mirror of
https://github.com/CloverHackyColor/CloverBootloader.git
synced 2025-01-03 18:07:41 +01:00
7c0aa811ec
Signed-off-by: Sergey Isakov <isakov-sl@bk.ru>
430 lines
11 KiB
Prolog
430 lines
11 KiB
Prolog
#!/usr/bin/env perl
|
||
#
|
||
# ====================================================================
|
||
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
|
||
# project. The module is, however, dual licensed under OpenSSL and
|
||
# CRYPTOGAMS licenses depending on where you obtain it. For further
|
||
# details see http://www.openssl.org/~appro/cryptogams/.
|
||
# ====================================================================
|
||
#
|
||
# April 2010
|
||
#
|
||
# The module implements "4-bit" GCM GHASH function and underlying
|
||
# single multiplication operation in GF(2^128). "4-bit" means that it
|
||
# uses 256 bytes per-key table [+32 bytes shared table]. There is no
|
||
# experimental performance data available yet. The only approximation
|
||
# that can be made at this point is based on code size. Inner loop is
|
||
# 32 instructions long and on single-issue core should execute in <40
|
||
# cycles. Having verified that gcc 3.4 didn't unroll corresponding
|
||
# loop, this assembler loop body was found to be ~3x smaller than
|
||
# compiler-generated one...
|
||
#
|
||
# July 2010
|
||
#
|
||
# Rescheduling for dual-issue pipeline resulted in 8.5% improvement on
|
||
# Cortex A8 core and ~25 cycles per processed byte (which was observed
|
||
# to be ~3 times faster than gcc-generated code:-)
|
||
#
|
||
# February 2011
|
||
#
|
||
# Profiler-assisted and platform-specific optimization resulted in 7%
|
||
# improvement on Cortex A8 core and ~23.5 cycles per byte.
|
||
#
|
||
# March 2011
|
||
#
|
||
# Add NEON implementation featuring polynomial multiplication, i.e. no
|
||
# lookup tables involved. On Cortex A8 it was measured to process one
|
||
# byte in 15 cycles or 55% faster than integer-only code.
|
||
|
||
# ====================================================================
|
||
# Note about "528B" variant. In ARM case it makes lesser sense to
|
||
# implement it for following reasons:
|
||
#
|
||
# - performance improvement won't be anywhere near 50%, because 128-
|
||
# bit shift operation is neatly fused with 128-bit xor here, and
|
||
# "538B" variant would eliminate only 4-5 instructions out of 32
|
||
# in the inner loop (meaning that estimated improvement is ~15%);
|
||
# - ARM-based systems are often embedded ones and extra memory
|
||
# consumption might be unappreciated (for so little improvement);
|
||
#
|
||
# Byte order [in]dependence. =========================================
|
||
#
|
||
# Caller is expected to maintain specific *dword* order in Htable,
|
||
# namely with *least* significant dword of 128-bit value at *lower*
|
