mirror of
https://github.com/CloverHackyColor/CloverBootloader.git
synced 2024-12-17 15:18:06 +01:00
6b33696c93
Signed-off-by: SergeySlice <sergey.slice@gmail.com>
899 lines
28 KiB
C
899 lines
28 KiB
C
/** @file
|
|
x64 Virtual Memory Management Services in the form of an IA-32 driver.
|
|
Used to establish a 1:1 Virtual to Physical Mapping that is required to
|
|
enter Long Mode (x64 64-bit mode).
|
|
|
|
While we make a 1:1 mapping (identity mapping) for all physical pages
|
|
we still need to use the MTRR's to ensure that the cachability attributes
|
|
for all memory regions is correct.
|
|
|
|
The basic idea is to use 2MB page table entries where ever possible. If
|
|
more granularity of cachability is required then 4K page tables are used.
|
|
|
|
References:
|
|
1) IA-32 Intel(R) Architecture Software Developer's Manual Volume 1:Basic Architecture, Intel
|
|
2) IA-32 Intel(R) Architecture Software Developer's Manual Volume 2:Instruction Set Reference, Intel
|
|
3) IA-32 Intel(R) Architecture Software Developer's Manual Volume 3:System Programmer's Guide, Intel
|
|
|
|
Copyright (c) 2006 - 2019, Intel Corporation. All rights reserved.<BR>
|
|
Copyright (c) 2017, AMD Incorporated. All rights reserved.<BR>
|
|
|
|
SPDX-License-Identifier: BSD-2-Clause-Patent
|
|
|
|
**/
|
|
|
|
#include <Register/Intel/Cpuid.h>
|
|
#include "DxeIpl.h"
|
|
#include "VirtualMemory.h"
|
|
|
|
//
|
|
// Global variable to keep track current available memory used as page table.
|
|
//
|
|
PAGE_TABLE_POOL *mPageTablePool = NULL;
|
|
|
|
/**
|
|
Clear legacy memory located at the first 4K-page, if available.
|
|
|
|
This function traverses the whole HOB list to check if memory from 0 to 4095
|
|
exists and has not been allocated, and then clear it if so.
|
|
|
|
@param HobStart The start of HobList passed to DxeCore.
|
|
|
|
**/
|
|
VOID
|
|
ClearFirst4KPage (
|
|
IN VOID *HobStart
|
|
)
|
|
{
|
|
EFI_PEI_HOB_POINTERS RscHob;
|
|
EFI_PEI_HOB_POINTERS MemHob;
|
|
BOOLEAN DoClear;
|
|
|
|
RscHob.Raw = HobStart;
|
|
MemHob.Raw = HobStart;
|
|
DoClear = FALSE;
|
|
|
|
//
|
|
// Check if page 0 exists and free
|
|
//
|
|
while ((RscHob.Raw = GetNextHob (EFI_HOB_TYPE_RESOURCE_DESCRIPTOR,
|
|
RscHob.Raw)) != NULL) {
|
|
if (RscHob.ResourceDescriptor->ResourceType == EFI_RESOURCE_SYSTEM_MEMORY &&
|
|
RscHob.ResourceDescriptor->PhysicalStart == 0) {
|
|
DoClear = TRUE;
|
|
//
|
|
// Make sure memory at 0-4095 has not been allocated.
|
|
//
|
|
while ((MemHob.Raw = GetNextHob (EFI_HOB_TYPE_MEMORY_ALLOCATION,
|
|
MemHob.Raw)) != NULL) {
|
|
if (MemHob.MemoryAllocation->AllocDescriptor.MemoryBaseAddress
|
|
< EFI_PAGE_SIZE) {
|
|
DoClear = FALSE;
|
|
break;
|
|
}
|
|
MemHob.Raw = GET_NEXT_HOB (MemHob);
|
|
}
|
|
break;
|
|
}
|
|
RscHob.Raw = GET_NEXT_HOB (RscHob);
|
|
}
|
|
|
|
if (DoClear) {
|
|
DEBUG ((DEBUG_INFO, "Clearing first 4K-page!\r\n"));
|
|
SetMem(NULL, EFI_PAGE_SIZE, 0);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/**
|
|
Return configure status of NULL pointer detection feature.
|
|
|
|
@return TRUE NULL pointer detection feature is enabled
|
|
@return FALSE NULL pointer detection feature is disabled
|
|
|
|
**/
|
|
BOOLEAN
|
|
IsNullDetectionEnabled (
|
|
VOID
|
|
)
|
|
{
|
|
return ((PcdGet8 (PcdNullPointerDetectionPropertyMask) & BIT0) != 0);
|
|
}
|
|
|
|
/**
|
|
The function will check if Execute Disable Bit is available.
|
|
|
|
@retval TRUE Execute Disable Bit is available.
|
|
@retval FALSE Execute Disable Bit is not available.
