT32 *NextSectionAttributes
)
{
EFI_STATUS Status;
UINT32 i;
volatile ARM_PAGE_TABLE_ENTRY *SecondLevelTable;
UINT32 NextPageAttributes;
UINT32 PageAttributes;
UINT32 BaseAddress;
UINT64 GcdAttributes;
// Get the Base Address from FirstLevelDescriptor;
BaseAddress = TT_DESCRIPTOR_PAGE_BASE_ADDRESS (SectionIndex << TT_DESCRIPTOR_SECTION_BASE_SHIFT);
// Convert SectionAttributes into PageAttributes
NextPageAttributes =
TT_DESCRIPTOR_CONVERT_TO_PAGE_CACHE_POLICY (*NextSectionAttributes, 0) |
TT_DESCRIPTOR_CONVERT_TO_PAGE_AP (*NextSectionAttributes);
// obtain page table base
SecondLevelTable = (ARM_PAGE_TABLE_ENTRY *)(FirstLevelDescriptor & TT_DESCRIPTOR_SECTION_PAGETABLE_ADDRESS_MASK);
for (i = 0; i < TRANSLATION_TABLE_PAGE_COUNT; i++) {
if ((SecondLevelTable[i] & TT_DESCRIPTOR_PAGE_TYPE_MASK) == TT_DESCRIPTOR_PAGE_TYPE_PAGE) {
// extract attributes (cacheability and permissions)
PageAttributes = SecondLevelTable[i] & (TT_DESCRIPTOR_PAGE_CACHE_POLICY_MASK | TT_DESCRIPTOR_PAGE_AP_MASK);
if (NextPageAttributes == 0) {
// start on a new region
*NextRegionLength = 0;
*NextRegionBase = BaseAddress | (i << TT_DESCRIPTOR_PAGE_BASE_SHIFT);
NextPageAttributes = PageAttributes;
} else if (PageAttributes != NextPageAttributes) {
// Convert Section Attributes into GCD Attributes
Status = PageToGcdAttributes (NextPageAttributes, &GcdAttributes);
ASSERT_EFI_ERROR (Status);
// update GCD with these changes (this will recurse into our own CpuSetMemoryAttributes below which is OK)
SetGcdMemorySpaceAttributes (MemorySpaceMap, NumberOfDescriptors, *NextRegionBase, *NextRegionLength, GcdAttributes);
// start on a new region
*NextRegionLength = 0;
*NextRegionBase = BaseAddress | (i << TT_DESCRIPTOR_PAGE_BASE_SHIFT);
NextPageAttributes = PageAttributes;
}
} else if (NextPageAttributes != 0) {
// Convert Page Attributes into GCD Attributes
Status = PageToGcdAttributes (NextPageAttributes, &GcdAttributes);
ASSERT_EFI_ERROR (Status);
// update GCD with these changes (this will recurse into our own CpuSetMemoryAttributes below which is OK)
SetGcdMemorySpaceAttributes (MemorySpaceMap, NumberOfDescriptors, *NextRegionBase, *NextRegionLength, GcdAttributes);
*NextRegionLength = 0;
*NextRegionBase = BaseAddress | (i << TT_DESCRIPTOR_PAGE_BASE_SHIFT);
NextPageAttributes = 0;
}
*NextRegionLength += TT_DESCRIPTOR_PAGE_SIZE;
}
// Convert back PageAttributes into SectionAttributes
*NextSectionAttributes =
TT_DESCRIPTOR_CONVERT_TO_SECTION_CACHE_POLICY (NextPageAttributes, 0) |
TT_DESCRIPTOR_CONVERT_TO_SECTION_AP (NextPageAttributes);
return EFI_SUCCESS;
}
EFI_STATUS
SyncCacheConfig (
IN EFI_CPU_ARCH_PROTOCOL *CpuProtocol
)
{
EFI_STATUS Status;
UINT32 i;
EFI_PHYSICAL_ADDRESS NextRegionBase;
UINT64 NextRegionLength;
UINT32 NextSectionAttributes;
UINT32 SectionAttributes;
UINT64 GcdAttributes;
volatile ARM_FIRST_LEVEL_DESCRIPTOR *FirstLevelTable;
UINTN NumberOfDescriptors;
EFI_GCD_MEMORY_SPACE_DESCRIPTOR *MemorySpaceMap;
DEBUG ((DEBUG_PAGE, "SyncCacheConfig()\n"));
// This code assumes MMU is enabled and filed with section translations
ASSERT (ArmMmuEnabled ());
//
// Get the memory space map from GCD
//
MemorySpaceMap = NULL;
Status = gDS->GetMemorySpaceMap (&NumberOfDescriptors, &MemorySpaceMap);
ASSERT_EFI_ERROR (Status);
// The GCD implementation maintains its own copy of the state of memory space attributes. GCD needs
// to know what the initial memory space attributes are. The CPU Arch. Protocol does not provide a
// GetMemoryAttributes function for GCD to get this so we must resort to calling GCD (as if we were
// a client) to update its copy of the attributes. This is bad architecture and should be replaced
// with a way for GCD to query the CPU Arch. driver of the existing memory space attributes instead.
