mirror of
https://github.com/CloverHackyColor/CloverBootloader.git
synced 2024-12-11 14:28:08 +01:00
b1264ef1e3
Signed-off-by: Sergey Isakov <isakov-sl@bk.ru>
354 lines
8.3 KiB
C
Executable File
354 lines
8.3 KiB
C
Executable File
/* Automata conversion functions for DLG
|
|
*
|
|
* SOFTWARE RIGHTS
|
|
*
|
|
* We reserve no LEGAL rights to the Purdue Compiler Construction Tool
|
|
* Set (PCCTS) -- PCCTS is in the public domain. An individual or
|
|
* company may do whatever they wish with source code distributed with
|
|
* PCCTS or the code generated by PCCTS, including the incorporation of
|
|
* PCCTS, or its output, into commerical software.
|
|
*
|
|
* We encourage users to develop software with PCCTS. However, we do ask
|
|
* that credit is given to us for developing PCCTS. By "credit",
|
|
* we mean that if you incorporate our source code into one of your
|
|
* programs (commercial product, research project, or otherwise) that you
|
|
* acknowledge this fact somewhere in the documentation, research report,
|
|
* etc... If you like PCCTS and have developed a nice tool with the
|
|
* output, please mention that you developed it using PCCTS. In
|
|
* addition, we ask that this header remain intact in our source code.
|
|
* As long as these guidelines are kept, we expect to continue enhancing
|
|
* this system and expect to make other tools available as they are
|
|
* completed.
|
|
*
|
|
* DLG 1.33
|
|
* Will Cohen
|
|
* With mods by Terence Parr; AHPCRC, University of Minnesota
|
|
* 1989-2001
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include "pcctscfg.h"
|
|
#include "dlg.h"
|
|
#ifdef MEMCHK
|
|
#include "trax.h"
|
|
#else
|
|
#ifdef __STDC__
|
|
#include <stdlib.h>
|
|
#else
|
|
#include <malloc.h>
|
|
#endif /* __STDC__ */
|
|
#endif
|
|
|
|
#define hash_list struct _hash_list_
|
|
hash_list{
|
|
hash_list *next; /* next thing in list */
|
|
dfa_node *node;
|
|
};
|
|
|
|
int dfa_allocated = 0; /* keeps track of number of dfa nodes */
|
|
dfa_node **dfa_array; /* root of binary tree that stores dfa array */
|
|
dfa_node *dfa_model_node;
|
|
hash_list *dfa_hash[HASH_SIZE]; /* used to quickly find */
|
|
/* desired dfa node */
|
|
|
|
void
|
|
#ifdef __USE_PROTOS
|
|
make_dfa_model_node(int width)
|
|
#else
|
|
make_dfa_model_node(width)
|
|
int width;
|
|
#endif
|
|
{
|
|
register int i;
|
|
dfa_model_node = (dfa_node*) malloc(sizeof(dfa_node)
|
|
+ sizeof(int)*width);
|
|
dfa_model_node->node_no = -1; /* impossible value for real dfa node */
|
|
dfa_model_node->dfa_set = 0;
|
|
dfa_model_node->alternatives = FALSE;
|
|
dfa_model_node->done = FALSE;
|
|
dfa_model_node->nfa_states = empty;
|
|
for(i = 0; i<width; i++){
|
|
dfa_model_node->trans[i] = NIL_INDEX;
|
|
}
|
|
}
|
|
|
|
|
|
/* adds a new nfa to the binary tree and returns a pointer to it */
|
|
dfa_node *
|
|
#ifdef __USE_PROTOS
|
|
new_dfa_node(set nfa_states)
|
|
#else
|
|
new_dfa_node(nfa_states)
|
|
set nfa_states;
|
|
#endif
|
|
{
|
|
register int j;
|
|
register dfa_node *t;
|
|
static int dfa_size=0; /* elements dfa_array[] can hold */
|
|
|
|
++dfa_allocated;
|
|
if (dfa_size<=dfa_allocated){
|
|
/* need to redo array */
|
|
if (!dfa_array){
|
|
/* need some to do initial allocation */
|
|
dfa_size=dfa_allocated+DFA_MIN;
|
|
dfa_array=(dfa_node **) malloc(sizeof(dfa_node*)*
|
|
dfa_size);
|
|
}else{
|
|
/* need more space */
|
|
dfa_size=2*(dfa_allocated+1);
|
|
dfa_array=(dfa_node **) realloc(dfa_array,
|
|
sizeof(dfa_node*)*dfa_size);
|
|
}
|
|
}
|
|
/* fill out entry in array */
|
|
t = (dfa_node*) malloc(sizeof(nfa_node)+sizeof(int)*class_no);
|
|
*t = *dfa_model_node;
|
|
for (j=0; j<class_no; ++j)
|
|
t->trans[j] = NIL_INDEX;
|
|
t->node_no = dfa_allocated;
|
|
t->nfa_states = set_dup(nfa_states);
|
|
dfa_array[dfa_allocated] = t;
|
|
return t;
|
|
}
|
|
|
|
|
|
/* past a pointer to the start of the nfa graph
|
|
* nfa_to_dfa convers this graph to dfa. The function returns
|
|
* a pointer to the first dfa state.