|
|
|
|
**/
|
|
BOOLEAN
|
|
IsExecuteDisableBitAvailable (
|
|
VOID
|
|
)
|
|
{
|
|
UINT32 RegEax;
|
|
UINT32 RegEdx;
|
|
BOOLEAN Available;
|
|
|
|
Available = FALSE;
|
|
AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
|
|
if (RegEax >= 0x80000001) {
|
|
AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx);
|
|
if ((RegEdx & BIT20) != 0) {
|
|
//
|
|
// Bit 20: Execute Disable Bit available.
|
|
//
|
|
Available = TRUE;
|
|
}
|
|
}
|
|
|
|
return Available;
|
|
}
|
|
|
|
/**
|
|
Check if Execute Disable Bit (IA32_EFER.NXE) should be enabled or not.
|
|
|
|
@retval TRUE IA32_EFER.NXE should be enabled.
|
|
@retval FALSE IA32_EFER.NXE should not be enabled.
|
|
|
|
**/
|
|
BOOLEAN
|
|
IsEnableNonExecNeeded (
|
|
VOID
|
|
)
|
|
{
|
|
if (!IsExecuteDisableBitAvailable ()) {
|
|
return FALSE;
|
|
}
|
|
|
|
//
|
|
// XD flag (BIT63) in page table entry is only valid if IA32_EFER.NXE is set.
|
|
// Features controlled by Following PCDs need this feature to be enabled.
|
|
//
|
|
return (PcdGetBool (PcdSetNxForStack) ||
|
|
PcdGet64 (PcdDxeNxMemoryProtectionPolicy) != 0 ||
|
|
PcdGet32 (PcdImageProtectionPolicy) != 0);
|
|
}
|
|
|
|
/**
|
|
Enable Execute Disable Bit.
|
|
|
|
**/
|
|
VOID
|
|
EnableExecuteDisableBit (
|
|
VOID
|
|
)
|
|
{
|
|
UINT64 MsrRegisters;
|
|
|
|
MsrRegisters = AsmReadMsr64 (0xC0000080);
|
|
MsrRegisters |= BIT11;
|
|
AsmWriteMsr64 (0xC0000080, MsrRegisters);
|
|
}
|
|
|
|
/**
|
|
The function will check if page table entry should be splitted to smaller
|
|
granularity.
|
|
|
|
@param Address Physical memory address.
|
|
@param Size Size of the given physical memory.
|
|
@param StackBase Base address of stack.
|
|
@param StackSize Size of stack.
|
|
|
|
@retval TRUE Page table should be split.
|
|
@retval FALSE Page table should not be split.
|
|
**/
|
|
BOOLEAN
|
|
ToSplitPageTable (
|
|
IN EFI_PHYSICAL_ADDRESS Address,
|
|
IN UINTN Size,
|
|
IN EFI_PHYSICAL_ADDRESS StackBase,
|
|
IN UINTN StackSize
|
|
)
|
|
{
|
|
if (IsNullDetectionEnabled () && Address == 0) {
|
|
return TRUE;
|
|
}
|
|
|
|
if (PcdGetBool (PcdCpuStackGuard)) {
|
|
if (StackBase >= Address && StackBase < (Address + Size)) {
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
if (PcdGetBool (PcdSetNxForStack)) {
|
|
if ((Address < StackBase + StackSize) && ((Address + Size) > StackBase)) {
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
/**
|
|
Initialize a buffer pool for page table use only.
|
|
|
|
To reduce the potential split operation on page table, the pages reserved for
|
|
page table should be allocated in the times of PAGE_TABLE_POOL_UNIT_PAGES and
|
|
at the boundary of PAGE_TABLE_POOL_ALIGNMENT. So the page pool is always
|
|
initialized with number of pages greater than or equal to the given PoolPages.
|
|
|
|
Once the pages in the pool are used up, this method should be called again to
|
|
reserve at least another PAGE_TABLE_POOL_UNIT_PAGES. But usually this won't
|
|
happen in practice.
|
|
|
|
@param PoolPages The least page number of the pool to be created.
|
|
|
|
@retval TRUE The pool is initialized successfully.
|
|
@retval FALSE The memory is out of resource.
|
|
**/
|
|
BOOLEAN
|
|
InitializePageTablePool (
|
|
IN UINTN PoolPages
|
|
)
|
|
{
|
|
VOID *Buffer;
|
|
|
|
//
|
|
// Always reserve at least PAGE_TABLE_POOL_UNIT_PAGES, including one page for
|
|
// header.
|
|
//
|
|
PoolPages += 1; // Add one page for header.
|
|
PoolPages = ((PoolPages - 1) / PAGE_TABLE_POOL_UNIT_PAGES + 1) *
|
|
PAGE_TABLE_POOL_UNIT_PAGES;
|
|
Buffer = AllocateAlignedPages (PoolPages, PAGE_TABLE_POOL_ALIGNMENT);
|
|
if (Buffer == NULL) {
|
|
DEBUG ((DEBUG_ERROR, "ERROR: Out of aligned pages\r\n"));
|
|
return FALSE;
|
|
}
|
|
|
|
//
|
|
// Link all pools into a list for easier track later.