// obtain page table base
FirstLevelTable = (ARM_FIRST_LEVEL_DESCRIPTOR *)(ArmGetTTBR0BaseAddress ());
// Get the first region
NextSectionAttributes = FirstLevelTable[0] & (TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK | TT_DESCRIPTOR_SECTION_AP_MASK);
// iterate through each 1MB descriptor
NextRegionBase = NextRegionLength = 0;
for (i = 0; i < TRANSLATION_TABLE_SECTION_COUNT; i++) {
if ((FirstLevelTable[i] & TT_DESCRIPTOR_SECTION_TYPE_MASK) == TT_DESCRIPTOR_SECTION_TYPE_SECTION) {
// extract attributes (cacheability and permissions)
SectionAttributes = FirstLevelTable[i] & (TT_DESCRIPTOR_SECTION_CACHE_POLICY_MASK | TT_DESCRIPTOR_SECTION_AP_MASK);
if (NextSectionAttributes == 0) {
// start on a new region
NextRegionLength = 0;
NextRegionBase = TT_DESCRIPTOR_SECTION_BASE_ADDRESS (i << TT_DESCRIPTOR_SECTION_BASE_SHIFT);
NextSectionAttributes = SectionAttributes;
} else if (SectionAttributes != NextSectionAttributes) {
// Convert Section Attributes into GCD Attributes
Status = SectionToGcdAttributes (NextSectionAttributes, &GcdAttributes);
ASSERT_EFI_ERROR (Status);
// update GCD with these changes (this will recurse into our own CpuSetMemoryAttributes below which is OK)
SetGcdMemorySpaceAttributes (MemorySpaceMap, NumberOfDescriptors, NextRegionBase, NextRegionLength, GcdAttributes);
// start on a new region
NextRegionLength = 0;
NextRegionBase = TT_DESCRIPTOR_SECTION_BASE_ADDRESS (i << TT_DESCRIPTOR_SECTION_BASE_SHIFT);
NextSectionAttributes = SectionAttributes;
}
NextRegionLength += TT_DESCRIPTOR_SECTION_SIZE;
} else if (TT_DESCRIPTOR_SECTION_TYPE_IS_PAGE_TABLE (FirstLevelTable[i])) {
// In this case any bits set in the 'NextSectionAttributes' are garbage and were set from
// bits that are actually part of the pagetable address. We clear it out to zero so that
// the SyncCacheConfigPage will use the page attributes instead of trying to convert the
// section attributes into page attributes
NextSectionAttributes = 0;
Status = SyncCacheConfigPage (
i,
FirstLevelTable[i],
NumberOfDescriptors,
MemorySpaceMap,
&NextRegionBase,
&NextRegionLength,
&NextSectionAttributes
);
ASSERT_EFI_ERROR (Status);
} else {
// We do not support yet 16MB sections
ASSERT ((FirstLevelTable[i] & TT_DESCRIPTOR_SECTION_TYPE_MASK) != TT_DESCRIPTOR_SECTION_TYPE_SUPERSECTION);
// start on a new region
if (NextSectionAttributes != 0) {
// Convert Section Attributes into GCD Attributes
Status = SectionToGcdAttributes (NextSectionAttributes, &GcdAttributes);
ASSERT_EFI_ERROR (Status);
// update GCD with these changes (this will recurse into our own CpuSetMemoryAttributes below which is OK)
SetGcdMemorySpaceAttributes (MemorySpaceMap, NumberOfDescriptors, NextRegionBase, NextRegionLength, GcdAttributes);
NextRegionLength = 0;
NextRegionBase = TT_DESCRIPTOR_SECTION_BASE_ADDRESS (i << TT_DESCRIPTOR_SECTION_BASE_SHIFT);
NextSectionAttributes = 0;
}
NextRegionLength += TT_DESCRIPTOR_SECTION_SIZE;
}
} // section entry loop
if (NextSectionAttributes != 0) {