|
|
* NOTE: The function that prints out the table will have to figure out how
|
|
* to find the other dfa states given the first dfa_state and the number of dfa
|
|
* nodes allocated
|
|
*/
|
|
dfa_node **
|
|
#ifdef __USE_PROTOS
|
|
nfa_to_dfa(nfa_node *start)
|
|
#else
|
|
nfa_to_dfa(start)
|
|
nfa_node *start;
|
|
#endif
|
|
{
|
|
register dfa_node *d_state, *trans_d_state;
|
|
register int a;
|
|
set t;
|
|
int last_done;
|
|
unsigned *nfa_list;
|
|
unsigned *reach_list;
|
|
|
|
reach_list = (unsigned *) malloc((2+nfa_allocated)*sizeof(unsigned));
|
|
if (!start) return NULL;
|
|
t = set_of(NFA_NO(start));
|
|
_set_pdq(t,reach_list);
|
|
closure(&t,reach_list);
|
|
/* Make t a dfa state */
|
|
d_state = dfastate(t);
|
|
last_done = DFA_NO(d_state);
|
|
|
|
do {
|
|
/* Mark dfa state x as "done" */
|
|
d_state->done = TRUE;
|
|
nfa_list = set_pdq(d_state->nfa_states);
|
|
for (a = 0; a<class_no; ++a) {
|
|
/* Add NFA states reached by a from d_state */
|
|
reach(nfa_list,a,reach_list);
|
|
/* Were any states found? */
|
|
if ((*reach_list)!=nil) {
|
|
/* was t=empty; */
|
|
set_free(t);
|
|
/* yes, compute closure */
|
|
closure(&t,reach_list);
|
|
/* Make DFA state of it ... */
|
|
trans_d_state = dfastate(t);
|
|
/* And make transition x->t, labeled with a */
|
|
d_state->trans[a] = DFA_NO(trans_d_state);
|
|
d_state->alternatives = TRUE;
|
|
}
|
|
}
|
|
free(nfa_list);
|
|
++last_done; /* move forward in queue */
|
|
/* And so forth until nothing isn't done */
|
|
d_state = DFA(last_done);
|
|
} while (last_done<=dfa_allocated);
|
|
|
|
free(reach_list);
|
|
set_free(t);
|
|
|
|
/* returns pointer to the array that holds the automaton */
|
|
return dfa_array;
|
|
}
|
|
|
|
void
|
|
#ifdef __USE_PROTOS
|
|
clear_hash(void)
|
|
#else
|
|
clear_hash()
|
|
#endif
|
|
{
|
|
register int i;
|
|
|
|
for(i=0; i<HASH_SIZE; ++i)
|
|
dfa_hash[i] = 0;
|
|
}
|
|
|
|
#if HASH_STAT
|
|
void
|
|
#ifdef __USE_PROTOS
|
|
fprint_hash_stats(FILE *f)
|
|
#else
|
|
fprint_hash_stats(f)
|
|
FILE *f;
|
|
#endif
|
|
{
|
|
register hash_list *p;
|
|
register int i,j;
|
|
register total;
|
|
|
|
total=0;
|
|
for(i=0; i<HASH_SIZE; ++i){
|
|
j=0;
|
|
p = dfa_hash[i];
|
|
while(p){
|
|
++j;
|
|
p = p->next;
|
|
}
|
|
total+=j;
|
|
fprintf(f,"bin[%d] has %d\n",i,j);
|
|
}
|
|
fprintf(f,"total = %d\n",total);
|
|
}
|
|
#endif
|
|
|
|
/* Returns a pointer to a dfa node that has the same nfa nodes in it.
|
|
* This may or may not be a newly created node.