||
# address. This differs completely from C code and has everything to
|
||
# do with ldm instruction and order in which dwords are "consumed" by
|
||
# algorithm. *Byte* order within these dwords in turn is whatever
|
||
# *native* byte order on current platform. See gcm128.c for working
|
||
# example...
|
||
|
||
while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {}
|
||
open STDOUT,">$output";
|
||
|
||
$Xi="r0"; # argument block
|
||
$Htbl="r1";
|
||
$inp="r2";
|
||
$len="r3";
|
||
|
||
$Zll="r4"; # variables
|
||
$Zlh="r5";
|
||
$Zhl="r6";
|
||
$Zhh="r7";
|
||
$Tll="r8";
|
||
$Tlh="r9";
|
||
$Thl="r10";
|
||
$Thh="r11";
|
||
$nlo="r12";
|
||
################# r13 is stack pointer
|
||
$nhi="r14";
|
||
################# r15 is program counter
|
||
|
||
$rem_4bit=$inp; # used in gcm_gmult_4bit
|
||
$cnt=$len;
|
||
|
||
sub Zsmash() {
|
||
my $i=12;
|
||
my @args=@_;
|
||
for ($Zll,$Zlh,$Zhl,$Zhh) {
|
||
$code.=<<___;
|
||
#if __ARM_ARCH__>=7 && defined(__ARMEL__)
|
||
rev $_,$_
|
||
str $_,[$Xi,#$i]
|
||
#elif defined(__ARMEB__)
|
||
str $_,[$Xi,#$i]
|
||
#else
|
||
mov $Tlh,$_,lsr#8
|
||
strb $_,[$Xi,#$i+3]
|
||
mov $Thl,$_,lsr#16
|
||
strb $Tlh,[$Xi,#$i+2]
|
||
mov $Thh,$_,lsr#24
|
||
strb $Thl,[$Xi,#$i+1]
|
||
strb $Thh,[$Xi,#$i]
|
||
#endif
|
||
___
|
||
$code.="\t".shift(@args)."\n";
|
||
$i-=4;
|
||
}
|
||
}
|
||
|
||
$code=<<___;
|
||
#include "arm_arch.h"
|
||
|
||
.text
|
||
.code 32
|
||
|
||
.type rem_4bit,%object
|
||
.align 5
|
||
rem_4bit:
|
||
.short 0x0000,0x1C20,0x3840,0x2460
|
||
.short 0x7080,0x6CA0,0x48C0,0x54E0
|
||
.short 0xE100,0xFD20,0xD940,0xC560
|
||
.short 0x9180,0x8DA0,0xA9C0,0xB5E0
|
||
.size rem_4bit,.-rem_4bit
|
||
|
||
.type rem_4bit_get,%function
|
||
rem_4bit_get:
|
||
sub $rem_4bit,pc,#8
|
||
sub $rem_4bit,$rem_4bit,#32 @ &rem_4bit
|
||
b .Lrem_4bit_got
|
||
nop
|
||
.size rem_4bit_get,.-rem_4bit_get
|
||
|
||
.global gcm_ghash_4bit
|
||
.type gcm_ghash_4bit,%function
|
||
gcm_ghash_4bit:
|
||
sub r12,pc,#8
|
||
add $len,$inp,$len @ $len to point at the end
|
||
stmdb sp!,{r3-r11,lr} @ save $len/end too
|
||
sub r12,r12,#48 @ &rem_4bit
|
||
|
||
ldmia r12,{r4-r11} @ copy rem_4bit ...
|
||
stmdb sp!,{r4-r11} @ ... to stack
|
||
|
||
ldrb $nlo,[$inp,#15]
|
||
ldrb $nhi,[$Xi,#15]
|
||
.Louter:
|
||
eor $nlo,$nlo,$nhi
|
||
and $nhi,$nlo,#0xf0
|
||
and $nlo,$nlo,#0x0f
|
||
mov $cnt,#14
|
||
|
||
add $Zhh,$Htbl,$nlo,lsl#4
|
||
ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo]
|
||
add $Thh,$Htbl,$nhi
|
||
ldrb $nlo,[$inp,#14]
|
||
|
||
and $nhi,$Zll,#0xf @ rem
|
||
ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
|
||
add $nhi,$nhi,$nhi
|
||
eor $Zll,$Tll,$Zll,lsr#4
|
||
ldrh $Tll,[sp,$nhi] @ rem_4bit[rem]
|
||
eor $Zll,$Zll,$Zlh,lsl#28
|
||
ldrb $nhi,[$Xi,#14]
|
||
eor $Zlh,$Tlh,$Zlh,lsr#4
