mirror of
https://github.com/CloverHackyColor/CloverBootloader.git
synced 2025-01-22 21:01:31 +01:00
7c0aa811ec
Signed-off-by: Sergey Isakov <isakov-sl@bk.ru>
1678 lines
67 KiB
C
1678 lines
67 KiB
C
/**
|
|
* \file fsw_reiserfs_disk.h
|
|
* ReiserFS file system on-disk structures.
|
|
*/
|
|
|
|
/*-
|
|
* Copyright (c) 2006 Christoph Pfisterer
|
|
* Portions Copyright (c) 1991-2006 by various Linux kernel contributors
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
|
|
#ifndef _FSW_REISERFS_DISK_H_
|
|
#define _FSW_REISERFS_DISK_H_
|
|
|
|
// types
|
|
|
|
typedef fsw_s8 __s8;
|
|
typedef fsw_u8 __u8;
|
|
typedef fsw_s16 __s16;
|
|
typedef fsw_u16 __u16;
|
|
typedef fsw_s32 __s32;
|
|
typedef fsw_u32 __u32;
|
|
typedef fsw_s64 __s64;
|
|
typedef fsw_u64 __u64;
|
|
|
|
typedef __u16 __le16;
|
|
typedef __u32 __le32;
|
|
typedef __u64 __le64;
|
|
|
|
#define le16_to_cpu(x) (x)
|
|
#define cpu_to_le16(x) (x)
|
|
#define le32_to_cpu(x) (x)
|
|
#define cpu_to_le32(x) (x)
|
|
#define le64_to_cpu(x) (x)
|
|
#define cpu_to_le64(x) (x)
|
|
|
|
#ifdef __GCC__
|
|
#define ATTR_PACKED __attribute__ ((__packed__))
|
|
#else
|
|
#define ATTR_PACKED
|
|
#endif
|
|
|
|
#pragma pack(1)
|
|
|
|
//
|
|
// from Linux kernel, include/linux/reiserfs_fs.h
|
|
//
|
|
|
|
|
|
|
|
/*
|
|
* Disk Data Structures
|
|
*/
|
|
|
|
/***************************************************************************/
|
|
/* SUPER BLOCK */
|
|
/***************************************************************************/
|
|
|
|
/*
|
|
* Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
|
|
* the version in RAM is part of a larger structure containing fields never written to disk.
|
|
*/
|
|
#define UNSET_HASH 0 // read_super will guess about, what hash names
|
|
// in directories were sorted with
|
|
#define TEA_HASH 1
|
|
#define YURA_HASH 2
|
|
#define R5_HASH 3
|
|
#define DEFAULT_HASH R5_HASH
|
|
|
|
struct journal_params {
|
|
__le32 jp_journal_1st_block; /* where does journal start from on its
|
|
* device */
|
|
__le32 jp_journal_dev; /* journal device st_rdev */
|
|
__le32 jp_journal_size; /* size of the journal */
|
|
__le32 jp_journal_trans_max; /* max number of blocks in a transaction. */
|
|
__le32 jp_journal_magic; /* random value made on fs creation (this
|
|
* was sb_journal_block_count) */
|
|
__le32 jp_journal_max_batch; /* max number of blocks to batch into a
|
|
* trans */
|
|
__le32 jp_journal_max_commit_age; /* in seconds, how old can an async
|
|
* commit be */
|
|
__le32 jp_journal_max_trans_age; /* in seconds, how old can a transaction
|
|
* be */
|
|
};
|
|
|
|
/* this is the super from 3.5.X, where X >= 10 */
|
|
struct reiserfs_super_block_v1 {
|
|
__le32 s_block_count; /* blocks count */
|
|
__le32 s_free_blocks; /* free blocks count */
|
|
__le32 s_root_block; /* root block number */
|
|
struct journal_params s_journal;
|
|
__le16 s_blocksize; /* block size */
|
|
__le16 s_oid_maxsize; /* max size of object id array, see
|
|
* get_objectid() commentary */
|
|
__le16 s_oid_cursize; /* current size of object id array */
|
|
__le16 s_umount_state; /* this is set to 1 when filesystem was
|
|
* umounted, to 2 - when not */
|
|
char s_magic[10]; /* reiserfs magic string indicates that
|
|
* file system is reiserfs:
|
|
* "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
|
|
__le16 s_fs_state; /* it is set to used by fsck to mark which
|
|
* phase of rebuilding is done */
|
|
__le32 s_hash_function_code; /* indicate, what hash function is being use
|
|
* to sort names in a directory*/
|
|
__le16 s_tree_height; /* height of disk tree */
|
|
__le16 s_bmap_nr; /* amount of bitmap blocks needed to address
|
|
* each block of file system */
|
|
__le16 s_version; /* this field is only reliable on filesystem
|
|
* with non-standard journal */
|
|
__le16 s_reserved_for_journal; /* size in blocks of journal area on main
|
|
* device, we need to keep after
|
|
* making fs with non-standard journal */
|
|
} ATTR_PACKED;
|
|
|
|
#define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
|
|
|
|
/* this is the on disk super block */
|
|
struct reiserfs_super_block {
|
|
struct reiserfs_super_block_v1 s_v1;
|
|
__le32 s_inode_generation;
|
|
__le32 s_flags; /* Right now used only by inode-attributes, if enabled */
|
|
unsigned char s_uuid[16]; /* filesystem unique identifier */
|
|
unsigned char s_label[16]; /* filesystem volume label */
|
|
char s_unused[88]; /* zero filled by mkreiserfs and
|
|
* reiserfs_convert_objectid_map_v1()
|
|
* so any additions must be updated
|
|
* there as well. */
|
|
} ATTR_PACKED;
|
|
|
|
#define SB_SIZE (sizeof(struct reiserfs_super_block))
|
|
|
|
#define REISERFS_VERSION_1 0
|
|
#define REISERFS_VERSION_2 2
|
|
|
|
// on-disk super block fields converted to cpu form
|
|