|
|
//
|
|
if (mPageTablePool == NULL) {
|
|
mPageTablePool = Buffer;
|
|
mPageTablePool->NextPool = mPageTablePool;
|
|
} else {
|
|
((PAGE_TABLE_POOL *)Buffer)->NextPool = mPageTablePool->NextPool;
|
|
mPageTablePool->NextPool = Buffer;
|
|
mPageTablePool = Buffer;
|
|
}
|
|
|
|
//
|
|
// Reserve one page for pool header.
|
|
//
|
|
mPageTablePool->FreePages = PoolPages - 1;
|
|
mPageTablePool->Offset = EFI_PAGES_TO_SIZE (1);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/**
|
|
This API provides a way to allocate memory for page table.
|
|
|
|
This API can be called more than once to allocate memory for page tables.
|
|
|
|
Allocates the number of 4KB pages and returns a pointer to the allocated
|
|
buffer. The buffer returned is aligned on a 4KB boundary.
|
|
|
|
If Pages is 0, then NULL is returned.
|
|
If there is not enough memory remaining to satisfy the request, then NULL is
|
|
returned.
|
|
|
|
@param Pages The number of 4 KB pages to allocate.
|
|
|
|
@return A pointer to the allocated buffer or NULL if allocation fails.
|
|
|
|
**/
|
|
VOID *
|
|
AllocatePageTableMemory (
|
|
IN UINTN Pages
|
|
)
|
|
{
|
|
VOID *Buffer;
|
|
|
|
if (Pages == 0) {
|
|
return NULL;
|
|
}
|
|
|
|
//
|
|
// Renew the pool if necessary.
|
|
//
|
|
if (mPageTablePool == NULL ||
|
|
Pages > mPageTablePool->FreePages) {
|
|
if (!InitializePageTablePool (Pages)) {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
Buffer = (UINT8 *)mPageTablePool + mPageTablePool->Offset;
|
|
|
|
mPageTablePool->Offset += EFI_PAGES_TO_SIZE (Pages);
|
|
mPageTablePool->FreePages -= Pages;
|
|
|
|
return Buffer;
|
|
}
|
|
|
|
/**
|
|
Split 2M page to 4K.
|
|
|
|
@param[in] PhysicalAddress Start physical address the 2M page covered.
|
|
@param[in, out] PageEntry2M Pointer to 2M page entry.
|
|
@param[in] StackBase Stack base address.
|
|
@param[in] StackSize Stack size.
|
|
|
|
**/
|
|
VOID
|
|
Split2MPageTo4K (
|
|
IN EFI_PHYSICAL_ADDRESS PhysicalAddress,
|
|
IN OUT UINT64 *PageEntry2M,
|
|
IN EFI_PHYSICAL_ADDRESS StackBase,
|
|
IN UINTN StackSize
|
|
)
|
|
{
|
|
EFI_PHYSICAL_ADDRESS PhysicalAddress4K;
|
|
UINTN IndexOfPageTableEntries;
|
|
PAGE_TABLE_4K_ENTRY *PageTableEntry;
|
|
UINT64 AddressEncMask;
|
|
|
|
//
|
|
// Make sure AddressEncMask is contained to smallest supported address field
|
|
//
|
|
AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) & PAGING_1G_ADDRESS_MASK_64;
|
|
|
|
PageTableEntry = AllocatePageTableMemory (1);
|
|
ASSERT (PageTableEntry != NULL);
|
|
|
|
//
|
|
// Fill in 2M page entry.
|
|
//
|
|
*PageEntry2M = (UINT64) (UINTN) PageTableEntry | AddressEncMask | IA32_PG_P | IA32_PG_RW;
|
|
|
|
PhysicalAddress4K = PhysicalAddress;
|
|
for (IndexOfPageTableEntries = 0; IndexOfPageTableEntries < 512; IndexOfPageTableEntries++, PageTableEntry++, PhysicalAddress4K += SIZE_4KB) {
|
|
//
|
|
// Fill in the Page Table entries
|
|
//
|
|
PageTableEntry->Uint64 = (UINT64) PhysicalAddress4K | AddressEncMask;
|
|
PageTableEntry->Bits.ReadWrite = 1;
|
|
|
|
if ((IsNullDetectionEnabled () && PhysicalAddress4K == 0) ||
|
|
(PcdGetBool (PcdCpuStackGuard) && PhysicalAddress4K == StackBase)) {
|
|
PageTableEntry->Bits.Present = 0;
|
|
} else {
|
|
PageTableEntry->Bits.Present = 1;
|
|
}
|
|
|
|
if (PcdGetBool (PcdSetNxForStack)
|
|
&& (PhysicalAddress4K >= StackBase)
|
|
&& (PhysicalAddress4K < StackBase + StackSize)) {
|
|
//
|
|
// Set Nx bit for stack.
