CloverBootloader/rEFIt_UEFI/Platform/StateGenerator.cpp

664 lines
27 KiB
C++

/*
* Copyright 2008 mackerintel
* 2010 mojodojo, 2012 slice
*/
#include "StateGenerator.h"
CONST UINT8 pss_ssdt_header[] =
{
0x53, 0x53, 0x44, 0x54, 0x7E, 0x00, 0x00, 0x00, /* SSDT.... */
0x01, 0x6A, 0x50, 0x6D, 0x52, 0x65, 0x66, 0x00, /* ..PmRef. */
0x43, 0x70, 0x75, 0x50, 0x6D, 0x00, 0x00, 0x00, /* CpuPm... */
0x00, 0x30, 0x00, 0x00, 0x49, 0x4E, 0x54, 0x4C, /* .0..INTL */
0x20, 0x03, 0x12, 0x20 /* 1.._ */
};
UINT8 cst_ssdt_header[] =
{
0x53, 0x53, 0x44, 0x54, 0xE7, 0x00, 0x00, 0x00, /* SSDT.... */
0x01, 0x17, 0x50, 0x6D, 0x52, 0x65, 0x66, 0x41, /* ..PmRefA */
0x43, 0x70, 0x75, 0x43, 0x73, 0x74, 0x00, 0x00, /* CpuCst.. */
0x00, 0x30, 0x00, 0x00, 0x49, 0x4E, 0x54, 0x4C, /* ....INTL */
0x20, 0x03, 0x12, 0x20 /* 1.._ */
};
UINT8 resource_template_register_fixedhw[] =
{
0x11, 0x14, 0x0A, 0x11, 0x82, 0x0C, 0x00, 0x7F,
0x01, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x01, 0x79, 0x00
};
UINT8 resource_template_register_systemio[] =
{
0x11, 0x14, 0x0A, 0x11, 0x82, 0x0C, 0x00, 0x01,
0x08, 0x00, 0x00, 0x15, 0x04, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x79, 0x00,
};
UINT8 plugin_type[] =
{
0x14, 0x22, 0x5F, 0x44, 0x53, 0x4D, 0x04, 0xA0,
0x09, 0x93, 0x6A, 0x00, 0xA4, 0x11, 0x03, 0x01,
0x03, 0xA4, 0x12, 0x10, 0x02, 0x0D, 0x70, 0x6C,
0x75, 0x67, 0x69, 0x6E, 0x2D, 0x74, 0x79, 0x70,
0x65, 0x00,
};
SSDT_TABLE *generate_pss_ssdt(UINTN Number)
{
CHAR8 name[31];
CHAR8 name1[31];
CHAR8 name2[31];
CHAR8 name3[31];
P_STATE initial, maximum, minimum, p_states[64];
UINT8 p_states_count = 0;
UINT8 cpu_dynamic_fsb = 0;
UINT8 cpu_noninteger_bus_ratio = 0;
// UINT32 i, j;
UINT16 realMax, realMin = 6, realTurbo = 0, Apsn = 0, Aplf = 0;
if (gCPUStructure.Vendor != CPU_VENDOR_INTEL) {
MsgLog ("Not an Intel platform: P-States will not be generated !!!\n");
return NULL;
}
if (!(gCPUStructure.Features & CPUID_FEATURE_MSR)) {
MsgLog ("Unsupported CPU: P-States will not be generated !!!\n");
return NULL;
}
/*
APLF: Low Frequency Mode. followed Apple's standards.