#define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
|
|
#define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
|
|
#define SB_BLOCKSIZE(s) \
|
|
le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
|
|
#define SB_BLOCK_COUNT(s) \
|
|
le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
|
|
#define SB_FREE_BLOCKS(s) \
|
|
le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
|
|
#define SB_REISERFS_MAGIC(s) \
|
|
(SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
|
|
#define SB_ROOT_BLOCK(s) \
|
|
le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
|
|
#define SB_TREE_HEIGHT(s) \
|
|
le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
|
|
#define SB_REISERFS_STATE(s) \
|
|
le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
|
|
#define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
|
|
#define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
|
|
|
|
#define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
|
|
#define SB_ONDISK_JOURNAL_SIZE(s) \
|
|
le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
|
|
#define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
|
|
le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
|
|
#define SB_ONDISK_JOURNAL_DEVICE(s) \
|
|
le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
|
|
#define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
|
|
le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
|
|
|
|
#define is_block_in_log_or_reserved_area(s, block) \
|
|
block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
|
|
&& block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \
|
|
((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
|
|
SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
|
|
|
|
/* used by gcc */
|
|
#define REISERFS_SUPER_MAGIC 0x52654973
|
|
/* used by file system utilities that
|
|
look at the superblock, etc. */
|
|
#define REISERFS_SUPER_MAGIC_STRING "ReIsErFs"
|
|
#define REISER2FS_SUPER_MAGIC_STRING "ReIsEr2Fs"
|
|
#define REISER2FS_JR_SUPER_MAGIC_STRING "ReIsEr3Fs"
|
|
|
|
/* ReiserFS leaves the first 64k unused, so that partition labels have
|
|
enough space. If someone wants to write a fancy bootloader that
|
|
needs more than 64k, let us know, and this will be increased in size.
|
|
This number must be larger than than the largest block size on any
|
|
platform, or code will break. -Hans */
|
|
#define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
|
|
#define REISERFS_FIRST_BLOCK unused_define
|
|
#define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
|
|
|
|
/* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
|
|
#define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
|
|
|
|
// reiserfs internal error code (used by search_by_key adn fix_nodes))
|
|
#define CARRY_ON 0
|
|
#define REPEAT_SEARCH -1
|
|
#define IO_ERROR -2
|
|
#define NO_DISK_SPACE -3
|
|
#define NO_BALANCING_NEEDED (-4)
|
|
#define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
|
|
#define QUOTA_EXCEEDED -6
|
|
|
|
typedef __u32 b_blocknr_t;
|
|
typedef __le32 unp_t;
|
|
|
|
struct unfm_nodeinfo {
|
|
unp_t unfm_nodenum;
|
|
unsigned short unfm_freespace;
|
|
};
|
|
|
|
/* there are two formats of keys: 3.5 and 3.6
|
|
*/
|
|
#define KEY_FORMAT_3_5 0
|
|
#define KEY_FORMAT_3_6 1
|
|
|
|
/* there are two stat datas */
|
|
#define STAT_DATA_V1 0
|
|
#define STAT_DATA_V2 1
|
|
|
|
|
|
|
|
/** this says about version of key of all items (but stat data) the
|
|
object consists of */
|
|
#define get_inode_item_key_version( inode ) \
|
|
((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
|
|
|
|
#define set_inode_item_key_version( inode, version ) \
|
|
({ if((version)==KEY_FORMAT_3_6) \
|
|
REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \
|
|
else \
|
|
REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
|
|
|
|
#define get_inode_sd_version(inode) \
|
|
((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
|
|
|
|
#define set_inode_sd_version(inode, version) \
|
|
({ if((version)==STAT_DATA_V2) \
|
|
REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \
|
|
else \
|
|
REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
|
|
|
|
/* This is an aggressive tail suppression policy, I am hoping it
|
|
improves our benchmarks. The principle behind it is that percentage
|
|
space saving is what matters, not absolute space saving. This is
|
|
non-intuitive, but it helps to understand it if you consider that the
|
|
cost to access 4 blocks is not much more than the cost to access 1
|
|
block, if you have to do a seek and rotate. A tail risks a
|
|
non-linear disk access that is significant as a percentage of total
|
|
time cost for a 4 block file and saves an amount of space that is
|
|
less significant as a percentage of space, or so goes the hypothesis.