|
||
eor $Zlh,$Zlh,$Zhl,lsl#28
|
||
eor $Zhl,$Thl,$Zhl,lsr#4
|
||
eor $Zhl,$Zhl,$Zhh,lsl#28
|
||
eor $Zhh,$Thh,$Zhh,lsr#4
|
||
eor $nlo,$nlo,$nhi
|
||
and $nhi,$nlo,#0xf0
|
||
and $nlo,$nlo,#0x0f
|
||
eor $Zhh,$Zhh,$Tll,lsl#16
|
||
|
||
.Linner:
|
||
add $Thh,$Htbl,$nlo,lsl#4
|
||
and $nlo,$Zll,#0xf @ rem
|
||
subs $cnt,$cnt,#1
|
||
add $nlo,$nlo,$nlo
|
||
ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo]
|
||
eor $Zll,$Tll,$Zll,lsr#4
|
||
eor $Zll,$Zll,$Zlh,lsl#28
|
||
eor $Zlh,$Tlh,$Zlh,lsr#4
|
||
eor $Zlh,$Zlh,$Zhl,lsl#28
|
||
ldrh $Tll,[sp,$nlo] @ rem_4bit[rem]
|
||
eor $Zhl,$Thl,$Zhl,lsr#4
|
||
ldrplb $nlo,[$inp,$cnt]
|
||
eor $Zhl,$Zhl,$Zhh,lsl#28
|
||
eor $Zhh,$Thh,$Zhh,lsr#4
|
||
|
||
add $Thh,$Htbl,$nhi
|
||
and $nhi,$Zll,#0xf @ rem
|
||
eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
|
||
add $nhi,$nhi,$nhi
|
||
ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
|
||
eor $Zll,$Tll,$Zll,lsr#4
|
||
ldrplb $Tll,[$Xi,$cnt]
|
||
eor $Zll,$Zll,$Zlh,lsl#28
|
||
eor $Zlh,$Tlh,$Zlh,lsr#4
|
||
ldrh $Tlh,[sp,$nhi]
|
||
eor $Zlh,$Zlh,$Zhl,lsl#28
|
||
eor $Zhl,$Thl,$Zhl,lsr#4
|
||
eor $Zhl,$Zhl,$Zhh,lsl#28
|
||
eorpl $nlo,$nlo,$Tll
|
||
eor $Zhh,$Thh,$Zhh,lsr#4
|
||
andpl $nhi,$nlo,#0xf0
|
||
andpl $nlo,$nlo,#0x0f
|
||
eor $Zhh,$Zhh,$Tlh,lsl#16 @ ^= rem_4bit[rem]
|
||
bpl .Linner
|
||
|
||
ldr $len,[sp,#32] @ re-load $len/end
|
||
add $inp,$inp,#16
|
||
mov $nhi,$Zll
|
||
___
|
||
&Zsmash("cmp\t$inp,$len","ldrneb\t$nlo,[$inp,#15]");
|
||
$code.=<<___;
|
||
bne .Louter
|
||
|
||
add sp,sp,#36
|
||
#if __ARM_ARCH__>=5
|
||
ldmia sp!,{r4-r11,pc}
|
||
#else
|
||
ldmia sp!,{r4-r11,lr}
|
||
tst lr,#1
|
||
moveq pc,lr @ be binary compatible with V4, yet
|
||
bx lr @ interoperable with Thumb ISA:-)
|
||
#endif
|
||
.size gcm_ghash_4bit,.-gcm_ghash_4bit
|
||
|
||
.global gcm_gmult_4bit
|
||
.type gcm_gmult_4bit,%function
|
||
gcm_gmult_4bit:
|
||
stmdb sp!,{r4-r11,lr}
|
||
ldrb $nlo,[$Xi,#15]
|
||
b rem_4bit_get
|
||
.Lrem_4bit_got:
|
||
and $nhi,$nlo,#0xf0
|
||
and $nlo,$nlo,#0x0f
|
||
mov $cnt,#14
|
||
|
||
add $Zhh,$Htbl,$nlo,lsl#4
|
||
ldmia $Zhh,{$Zll-$Zhh} @ load Htbl[nlo]
|
||
ldrb $nlo,[$Xi,#14]
|
||
|
||
add $Thh,$Htbl,$nhi
|
||
and $nhi,$Zll,#0xf @ rem
|
||
ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
|
||
add $nhi,$nhi,$nhi
|
||
eor $Zll,$Tll,$Zll,lsr#4
|
||
ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem]
|
||
eor $Zll,$Zll,$Zlh,lsl#28
|
||
eor $Zlh,$Tlh,$Zlh,lsr#4
|
||
eor $Zlh,$Zlh,$Zhl,lsl#28
|
||
eor $Zhl,$Thl,$Zhl,lsr#4
|
||
eor $Zhl,$Zhl,$Zhh,lsl#28
|
||
eor $Zhh,$Thh,$Zhh,lsr#4
|
||
and $nhi,$nlo,#0xf0
|
||
eor $Zhh,$Zhh,$Tll,lsl#16
|
||
and $nlo,$nlo,#0x0f
|
||
|
||
.Loop:
|
||
add $Thh,$Htbl,$nlo,lsl#4
|
||
and $nlo,$Zll,#0xf @ rem
|
||
subs $cnt,$cnt,#1
|
||
add $nlo,$nlo,$nlo
|
||
ldmia $Thh,{$Tll-$Thh} @ load Htbl[nlo]