|
|
//
|
|
PageTableEntry->Bits.Nx = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
Split 1G page to 2M.
|
|
|
|
@param[in] PhysicalAddress Start physical address the 1G page covered.
|
|
@param[in, out] PageEntry1G Pointer to 1G page entry.
|
|
@param[in] StackBase Stack base address.
|
|
@param[in] StackSize Stack size.
|
|
|
|
**/
|
|
VOID
|
|
Split1GPageTo2M (
|
|
IN EFI_PHYSICAL_ADDRESS PhysicalAddress,
|
|
IN OUT UINT64 *PageEntry1G,
|
|
IN EFI_PHYSICAL_ADDRESS StackBase,
|
|
IN UINTN StackSize
|
|
)
|
|
{
|
|
EFI_PHYSICAL_ADDRESS PhysicalAddress2M;
|
|
UINTN IndexOfPageDirectoryEntries;
|
|
PAGE_TABLE_ENTRY *PageDirectoryEntry;
|
|
UINT64 AddressEncMask;
|
|
|
|
//
|
|
// Make sure AddressEncMask is contained to smallest supported address field
|
|
//
|
|
AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) & PAGING_1G_ADDRESS_MASK_64;
|
|
|
|
PageDirectoryEntry = AllocatePageTableMemory (1);
|
|
ASSERT (PageDirectoryEntry != NULL);
|
|
|
|
//
|
|
// Fill in 1G page entry.
|
|
//
|
|
*PageEntry1G = (UINT64) (UINTN) PageDirectoryEntry | AddressEncMask | IA32_PG_P | IA32_PG_RW;
|
|
|
|
PhysicalAddress2M = PhysicalAddress;
|
|
for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectoryEntry++, PhysicalAddress2M += SIZE_2MB) {
|
|
if (ToSplitPageTable (PhysicalAddress2M, SIZE_2MB, StackBase, StackSize)) {
|
|
//
|
|
// Need to split this 2M page that covers NULL or stack range.
|
|
//
|
|
Split2MPageTo4K (PhysicalAddress2M, (UINT64 *) PageDirectoryEntry, StackBase, StackSize);
|
|
} else {
|
|
//
|
|
// Fill in the Page Directory entries
|
|
//
|
|
PageDirectoryEntry->Uint64 = (UINT64) PhysicalAddress2M | AddressEncMask;
|
|
PageDirectoryEntry->Bits.ReadWrite = 1;
|
|
PageDirectoryEntry->Bits.Present = 1;
|
|
PageDirectoryEntry->Bits.MustBe1 = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
Set one page of page table pool memory to be read-only.
|
|
|
|
@param[in] PageTableBase Base address of page table (CR3).
|
|
@param[in] Address Start address of a page to be set as read-only.
|
|
@param[in] Level4Paging Level 4 paging flag.
|
|
|
|
**/
|
|
VOID
|
|
SetPageTablePoolReadOnly (
|
|
IN UINTN PageTableBase,
|
|
IN EFI_PHYSICAL_ADDRESS Address,
|
|
IN BOOLEAN Level4Paging
|
|
)
|
|
{
|
|
UINTN Index;
|
|
UINTN EntryIndex;
|
|
UINT64 AddressEncMask;
|
|
EFI_PHYSICAL_ADDRESS PhysicalAddress;
|
|
UINT64 *PageTable;
|
|
UINT64 *NewPageTable;
|
|
UINT64 PageAttr;
|
|
UINT64 LevelSize[5];
|
|
UINT64 LevelMask[5];
|
|
UINTN LevelShift[5];
|
|
UINTN Level;
|
|
UINT64 PoolUnitSize;
|
|
|
|
ASSERT (PageTableBase != 0);
|
|
|
|
//
|
|
// Since the page table is always from page table pool, which is always
|
|
// located at the boundary of PcdPageTablePoolAlignment, we just need to
|
|
// set the whole pool unit to be read-only.
