mirror of
https://github.com/CloverHackyColor/CloverBootloader.git
synced 2024-12-24 16:27:42 +01:00
b1264ef1e3
Signed-off-by: Sergey Isakov <isakov-sl@bk.ru>
502 lines
15 KiB
C
Executable File
502 lines
15 KiB
C
Executable File
/* Copyright 2010 Google Inc. All Rights Reserved.
|
|
|
|
Distributed under MIT license.
|
|
See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
|
|
*/
|
|
|
|
/* Entropy encoding (Huffman) utilities. */
|
|
|
|
#include "./entropy_encode.h"
|
|
|
|
#include <string.h> /* memset */
|
|
|
|
#include "../common/constants.h"
|
|
#include "../common/platform.h"
|
|
#include <brotli/types.h>
|
|
|
|
#if defined(__cplusplus) || defined(c_plusplus)
|
|
extern "C" {
|
|
#endif
|
|
|
|
BROTLI_BOOL BrotliSetDepth(
|
|
int p0, HuffmanTree* pool, uint8_t* depth, int max_depth) {
|
|
int stack[16];
|
|
int level = 0;
|
|
int p = p0;
|
|
BROTLI_DCHECK(max_depth <= 15);
|
|
stack[0] = -1;
|
|
while (BROTLI_TRUE) {
|
|
if (pool[p].index_left_ >= 0) {
|
|
level++;
|
|
if (level > max_depth) return BROTLI_FALSE;
|
|
stack[level] = pool[p].index_right_or_value_;
|
|
p = pool[p].index_left_;
|
|
continue;
|
|
} else {
|
|
depth[pool[p].index_right_or_value_] = (uint8_t)level;
|
|
}
|
|
while (level >= 0 && stack[level] == -1) level--;
|
|
if (level < 0) return BROTLI_TRUE;
|
|
p = stack[level];
|
|
stack[level] = -1;
|
|
}
|
|
}
|
|
|
|
/* Sort the root nodes, least popular first. */
|
|
static BROTLI_INLINE BROTLI_BOOL SortHuffmanTree(
|
|
const HuffmanTree* v0, const HuffmanTree* v1) {
|
|
if (v0->total_count_ != v1->total_count_) {
|
|
return TO_BROTLI_BOOL(v0->total_count_ < v1->total_count_);
|
|
}
|
|
return TO_BROTLI_BOOL(v0->index_right_or_value_ > v1->index_right_or_value_);
|
|
}
|
|
|
|
/* This function will create a Huffman tree.
|
|
|
|
The catch here is that the tree cannot be arbitrarily deep.
|
|
Brotli specifies a maximum depth of 15 bits for "code trees"
|
|
and 7 bits for "code length code trees."
|
|
|
|
count_limit is the value that is to be faked as the minimum value
|
|
and this minimum value is raised until the tree matches the
|
|
maximum length requirement.
|
|
|
|
This algorithm is not of excellent performance for very long data blocks,
|
|
especially when population counts are longer than 2**tree_limit, but
|
|
we are not planning to use this with extremely long blocks.
|
|
|
|
See http://en.wikipedia.org/wiki/Huffman_coding */
|
|
void BrotliCreateHuffmanTree(const uint32_t* data,
|
|
const size_t length,
|
|
const int tree_limit,
|
|
HuffmanTree* tree,
|
|
uint8_t* depth) {
|
|
uint32_t count_limit;
|
|
HuffmanTree sentinel;
|
|
InitHuffmanTree(&sentinel, BROTLI_UINT32_MAX, -1, -1);
|
|
/* For block sizes below 64 kB, we never need to do a second iteration
|
|
of this loop. Probably all of our block sizes will be smaller than
|
|
that, so this loop is mostly of academic interest. If we actually
|
|
would need this, we would be better off with the Katajainen algorithm. */
|
|
for (count_limit = 1; ; count_limit *= 2) {
|
|
size_t n = 0;
|
|
size_t i;
|
|
size_t j;
|
|
size_t k;
|
|
for (i = length; i != 0;) {
|
|
--i;
|
|
if (data[i]) {
|
|
const uint32_t count = BROTLI_MAX(uint32_t, data[i], count_limit);
|
|
InitHuffmanTree(&tree[n++], count, -1, (int16_t)i);
|
|
}
|
|
}
|
|
|
|
if (n == 1) {
|
|
depth[tree[0].index_right_or_value_] = 1; /* Only one element. */
|
|
break;
|
|
}
|
|
|
|
SortHuffmanTreeItems(tree, n, SortHuffmanTree);
|
|
|
|
/* The nodes are:
|
|
[0, n): the sorted leaf nodes that we start with.