|
||
eor $Zll,$Tll,$Zll,lsr#4
|
||
eor $Zll,$Zll,$Zlh,lsl#28
|
||
eor $Zlh,$Tlh,$Zlh,lsr#4
|
||
eor $Zlh,$Zlh,$Zhl,lsl#28
|
||
ldrh $Tll,[$rem_4bit,$nlo] @ rem_4bit[rem]
|
||
eor $Zhl,$Thl,$Zhl,lsr#4
|
||
ldrplb $nlo,[$Xi,$cnt]
|
||
eor $Zhl,$Zhl,$Zhh,lsl#28
|
||
eor $Zhh,$Thh,$Zhh,lsr#4
|
||
|
||
add $Thh,$Htbl,$nhi
|
||
and $nhi,$Zll,#0xf @ rem
|
||
eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
|
||
add $nhi,$nhi,$nhi
|
||
ldmia $Thh,{$Tll-$Thh} @ load Htbl[nhi]
|
||
eor $Zll,$Tll,$Zll,lsr#4
|
||
eor $Zll,$Zll,$Zlh,lsl#28
|
||
eor $Zlh,$Tlh,$Zlh,lsr#4
|
||
ldrh $Tll,[$rem_4bit,$nhi] @ rem_4bit[rem]
|
||
eor $Zlh,$Zlh,$Zhl,lsl#28
|
||
eor $Zhl,$Thl,$Zhl,lsr#4
|
||
eor $Zhl,$Zhl,$Zhh,lsl#28
|
||
eor $Zhh,$Thh,$Zhh,lsr#4
|
||
andpl $nhi,$nlo,#0xf0
|
||
andpl $nlo,$nlo,#0x0f
|
||
eor $Zhh,$Zhh,$Tll,lsl#16 @ ^= rem_4bit[rem]
|
||
bpl .Loop
|
||
___
|
||
&Zsmash();
|
||
$code.=<<___;
|
||
#if __ARM_ARCH__>=5
|
||
ldmia sp!,{r4-r11,pc}
|
||
#else
|
||
ldmia sp!,{r4-r11,lr}
|
||
tst lr,#1
|
||
moveq pc,lr @ be binary compatible with V4, yet
|
||
bx lr @ interoperable with Thumb ISA:-)
|
||
#endif
|
||
.size gcm_gmult_4bit,.-gcm_gmult_4bit
|
||
___
|
||
{
|
||
my $cnt=$Htbl; # $Htbl is used once in the very beginning
|
||
|
||
my ($Hhi, $Hlo, $Zo, $T, $xi, $mod) = map("d$_",(0..7));
|
||
my ($Qhi, $Qlo, $Z, $R, $zero, $Qpost, $IN) = map("q$_",(8..15));
|
||
|
||
# Z:Zo keeps 128-bit result shifted by 1 to the right, with bottom bit
|
||
# in Zo. Or should I say "top bit", because GHASH is specified in
|
||
# reverse bit order? Otherwise straightforward 128-bt H by one input
|
||
# byte multiplication and modulo-reduction, times 16.
|
||
|
||
sub Dlo() { shift=~m|q([1]?[0-9])|?"d".($1*2):""; }
|
||
sub Dhi() { shift=~m|q([1]?[0-9])|?"d".($1*2+1):""; }
|
||
sub Q() { shift=~m|d([1-3]?[02468])|?"q".($1/2):""; }
|
||
|
||
$code.=<<___;
|
||
#if __ARM_ARCH__>=7
|
||
.fpu neon
|
||
|
||
.global gcm_gmult_neon
|
||
.type gcm_gmult_neon,%function
|
||
.align 4
|
||
gcm_gmult_neon:
|
||
sub $Htbl,#16 @ point at H in GCM128_CTX
|
||
vld1.64 `&Dhi("$IN")`,[$Xi,:64]!@ load Xi
|
||
vmov.i32 $mod,#0xe1 @ our irreducible polynomial
|
||
vld1.64 `&Dlo("$IN")`,[$Xi,:64]!
|
||
vshr.u64 $mod,#32
|
||
vldmia $Htbl,{$Hhi-$Hlo} @ load H
|
||
veor $zero,$zero
|
||
#ifdef __ARMEL__
|
||
vrev64.8 $IN,$IN
|
||
#endif
|
||
veor $Qpost,$Qpost
|
||
veor $R,$R
|
||
mov $cnt,#16
|
||
veor $Z,$Z
|
||
mov $len,#16
|
||
veor $Zo,$Zo
|
||
vdup.8 $xi,`&Dlo("$IN")`[0] @ broadcast lowest byte
|
||
b .Linner_neon
|
||
.size gcm_gmult_neon,.-gcm_gmult_neon
|
||
|
||
.global gcm_ghash_neon
|
||
.type gcm_ghash_neon,%function
|
||
.align 4
|
||
gcm_ghash_neon:
|
||
vld1.64 `&Dhi("$Z")`,[$Xi,:64]! @ load Xi
|
||
vmov.i32 $mod,#0xe1 @ our irreducible polynomial
|
||
vld1.64 `&Dlo("$Z")`,[$Xi,:64]!