|
|
-Hans */
|
|
#define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
|
|
(\
|
|
(!(n_tail_size)) || \
|
|
(((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
|
|
( (n_file_size) >= (n_block_size) * 4 ) || \
|
|
( ( (n_file_size) >= (n_block_size) * 3 ) && \
|
|
( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
|
|
( ( (n_file_size) >= (n_block_size) * 2 ) && \
|
|
( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
|
|
( ( (n_file_size) >= (n_block_size) ) && \
|
|
( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
|
|
)
|
|
|
|
/* Another strategy for tails, this one means only create a tail if all the
|
|
file would fit into one DIRECT item.
|
|
Primary intention for this one is to increase performance by decreasing
|
|
seeking.
|
|
*/
|
|
#define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
|
|
(\
|
|
(!(n_tail_size)) || \
|
|
(((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
|
|
)
|
|
|
|
/*
|
|
* values for s_umount_state field
|
|
*/
|
|
#define REISERFS_VALID_FS 1
|
|
#define REISERFS_ERROR_FS 2
|
|
|
|
//
|
|
// there are 5 item types currently
|
|
//
|
|
#define TYPE_STAT_DATA 0
|
|
#define TYPE_INDIRECT 1
|
|
#define TYPE_DIRECT 2
|
|
#define TYPE_DIRENTRY 3
|
|
#define TYPE_MAXTYPE 3
|
|
#define TYPE_ANY 15 // FIXME: comment is required
|
|
|
|
/***************************************************************************/
|
|
/* KEY & ITEM HEAD */
|
|
/***************************************************************************/
|
|
|
|
//
|
|
// directories use this key as well as old files
|
|
//
|
|
struct offset_v1 {
|
|
__le32 k_offset;
|
|
__le32 k_uniqueness;
|
|
} ATTR_PACKED;
|
|
|
|
struct offset_v2 {
|
|
__le64 v;
|
|
} ATTR_PACKED;
|
|
|
|
/*
|
|
static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
|
|
{
|
|
__u8 type = le64_to_cpu(v2->v) >> 60;
|
|
return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
|
|
}
|
|
|
|
static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
|
|
{
|
|
return le64_to_cpu(v2->v) & (~0ULL >> 4);
|
|
}
|
|
*/
|
|
|
|
/* Key of an item determines its location in the S+tree, and
|
|
is composed of 4 components */
|
|
struct reiserfs_key {
|
|
__le32 k_dir_id; /* packing locality: by default parent
|
|
directory object id */
|
|
__le32 k_objectid; /* object identifier */
|
|
union {
|
|
struct offset_v1 k_offset_v1;
|
|
struct offset_v2 k_offset_v2;
|
|
} ATTR_PACKED u;
|
|
} ATTR_PACKED;
|
|
|
|
struct in_core_key {
|
|
__u32 k_dir_id; /* packing locality: by default parent
|
|
directory object id */
|
|
__u32 k_objectid; /* object identifier */
|
|
__u64 k_offset;
|
|
__u8 k_type;
|
|
};
|
|
|
|
struct cpu_key {
|
|
struct in_core_key on_disk_key;
|
|
int version;
|
|
int key_length; /* 3 in all cases but direct2indirect and
|
|
indirect2direct conversion */
|
|
};
|
|
|
|
/* Our function for comparing keys can compare keys of different
|
|
lengths. It takes as a parameter the length of the keys it is to
|
|
compare. These defines are used in determining what is to be passed
|
|
to it as that parameter. */
|
|
#define REISERFS_FULL_KEY_LEN 4
|
|
#define REISERFS_SHORT_KEY_LEN 2
|
|
|
|
/* The result of the key compare */
|
|
#define FIRST_GREATER 1
|
|
#define SECOND_GREATER -1
|
|
#define KEYS_IDENTICAL 0
|
|
#define KEY_FOUND 1
|
|
#define KEY_NOT_FOUND 0
|
|
|
|
#define KEY_SIZE (sizeof(struct reiserfs_key))
|
|
#define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
|
|
|
|
