CloverBootloader/CloverApp/Clover/GfxUtil/gfxutil.c
vectorsigma72 e8a29b1a29 Clover.app v1.16 with clover-genconfig ability
The internal parser is  retro compatible with old Clover revisions since r3250. This is possible because a check for the existence of any variable inside SETTING_DATA structure is performed before the call. Variables are all accessed using the label property of the Mirror class, so as a string.
2020-03-01 15:16:28 +01:00

291 lines
7.4 KiB
C

/*
* Created by mcmatrix on 07.01.08.
* Copyright 2008 mcmatrix. All rights reserved.
*
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "utils.h"
#include "efidevp.h"
#include "gfxutil.h"
#define MAX_DEVICE_PATH_LEN 1000
//#define NULL (void*)0
int is_string(unsigned char * buffer, int size)
{
int i;
for(i = 0; i < size - 1; i++)
{
if(!(IS_ALPHANUMMARK( buffer[i]))) return 0;
}
if (buffer[size - 1] == 0) return 1;
else
return 0;
}
static int readbin(unsigned char **data, unsigned int *size, unsigned char **dat, unsigned int len)
{
unsigned char *d = *data;
unsigned int s = *size;
if( s != 0 )
{
*dat = (unsigned char *)calloc(len, sizeof(unsigned char));
if (!dat)
{
fprintf(stderr, "read_binary: out of memory\n");
return 0;
}
if(((unsigned int)(len)) <= s)
{
memcpy((*dat),d,len);
*data = d + len;
*size = s - len;
return 1;
}
}
printf("read_binary: invalid binary data\n");
return 0;
}
/*
* Returns zero if the data is badly formatted.
*/
static int uni2str(unsigned char *d, unsigned int length, char **str, unsigned int *len)
{
unsigned unich;
if(length != 0)
{
/* Allocate space for the converted string */
// Two unicode characters make up 1 buffer byte. Round up
if((*str = (char *)calloc( length*2 + 1, sizeof(char))) == 0)
{
fprintf(stderr, "unicode2str: out of memory\n");
return 0;
}
/* Convert the string from Unicode into UTF-8 */
*len = 0;
while(length >= 2)
{
unich = READ_UINT16(d);
d += 2;
if(unich < 0x80)
{
(*str)[*len] = (char)unich;
++(*len);
}
else if(unich < (1 << 11))
{
(*str)[*len] = (char)(0xC0 | (unich >> 6));
++(*len);
(*str)[*len] = (char)(0x80 | (unich & 0x3F));
++(*len);
}
else
{
(*str)[*len] = (char)(0xE0 | (unich >> 12));
++(*len);
(*str)[*len] = (char)(0x80 | ((unich >> 6) & 0x3F));
++(*len);
(*str)[*len] = (char)(0x80 | (unich & 0x3F));
++(*len);
}
length -= 2;
}
(*str)[*len] = '\0';
return 1;
}
printf("unicode2str: invalid binary unicode data\n");
return 0;
}
unsigned char _nibbleValue(unsigned char hexchar)
{
unsigned char val;
if(hexchar >= '0' && hexchar <= '9')
val = hexchar - '0';
else if(hexchar >= 'A' && hexchar <= 'F')
val = hexchar - 'A' + 10;
else if(hexchar >= 'a' && hexchar <= 'f')
val = hexchar - 'a' + 10;
else
val = 0xff;
return(val);
}
// this reads gfx binary info and parses it
GFX_HEADER *parse_binary(const unsigned char *bp)
{
GFX_HEADER *gfx_header = (GFX_HEADER *) NULL;
// head points to the first node in list, end points to the last node in list
GFX_BLOCKHEADER *gfx_blockheader = (GFX_BLOCKHEADER *) NULL;
GFX_BLOCKHEADER *gfx_blockheader_head = (GFX_BLOCKHEADER *) NULL;
GFX_BLOCKHEADER *gfx_blockheader_end = (GFX_BLOCKHEADER *) NULL;
GFX_ENTRY *gfx_entry = (GFX_ENTRY *) NULL;
GFX_ENTRY *gfx_entry_head = (GFX_ENTRY *) NULL;
GFX_ENTRY *gfx_entry_end = (GFX_ENTRY *) NULL;
unsigned char *data, *bin, *tmp = 0, *dpathtmp = 0, *src = 0;
char * str;
unsigned int str_len, data_len, size, length;
int i,j;
src = (unsigned char *)bp;
//read header data