Ironlake-: there are no APLF and APSN. Sandy Bridge: only APSN
Ivy Bridge: Mobile(U:APLF=0, M:APLF=4), Desktop(APLF=8) and APSN. Haswell+: APLF=0, APSN
Skylake+: there are no APLF and APSN. maybe because of frequency vectors. but used it as APLF=0 in generator
Xeon(Westmere EP-): There are no APLF and APSN. Xeon(Sandy Bridge EP): only APSN. Xeon(Ivy Bridge EP+): APLF=0, APSN
by Sherlocks
*/
if (gCPUStructure.Model >= CPU_MODEL_IVY_BRIDGE) {
if (gMobile) {
switch (gCPUStructure.Model) {
case CPU_MODEL_IVY_BRIDGE:
if (AsciiStrStr(gCPUStructure.BrandString, "U")) {
Aplf = 0;
} else if (AsciiStrStr(gCPUStructure.BrandString, "M")) {
Aplf = 4;
}
break;
default:
Aplf = 0;
break;
}
} else {
switch (gCPUStructure.Model) {
case CPU_MODEL_IVY_BRIDGE:
Aplf = 8;
break;
case CPU_MODEL_IVY_BRIDGE_E5:
Aplf = 4;
break;
default:
Aplf = 0;
break;
}
}
} else {
gSettings.GenerateAPLF = FALSE;
}
if (Number > 0) {
// Retrieving P-States, ported from code by superhai (c)
switch (gCPUStructure.Family) {
case 0x06:
{
switch (gCPUStructure.Model) {
case CPU_MODEL_DOTHAN: // Pentium-M
case CPU_MODEL_CELERON:
case CPU_MODEL_PENTIUM_M:
case CPU_MODEL_YONAH: // Intel Mobile Core Solo, Duo
case CPU_MODEL_MEROM: // Intel Mobile Core 2 Solo, Duo, Xeon 30xx, Xeon 51xx, Xeon X53xx, Xeon E53xx, Xeon X32xx
case CPU_MODEL_PENRYN: // Intel Core 2 Solo, Duo, Quad, Extreme, Xeon X54xx, Xeon X33xx
case CPU_MODEL_ATOM: // Intel Atom (45nm)
{
if ((gCPUStructure.Model >= CPU_MODEL_MEROM) && (AsmReadMsr64(MSR_IA32_EXT_CONFIG) & (1 << 27))) {
AsmWriteMsr64(MSR_IA32_EXT_CONFIG, (AsmReadMsr64(MSR_IA32_EXT_CONFIG) | (1 << 28)));
gBS->Stall(10);
cpu_dynamic_fsb = (AsmReadMsr64(MSR_IA32_EXT_CONFIG) & (1 << 28))?1:0;
DBG("DynamicFSB: %s\n", cpu_dynamic_fsb?"yes":"no");
}
cpu_noninteger_bus_ratio = ((AsmReadMsr64(MSR_IA32_PERF_STATUS) & (1ULL << 46)) != 0)?1:0;
initial.Control.Control = (UINT16)AsmReadMsr64(MSR_IA32_PERF_STATUS);
DBG("Initial control=0x%X\n", initial.Control.Control);
maximum.Control.Control = (RShiftU64(AsmReadMsr64(MSR_IA32_PERF_STATUS), 32) & 0x1F3F) | (0x4000 * cpu_noninteger_bus_ratio);
DBG("Maximum control=0x%X\n", maximum.Control.Control);
if (gSettings.Turbo) {
maximum.Control.VID_FID.FID++;
MsgLog("Turbo FID=0x%X\n", maximum.Control.VID_FID.FID);
}
MsgLog("UnderVoltStep=%d\n", gSettings.UnderVoltStep);
MsgLog("PLimitDict=%d\n", gSettings.PLimitDict);
maximum.CID = ((maximum.Control.VID_FID.FID & 0x1F) << 1) | cpu_noninteger_bus_ratio;
minimum.Control.VID_FID.FID = (RShiftU64(AsmReadMsr64(MSR_IA32_PERF_STATUS), 24) & 0x1F) | (0x80 * cpu_dynamic_fsb);
minimum.Control.VID_FID.VID = (RShiftU64(AsmReadMsr64(MSR_IA32_PERF_STATUS), 48) & 0x3F);
if (minimum.Control.VID_FID.FID == 0) {
minimum.Control.VID_FID.FID = 6;
minimum.Control.VID_FID.VID = maximum.Control.VID_FID.VID;
}
minimum.CID = ((minimum.Control.VID_FID.FID & 0x1F) << 1) >> cpu_dynamic_fsb;
// Sanity check
if (maximum.CID < minimum.CID) {
DBG("Insane FID values!\n");
p_states_count = 0;
} else {
UINT8 vidstep;
UINT8 u, invalid = 0;
// Finalize P-States
// Find how many P-States machine supports
