CloverBootloader/MdeModulePkg/Bus/Pci/XhciPei/UsbHcMem.c
SergeySlice 01f33f7552 detect unknown linux versions,
stylish change: remove space between func and brace

Signed-off-by: SergeySlice <sergey.slice@gmail.com>
2020-04-23 12:08:10 +03:00

649 lines
16 KiB
C

/** @file
PEIM to produce gPeiUsb2HostControllerPpiGuid based on gPeiUsbControllerPpiGuid
which is used to enable recovery function from USB Drivers.
Copyright (c) 2014 - 2016, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "XhcPeim.h"
/**
Allocate a block of memory to be used by the buffer pool.
@param Pages How many pages to allocate.
@return Pointer to the allocated memory block or NULL if failed.
**/
USBHC_MEM_BLOCK *
UsbHcAllocMemBlock (
IN UINTN Pages
)
{
USBHC_MEM_BLOCK *Block;
VOID *BufHost;
VOID *Mapping;
EFI_PHYSICAL_ADDRESS MappedAddr;
EFI_STATUS Status;
UINTN PageNumber;
EFI_PHYSICAL_ADDRESS TempPtr;
PageNumber = EFI_SIZE_TO_PAGES (sizeof (USBHC_MEM_BLOCK));
Status = PeiServicesAllocatePages (
EfiBootServicesData,
PageNumber,
&TempPtr
);
if (EFI_ERROR(Status)) {
return NULL;
}
ZeroMem ((VOID *) (UINTN) TempPtr, EFI_PAGES_TO_SIZE (PageNumber));
//
// each bit in the bit array represents USBHC_MEM_UNIT
// bytes of memory in the memory block.
//
ASSERT (USBHC_MEM_UNIT * 8 <= EFI_PAGE_SIZE);
Block = (USBHC_MEM_BLOCK *) (UINTN) TempPtr;
Block->BufLen = EFI_PAGES_TO_SIZE (Pages);
Block->BitsLen = Block->BufLen / (USBHC_MEM_UNIT * 8);
PageNumber = EFI_SIZE_TO_PAGES (Block->BitsLen);
Status = PeiServicesAllocatePages (
EfiBootServicesData,
PageNumber,
&TempPtr
);
if (EFI_ERROR(Status)) {
return NULL;
}
ZeroMem ((VOID *) (UINTN) TempPtr, EFI_PAGES_TO_SIZE (PageNumber));
Block->Bits = (UINT8 *) (UINTN) TempPtr;
Status = IoMmuAllocateBuffer (
Pages,
&BufHost,
&MappedAddr,
&Mapping
);
if (EFI_ERROR(Status)) {
return NULL;
}
ZeroMem ((VOID *) (UINTN) BufHost, EFI_PAGES_TO_SIZE (Pages));
Block->BufHost = (UINT8 *) (UINTN) BufHost;
Block->Buf = (UINT8 *) (UINTN) MappedAddr;
Block->Mapping = Mapping;
Block->Next = NULL;
return Block;
}
/**
Free the memory block from the memory pool.
@param Pool The memory pool to free the block from.
@param Block The memory block to free.
**/
VOID
UsbHcFreeMemBlock (
IN USBHC_MEM_POOL *Pool,
IN USBHC_MEM_BLOCK *Block
)
{
ASSERT ((Pool != NULL) && (Block != NULL));
IoMmuFreeBuffer (EFI_SIZE_TO_PAGES (Block->BufLen), Block->BufHost, Block->Mapping);
//
// No free memory in PEI.
//
}
/**
Alloc some memory from the block.
@param Block The memory block to allocate memory from.
@param Units Number of memory units to allocate.
@return The pointer to the allocated memory.
If couldn't allocate the needed memory, the return value is NULL.
**/
VOID *
UsbHcAllocMemFromBlock (
IN USBHC_MEM_BLOCK *Block,
IN UINTN Units
)
{
UINTN Byte;
UINT8 Bit;
UINTN StartByte;
UINT8 StartBit;
UINTN Available;
UINTN Count;
ASSERT ((Block != 0) && (Units != 0));
StartByte = 0;
StartBit = 0;
Available = 0;
for (Byte = 0, Bit = 0; Byte < Block->BitsLen;) {
//
// If current bit is zero, the corresponding memory unit is
// available, otherwise we need to restart our searching.
// Available counts the consective number of zero bit.