// Convert Section Attributes into GCD Attributes
Status = SectionToGcdAttributes (NextSectionAttributes, &GcdAttributes);
ASSERT_EFI_ERROR (Status);
// update GCD with these changes (this will recurse into our own CpuSetMemoryAttributes below which is OK)
SetGcdMemorySpaceAttributes (MemorySpaceMap, NumberOfDescriptors, NextRegionBase, NextRegionLength, GcdAttributes);
}
FreePool (MemorySpaceMap);
return EFI_SUCCESS;
}
UINT64
EfiAttributeToArmAttribute (
IN UINT64 EfiAttributes
)
{
UINT64 ArmAttributes;
switch (EfiAttributes & EFI_MEMORY_CACHETYPE_MASK) {
case EFI_MEMORY_UC:
// Map to strongly ordered
ArmAttributes = TT_DESCRIPTOR_SECTION_CACHE_POLICY_STRONGLY_ORDERED; // TEX[2:0] = 0, C=0, B=0
break;
case EFI_MEMORY_WC:
// Map to normal non-cacheable
ArmAttributes = TT_DESCRIPTOR_SECTION_CACHE_POLICY_NON_CACHEABLE; // TEX [2:0]= 001 = 0x2, B=0, C=0
break;
case EFI_MEMORY_WT:
// Write through with no-allocate
ArmAttributes = TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_THROUGH_NO_ALLOC; // TEX [2:0] = 0, C=1, B=0
break;
case EFI_MEMORY_WB:
// Write back (with allocate)
ArmAttributes = TT_DESCRIPTOR_SECTION_CACHE_POLICY_WRITE_BACK_ALLOC; // TEX [2:0] = 001, C=1, B=1
break;
case EFI_MEMORY_UCE:
default:
ArmAttributes = TT_DESCRIPTOR_SECTION_TYPE_FAULT;
break;
}
// Determine protection attributes
if ((EfiAttributes & EFI_MEMORY_RO) != 0) {
ArmAttributes |= TT_DESCRIPTOR_SECTION_AP_RO_RO;
} else {
ArmAttributes |= TT_DESCRIPTOR_SECTION_AP_RW_RW;
}
// Determine eXecute Never attribute
if ((EfiAttributes & EFI_MEMORY_XP) != 0) {
ArmAttributes |= TT_DESCRIPTOR_SECTION_XN_MASK;
}
return ArmAttributes;
}
EFI_STATUS
GetMemoryRegionPage (
IN UINT32 *PageTable,
IN OUT UINTN *BaseAddress,
OUT UINTN *RegionLength,
OUT UINTN *RegionAttributes
)
{
UINT32 PageAttributes;
UINT32 TableIndex;
UINT32 PageDescriptor;
// Convert the section attributes into page attributes
PageAttributes = ConvertSectionAttributesToPageAttributes (*RegionAttributes, 0);
// Calculate index into first level translation table for start of modification
TableIndex = ((*BaseAddress) & TT_DESCRIPTOR_PAGE_INDEX_MASK) >> TT_DESCRIPTOR_PAGE_BASE_SHIFT;
ASSERT (TableIndex < TRANSLATION_TABLE_PAGE_COUNT);
// Go through the page table to find the end of the section
for ( ; TableIndex < TRANSLATION_TABLE_PAGE_COUNT; TableIndex++) {
// Get the section at the given index
PageDescriptor = PageTable[TableIndex];
if ((PageDescriptor & TT_DESCRIPTOR_PAGE_TYPE_MASK) == TT_DESCRIPTOR_PAGE_TYPE_FAULT) {
// Case: End of the boundary of the region
return EFI_SUCCESS;
} else if ((PageDescriptor & TT_DESCRIPTOR_PAGE_TYPE_PAGE) == TT_DESCRIPTOR_PAGE_TYPE_PAGE) {
if ((PageDescriptor & TT_DESCRIPTOR_PAGE_ATTRIBUTE_MASK) == PageAttributes) {
*RegionLength = *RegionLength + TT_DESCRIPTOR_PAGE_SIZE;
} else {
// Case: End of the boundary of the region
return EFI_SUCCESS;
}
} else {
// We do not support Large Page yet. We return EFI_SUCCESS that means end of the region.