|
|
//
|
|
Address = Address & PAGE_TABLE_POOL_ALIGN_MASK;
|
|
|
|
LevelShift[1] = PAGING_L1_ADDRESS_SHIFT;
|
|
LevelShift[2] = PAGING_L2_ADDRESS_SHIFT;
|
|
LevelShift[3] = PAGING_L3_ADDRESS_SHIFT;
|
|
LevelShift[4] = PAGING_L4_ADDRESS_SHIFT;
|
|
|
|
LevelMask[1] = PAGING_4K_ADDRESS_MASK_64;
|
|
LevelMask[2] = PAGING_2M_ADDRESS_MASK_64;
|
|
LevelMask[3] = PAGING_1G_ADDRESS_MASK_64;
|
|
LevelMask[4] = PAGING_1G_ADDRESS_MASK_64;
|
|
|
|
LevelSize[1] = SIZE_4KB;
|
|
LevelSize[2] = SIZE_2MB;
|
|
LevelSize[3] = SIZE_1GB;
|
|
LevelSize[4] = SIZE_512GB;
|
|
|
|
AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) &
|
|
PAGING_1G_ADDRESS_MASK_64;
|
|
PageTable = (UINT64 *)(UINTN)PageTableBase;
|
|
PoolUnitSize = PAGE_TABLE_POOL_UNIT_SIZE;
|
|
|
|
for (Level = (Level4Paging) ? 4 : 3; Level > 0; --Level) {
|
|
Index = ((UINTN)RShiftU64 (Address, LevelShift[Level]));
|
|
Index &= PAGING_PAE_INDEX_MASK;
|
|
|
|
PageAttr = PageTable[Index];
|
|
if ((PageAttr & IA32_PG_PS) == 0) {
|
|
//
|
|
// Go to next level of table.
|
|
//
|
|
PageTable = (UINT64 *)(UINTN)(PageAttr & ~AddressEncMask &
|
|
PAGING_4K_ADDRESS_MASK_64);
|
|
continue;
|
|
}
|
|
|
|
if (PoolUnitSize >= LevelSize[Level]) {
|
|
//
|
|
// Clear R/W bit if current page granularity is not larger than pool unit
|
|
// size.
|
|
//
|
|
if ((PageAttr & IA32_PG_RW) != 0) {
|
|
while (PoolUnitSize > 0) {
|
|
//
|
|
// PAGE_TABLE_POOL_UNIT_SIZE and PAGE_TABLE_POOL_ALIGNMENT are fit in
|
|
// one page (2MB). Then we don't need to update attributes for pages
|
|
// crossing page directory. ASSERT below is for that purpose.
|
|
//
|
|
ASSERT (Index < EFI_PAGE_SIZE/sizeof (UINT64));
|
|
|
|
PageTable[Index] &= ~(UINT64)IA32_PG_RW;
|
|
PoolUnitSize -= LevelSize[Level];
|
|
|
|
++Index;
|
|
}
|
|
}
|
|
|
|
break;
|
|
|
|
} else {
|
|
//
|
|
// The smaller granularity of page must be needed.
|
|
//
|
|
ASSERT (Level > 1);
|
|
|
|
NewPageTable = AllocatePageTableMemory (1);
|
|
ASSERT (NewPageTable != NULL);
|
|
|
|
PhysicalAddress = PageAttr & LevelMask[Level];
|
|
for (EntryIndex = 0;
|
|
EntryIndex < EFI_PAGE_SIZE/sizeof (UINT64);
|
|
++EntryIndex) {
|
|
NewPageTable[EntryIndex] = PhysicalAddress | AddressEncMask |
|
|
IA32_PG_P | IA32_PG_RW;
|
|
if (Level > 2) {
|
|
NewPageTable[EntryIndex] |= IA32_PG_PS;
|
|
}
|
|
PhysicalAddress += LevelSize[Level - 1];
|
|
}
|
|
|
|
PageTable[Index] = (UINT64)(UINTN)NewPageTable | AddressEncMask |
|
|
IA32_PG_P | IA32_PG_RW;
|
|
PageTable = NewPageTable;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
Prevent the memory pages used for page table from been overwritten.
|
|
|
|
@param[in] PageTableBase Base address of page table (CR3).
|
|
@param[in] Level4Paging Level 4 paging flag.
|
|
|
|
**/
|
|
VOID
|
|
EnablePageTableProtection (
|
|
IN UINTN PageTableBase,
|
|
IN BOOLEAN Level4Paging
|
|
)
|
|
{
|
|
PAGE_TABLE_POOL *HeadPool;
|
|
PAGE_TABLE_POOL *Pool;
|
|
UINT64 PoolSize;
|
|
EFI_PHYSICAL_ADDRESS Address;
|
|
|
|
if (mPageTablePool == NULL) {
|
|
return;
|
|
}
|
|
|
|
//
|
|
// Disable write protection, because we need to mark page table to be write
|
|
// protected.
|
|
//
|
|
AsmWriteCr0 (AsmReadCr0() & ~CR0_WP);
|
|
|
|
//
|
|
// SetPageTablePoolReadOnly might update mPageTablePool. It's safer to
|
|
// remember original one in advance.
|
|
//
|
|
HeadPool = mPageTablePool;
|
|
Pool = HeadPool;
|
|
do {
|
|
Address = (EFI_PHYSICAL_ADDRESS)(UINTN)Pool;
|
|
PoolSize = Pool->Offset + EFI_PAGES_TO_SIZE (Pool->FreePages);
|
|
|
|
//
|
|
// The size of one pool must be multiple of PAGE_TABLE_POOL_UNIT_SIZE, which
|
|
// is one of page size of the processor (2MB by default). Let's apply the
|
|
// protection to them one by one.