//
if (!USB_HC_BIT_IS_SET (Block->Bits[Byte], Bit)) {
Available++;
if (Available >= Units) {
break;
}
NEXT_BIT (Byte, Bit);
} else {
NEXT_BIT (Byte, Bit);
Available = 0;
StartByte = Byte;
StartBit = Bit;
}
}
if (Available < Units) {
return NULL;
}
//
// Mark the memory as allocated
//
Byte = StartByte;
Bit = StartBit;
for (Count = 0; Count < Units; Count++) {
ASSERT (!USB_HC_BIT_IS_SET (Block->Bits[Byte], Bit));
Block->Bits[Byte] = (UINT8) (Block->Bits[Byte] | (UINT8) USB_HC_BIT (Bit));
NEXT_BIT (Byte, Bit);
}
return Block->BufHost + (StartByte * 8 + StartBit) * USBHC_MEM_UNIT;
}
/**
Calculate the corresponding pci bus address according to the Mem parameter.
@param Pool The memory pool of the host controller.
@param Mem The pointer to host memory.
@param Size The size of the memory region.
@return The pci memory address
**/
EFI_PHYSICAL_ADDRESS
UsbHcGetPciAddrForHostAddr (
IN USBHC_MEM_POOL *Pool,
IN VOID *Mem,
IN UINTN Size
)
{
USBHC_MEM_BLOCK *Head;
USBHC_MEM_BLOCK *Block;
UINTN AllocSize;
EFI_PHYSICAL_ADDRESS PhyAddr;
UINTN Offset;
Head = Pool->Head;
AllocSize = USBHC_MEM_ROUND (Size);
if (Mem == NULL) {
return 0;
}
for (Block = Head; Block != NULL; Block = Block->Next) {
//
// scan the memory block list for the memory block that
// completely contains the allocated memory.
//
if ((Block->BufHost <= (UINT8 *) Mem) && (((UINT8 *) Mem + AllocSize) <= (Block->BufHost + Block->BufLen))) {
break;
}
}
ASSERT ((Block != NULL));
//
// calculate the pci memory address for host memory address.
//
Offset = (UINT8 *) Mem - Block->BufHost;
PhyAddr = (EFI_PHYSICAL_ADDRESS) (UINTN) (Block->Buf + Offset);
return PhyAddr;
}
/**
Calculate the corresponding host address according to the pci address.
@param Pool The memory pool of the host controller.
@param Mem The pointer to pci memory.
@param Size The size of the memory region.
@return The host memory address
**/
EFI_PHYSICAL_ADDRESS
UsbHcGetHostAddrForPciAddr (
IN USBHC_MEM_POOL *Pool,
IN VOID *Mem,
IN UINTN Size
)
{
USBHC_MEM_BLOCK *Head;
USBHC_MEM_BLOCK *Block;
UINTN AllocSize;
EFI_PHYSICAL_ADDRESS HostAddr;
UINTN Offset;
Head = Pool->Head;
AllocSize = USBHC_MEM_ROUND (Size);
if (Mem == NULL) {
return 0;
}
for (Block = Head; Block != NULL; Block = Block->Next) {
//
// scan the memory block list for the memory block that
// completely contains the allocated memory.
//
if ((Block->Buf <= (UINT8 *) Mem) && (((UINT8 *) Mem + AllocSize) <= (Block->Buf + Block->BufLen))) {
break;
}
}
ASSERT ((Block != NULL));
//
// calculate the host memory address for pci memory address.
//
Offset = (UINT8 *) Mem - Block->Buf;
HostAddr = (EFI_PHYSICAL_ADDRESS) (UINTN) (Block->BufHost + Offset);
return HostAddr;
}
/**
Insert the memory block to the pool's list of the blocks.
@param Head The head of the memory pool's block list.
@param Block The memory block to insert.
**/
VOID
UsbHcInsertMemBlockToPool (
IN USBHC_MEM_BLOCK *Head,
IN USBHC_MEM_BLOCK *Block
)
{
ASSERT ((Head != NULL) && (Block != NULL));
Block->Next = Head->Next;
Head->Next = Block;
}
/**
Is the memory block empty?
@param Block The memory block to check.
@retval TRUE The memory block is empty.
@retval FALSE The memory block isn't empty.
**/
BOOLEAN
UsbHcIsMemBlockEmpty (
IN USBHC_MEM_BLOCK *Block
)
{
UINTN Index;
for (Index = 0; Index < Block->BitsLen; Index++) {
if (Block->Bits[Index] != 0) {
return FALSE;
}
}
return TRUE;
}
/**
Initialize the memory management pool for the host controller.
@return Pointer to the allocated memory pool or NULL if failed.