|
|
[n]: we add a sentinel here.
|
|
[n + 1, 2n): new parent nodes are added here, starting from
|
|
(n+1). These are naturally in ascending order.
|
|
[2n]: we add a sentinel at the end as well.
|
|
There will be (2n+1) elements at the end. */
|
|
tree[n] = sentinel;
|
|
tree[n + 1] = sentinel;
|
|
|
|
i = 0; /* Points to the next leaf node. */
|
|
j = n + 1; /* Points to the next non-leaf node. */
|
|
for (k = n - 1; k != 0; --k) {
|
|
size_t left, right;
|
|
if (tree[i].total_count_ <= tree[j].total_count_) {
|
|
left = i;
|
|
++i;
|
|
} else {
|
|
left = j;
|
|
++j;
|
|
}
|
|
if (tree[i].total_count_ <= tree[j].total_count_) {
|
|
right = i;
|
|
++i;
|
|
} else {
|
|
right = j;
|
|
++j;
|
|
}
|
|
|
|
{
|
|
/* The sentinel node becomes the parent node. */
|
|
size_t j_end = 2 * n - k;
|
|
tree[j_end].total_count_ =
|
|
tree[left].total_count_ + tree[right].total_count_;
|
|
tree[j_end].index_left_ = (int16_t)left;
|
|
tree[j_end].index_right_or_value_ = (int16_t)right;
|
|
|
|
/* Add back the last sentinel node. */
|
|
tree[j_end + 1] = sentinel;
|
|
}
|
|
}
|
|
if (BrotliSetDepth((int)(2 * n - 1), &tree[0], depth, tree_limit)) {
|
|
/* We need to pack the Huffman tree in tree_limit bits. If this was not
|
|
successful, add fake entities to the lowest values and retry. */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void Reverse(uint8_t* v, size_t start, size_t end) {
|
|
--end;
|
|
while (start < end) {
|
|
uint8_t tmp = v[start];
|
|
v[start] = v[end];
|
|
v[end] = tmp;
|
|
++start;
|
|
--end;
|
|
}
|
|
}
|
|
|
|
static void BrotliWriteHuffmanTreeRepetitions(
|
|
const uint8_t previous_value,
|
|
const uint8_t value,
|
|
size_t repetitions,
|
|
size_t* tree_size,
|
|
uint8_t* tree,
|
|
uint8_t* extra_bits_data) {
|
|
BROTLI_DCHECK(repetitions > 0);
|
|
if (previous_value != value) {
|
|
tree[*tree_size] = value;
|
|
extra_bits_data[*tree_size] = 0;
|
|
++(*tree_size);
|
|
--repetitions;
|
|
}
|
|
if (repetitions == 7) {
|
|
tree[*tree_size] = value;
|
|
extra_bits_data[*tree_size] = 0;
|
|
++(*tree_size);
|
|
--repetitions;
|
|
}
|
|
if (repetitions < 3) {
|
|
size_t i;
|
|
for (i = 0; i < repetitions; ++i) {
|
|
tree[*tree_size] = value;
|
|
extra_bits_data[*tree_size] = 0;
|
|
++(*tree_size);
|
|
}
|
|
} else {
|
|
size_t start = *tree_size;
|
|
repetitions -= 3;
|
|
while (BROTLI_TRUE) {
|
|
tree[*tree_size] = BROTLI_REPEAT_PREVIOUS_CODE_LENGTH;
|
|
extra_bits_data[*tree_size] = repetitions & 0x3;
|
|
++(*tree_size);
|
|
repetitions >>= 2;
|
|
if (repetitions == 0) {
|
|
break;
|
|
}
|
|