|
|
*/
|
|
dfa_node *
|
|
#ifdef __USE_PROTOS
|
|
dfastate(set nfa_states)
|
|
#else
|
|
dfastate(nfa_states)
|
|
set nfa_states;
|
|
#endif
|
|
{
|
|
register hash_list *p;
|
|
int bin;
|
|
|
|
/* hash using set and see if it exists */
|
|
bin = set_hash(nfa_states,HASH_SIZE);
|
|
p = dfa_hash[bin];
|
|
while(p && !set_equ(nfa_states,(p->node)->nfa_states)){
|
|
p = p->next;
|
|
}
|
|
if(!p){
|
|
/* next state to add to hash table */
|
|
p = (hash_list*)malloc(sizeof(hash_list));
|
|
p->node = new_dfa_node(nfa_states);
|
|
p->next = dfa_hash[bin];
|
|
dfa_hash[bin] = p;
|
|
}
|
|
return (p->node);
|
|
}
|
|
|
|
|
|
/* this reach assumes the closure has been done already on set */
|
|
int
|
|
#ifdef __USE_PROTOS
|
|
reach(unsigned *nfa_list, register int a, unsigned *reach_list)
|
|
#else
|
|
reach(nfa_list, a, reach_list)
|
|
unsigned *nfa_list;
|
|
register int a;
|
|
unsigned *reach_list;
|
|
#endif
|
|
{
|
|
register unsigned *e;
|
|
register nfa_node *node;
|
|
int t=0;
|
|
|
|
e = nfa_list;
|
|
if (e){
|
|
while (*e != nil){
|
|
node = NFA(*e);
|
|
if (set_el(a,node->label)){
|
|
t=1;
|
|
*reach_list=NFA_NO(node->trans[0]);
|
|
++reach_list;
|
|
}
|
|
++e;
|
|
}
|
|
}
|
|
*reach_list=nil;
|
|
return t;
|
|
}
|
|
|
|
/* finds all the nodes that can be reached by epsilon transitions
|
|
from the set of a nodes and returns puts them back in set b */
|
|
set
|
|
#ifdef __USE_PROTOS
|
|
closure(set *b, unsigned *reach_list)
|
|
#else
|
|
closure(b, reach_list)
|
|
set *b;
|
|
unsigned *reach_list;
|
|
#endif
|
|
{
|
|
register nfa_node *node,*n; /* current node being examined */
|
|
register unsigned *e;
|
|
|
|
++operation_no;
|
|
#if 0
|
|
t = e = set_pdq(*b);
|
|
#else
|
|
e=reach_list;
|
|
#endif
|
|
while (*e != nil){
|
|
node = NFA(*e);
|
|
set_orel(NFA_NO(node),b);
|
|
/* mark it done */
|
|
node->nfa_set = operation_no;
|
|
if ((n=node->trans[0]) != NIL_INDEX && set_nil(node->label) &&
|
|
(n->nfa_set != operation_no)){
|
|
/* put in b */
|
|
set_orel(NFA_NO(n),b);
|
|
close1(n,operation_no,b);
|
|
}
|
|
if ((n=node->trans[1]) != NIL_INDEX &&
|
|
(n->nfa_set != operation_no)){
|
|
/* put in b */
|
|
set_orel(NFA_NO(node->trans[1]),b);
|
|
close1(n,operation_no,b);
|
|
}
|
|
++e;
|
|
}
|
|
#if 0
|
|
free(t);
|
|
#endif
|
|
return *b;
|
|
}
|
|
|
|
#ifdef __USE_PROTOS
|
|
void close1(nfa_node *node, int o, set *b)
|
|
#else
|
|
void close1(node,o,b)
|
|
nfa_node *node;
|
|
int o; /* marker to avoid cycles */
|
|
set *b;
|
|
#endif
|
|
{
|
|
register nfa_node *n; /* current node being examined */
|
|
|
|
/* mark it done */
|
|
node->nfa_set = o;
|
|
if ((n=node->trans[0]) != NIL_INDEX && set_nil(node->label) &&
|
|
(n->nfa_set != o)){
|
|
/* put in b */
|
|
set_orel(NFA_NO(n),b);
|
|
close1(n,o,b);
|
|
}
|
|
if ((n=node->trans[1]) != NIL_INDEX &&
|
|
(n->nfa_set != o)){
|
|
/* put in b */
|
|
set_orel(NFA_NO(node->trans[1]),b);
|
|
close1(n,o,b);
|
|
}
|
|
}
|