p_states_count = (UINT8)(maximum.CID - minimum.CID + 1);
if (p_states_count > 32)
p_states_count = 32;
DBG("PStates count=%d\n", p_states_count);
vidstep = ((maximum.Control.VID_FID.VID << 2) - (minimum.Control.VID_FID.VID << 2)) / (p_states_count - 1);
for (u = 0; u < p_states_count; u++) {
UINT8 i = u - invalid;
p_states[i].CID = maximum.CID - u;
p_states[i].Control.VID_FID.FID = (UINT8)(p_states[i].CID >> 1);
if (p_states[i].Control.VID_FID.FID < 0x6) {
if (cpu_dynamic_fsb)
p_states[i].Control.VID_FID.FID = (p_states[i].Control.VID_FID.FID << 1) | 0x80;
} else if (cpu_noninteger_bus_ratio) {
p_states[i].Control.VID_FID.FID = p_states[i].Control.VID_FID.FID | (0x40 * (p_states[i].CID & 0x1));
}
if (i && p_states[i].Control.VID_FID.FID == p_states[i-1].Control.VID_FID.FID)
invalid++;
p_states[i].Control.VID_FID.VID = ((maximum.Control.VID_FID.VID << 2) - (vidstep * u)) >> 2;
if (u < p_states_count - 1) {
p_states[i].Control.VID_FID.VID -= gSettings.UnderVoltStep;
}
// Add scope so these don't have to be moved - apianti
{
UINT32 multiplier = p_states[i].Control.VID_FID.FID & 0x1f; // = 0x08
UINT8 half = (p_states[i].Control.VID_FID.FID & 0x40)?1:0; // = 0x00
UINT8 dfsb = (p_states[i].Control.VID_FID.FID & 0x80)?1:0; // = 0x01
UINT32 fsb = (UINT32)DivU64x32(gCPUStructure.FSBFrequency, Mega); // = 200
UINT32 halffsb = (fsb + 1) >> 1; // = 100
UINT32 frequency = (multiplier * fsb); // = 1600
p_states[i].Frequency = (UINT32)(frequency + (half * halffsb)) >> dfsb; // = 1600/2=800
}
}
p_states_count -= invalid;
}
break;
}
case CPU_MODEL_FIELDS: // Intel Core i5, i7, Xeon X34xx LGA1156 (45nm)
case CPU_MODEL_DALES:
case CPU_MODEL_CLARKDALE: // Intel Core i3, i5 LGA1156 (32nm)
case CPU_MODEL_NEHALEM: // Intel Core i7, Xeon W35xx, Xeon X55xx, Xeon E55xx LGA1366 (45nm)
case CPU_MODEL_NEHALEM_EX: // Intel Xeon X75xx, Xeon X65xx, Xeon E75xx, Xeon E65x
case CPU_MODEL_WESTMERE: // Intel Core i7, Xeon X56xx, Xeon E56xx, Xeon W36xx LGA1366 (32nm) 6 Core
case CPU_MODEL_WESTMERE_EX: // Intel Xeon E7
case CPU_MODEL_SANDY_BRIDGE: // Intel Core i3, i5, i7 LGA1155 (32nm)
case CPU_MODEL_JAKETOWN: // Intel Xeon E3
case CPU_MODEL_ATOM_3700:
case CPU_MODEL_IVY_BRIDGE:
case CPU_MODEL_IVY_BRIDGE_E5:
case CPU_MODEL_HASWELL:
case CPU_MODEL_HASWELL_E:
case CPU_MODEL_HASWELL_ULT:
case CPU_MODEL_CRYSTALWELL:
case CPU_MODEL_HASWELL_U5: // Broadwell Mobile
case CPU_MODEL_BROADWELL_HQ:
case CPU_MODEL_BROADWELL_E5:
case CPU_MODEL_BROADWELL_DE:
case CPU_MODEL_AIRMONT:
case CPU_MODEL_SKYLAKE_U:
case CPU_MODEL_SKYLAKE_D:
case CPU_MODEL_SKYLAKE_S:
case CPU_MODEL_GOLDMONT:
case CPU_MODEL_KABYLAKE1:
case CPU_MODEL_KABYLAKE2:
case CPU_MODEL_CANNONLAKE:
{
maximum.Control.Control = RShiftU64(AsmReadMsr64(MSR_PLATFORM_INFO), 8) & 0xff;
if (gSettings.MaxMultiplier) {
DBG("Using custom MaxMultiplier %d instead of automatic %d\n",
gSettings.MaxMultiplier, maximum.Control.Control);
maximum.Control.Control = gSettings.MaxMultiplier;
}
realMax = maximum.Control.Control;
DBG("Maximum control=0x%X\n", realMax);
if (gSettings.Turbo) {
realTurbo = (gCPUStructure.Turbo4 > gCPUStructure.Turbo1) ?