--repetitions;
|
|
}
|
|
Reverse(tree, start, *tree_size);
|
|
Reverse(extra_bits_data, start, *tree_size);
|
|
}
|
|
}
|
|
|
|
static void BrotliWriteHuffmanTreeRepetitionsZeros(
|
|
size_t repetitions,
|
|
size_t* tree_size,
|
|
uint8_t* tree,
|
|
uint8_t* extra_bits_data) {
|
|
if (repetitions == 11) {
|
|
tree[*tree_size] = 0;
|
|
extra_bits_data[*tree_size] = 0;
|
|
++(*tree_size);
|
|
--repetitions;
|
|
}
|
|
if (repetitions < 3) {
|
|
size_t i;
|
|
for (i = 0; i < repetitions; ++i) {
|
|
tree[*tree_size] = 0;
|
|
extra_bits_data[*tree_size] = 0;
|
|
++(*tree_size);
|
|
}
|
|
} else {
|
|
size_t start = *tree_size;
|
|
repetitions -= 3;
|
|
while (BROTLI_TRUE) {
|
|
tree[*tree_size] = BROTLI_REPEAT_ZERO_CODE_LENGTH;
|
|
extra_bits_data[*tree_size] = repetitions & 0x7;
|
|
++(*tree_size);
|
|
repetitions >>= 3;
|
|
if (repetitions == 0) {
|
|
break;
|
|
}
|
|
--repetitions;
|
|
}
|
|
Reverse(tree, start, *tree_size);
|
|
Reverse(extra_bits_data, start, *tree_size);
|
|
}
|
|
}
|
|
|
|
void BrotliOptimizeHuffmanCountsForRle(size_t length, uint32_t* counts,
|
|
uint8_t* good_for_rle) {
|
|
size_t nonzero_count = 0;
|
|
size_t stride;
|
|
size_t limit;
|
|
size_t sum;
|
|
const size_t streak_limit = 1240;
|
|
/* Let's make the Huffman code more compatible with RLE encoding. */
|
|
size_t i;
|
|
for (i = 0; i < length; i++) {
|
|
if (counts[i]) {
|
|
++nonzero_count;
|
|
}
|
|
}
|
|
if (nonzero_count < 16) {
|
|
return;
|
|
}
|
|
while (length != 0 && counts[length - 1] == 0) {
|
|
--length;
|
|
}
|
|
if (length == 0) {
|
|
return; /* All zeros. */
|
|
}
|
|
/* Now counts[0..length - 1] does not have trailing zeros. */
|
|
{
|
|
size_t nonzeros = 0;
|
|
uint32_t smallest_nonzero = 1 << 30;
|
|
for (i = 0; i < length; ++i) {
|
|
if (counts[i] != 0) {
|
|
++nonzeros;
|
|
if (smallest_nonzero > counts[i]) {
|
|
smallest_nonzero = counts[i];
|
|
}
|
|
}
|
|
}
|
|
if (nonzeros < 5) {
|
|
/* Small histogram will model it well. */
|
|
return;
|
|
}
|
|
if (smallest_nonzero < 4) {
|
|
size_t zeros = length - nonzeros;
|
|
if (zeros < 6) {
|
|
for (i = 1; i < length - 1; ++i) {
|
|
if (counts[i - 1] != 0 && counts[i] == 0 && counts[i + 1] != 0) {
|
|
counts[i] = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (nonzeros < 28) {
|
|
return;
|
|
}
|
|
}
|
|
/* 2) Let's mark all population counts that already can be encoded
|
|
with an RLE code. */
|
|
memset(good_for_rle, 0, length);
|
|
{
|
|
/* Let's not spoil any of the existing good RLE codes.
|
|
Mark any seq of 0's that is longer as 5 as a good_for_rle.
