mirror of
https://github.com/CloverHackyColor/CloverBootloader.git
synced 2024-11-30 12:43:41 +01:00
7c0aa811ec
Signed-off-by: Sergey Isakov <isakov-sl@bk.ru>
415 lines
12 KiB
C
415 lines
12 KiB
C
/*++
|
|
|
|
Copyright (c) 2005 - 2013, Intel Corporation. All rights reserved.<BR>
|
|
This program and the accompanying materials
|
|
are licensed and made available under the terms and conditions of the Software
|
|
License Agreement which accompanies this distribution.
|
|
|
|
|
|
Module Name:
|
|
|
|
Init.c
|
|
|
|
Abstract:
|
|
|
|
Initialization routines
|
|
|
|
--*/
|
|
|
|
#include "Fat.h"
|
|
|
|
EFI_STATUS
|
|
FatAllocateVolume (
|
|
IN EFI_HANDLE Handle,
|
|
IN EFI_DISK_IO_PROTOCOL *DiskIo,
|
|
IN EFI_DISK_IO2_PROTOCOL *DiskIo2,
|
|
IN EFI_BLOCK_IO_PROTOCOL *BlockIo
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
Allocates volume structure, detects FAT file system, installs protocol,
|
|
and initialize cache.
|
|
|
|
Arguments:
|
|
|
|
Handle - The handle of parent device.
|
|
DiskIo - The DiskIo of parent device.
|
|
BlockIo - The BlockIo of parent devicel
|
|
|
|
Returns:
|
|
|
|
EFI_SUCCESS - Allocate a new volume successfully.
|
|
EFI_OUT_OF_RESOURCES - Can not allocate the memory.
|
|
Others - Allocating a new volume failed.
|
|
|
|
--*/
|
|
{
|
|
EFI_STATUS Status;
|
|
FAT_VOLUME *Volume;
|
|
|
|
//
|
|
// Allocate a volume structure
|
|
//
|
|
Volume = AllocateZeroPool (sizeof (FAT_VOLUME));
|
|
if (Volume == NULL) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
//
|
|
// Initialize the structure
|
|
//
|
|
Volume->Signature = FAT_VOLUME_SIGNATURE;
|
|
Volume->Handle = Handle;
|
|
Volume->DiskIo = DiskIo;
|
|
Volume->DiskIo2 = DiskIo2;
|
|
Volume->BlockIo = BlockIo;
|
|
Volume->MediaId = BlockIo->Media->MediaId;
|
|
Volume->ReadOnly = BlockIo->Media->ReadOnly;
|
|
Volume->VolumeInterface.Revision = EFI_SIMPLE_FILE_SYSTEM_PROTOCOL_REVISION;
|
|
Volume->VolumeInterface.OpenVolume = FatOpenVolume;
|
|
InitializeListHead (&Volume->CheckRef);
|
|
InitializeListHead (&Volume->DirCacheList);
|
|
//
|
|
// Initialize Root Directory entry
|
|
//
|
|
Volume->RootDirEnt.FileString = Volume->RootFileString;
|
|
Volume->RootDirEnt.Entry.Attributes = FAT_ATTRIBUTE_DIRECTORY;
|
|
//
|
|
// Check to see if there's a file system on the volume
|
|
//
|
|
Status = FatOpenDevice (Volume);
|
|
if (EFI_ERROR (Status)) {
|
|
goto Done;
|
|
}
|
|
//
|
|
// Initialize cache
|
|
//
|
|
Status = FatInitializeDiskCache (Volume);
|
|
if (EFI_ERROR (Status)) {
|
|
goto Done;
|
|
}
|
|
//
|
|
// Install our protocol interfaces on the device's handle
|
|
//
|
|
Status = gBS->InstallMultipleProtocolInterfaces (
|
|
&Volume->Handle,
|
|
&gEfiSimpleFileSystemProtocolGuid,
|
|
&Volume->VolumeInterface,
|
|
NULL
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
goto Done;
|
|
}
|
|
//
|
|
// Volume installed
|
|
//
|
|
DEBUG ((EFI_D_INIT, "Installed Fat filesystem on %p\n", Handle));
|
|
Volume->Valid = TRUE;
|
|
|
|
Done:
|
|
if (EFI_ERROR (Status)) {
|
|
FatFreeVolume (Volume);
|
|
}
|
|
|
|
return Status;
|
|
}
|
|
|
|
EFI_STATUS
|
|
FatAbandonVolume (
|
|
IN FAT_VOLUME *Volume
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
Called by FatDriverBindingStop(), Abandon the volume.