(gCPUStructure.Turbo4 / 10) : (gCPUStructure.Turbo1 / 10);
maximum.Control.Control = realTurbo;
MsgLog("Turbo control=0x%X\n", realTurbo);
}
Apsn = (realTurbo > realMax)?(realTurbo - realMax):0;
realMin = RShiftU64(AsmReadMsr64(MSR_PLATFORM_INFO), 40) & 0xff;
if (gSettings.MinMultiplier) {
minimum.Control.Control = gSettings.MinMultiplier;
Aplf = (realMin > minimum.Control.Control)?(realMin - minimum.Control.Control):0;
} else {
minimum.Control.Control = realMin;
}
MsgLog("P-States: min 0x%X, max 0x%X\n", minimum.Control.Control, maximum.Control.Control);
// Sanity check
if (maximum.Control.Control < minimum.Control.Control) {
DBG("Insane control values!");
p_states_count = 0;
} else {
p_states_count = 0;
/*
* Careful with downward loop, with UINT as index !
* This is wrong :
* for (i = maximum.Control.Control; i >= minimum.Control.Control; i--) {
*/
for (UINTN i = maximum.Control.Control+1; i-- > minimum.Control.Control; ) {
UINTN j = i;
if ((gCPUStructure.Model == CPU_MODEL_SANDY_BRIDGE) ||
(gCPUStructure.Model == CPU_MODEL_JAKETOWN) ||
(gCPUStructure.Model == CPU_MODEL_ATOM_3700) ||
(gCPUStructure.Model == CPU_MODEL_IVY_BRIDGE) ||
(gCPUStructure.Model == CPU_MODEL_IVY_BRIDGE_E5) ||
(gCPUStructure.Model == CPU_MODEL_HASWELL) ||
(gCPUStructure.Model == CPU_MODEL_HASWELL_E) ||
(gCPUStructure.Model == CPU_MODEL_HASWELL_ULT) ||
(gCPUStructure.Model == CPU_MODEL_CRYSTALWELL) ||
(gCPUStructure.Model == CPU_MODEL_HASWELL_U5) || // Broadwell Mobile
(gCPUStructure.Model == CPU_MODEL_BROADWELL_HQ) ||
(gCPUStructure.Model == CPU_MODEL_BROADWELL_E5) ||
(gCPUStructure.Model == CPU_MODEL_BROADWELL_DE) ||
(gCPUStructure.Model == CPU_MODEL_AIRMONT) ||
(gCPUStructure.Model == CPU_MODEL_SKYLAKE_U) ||
(gCPUStructure.Model == CPU_MODEL_SKYLAKE_D) ||
(gCPUStructure.Model == CPU_MODEL_SKYLAKE_S) ||
(gCPUStructure.Model == CPU_MODEL_GOLDMONT) ||
(gCPUStructure.Model == CPU_MODEL_KABYLAKE1) ||
(gCPUStructure.Model == CPU_MODEL_KABYLAKE2) ||
(gCPUStructure.Model == CPU_MODEL_CANNONLAKE)) {
j = i << 8;
p_states[p_states_count].Frequency = (UINT32)(100 * i);
} else {
p_states[p_states_count].Frequency = (UINT32)(DivU64x32(MultU64x32(gCPUStructure.FSBFrequency, (UINT32)i), Mega));
}
p_states[p_states_count].Control.Control = (UINT16)j;
p_states[p_states_count].CID = (UINT32)j;
if (!p_states_count && gSettings.DoubleFirstState) {
//double first state
p_states_count++;
p_states[p_states_count].Control.Control = (UINT16)j;
p_states[p_states_count].CID = (UINT32)j;
p_states[p_states_count].Frequency = (UINT32)(DivU64x32(MultU64x32(gCPUStructure.FSBFrequency, (UINT32)i), Mega)) - 1;
}
p_states_count++;
}
}
break;
}
default:
MsgLog ("Unsupported CPU (0x%X): P-States not generated !!!\n", gCPUStructure.Family);
break;
}
}
}
// Generating SSDT
if (p_states_count > 0) {
INTN TDPdiv;
SSDT_TABLE *ssdt;
AML_CHUNK* scop;