|
|
Mark any seq of non-0's that is longer as 7 as a good_for_rle. */
|
|
uint32_t symbol = counts[0];
|
|
size_t step = 0;
|
|
for (i = 0; i <= length; ++i) {
|
|
if (i == length || counts[i] != symbol) {
|
|
if ((symbol == 0 && step >= 5) ||
|
|
(symbol != 0 && step >= 7)) {
|
|
size_t k;
|
|
for (k = 0; k < step; ++k) {
|
|
good_for_rle[i - k - 1] = 1;
|
|
}
|
|
}
|
|
step = 1;
|
|
if (i != length) {
|
|
symbol = counts[i];
|
|
}
|
|
} else {
|
|
++step;
|
|
}
|
|
}
|
|
}
|
|
/* 3) Let's replace those population counts that lead to more RLE codes.
|
|
Math here is in 24.8 fixed point representation. */
|
|
stride = 0;
|
|
limit = 256 * (counts[0] + counts[1] + counts[2]) / 3 + 420;
|
|
sum = 0;
|
|
for (i = 0; i <= length; ++i) {
|
|
if (i == length || good_for_rle[i] ||
|
|
(i != 0 && good_for_rle[i - 1]) ||
|
|
(256 * counts[i] - limit + streak_limit) >= 2 * streak_limit) {
|
|
if (stride >= 4 || (stride >= 3 && sum == 0)) {
|
|
size_t k;
|
|
/* The stride must end, collapse what we have, if we have enough (4). */
|
|
size_t count = (sum + stride / 2) / stride;
|
|
if (count == 0) {
|
|
count = 1;
|
|
}
|
|
if (sum == 0) {
|
|
/* Don't make an all zeros stride to be upgraded to ones. */
|
|
count = 0;
|
|
}
|
|
for (k = 0; k < stride; ++k) {
|
|
/* We don't want to change value at counts[i],
|
|
that is already belonging to the next stride. Thus - 1. */
|
|
counts[i - k - 1] = (uint32_t)count;
|
|
}
|
|
}
|
|
stride = 0;
|
|
sum = 0;
|
|
if (i < length - 2) {
|
|
/* All interesting strides have a count of at least 4, */
|
|
/* at least when non-zeros. */
|
|
limit = 256 * (counts[i] + counts[i + 1] + counts[i + 2]) / 3 + 420;
|
|
} else if (i < length) {
|
|
limit = 256 * counts[i];
|
|
} else {
|
|
limit = 0;
|
|
}
|
|
}
|
|
++stride;
|
|
if (i != length) {
|
|
sum += counts[i];
|
|
if (stride >= 4) {
|
|
limit = (256 * sum + stride / 2) / stride;
|
|
}
|
|
if (stride == 4) {
|
|
limit += 120;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void DecideOverRleUse(const uint8_t* depth, const size_t length,
|
|
BROTLI_BOOL* use_rle_for_non_zero,
|
|
BROTLI_BOOL* use_rle_for_zero) {
|
|
size_t total_reps_zero = 0;
|
|
size_t total_reps_non_zero = 0;
|
|
size_t count_reps_zero = 1;
|
|
size_t count_reps_non_zero = 1;
|
|
size_t i;
|
|
for (i = 0; i < length;) {
|
|
const uint8_t value = depth[i];
|
|
size_t reps = 1;
|
|
size_t k;
|
|
for (k = i + 1; k < length && depth[k] == value; ++k) {
|
|
++reps;
|
|
}
|
|
if (reps >= 3 && value == 0) {
|
|
total_reps_zero += reps;
|
|
++count_reps_zero;
|
|
}
|
|
if (reps >= 4 && value != 0) {
|
|
total_reps_non_zero += reps;
|
|
++count_reps_non_zero;
|
|
}
|
|
i += reps;
|
|
}
|
|
*use_rle_for_non_zero =
|
|
TO_BROTLI_BOOL(total_reps_non_zero > count_reps_non_zero * 2);
|
|
*use_rle_for_zero = TO_BROTLI_BOOL(total_reps_zero > count_reps_zero * 2);
|
|
}
|
|
|
|
void BrotliWriteHuffmanTree(const uint8_t* depth,
|
|
size_t length,
|
|
size_t* tree_size,
|
|
uint8_t* tree,
|
|
uint8_t* extra_bits_data) {
|
|
uint8_t previous_value = BROTLI_INITIAL_REPEATED_CODE_LENGTH;
|
|
size_t i;
|
|
BROTLI_BOOL use_rle_for_non_zero = BROTLI_FALSE;
|
|
BROTLI_BOOL use_rle_for_zero = BROTLI_FALSE;
|
|
|
|
/* Throw away trailing zeros. */
|
|
size_t new_length = length;
|
|
for (i = 0; i < length; ++i) {
|
|
if (depth[length - i - 1] == 0) {
|
|
--new_length;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* First gather statistics on if it is a good idea to do RLE. */
|
|
if (length > 50) {
|
|
/* Find RLE coding for longer codes.