|
|
//
|
|
while (PoolSize > 0) {
|
|
SetPageTablePoolReadOnly(PageTableBase, Address, Level4Paging);
|
|
Address += PAGE_TABLE_POOL_UNIT_SIZE;
|
|
PoolSize -= PAGE_TABLE_POOL_UNIT_SIZE;
|
|
}
|
|
|
|
Pool = Pool->NextPool;
|
|
} while (Pool != HeadPool);
|
|
|
|
//
|
|
// Enable write protection, after page table attribute updated.
|
|
//
|
|
AsmWriteCr0 (AsmReadCr0() | CR0_WP);
|
|
}
|
|
|
|
/**
|
|
Allocates and fills in the Page Directory and Page Table Entries to
|
|
establish a 1:1 Virtual to Physical mapping.
|
|
|
|
@param[in] StackBase Stack base address.
|
|
@param[in] StackSize Stack size.
|
|
|
|
@return The address of 4 level page map.
|
|
|
|
**/
|
|
UINTN
|
|
CreateIdentityMappingPageTables (
|
|
IN EFI_PHYSICAL_ADDRESS StackBase,
|
|
IN UINTN StackSize
|
|
)
|
|
{
|
|
UINT32 RegEax;
|
|
CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_ECX EcxFlags;
|
|
UINT32 RegEdx;
|
|
UINT8 PhysicalAddressBits;
|
|
EFI_PHYSICAL_ADDRESS PageAddress;
|
|
UINTN IndexOfPml5Entries;
|
|
UINTN IndexOfPml4Entries;
|
|
UINTN IndexOfPdpEntries;
|
|
UINTN IndexOfPageDirectoryEntries;
|
|
UINT32 NumberOfPml5EntriesNeeded;
|
|
UINT32 NumberOfPml4EntriesNeeded;
|
|
UINT32 NumberOfPdpEntriesNeeded;
|
|
PAGE_MAP_AND_DIRECTORY_POINTER *PageMapLevel5Entry;
|
|
PAGE_MAP_AND_DIRECTORY_POINTER *PageMapLevel4Entry;
|
|
PAGE_MAP_AND_DIRECTORY_POINTER *PageMap;
|
|
PAGE_MAP_AND_DIRECTORY_POINTER *PageDirectoryPointerEntry;
|
|
PAGE_TABLE_ENTRY *PageDirectoryEntry;
|
|
UINTN TotalPagesNum;
|
|
UINTN BigPageAddress;
|
|
VOID *Hob;
|
|
BOOLEAN Page5LevelSupport;
|
|
BOOLEAN Page1GSupport;
|
|
PAGE_TABLE_1G_ENTRY *PageDirectory1GEntry;
|
|
UINT64 AddressEncMask;
|
|
IA32_CR4 Cr4;
|
|
|
|
//
|
|
// Set PageMapLevel5Entry to suppress incorrect compiler/analyzer warnings
|
|
//
|
|
PageMapLevel5Entry = NULL;
|
|
|
|
//
|
|
// Make sure AddressEncMask is contained to smallest supported address field
|
|
//
|
|
AddressEncMask = PcdGet64 (PcdPteMemoryEncryptionAddressOrMask) & PAGING_1G_ADDRESS_MASK_64;
|
|
|
|
Page1GSupport = FALSE;
|
|
if (PcdGetBool(PcdUse1GPageTable)) {
|
|
AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
|
|
if (RegEax >= 0x80000001) {
|
|
AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx);
|
|
if ((RegEdx & BIT26) != 0) {
|
|
Page1GSupport = TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Get physical address bits supported.
|
|
//
|
|
Hob = GetFirstHob (EFI_HOB_TYPE_CPU);
|
|
if (Hob != NULL) {
|
|
PhysicalAddressBits = ((EFI_HOB_CPU *) Hob)->SizeOfMemorySpace;
|
|
} else {
|
|
AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
|
|
if (RegEax >= 0x80000008) {
|
|
AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);
|
|
PhysicalAddressBits = (UINT8) RegEax;
|
|
} else {
|
|
PhysicalAddressBits = 36;
|
|
}
|
|
}
|
|
|
|
Page5LevelSupport = FALSE;
|
|
if (PcdGetBool (PcdUse5LevelPageTable)) {
|
|
AsmCpuidEx (
|
|
CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS, CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_SUB_LEAF_INFO, NULL,
|
|
&EcxFlags.Uint32, NULL, NULL
|
|
);
|
|
if (EcxFlags.Bits.FiveLevelPage != 0) {
|
|
Page5LevelSupport = TRUE;
|
|
}
|
|
}
|
|
|
|
DEBUG ((DEBUG_INFO, "AddressBits=%u 5LevelPaging=%u 1GPage=%u\n", PhysicalAddressBits, Page5LevelSupport, Page1GSupport));
|
|
|
|
//
|
|
// IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses
|
|
// when 5-Level Paging is disabled,
|
|
// due to either unsupported by HW, or disabled by PCD.