ASSERT (0);
return EFI_SUCCESS;
}
}
return EFI_NOT_FOUND;
}
EFI_STATUS
GetMemoryRegion (
IN OUT UINTN *BaseAddress,
OUT UINTN *RegionLength,
OUT UINTN *RegionAttributes
)
{
EFI_STATUS Status;
UINT32 TableIndex;
UINT32 PageAttributes;
UINT32 PageTableIndex;
UINT32 SectionDescriptor;
ARM_FIRST_LEVEL_DESCRIPTOR *FirstLevelTable;
UINT32 *PageTable;
// Initialize the arguments
*RegionLength = 0;
// Obtain page table base
FirstLevelTable = (ARM_FIRST_LEVEL_DESCRIPTOR *)ArmGetTTBR0BaseAddress ();
// Calculate index into first level translation table for start of modification
TableIndex = TT_DESCRIPTOR_SECTION_BASE_ADDRESS (*BaseAddress) >> TT_DESCRIPTOR_SECTION_BASE_SHIFT;
ASSERT (TableIndex < TRANSLATION_TABLE_SECTION_COUNT);
// Get the section at the given index
SectionDescriptor = FirstLevelTable[TableIndex];
if (!SectionDescriptor) {
return EFI_NOT_FOUND;
}
// If 'BaseAddress' belongs to the section then round it to the section boundary
if (((SectionDescriptor & TT_DESCRIPTOR_SECTION_TYPE_MASK) == TT_DESCRIPTOR_SECTION_TYPE_SECTION) ||
((SectionDescriptor & TT_DESCRIPTOR_SECTION_TYPE_MASK) == TT_DESCRIPTOR_SECTION_TYPE_SUPERSECTION))
{
*BaseAddress = (*BaseAddress) & TT_DESCRIPTOR_SECTION_BASE_ADDRESS_MASK;
*RegionAttributes = SectionDescriptor & TT_DESCRIPTOR_SECTION_ATTRIBUTE_MASK;
} else {
// Otherwise, we round it to the page boundary
*BaseAddress = (*BaseAddress) & TT_DESCRIPTOR_PAGE_BASE_ADDRESS_MASK;
// Get the attribute at the page table level (Level 2)
PageTable = (UINT32 *)(SectionDescriptor & TT_DESCRIPTOR_SECTION_PAGETABLE_ADDRESS_MASK);
// Calculate index into first level translation table for start of modification
PageTableIndex = ((*BaseAddress) & TT_DESCRIPTOR_PAGE_INDEX_MASK) >> TT_DESCRIPTOR_PAGE_BASE_SHIFT;
ASSERT (PageTableIndex < TRANSLATION_TABLE_PAGE_COUNT);
PageAttributes = PageTable[PageTableIndex] & TT_DESCRIPTOR_PAGE_ATTRIBUTE_MASK;
*RegionAttributes = TT_DESCRIPTOR_CONVERT_TO_SECTION_CACHE_POLICY (PageAttributes, 0) |
TT_DESCRIPTOR_CONVERT_TO_SECTION_AP (PageAttributes);
}
for ( ; TableIndex < TRANSLATION_TABLE_SECTION_COUNT; TableIndex++) {
// Get the section at the given index
SectionDescriptor = FirstLevelTable[TableIndex];
// If the entry is a level-2 page table then we scan it to find the end of the region
if (TT_DESCRIPTOR_SECTION_TYPE_IS_PAGE_TABLE (SectionDescriptor)) {
// Extract the page table location from the descriptor
PageTable = (UINT32 *)(SectionDescriptor & TT_DESCRIPTOR_SECTION_PAGETABLE_ADDRESS_MASK);
// Scan the page table to find the end of the region.
Status = GetMemoryRegionPage (PageTable, BaseAddress, RegionLength, RegionAttributes);
// If we have found the end of the region (Status == EFI_SUCCESS) then we exit the for-loop
if (Status == EFI_SUCCESS) {
break;
}
} else if (((SectionDescriptor & TT_DESCRIPTOR_SECTION_TYPE_MASK) == TT_DESCRIPTOR_SECTION_TYPE_SECTION) ||
((SectionDescriptor & TT_DESCRIPTOR_SECTION_TYPE_MASK) == TT_DESCRIPTOR_SECTION_TYPE_SUPERSECTION))
{
if ((SectionDescriptor & TT_DESCRIPTOR_SECTION_ATTRIBUTE_MASK) != *RegionAttributes) {
// If the attributes of the section differ from the one targeted then we exit the loop
break;
} else {
*RegionLength = *RegionLength + TT_DESCRIPTOR_SECTION_SIZE;
}
} else {
// If we are on an invalid section then it means it is the end of our section.
break;
}
}
return EFI_SUCCESS;
}