|
|
Shorter codes seem not to benefit from RLE. */
|
|
DecideOverRleUse(depth, new_length,
|
|
&use_rle_for_non_zero, &use_rle_for_zero);
|
|
}
|
|
|
|
/* Actual RLE coding. */
|
|
for (i = 0; i < new_length;) {
|
|
const uint8_t value = depth[i];
|
|
size_t reps = 1;
|
|
if ((value != 0 && use_rle_for_non_zero) ||
|
|
(value == 0 && use_rle_for_zero)) {
|
|
size_t k;
|
|
for (k = i + 1; k < new_length && depth[k] == value; ++k) {
|
|
++reps;
|
|
}
|
|
}
|
|
if (value == 0) {
|
|
BrotliWriteHuffmanTreeRepetitionsZeros(
|
|
reps, tree_size, tree, extra_bits_data);
|
|
} else {
|
|
BrotliWriteHuffmanTreeRepetitions(previous_value,
|
|
value, reps, tree_size,
|
|
tree, extra_bits_data);
|
|
previous_value = value;
|
|
}
|
|
i += reps;
|
|
}
|
|
}
|
|
|
|
static uint16_t BrotliReverseBits(size_t num_bits, uint16_t bits) {
|
|
static const size_t kLut[16] = { /* Pre-reversed 4-bit values. */
|
|
0x00, 0x08, 0x04, 0x0C, 0x02, 0x0A, 0x06, 0x0E,
|
|
0x01, 0x09, 0x05, 0x0D, 0x03, 0x0B, 0x07, 0x0F
|
|
};
|
|
size_t retval = kLut[bits & 0x0F];
|
|
size_t i;
|
|
for (i = 4; i < num_bits; i += 4) {
|
|
retval <<= 4;
|
|
bits = (uint16_t)(bits >> 4);
|
|
retval |= kLut[bits & 0x0F];
|
|
}
|
|
retval >>= ((0 - num_bits) & 0x03);
|
|
return (uint16_t)retval;
|
|
}
|
|
|
|
/* 0..15 are values for bits */
|
|
#define MAX_HUFFMAN_BITS 16
|
|
|
|
void BrotliConvertBitDepthsToSymbols(const uint8_t* depth,
|
|
size_t len,
|
|
uint16_t* bits) {
|
|
/* In Brotli, all bit depths are [1..15]
|
|
0 bit depth means that the symbol does not exist. */
|
|
uint16_t bl_count[MAX_HUFFMAN_BITS] = { 0 };
|
|
uint16_t next_code[MAX_HUFFMAN_BITS];
|
|
size_t i;
|
|
int code = 0;
|
|
for (i = 0; i < len; ++i) {
|
|
++bl_count[depth[i]];
|
|
}
|
|
bl_count[0] = 0;
|
|
next_code[0] = 0;
|
|
for (i = 1; i < MAX_HUFFMAN_BITS; ++i) {
|
|
code = (code + bl_count[i - 1]) << 1;
|
|
next_code[i] = (uint16_t)code;
|
|
}
|
|
for (i = 0; i < len; ++i) {
|
|
if (depth[i]) {
|
|
bits[i] = BrotliReverseBits(depth[i], next_code[depth[i]]++);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if defined(__cplusplus) || defined(c_plusplus)
|
|
} /* extern "C" */
|
|
#endif
|