|
|
|
|
Arguments:
|
|
|
|
Volume - The volume to be abandoned.
|
|
|
|
Returns:
|
|
|
|
EFI_SUCCESS - Abandoned the volume successfully.
|
|
Others - Can not uninstall the protocol interfaces.
|
|
|
|
--*/
|
|
{
|
|
EFI_STATUS Status;
|
|
BOOLEAN LockedByMe;
|
|
|
|
//
|
|
// Uninstall the protocol interface.
|
|
//
|
|
if (Volume->Handle != NULL) {
|
|
Status = gBS->UninstallMultipleProtocolInterfaces (
|
|
Volume->Handle,
|
|
&gEfiSimpleFileSystemProtocolGuid,
|
|
&Volume->VolumeInterface,
|
|
NULL
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
}
|
|
|
|
LockedByMe = FALSE;
|
|
|
|
//
|
|
// Acquire the lock.
|
|
// If the caller has already acquired the lock (which
|
|
// means we are in the process of some Fat operation),
|
|
// we can not acquire again.
|
|
//
|
|
Status = FatAcquireLockOrFail ();
|
|
if (!EFI_ERROR (Status)) {
|
|
LockedByMe = TRUE;
|
|
}
|
|
//
|
|
// The volume is still being used. Hence, set error flag for all OFiles still in
|
|
// use. In two cases, we could get here. One is EFI_MEDIA_CHANGED, the other is
|
|
// EFI_NO_MEDIA.
|
|
//
|
|
if (Volume->Root != NULL) {
|
|
FatSetVolumeError (
|
|
Volume->Root,
|
|
Volume->BlockIo->Media->MediaPresent ? EFI_MEDIA_CHANGED : EFI_NO_MEDIA
|
|
);
|
|
}
|
|
|
|
Volume->Valid = FALSE;
|
|
|
|
//
|
|
// Release the lock.
|
|
// If locked by me, this means DriverBindingStop is NOT
|
|
// called within an on-going Fat operation, so we should
|
|
// take responsibility to cleanup and free the volume.
|
|
// Otherwise, the DriverBindingStop is called within an on-going
|
|
// Fat operation, we shouldn't check reference, so just let outer
|
|
// FatCleanupVolume do the task.
|
|
//
|
|
if (LockedByMe) {
|
|
FatCleanupVolume (Volume, NULL, EFI_SUCCESS, NULL);
|
|
FatReleaseLock ();
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
EFI_STATUS
|
|
FatOpenDevice (
|
|
IN OUT FAT_VOLUME *Volume
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
Detects FAT file system on Disk and set relevant fields of Volume
|
|
|
|
Arguments:
|
|
|
|
Volume - The volume structure.
|
|
|
|
Returns:
|
|
|
|
EFI_SUCCESS - The Fat File System is detected successfully
|
|
EFI_UNSUPPORTED - The volume is not FAT file system.
|
|
EFI_VOLUME_CORRUPTED - The volume is corrupted.
|
|
|
|
--*/
|
|
{
|
|
EFI_STATUS Status;
|
|
UINT32 BlockSize;
|
|
UINT32 DirtyMask;
|
|
EFI_DISK_IO_PROTOCOL *DiskIo;
|
|
FAT_BOOT_SECTOR FatBs;
|
|
FAT_VOLUME_TYPE FatType;
|
|
UINTN RootDirSectors;
|
|
UINTN FatLba;
|
|
UINTN RootLba;
|
|
UINTN FirstClusterLba;
|
|
UINTN Sectors;
|
|
UINTN SectorsPerFat;
|
|
UINT8 SectorsPerClusterAlignment;
|
|
UINT8 BlockAlignment;
|
|
|
|
//
|
|
// Read the FAT_BOOT_SECTOR BPB info
|
|
// This is the only part of FAT code that uses parent DiskIo,
|
|
// Others use FatDiskIo which utilizes a Cache.