AML_CHUNK* method;
AML_CHUNK* pack;
AML_CHUNK* metPSS;
AML_CHUNK* metPPC;
AML_CHUNK* namePCT;
AML_CHUNK* packPCT;
AML_CHUNK* metPCT;
AML_CHUNK* root = aml_create_node(NULL);
aml_add_buffer(root, (UINT8*)&pss_ssdt_header[0], sizeof(pss_ssdt_header)); // SSDT header
snprintf(name, 31, "%s%4s", acpi_cpu_score, acpi_cpu_name[0]);
snprintf(name1, 31, "%s%4sPSS_", acpi_cpu_score, acpi_cpu_name[0]);
snprintf(name2, 31, "%s%4sPCT_", acpi_cpu_score, acpi_cpu_name[0]);
snprintf(name3, 31, "%s%4s_PPC", acpi_cpu_score, acpi_cpu_name[0]);
scop = aml_add_scope(root, name);
if (gSettings.GeneratePStates && !gSettings.HWP) {
method = aml_add_name(scop, "PSS_");
pack = aml_add_package(method);
if ((gSettings.TDP != 0) && (p_states[0].Frequency != 0)) {
TDPdiv = (gSettings.TDP * 1000) / p_states[0].Frequency;
} else {
TDPdiv = 8;
}
for (decltype(p_states_count) i = gSettings.PLimitDict; i < p_states_count; i++) {
AML_CHUNK* pstt = aml_add_package(pack);
aml_add_dword(pstt, p_states[i].Frequency);
if (p_states[i].Control.Control < realMin) {
aml_add_dword(pstt, 0); //zero for power
} else {
aml_add_dword(pstt, (UINT32)(p_states[i].Frequency * TDPdiv)); // Designed Power
}
aml_add_dword(pstt, 0x0000000A); // Latency
aml_add_dword(pstt, 0x0000000A); // Latency
aml_add_dword(pstt, p_states[i].Control.Control);
aml_add_dword(pstt, p_states[i].Control.Control); // Status
}
metPSS = aml_add_method(scop, "_PSS", 0);
aml_add_return_name(metPSS, "PSS_");
//metPSS = aml_add_method(scop, "APSS", 0);
//aml_add_return_name(metPSS, "PSS_");
//metPPC = aml_add_method(scop, "_PPC", 0);
aml_add_name(scop, "_PPC");
aml_add_byte(scop, (UINT8)gSettings.PLimitDict);
//aml_add_return_byte(metPPC, gSettings.PLimitDict);
namePCT = aml_add_name(scop, "PCT_");
packPCT = aml_add_package(namePCT);
resource_template_register_fixedhw[8] = 0x00;
resource_template_register_fixedhw[9] = 0x00;
resource_template_register_fixedhw[18] = 0x00;
aml_add_buffer(packPCT, resource_template_register_fixedhw, sizeof(resource_template_register_fixedhw));
aml_add_buffer(packPCT, resource_template_register_fixedhw, sizeof(resource_template_register_fixedhw));
metPCT = aml_add_method(scop, "_PCT", 0);
aml_add_return_name(metPCT, "PCT_");
if (gSettings.PluginType && gSettings.GeneratePluginType) {
aml_add_buffer(scop, plugin_type, sizeof(plugin_type));
aml_add_byte(scop, gSettings.PluginType);
}
if (gCPUStructure.Family >= 2) {
if (gSettings.GenerateAPSN) {
//APSN: High Frequency Modes (turbo)
aml_add_name(scop, "APSN");
aml_add_byte(scop, (UINT8)Apsn);
}
if (gSettings.GenerateAPLF) {
//APLF: Low Frequency Mode
aml_add_name(scop, "APLF");
aml_add_byte(scop, (UINT8)Aplf);
}
}
// Add CPUs
for (decltype(Number) i = 1; i < Number; i++) {
snprintf(name, 31, "%s%4s", acpi_cpu_score, acpi_cpu_name[i]);
scop = aml_add_scope(root, name);