**/
USBHC_MEM_POOL *
UsbHcInitMemPool (
VOID
)
{
USBHC_MEM_POOL *Pool;
UINTN PageNumber;
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS TempPtr;
PageNumber = EFI_SIZE_TO_PAGES (sizeof (USBHC_MEM_POOL));
Status = PeiServicesAllocatePages (
EfiBootServicesData,
PageNumber,
&TempPtr
);
if (EFI_ERROR(Status)) {
return NULL;
}
ZeroMem ((VOID *) (UINTN) TempPtr, EFI_PAGES_TO_SIZE (PageNumber));
Pool = (USBHC_MEM_POOL *) ((UINTN) TempPtr);
Pool->Head = UsbHcAllocMemBlock (USBHC_MEM_DEFAULT_PAGES);
if (Pool->Head == NULL) {
//
// No free memory in PEI.
//
Pool = NULL;
}
return Pool;
}
/**
Release the memory management pool.
@param Pool The USB memory pool to free.
**/
VOID
UsbHcFreeMemPool (
IN USBHC_MEM_POOL *Pool
)
{
USBHC_MEM_BLOCK *Block;
ASSERT (Pool->Head != NULL);
//
// Unlink all the memory blocks from the pool, then free them.
// UsbHcUnlinkMemBlock can't be used to unlink and free the
// first block.
//
for (Block = Pool->Head->Next; Block != NULL; Block = Pool->Head->Next) {
//UsbHcUnlinkMemBlock (Pool->Head, Block);
UsbHcFreeMemBlock (Pool, Block);
}
UsbHcFreeMemBlock (Pool, Pool->Head);
}
/**
Allocate some memory from the host controller's memory pool
which can be used to communicate with host controller.
@param Pool The host controller's memory pool.
@param Size Size of the memory to allocate.
@return The allocated memory or NULL.
**/
VOID *
UsbHcAllocateMem (
IN USBHC_MEM_POOL *Pool,
IN UINTN Size
)
{
USBHC_MEM_BLOCK *Head;
USBHC_MEM_BLOCK *Block;
USBHC_MEM_BLOCK *NewBlock;
VOID *Mem;
UINTN AllocSize;
UINTN Pages;
Mem = NULL;
AllocSize = USBHC_MEM_ROUND (Size);
Head = Pool->Head;
ASSERT (Head != NULL);
//
// First check whether current memory blocks can satisfy the allocation.
//
for (Block = Head; Block != NULL; Block = Block->Next) {
Mem = UsbHcAllocMemFromBlock (Block, AllocSize / USBHC_MEM_UNIT);
if (Mem != NULL) {
ZeroMem (Mem, Size);
break;
}
}
if (Mem != NULL) {
return Mem;
}
//
// Create a new memory block if there is not enough memory
// in the pool. If the allocation size is larger than the
// default page number, just allocate a large enough memory
// block. Otherwise allocate default pages.
//
if (AllocSize > EFI_PAGES_TO_SIZE (USBHC_MEM_DEFAULT_PAGES)) {
Pages = EFI_SIZE_TO_PAGES (AllocSize);
} else {
Pages = USBHC_MEM_DEFAULT_PAGES;
}
NewBlock = UsbHcAllocMemBlock (Pages);
if (NewBlock == NULL) {
return NULL;
}
//
// Add the new memory block to the pool, then allocate memory from it
//
UsbHcInsertMemBlockToPool (Head, NewBlock);
Mem = UsbHcAllocMemFromBlock (NewBlock, AllocSize / USBHC_MEM_UNIT);
if (Mem != NULL) {
ZeroMem (Mem, Size);
}
return Mem;
}
/**
Free the allocated memory back to the memory pool.
@param Pool The memory pool of the host controller.
@param Mem The memory to free.
@param Size The size of the memory to free.
**/
VOID
UsbHcFreeMem (
IN USBHC_MEM_POOL *Pool,
IN VOID *Mem,
IN UINTN Size
)
{
USBHC_MEM_BLOCK *Head;
USBHC_MEM_BLOCK *Block;
UINT8 *ToFree;
UINTN AllocSize;
UINTN Byte;
UINTN Bit;
UINTN Count;
Head = Pool->Head;
AllocSize = USBHC_MEM_ROUND (Size);
ToFree = (UINT8 *) Mem;
for (Block = Head; Block != NULL; Block = Block->Next) {
//
// scan the memory block list for the memory block that
// completely contains the memory to free.