|
|
//
|
|
DiskIo = Volume->DiskIo;
|
|
Status = DiskIo->ReadDisk (DiskIo, Volume->MediaId, 0, sizeof (FatBs), &FatBs);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
DEBUG ((EFI_D_INIT, "FatOpenDevice: read of part_lba failed %r\n", Status));
|
|
return Status;
|
|
}
|
|
|
|
FatType = FatUndefined;
|
|
|
|
//
|
|
// Use LargeSectors if Sectors is 0
|
|
//
|
|
Sectors = FatBs.FatBsb.Sectors;
|
|
if (Sectors == 0) {
|
|
Sectors = FatBs.FatBsb.LargeSectors;
|
|
}
|
|
|
|
SectorsPerFat = FatBs.FatBsb.SectorsPerFat;
|
|
if (SectorsPerFat == 0) {
|
|
SectorsPerFat = FatBs.FatBse.Fat32Bse.LargeSectorsPerFat;
|
|
FatType = FAT32;
|
|
}
|
|
//
|
|
// Is boot sector a fat sector?
|
|
// (Note that so far we only know if the sector is FAT32 or not, we don't
|
|
// know if the sector is Fat16 or Fat12 until later when we can compute
|
|
// the volume size)
|
|
//
|
|
if (FatBs.FatBsb.ReservedSectors == 0 || FatBs.FatBsb.NumFats == 0 || Sectors == 0) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
if ((FatBs.FatBsb.SectorSize & (FatBs.FatBsb.SectorSize - 1)) != 0) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
BlockAlignment = (UINT8) HighBitSet32 (FatBs.FatBsb.SectorSize);
|
|
if (BlockAlignment > MAX_BLOCK_ALIGNMENT || BlockAlignment < MIN_BLOCK_ALIGNMENT) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
if ((FatBs.FatBsb.SectorsPerCluster & (FatBs.FatBsb.SectorsPerCluster - 1)) != 0) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
SectorsPerClusterAlignment = (UINT8) HighBitSet32 (FatBs.FatBsb.SectorsPerCluster);
|
|
if (SectorsPerClusterAlignment > MAX_SECTORS_PER_CLUSTER_ALIGNMENT) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
if (FatBs.FatBsb.Media <= 0xf7 &&
|
|
FatBs.FatBsb.Media != 0xf0 &&
|
|
FatBs.FatBsb.Media != 0x00 &&
|
|
FatBs.FatBsb.Media != 0x01
|
|
) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
//
|
|
// Initialize fields the volume information for this FatType
|
|
//
|
|
if (FatType != FAT32) {
|
|
if (FatBs.FatBsb.RootEntries == 0) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
//
|
|
// Unpack fat12, fat16 info
|
|
//
|
|
Volume->RootEntries = FatBs.FatBsb.RootEntries;
|
|
} else {
|
|
//
|
|
// If this is fat32, refuse to mount mirror-disabled volumes
|
|
//
|
|
if ((SectorsPerFat == 0 || FatBs.FatBse.Fat32Bse.FsVersion != 0) || (FatBs.FatBse.Fat32Bse.ExtendedFlags & 0x80)) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
//
|
|
// Unpack fat32 info
|
|
//
|
|
Volume->RootCluster = FatBs.FatBse.Fat32Bse.RootDirFirstCluster;
|
|
}
|
|
|
|
Volume->NumFats = FatBs.FatBsb.NumFats;
|
|
//
|
|
// Compute some fat locations
|
|
//
|
|
BlockSize = FatBs.FatBsb.SectorSize;
|
|
RootDirSectors = ((Volume->RootEntries * sizeof (FAT_DIRECTORY_ENTRY)) + (BlockSize - 1)) / BlockSize;
|
|
|
|
FatLba = FatBs.FatBsb.ReservedSectors;