|
|
//
|
|
ASSERT (PhysicalAddressBits <= 52);
|
|
if (!Page5LevelSupport && PhysicalAddressBits > 48) {
|
|
PhysicalAddressBits = 48;
|
|
}
|
|
|
|
//
|
|
// Calculate the table entries needed.
|
|
//
|
|
NumberOfPml5EntriesNeeded = 1;
|
|
if (PhysicalAddressBits > 48) {
|
|
NumberOfPml5EntriesNeeded = (UINT32) LShiftU64 (1, PhysicalAddressBits - 48);
|
|
PhysicalAddressBits = 48;
|
|
}
|
|
|
|
NumberOfPml4EntriesNeeded = 1;
|
|
if (PhysicalAddressBits > 39) {
|
|
NumberOfPml4EntriesNeeded = (UINT32) LShiftU64 (1, PhysicalAddressBits - 39);
|
|
PhysicalAddressBits = 39;
|
|
}
|
|
|
|
NumberOfPdpEntriesNeeded = 1;
|
|
ASSERT (PhysicalAddressBits > 30);
|
|
NumberOfPdpEntriesNeeded = (UINT32) LShiftU64 (1, PhysicalAddressBits - 30);
|
|
|
|
//
|
|
// Pre-allocate big pages to avoid later allocations.
|
|
//
|
|
if (!Page1GSupport) {
|
|
TotalPagesNum = ((NumberOfPdpEntriesNeeded + 1) * NumberOfPml4EntriesNeeded + 1) * NumberOfPml5EntriesNeeded + 1;
|
|
} else {
|
|
TotalPagesNum = (NumberOfPml4EntriesNeeded + 1) * NumberOfPml5EntriesNeeded + 1;
|
|
}
|
|
|
|
//
|
|
// Substract the one page occupied by PML5 entries if 5-Level Paging is disabled.
|
|
//
|
|
if (!Page5LevelSupport) {
|
|
TotalPagesNum--;
|
|
}
|
|
|
|
DEBUG ((DEBUG_INFO, "Pml5=%u Pml4=%u Pdp=%u TotalPage=%Lu\n",
|
|
NumberOfPml5EntriesNeeded, NumberOfPml4EntriesNeeded,
|
|
NumberOfPdpEntriesNeeded, (UINT64)TotalPagesNum));
|
|
|
|
BigPageAddress = (UINTN) AllocatePageTableMemory (TotalPagesNum);
|
|
ASSERT (BigPageAddress != 0);
|
|
|
|
//
|
|
// By architecture only one PageMapLevel4 exists - so lets allocate storage for it.
|
|
//
|
|
PageMap = (VOID *) BigPageAddress;
|
|
if (Page5LevelSupport) {
|
|
//
|
|
// By architecture only one PageMapLevel5 exists - so lets allocate storage for it.
|
|
//
|
|
PageMapLevel5Entry = PageMap;
|
|
BigPageAddress += SIZE_4KB;
|
|
}
|
|
PageAddress = 0;
|
|
|
|
for ( IndexOfPml5Entries = 0
|
|
; IndexOfPml5Entries < NumberOfPml5EntriesNeeded
|
|
; IndexOfPml5Entries++) {
|
|
//
|
|
// Each PML5 entry points to a page of PML4 entires.
|
|
// So lets allocate space for them and fill them in in the IndexOfPml4Entries loop.
|
|
// When 5-Level Paging is disabled, below allocation happens only once.
|
|
//
|
|
PageMapLevel4Entry = (VOID *) BigPageAddress;
|
|
BigPageAddress += SIZE_4KB;
|
|
|
|
if (Page5LevelSupport) {
|
|
//
|
|
// Make a PML5 Entry
|
|
//
|
|
PageMapLevel5Entry->Uint64 = (UINT64) (UINTN) PageMapLevel4Entry | AddressEncMask;
|
|
PageMapLevel5Entry->Bits.ReadWrite = 1;
|
|
PageMapLevel5Entry->Bits.Present = 1;
|
|
PageMapLevel5Entry++;
|
|
}
|
|
|
|
for ( IndexOfPml4Entries = 0
|
|
; IndexOfPml4Entries < (NumberOfPml5EntriesNeeded == 1 ? NumberOfPml4EntriesNeeded : 512)
|
|
; IndexOfPml4Entries++, PageMapLevel4Entry++) {
|
|
//
|
|
// Each PML4 entry points to a page of Page Directory Pointer entires.
|
|
// So lets allocate space for them and fill them in in the IndexOfPdpEntries loop.