metPSS = aml_add_method(scop, "_PSS", 0);
aml_add_return_name(metPSS, name1);
//metPSS = aml_add_method(scop, "APSS", 0);
//aml_add_return_name(metPSS, name1);
metPPC = aml_add_method(scop, "_PPC", 0);
aml_add_return_name(metPPC, name3);
//aml_add_return_byte(metPPC, gSettings.PLimitDict);
metPCT = aml_add_method(scop, "_PCT", 0);
aml_add_return_name(metPCT, name2);
}
} else if (gSettings.PluginType && gSettings.GeneratePluginType) {
aml_add_buffer(scop, plugin_type, sizeof(plugin_type));
aml_add_byte(scop, gSettings.PluginType);
}
aml_calculate_size(root);
ssdt = (SSDT_TABLE *)AllocateZeroPool(root->Size);
aml_write_node(root, (CHAR8*)ssdt, 0);
ssdt->Length = root->Size;
FixChecksum(ssdt);
//ssdt->Checksum = 0;
//ssdt->Checksum = (UINT8)(256 - Checksum8(ssdt, ssdt->Length));
aml_destroy_node(root);
if (gSettings.GeneratePStates && !gSettings.HWP) {
if (gSettings.PluginType && gSettings.GeneratePluginType) {
MsgLog ("SSDT with CPU P-States and plugin-type generated successfully\n");
} else {
MsgLog ("SSDT with CPU P-States generated successfully\n");
}
} else {
MsgLog ("SSDT with plugin-type without P-States is generated\n");
}
return ssdt;
}
} else {
MsgLog ("ACPI CPUs not found: P-States not generated !!!\n");
}
return NULL;
}
SSDT_TABLE *generate_cst_ssdt(EFI_ACPI_2_0_FIXED_ACPI_DESCRIPTION_TABLE* fadt, UINTN Number)
{
BOOLEAN c2_enabled = gSettings.EnableC2;
BOOLEAN c3_enabled;
BOOLEAN c4_enabled = gSettings.EnableC4;
// BOOLEAN c6_enabled = gSettings.EnableC6;
BOOLEAN cst_using_systemio = gSettings.EnableISS;
UINT8 p_blk_lo, p_blk_hi;
UINT8 cstates_count;
UINT32 acpi_cpu_p_blk;
CHAR8 name2[31];
CHAR8 name0[31];
CHAR8 name1[31];
AML_CHUNK* root;
AML_CHUNK* scop;
AML_CHUNK* name;
AML_CHUNK* pack;
AML_CHUNK* tmpl;
AML_CHUNK* met;
// AML_CHUNK* ret;
UINTN i;
SSDT_TABLE *ssdt;
if (!fadt) {
return NULL;
}
acpi_cpu_p_blk = fadt->Pm1aEvtBlk + 0x10;
c2_enabled = c2_enabled || (fadt->PLvl2Lat < 100);
c3_enabled = (fadt->PLvl3Lat < 1000);
cstates_count = 1 + (c2_enabled ? 1 : 0) + ((c3_enabled || c4_enabled)? 1 : 0)
+ (gSettings.EnableC6 ? 1 : 0) + (gSettings.EnableC7 ? 1 : 0);
root = aml_create_node(NULL);
aml_add_buffer(root, cst_ssdt_header, sizeof(cst_ssdt_header)); // SSDT header
snprintf(name0, 31, "%s%4s", acpi_cpu_score, acpi_cpu_name[0]);
snprintf(name1, 31, "%s%4sCST_", acpi_cpu_score, acpi_cpu_name[0]);
scop = aml_add_scope(root, name0);
name = aml_add_name(scop, "CST_");
pack = aml_add_package(name);
aml_add_byte(pack, cstates_count);
tmpl = aml_add_package(pack);
if (cst_using_systemio) { // C1
resource_template_register_fixedhw[8] = 0x00;
resource_template_register_fixedhw[9] = 0x00;
resource_template_register_fixedhw[0x12] = 0x00;
aml_add_buffer(tmpl, resource_template_register_fixedhw, sizeof(resource_template_register_fixedhw));
aml_add_byte(tmpl, 0x01); // C1
aml_add_word(tmpl, 0x0001); // Latency