|
||
vshr.u64 $mod,#32
|
||
vldmia $Xi,{$Hhi-$Hlo} @ load H
|
||
veor $zero,$zero
|
||
nop
|
||
#ifdef __ARMEL__
|
||
vrev64.8 $Z,$Z
|
||
#endif
|
||
.Louter_neon:
|
||
vld1.64 `&Dhi($IN)`,[$inp]! @ load inp
|
||
veor $Qpost,$Qpost
|
||
vld1.64 `&Dlo($IN)`,[$inp]!
|
||
veor $R,$R
|
||
mov $cnt,#16
|
||
#ifdef __ARMEL__
|
||
vrev64.8 $IN,$IN
|
||
#endif
|
||
veor $Zo,$Zo
|
||
veor $IN,$Z @ inp^=Xi
|
||
veor $Z,$Z
|
||
vdup.8 $xi,`&Dlo("$IN")`[0] @ broadcast lowest byte
|
||
.Linner_neon:
|
||
subs $cnt,$cnt,#1
|
||
vmull.p8 $Qlo,$Hlo,$xi @ H.lo<6C>Xi[i]
|
||
vmull.p8 $Qhi,$Hhi,$xi @ H.hi<68>Xi[i]
|
||
vext.8 $IN,$zero,#1 @ IN>>=8
|
||
|
||
veor $Z,$Qpost @ modulo-scheduled part
|
||
vshl.i64 `&Dlo("$R")`,#48
|
||
vdup.8 $xi,`&Dlo("$IN")`[0] @ broadcast lowest byte
|
||
veor $T,`&Dlo("$Qlo")`,`&Dlo("$Z")`
|
||
|
||
veor `&Dhi("$Z")`,`&Dlo("$R")`
|
||
vuzp.8 $Qlo,$Qhi
|
||
vsli.8 $Zo,$T,#1 @ compose the "carry" byte
|
||
vext.8 $Z,$zero,#1 @ Z>>=8
|
||
|
||
vmull.p8 $R,$Zo,$mod @ "carry"<22>0xe1
|
||
vshr.u8 $Zo,$T,#7 @ save Z's bottom bit
|
||
vext.8 $Qpost,$Qlo,$zero,#1 @ Qlo>>=8
|
||
veor $Z,$Qhi
|
||
bne .Linner_neon
|
||
|
||
veor $Z,$Qpost @ modulo-scheduled artefact
|
||
vshl.i64 `&Dlo("$R")`,#48
|
||
veor `&Dhi("$Z")`,`&Dlo("$R")`
|
||
|
||
@ finalization, normalize Z:Zo
|
||
vand $Zo,$mod @ suffices to mask the bit
|
||
vshr.u64 `&Dhi(&Q("$Zo"))`,`&Dlo("$Z")`,#63
|
||
vshl.i64 $Z,#1
|
||
subs $len,#16
|
||
vorr $Z,`&Q("$Zo")` @ Z=Z:Zo<<1
|
||
bne .Louter_neon
|
||
|
||
#ifdef __ARMEL__
|
||
vrev64.8 $Z,$Z
|
||
#endif
|
||
sub $Xi,#16
|
||
vst1.64 `&Dhi("$Z")`,[$Xi,:64]! @ write out Xi
|
||
vst1.64 `&Dlo("$Z")`,[$Xi,:64]
|
||
|
||
bx lr
|
||
.size gcm_ghash_neon,.-gcm_ghash_neon
|
||
#endif
|
||
___
|
||
}
|
||
$code.=<<___;
|
||
.asciz "GHASH for ARMv4/NEON, CRYPTOGAMS by <appro\@openssl.org>"
|
||
.align 2
|
||
___
|
||
|
||
$code =~ s/\`([^\`]*)\`/eval $1/gem;
|
||
$code =~ s/\bbx\s+lr\b/.word\t0xe12fff1e/gm; # make it possible to compile with -march=armv4
|
||
print $code;
|
||
close STDOUT; # enforce flush
|