gfx_header = (GFX_HEADER *)calloc(1, sizeof(GFX_HEADER));
if(!gfx_header)
{
fprintf(stderr, "parse_binary: out of memory\n");
return NULL;
}
gfx_header->filesize = READ_UINT32(src);
src+=4;
gfx_header->var1 = READ_UINT32(src);
src+=4;
gfx_header->countofblocks = READ_UINT32(src);
src+=4;
//read blocks
gfx_blockheader_head = NULL;
gfx_blockheader_end = NULL;
for(i=0;i<gfx_header->countofblocks;i++)
{
//create new block
gfx_blockheader = (GFX_BLOCKHEADER *)calloc(1, sizeof(GFX_BLOCKHEADER));
if(!gfx_blockheader)
{
fprintf(stderr, "parse_binary: out of memory\n");
return NULL;
}
//read block data
gfx_blockheader->blocksize = READ_UINT32(src);
src+=4;
gfx_blockheader->records = READ_UINT32(src);
src+=4;
size = gfx_blockheader->blocksize;
tmp = (unsigned char *)src;
unsigned int Count;
// read device path data until devpath end node 0x0004FF7F
for (Count = 0;;Count++)
{
if(Count > MAX_DEVICE_PATH_LEN)
{
// BugBug: Code to catch bogus device path
fprintf(stderr, "parse_binary: Cannot find device path end! Probably a bogus device path.\n");
return NULL;
}
if( READ_UINT32(tmp) == 0x0004ff7f || READ_UINT32(tmp) == 0x0004ffff )
{
tmp+=4;
break;
}
tmp++;
}
// read device path data
gfx_blockheader->devpath_len = abs((int)tmp - (int)src);
readbin(&src, &size, &dpathtmp,gfx_blockheader->devpath_len);
gfx_blockheader->devpath = (struct _EFI_DEVICE_PATH_P_TAG *)dpathtmp;
gfx_entry_head = NULL;
gfx_entry_end = NULL;
for(j=1;j <= gfx_blockheader->records;j++)
{
length = READ_UINT32(src);
length -= 4; src += 4; size -=4;
if(readbin(&src, &size, &bin, length))
{
if(!uni2str(bin, length, &str, &str_len))
{
return NULL;
}
}
else
{
return NULL;
}
data_len = READ_UINT32(src);
data_len -= 4; src += 4; size -=4;
if(!readbin(&src, &size, &data, data_len))
{
return NULL;
}
gfx_entry = (GFX_ENTRY *)calloc(1, sizeof(GFX_ENTRY));
if(!gfx_entry)
{
fprintf(stderr, "parse_binary: out of memory\n");
return NULL;
}
//read entries
gfx_entry->bkey = bin;
gfx_entry->bkey_len = length;
gfx_entry->key = str;
gfx_entry->key_len = str_len;
gfx_entry->val_type = DATA_BINARY; // set default data type
gfx_entry->val = data;
gfx_entry->val_len = data_len;
switch(data_len)
{
case sizeof(UINT8): // int8
gfx_entry->val_type = DATA_INT8;
break;
case sizeof(UINT16): //int16
gfx_entry->val_type = DATA_INT16;
break;
case sizeof(UINT32): //int32
gfx_entry->val_type = DATA_INT32;
break;
default:
gfx_entry->val_type = DATA_BINARY;
break;
}
// detect strings
if(gfx_entry->val_type == DATA_BINARY && is_string(data, data_len))
{
gfx_entry->val_type = DATA_STRING;
}
if(!gfx_entry_head) // if there are no nodes in list then
gfx_entry_head = gfx_entry; // set head to this new node
if(gfx_entry_end)
gfx_entry_end->next = gfx_entry; // link in new node to the end of the list
gfx_entry->next = NULL; // set next field to signify the end of list
gfx_entry_end = gfx_entry; // adjust end to point to the last node
}
gfx_blockheader->entries = gfx_entry_head;
if(!gfx_blockheader_head) // if there are no nodes in list then
gfx_blockheader_head = gfx_blockheader; // set head to this new node
if(gfx_blockheader_end)
gfx_blockheader_end->next = gfx_blockheader;// link in new node to the end of the list
gfx_blockheader->next = NULL; // set next field to signify the end of list
gfx_blockheader_end = gfx_blockheader; // adjust end to point to the last node
}
gfx_header->blocks = gfx_blockheader_head;
return (gfx_header);
}