aml_add_dword(tmpl, 0x000003e8); // Power
if (c2_enabled) { // C2
p_blk_lo = (UINT8)(acpi_cpu_p_blk + 4);
p_blk_hi = (UINT8)((acpi_cpu_p_blk + 4) >> 8);
tmpl = aml_add_package(pack);
resource_template_register_systemio[11] = p_blk_lo; // C2
resource_template_register_systemio[12] = p_blk_hi; // C2
aml_add_buffer(tmpl, resource_template_register_systemio, sizeof(resource_template_register_systemio));
aml_add_byte(tmpl, 0x02); // C2
aml_add_word(tmpl, 0x0040); // Latency
aml_add_dword(tmpl, 0x000001f4); // Power
}
if (c4_enabled) { // C4
p_blk_lo = (acpi_cpu_p_blk + 6) & 0xff;
p_blk_hi = (UINT8)((acpi_cpu_p_blk + 6) >> 8);
tmpl = aml_add_package(pack);
resource_template_register_systemio[11] = p_blk_lo; // C4
resource_template_register_systemio[12] = p_blk_hi; // C4
aml_add_buffer(tmpl, resource_template_register_systemio, sizeof(resource_template_register_systemio));
aml_add_byte(tmpl, 0x04); // C4
aml_add_word(tmpl, 0x0080); // Latency
aml_add_dword(tmpl, 0x000000C8); // Power
}
else if (c3_enabled) { // C3
p_blk_lo = (UINT8)(acpi_cpu_p_blk + 5);
p_blk_hi = (UINT8)((acpi_cpu_p_blk + 5) >> 8);
tmpl = aml_add_package(pack);
resource_template_register_systemio[11] = p_blk_lo; // C3
resource_template_register_systemio[12] = p_blk_hi; // C3
aml_add_buffer(tmpl, resource_template_register_systemio, sizeof(resource_template_register_systemio));
aml_add_byte(tmpl, 0x03); // C3
aml_add_word(tmpl, gSettings.C3Latency); // Latency
aml_add_dword(tmpl, 0x000001F4); // Power
}
if (gSettings.EnableC6) { // C6
p_blk_lo = (UINT8)(acpi_cpu_p_blk + 5);
p_blk_hi = (UINT8)((acpi_cpu_p_blk + 5) >> 8);
tmpl = aml_add_package(pack);
resource_template_register_systemio[11] = p_blk_lo; // C6
resource_template_register_systemio[12] = p_blk_hi; // C6
aml_add_buffer(tmpl, resource_template_register_systemio, sizeof(resource_template_register_systemio));
aml_add_byte(tmpl, 0x06); // C6
aml_add_word(tmpl, gSettings.C3Latency + 3); // Latency
aml_add_dword(tmpl, 0x0000015E); // Power
}
if (gSettings.EnableC7) { //C7
p_blk_lo = (acpi_cpu_p_blk + 6) & 0xff;
p_blk_hi = (UINT8)((acpi_cpu_p_blk + 6) >> 8);
tmpl = aml_add_package(pack);
resource_template_register_systemio[11] = p_blk_lo; // C4 or C7
resource_template_register_systemio[12] = p_blk_hi;
aml_add_buffer(tmpl, resource_template_register_fixedhw, sizeof(resource_template_register_fixedhw));
aml_add_byte(tmpl, 0x07); // C7
aml_add_word(tmpl, 0xF5); // Latency as in iMac14,1
aml_add_dword(tmpl, 0xC8); // Power
}
} else {
// C1
resource_template_register_fixedhw[8] = 0x01;
resource_template_register_fixedhw[9] = 0x02;
// resource_template_register_fixedhw[18] = 0x01;
resource_template_register_fixedhw[10] = 0x01;
resource_template_register_fixedhw[11] = 0x00; // C1
aml_add_buffer(tmpl, resource_template_register_fixedhw, sizeof(resource_template_register_fixedhw));