|
|
//
|
|
PageDirectoryPointerEntry = (VOID *) BigPageAddress;
|
|
BigPageAddress += SIZE_4KB;
|
|
|
|
//
|
|
// Make a PML4 Entry
|
|
//
|
|
PageMapLevel4Entry->Uint64 = (UINT64)(UINTN)PageDirectoryPointerEntry | AddressEncMask;
|
|
PageMapLevel4Entry->Bits.ReadWrite = 1;
|
|
PageMapLevel4Entry->Bits.Present = 1;
|
|
|
|
if (Page1GSupport) {
|
|
PageDirectory1GEntry = (VOID *) PageDirectoryPointerEntry;
|
|
|
|
for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectory1GEntry++, PageAddress += SIZE_1GB) {
|
|
if (ToSplitPageTable (PageAddress, SIZE_1GB, StackBase, StackSize)) {
|
|
Split1GPageTo2M (PageAddress, (UINT64 *) PageDirectory1GEntry, StackBase, StackSize);
|
|
} else {
|
|
//
|
|
// Fill in the Page Directory entries
|
|
//
|
|
PageDirectory1GEntry->Uint64 = (UINT64)PageAddress | AddressEncMask;
|
|
PageDirectory1GEntry->Bits.ReadWrite = 1;
|
|
PageDirectory1GEntry->Bits.Present = 1;
|
|
PageDirectory1GEntry->Bits.MustBe1 = 1;
|
|
}
|
|
}
|
|
} else {
|
|
for ( IndexOfPdpEntries = 0
|
|
; IndexOfPdpEntries < (NumberOfPml4EntriesNeeded == 1 ? NumberOfPdpEntriesNeeded : 512)
|
|
; IndexOfPdpEntries++, PageDirectoryPointerEntry++) {
|
|
//
|
|
// Each Directory Pointer entries points to a page of Page Directory entires.
|
|
// So allocate space for them and fill them in in the IndexOfPageDirectoryEntries loop.
|
|
//
|
|
PageDirectoryEntry = (VOID *) BigPageAddress;
|
|
BigPageAddress += SIZE_4KB;
|
|
|
|
//
|
|
// Fill in a Page Directory Pointer Entries
|
|
//
|
|
PageDirectoryPointerEntry->Uint64 = (UINT64)(UINTN)PageDirectoryEntry | AddressEncMask;
|
|
PageDirectoryPointerEntry->Bits.ReadWrite = 1;
|
|
PageDirectoryPointerEntry->Bits.Present = 1;
|
|
|
|
for (IndexOfPageDirectoryEntries = 0; IndexOfPageDirectoryEntries < 512; IndexOfPageDirectoryEntries++, PageDirectoryEntry++, PageAddress += SIZE_2MB) {
|
|
if (ToSplitPageTable (PageAddress, SIZE_2MB, StackBase, StackSize)) {
|
|
//
|
|
// Need to split this 2M page that covers NULL or stack range.
|
|
//
|
|
Split2MPageTo4K (PageAddress, (UINT64 *) PageDirectoryEntry, StackBase, StackSize);
|
|
} else {
|
|
//
|
|
// Fill in the Page Directory entries
|
|
//
|
|
PageDirectoryEntry->Uint64 = (UINT64)PageAddress | AddressEncMask;
|
|
PageDirectoryEntry->Bits.ReadWrite = 1;
|
|
PageDirectoryEntry->Bits.Present = 1;
|
|
PageDirectoryEntry->Bits.MustBe1 = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Fill with null entry for unused PDPTE
|
|
//
|
|
ZeroMem (PageDirectoryPointerEntry, (512 - IndexOfPdpEntries) * sizeof(PAGE_MAP_AND_DIRECTORY_POINTER));
|
|
}
|
|
}
|
|
|
|
//
|
|
// For the PML4 entries we are not using fill in a null entry.
|
|
//
|
|
ZeroMem (PageMapLevel4Entry, (512 - IndexOfPml4Entries) * sizeof (PAGE_MAP_AND_DIRECTORY_POINTER));
|
|
}
|
|
|
|
if (Page5LevelSupport) {
|
|
Cr4.UintN = AsmReadCr4 ();
|
|
Cr4.Bits.LA57 = 1;
|
|
AsmWriteCr4 (Cr4.UintN);
|
|
//
|
|
// For the PML5 entries we are not using fill in a null entry.
|
|
//
|
|
ZeroMem (PageMapLevel5Entry, (512 - IndexOfPml5Entries) * sizeof (PAGE_MAP_AND_DIRECTORY_POINTER));
|
|
}
|
|
|
|
//
|
|
// Protect the page table by marking the memory used for page table to be
|
|
// read-only.
|
|
//
|
|
EnablePageTableProtection ((UINTN)PageMap, TRUE);
|
|
|
|
//
|
|
// Set IA32_EFER.NXE if necessary.
|
|
//
|
|
if (IsEnableNonExecNeeded ()) {
|
|
EnableExecuteDisableBit ();
|
|
}
|
|
|
|
return (UINTN)PageMap;
|
|
}
|
|
|