|
|
RootLba = FatBs.FatBsb.NumFats * SectorsPerFat + FatLba;
|
|
FirstClusterLba = RootLba + RootDirSectors;
|
|
|
|
Volume->FatPos = FatLba * BlockSize;
|
|
Volume->FatSize = SectorsPerFat * BlockSize;
|
|
|
|
Volume->VolumeSize = LShiftU64 (Sectors, BlockAlignment);
|
|
Volume->RootPos = LShiftU64 (RootLba, BlockAlignment);
|
|
Volume->FirstClusterPos = LShiftU64 (FirstClusterLba, BlockAlignment);
|
|
Volume->MaxCluster = (Sectors - FirstClusterLba) >> SectorsPerClusterAlignment;
|
|
Volume->ClusterAlignment = (UINT8)(BlockAlignment + SectorsPerClusterAlignment);
|
|
Volume->ClusterSize = (UINTN)1 << (Volume->ClusterAlignment);
|
|
|
|
//
|
|
// If this is not a fat32, determine if it's a fat16 or fat12
|
|
//
|
|
if (FatType != FAT32) {
|
|
if (Volume->MaxCluster >= FAT_MAX_FAT16_CLUSTER) {
|
|
return EFI_VOLUME_CORRUPTED;
|
|
}
|
|
|
|
FatType = Volume->MaxCluster < FAT_MAX_FAT12_CLUSTER ? FAT12 : FAT16;
|
|
//
|
|
// fat12 & fat16 fat-entries are 2 bytes
|
|
//
|
|
Volume->FatEntrySize = sizeof (UINT16);
|
|
DirtyMask = FAT16_DIRTY_MASK;
|
|
} else {
|
|
if (Volume->MaxCluster < FAT_MAX_FAT16_CLUSTER) {
|
|
return EFI_VOLUME_CORRUPTED;
|
|
}
|
|
//
|
|
// fat32 fat-entries are 4 bytes
|
|
//
|
|
Volume->FatEntrySize = sizeof (UINT32);
|
|
DirtyMask = FAT32_DIRTY_MASK;
|
|
}
|
|
//
|
|
// Get the DirtyValue and NotDirtyValue
|
|
// We should keep the initial value as the NotDirtyValue
|
|
// in case the volume is dirty already
|
|
//
|
|
if (FatType != FAT12) {
|
|
Status = FatAccessVolumeDirty (Volume, READ_DISK, &Volume->NotDirtyValue);
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
|
|
Volume->DirtyValue = Volume->NotDirtyValue & DirtyMask;
|
|
}
|
|
//
|
|
// If present, read the fat hint info
|
|
//
|
|
if (FatType == FAT32) {
|
|
Volume->FreeInfoPos = FatBs.FatBse.Fat32Bse.FsInfoSector * BlockSize;
|
|
if (FatBs.FatBse.Fat32Bse.FsInfoSector != 0) {
|
|
FatDiskIo (Volume, READ_DISK, Volume->FreeInfoPos, sizeof (FAT_INFO_SECTOR), &Volume->FatInfoSector, NULL);
|
|
if (Volume->FatInfoSector.Signature == FAT_INFO_SIGNATURE &&
|
|
Volume->FatInfoSector.InfoBeginSignature == FAT_INFO_BEGIN_SIGNATURE &&
|
|
Volume->FatInfoSector.InfoEndSignature == FAT_INFO_END_SIGNATURE &&
|
|
Volume->FatInfoSector.FreeInfo.ClusterCount <= Volume->MaxCluster
|
|
) {
|
|
Volume->FreeInfoValid = TRUE;
|
|
}
|
|
}
|
|
}
|
|
//
|
|
// Just make up a FreeInfo.NextCluster for use by allocate cluster
|
|
//
|
|
if (FAT_MIN_CLUSTER > Volume->FatInfoSector.FreeInfo.NextCluster ||
|
|
Volume->FatInfoSector.FreeInfo.NextCluster > Volume->MaxCluster + 1
|
|
) {
|
|
Volume->FatInfoSector.FreeInfo.NextCluster = FAT_MIN_CLUSTER;
|
|
}
|
|
//
|
|
// We are now defining FAT Type
|
|
//
|
|
Volume->FatType = FatType;
|
|
ASSERT (FatType != FatUndefined);
|
|
|
|
return EFI_SUCCESS;
|
|
}
|