aml_add_byte(tmpl, 0x01); // C1
aml_add_word(tmpl, 0x0001); // Latency
aml_add_dword(tmpl, 0x000003e8); // Power
// resource_template_register_fixedhw[18] = 0x03;
resource_template_register_fixedhw[10] = 0x03;
if (c2_enabled) { // C2
tmpl = aml_add_package(pack);
resource_template_register_fixedhw[11] = 0x10; // C2
aml_add_buffer(tmpl, resource_template_register_fixedhw, sizeof(resource_template_register_fixedhw));
aml_add_byte(tmpl, 0x02); // C2
aml_add_word(tmpl, 0x0040); // Latency
aml_add_dword(tmpl, 0x000001f4); // Power
}
if (c4_enabled) { // C4
tmpl = aml_add_package(pack);
resource_template_register_fixedhw[11] = 0x30; // C4
aml_add_buffer(tmpl, resource_template_register_fixedhw, sizeof(resource_template_register_fixedhw));
aml_add_byte(tmpl, 0x04); // C4
aml_add_word(tmpl, 0x0080); // Latency
aml_add_dword(tmpl, 0x000000C8); // Power
}
else if (c3_enabled) {
tmpl = aml_add_package(pack);
resource_template_register_fixedhw[11] = 0x20; // C3
aml_add_buffer(tmpl, resource_template_register_fixedhw, sizeof(resource_template_register_fixedhw));
aml_add_byte(tmpl, 0x03); // C3
aml_add_word(tmpl, gSettings.C3Latency); // Latency as in MacPro6,1 = 0x0043
aml_add_dword(tmpl, 0x000001F4); // Power
}
if (gSettings.EnableC6) { // C6
tmpl = aml_add_package(pack);
resource_template_register_fixedhw[11] = 0x20; // C6
aml_add_buffer(tmpl, resource_template_register_fixedhw, sizeof(resource_template_register_fixedhw));
aml_add_byte(tmpl, 0x06); // C6
aml_add_word(tmpl, gSettings.C3Latency + 3); // Latency as in MacPro6,1 = 0x0046
aml_add_dword(tmpl, 0x0000015E); // Power
}
if (gSettings.EnableC7) {
tmpl = aml_add_package(pack);
resource_template_register_fixedhw[11] = 0x30; // C4 or C7
aml_add_buffer(tmpl, resource_template_register_fixedhw, sizeof(resource_template_register_fixedhw));
aml_add_byte(tmpl, 0x07); // C7
aml_add_word(tmpl, 0xF5); // Latency as in iMac14,1
aml_add_dword(tmpl, 0xC8); // Power
}
}
met = aml_add_method(scop, "_CST", 0);
aml_add_return_name(met, "CST_");
// met = aml_add_method(scop, "ACST", 0);
// ret = aml_add_return_name(met, "CST_");
// Aliases
for (i = 1; i < Number; i++) {
snprintf(name2, 31, "%s%4s", acpi_cpu_score, acpi_cpu_name[i]);
scop = aml_add_scope(root, name2);
met = aml_add_method(scop, "_CST", 0);
aml_add_return_name(met, name1);
// met = aml_add_method(scop, "ACST", 0);
// ret = aml_add_return_name(met, name1);
}
aml_calculate_size(root);
ssdt = (SSDT_TABLE *)AllocateZeroPool(root->Size);
aml_write_node(root, (CHAR8*)ssdt, 0);
ssdt->Length = root->Size;
FixChecksum(ssdt);
// ssdt->Checksum = 0;
// ssdt->Checksum = (UINT8)(256 - Checksum8((VOID*)ssdt, ssdt->Length));
aml_destroy_node(root);
//dumpPhysAddr("C-States SSDT content: ", ssdt, ssdt->Length);
MsgLog ("SSDT with CPU C-States generated successfully\n");
return ssdt;
}