//
if ((Block->BufHost <= ToFree) && ((ToFree + AllocSize) <= (Block->BufHost + Block->BufLen))) {
//
// compute the start byte and bit in the bit array
//
Byte = ((ToFree - Block->BufHost) / USBHC_MEM_UNIT) / 8;
Bit = ((ToFree - Block->BufHost) / USBHC_MEM_UNIT) % 8;
//
// reset associated bits in bit array
//
for (Count = 0; Count < (AllocSize / USBHC_MEM_UNIT); Count++) {
ASSERT (USB_HC_BIT_IS_SET (Block->Bits[Byte], Bit));
Block->Bits[Byte] = (UINT8) (Block->Bits[Byte] ^ USB_HC_BIT (Bit));
NEXT_BIT (Byte, Bit);
}
break;
}
}
//
// If Block == NULL, it means that the current memory isn't
// in the host controller's pool. This is critical because
// the caller has passed in a wrong memory pointer
//
ASSERT (Block != NULL);
//
// Release the current memory block if it is empty and not the head
//
if ((Block != Head) && UsbHcIsMemBlockEmpty (Block)) {
//UsbHcUnlinkMemBlock (Head, Block);
UsbHcFreeMemBlock (Pool, Block);
}
}
/**
Allocates pages at a specified alignment.
If Alignment is not a power of two and Alignment is not zero, then ASSERT().
@param Pages The number of pages to allocate.
@param Alignment The requested alignment of the allocation. Must be a power of two.
@param HostAddress The system memory address to map to the PCI controller.
@param DeviceAddress The resulting map address for the bus master PCI controller to
use to access the hosts HostAddress.
@param Mapping A resulting value to pass to Unmap().
@retval EFI_SUCCESS Success to allocate aligned pages.
@retval EFI_INVALID_PARAMETER Pages or Alignment is not valid.
@retval EFI_OUT_OF_RESOURCES Do not have enough resources to allocate memory.
**/
EFI_STATUS
UsbHcAllocateAlignedPages (
IN UINTN Pages,
IN UINTN Alignment,
OUT VOID **HostAddress,
OUT EFI_PHYSICAL_ADDRESS *DeviceAddress,
OUT VOID **Mapping
)
{
EFI_STATUS Status;
VOID *Memory;
UINTN AlignedMemory;
UINTN AlignmentMask;
EFI_PHYSICAL_ADDRESS DeviceMemory;
UINTN AlignedDeviceMemory;
UINTN RealPages;
//
// Alignment must be a power of two or zero.
//
ASSERT ((Alignment & (Alignment - 1)) == 0);
if ((Alignment & (Alignment - 1)) != 0) {
return EFI_INVALID_PARAMETER;
}
if (Pages == 0) {
return EFI_INVALID_PARAMETER;
}
if (Alignment > EFI_PAGE_SIZE) {
//
// Calculate the total number of pages since alignment is larger than page size.
//
AlignmentMask = Alignment - 1;
RealPages = Pages + EFI_SIZE_TO_PAGES (Alignment);
//
// Make sure that Pages plus EFI_SIZE_TO_PAGES (Alignment) does not overflow.
//
ASSERT (RealPages > Pages);
Status = IoMmuAllocateBuffer (
Pages,
&Memory,
&DeviceMemory,
Mapping
);
if (EFI_ERROR(Status)) {
return EFI_OUT_OF_RESOURCES;
}
AlignedMemory = ((UINTN) Memory + AlignmentMask) & ~AlignmentMask;
AlignedDeviceMemory = ((UINTN) DeviceMemory + AlignmentMask) & ~AlignmentMask;
} else {
//
// Do not over-allocate pages in this case.
//
Status = IoMmuAllocateBuffer (
Pages,
&Memory,
&DeviceMemory,
Mapping
);
if (EFI_ERROR(Status)) {
return EFI_OUT_OF_RESOURCES;
}
AlignedMemory = (UINTN) Memory;
AlignedDeviceMemory = (UINTN) DeviceMemory;
}
*HostAddress = (VOID *) AlignedMemory;
*DeviceAddress = (EFI_PHYSICAL_ADDRESS) AlignedDeviceMemory;
return EFI_SUCCESS;
}
/**
Frees memory that was allocated with UsbHcAllocateAlignedPages().
@param HostAddress The system memory address to map to the PCI controller.
@param Pages The number of pages to free.
@param Mapping The mapping value returned from Map().
**/
VOID
UsbHcFreeAlignedPages (
IN VOID *HostAddress,
IN UINTN Pages,
IN VOID *Mapping
)
{
ASSERT (Pages != 0);
IoMmuFreeBuffer (Pages, HostAddress, Mapping);
}