/* return values for search_by_key and clones */
|
|
#define ITEM_FOUND 1
|
|
#define ITEM_NOT_FOUND 0
|
|
#define ENTRY_FOUND 1
|
|
#define ENTRY_NOT_FOUND 0
|
|
#define DIRECTORY_NOT_FOUND -1
|
|
#define REGULAR_FILE_FOUND -2
|
|
#define DIRECTORY_FOUND -3
|
|
#define BYTE_FOUND 1
|
|
#define BYTE_NOT_FOUND 0
|
|
#define FILE_NOT_FOUND -1
|
|
|
|
#define POSITION_FOUND 1
|
|
#define POSITION_NOT_FOUND 0
|
|
|
|
// return values for reiserfs_find_entry and search_by_entry_key
|
|
#define NAME_FOUND 1
|
|
#define NAME_NOT_FOUND 0
|
|
#define GOTO_PREVIOUS_ITEM 2
|
|
#define NAME_FOUND_INVISIBLE 3
|
|
|
|
/* Everything in the filesystem is stored as a set of items. The
|
|
item head contains the key of the item, its free space (for
|
|
indirect items) and specifies the location of the item itself
|
|
within the block. */
|
|
|
|
struct item_head {
|
|
/* Everything in the tree is found by searching for it based on
|
|
* its key.*/
|
|
struct reiserfs_key ih_key;
|
|
union {
|
|
/* The free space in the last unformatted node of an
|
|
indirect item if this is an indirect item. This
|
|
equals 0xFFFF iff this is a direct item or stat data
|
|
item. Note that the key, not this field, is used to
|
|
determine the item type, and thus which field this
|
|
union contains. */
|
|
__le16 ih_free_space_reserved;
|
|
/* Iff this is a directory item, this field equals the
|
|
number of directory entries in the directory item. */
|
|
__le16 ih_entry_count;
|
|
} ATTR_PACKED u;
|
|
__le16 ih_item_len; /* total size of the item body */
|
|
__le16 ih_item_location; /* an offset to the item body
|
|
* within the block */
|
|
__le16 ih_version; /* 0 for all old items, 2 for new
|
|
ones. Highest bit is set by fsck
|
|
temporary, cleaned after all
|
|
done */
|
|
} ATTR_PACKED;
|
|
/* size of item header */
|
|
#define IH_SIZE (sizeof(struct item_head))
|
|
|
|
#define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved)
|
|
#define ih_version(ih) le16_to_cpu((ih)->ih_version)
|
|
#define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count)
|
|
#define ih_location(ih) le16_to_cpu((ih)->ih_item_location)
|
|
#define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len)
|
|
|
|
#define unreachable_item(ih) (ih_version(ih) & (1 << 15))
|
|
|
|
#define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
|
|
|
|
/* these operate on indirect items, where you've got an array of ints
|
|
** at a possibly unaligned location. These are a noop on ia32
|
|
**
|
|
** p is the array of __u32, i is the index into the array, v is the value
|
|
** to store there.
|
|
*/
|
|
#define get_block_num(p, i) le32_to_cpu(get_unaligned((p) + (i)))
|
|
|
|
//
|
|
// in old version uniqueness field shows key type
|
|
//
|
|
#define V1_SD_UNIQUENESS 0
|
|
#define V1_INDIRECT_UNIQUENESS 0xfffffffe
|
|
#define V1_DIRECT_UNIQUENESS 0xffffffff
|
|
#define V1_DIRENTRY_UNIQUENESS 500
|
|
#define V1_ANY_UNIQUENESS 555 // FIXME: comment is required
|
|
|
|
//
|
|
// here are conversion routines
|
|
//
|
|
/*
|
|
static inline int uniqueness2type(__u32 uniqueness)
|
|
{
|
|
switch ((int)uniqueness) {
|
|
case V1_SD_UNIQUENESS:
|
|
return TYPE_STAT_DATA;
|
|
case V1_INDIRECT_UNIQUENESS:
|
|
return TYPE_INDIRECT;
|
|
case V1_DIRECT_UNIQUENESS:
|
|
return TYPE_DIRECT;
|
|
case V1_DIRENTRY_UNIQUENESS:
|
|
return TYPE_DIRENTRY;
|
|
default:
|
|
reiserfs_warning(NULL, "vs-500: unknown uniqueness %d",
|
|
uniqueness);
|
|
case V1_ANY_UNIQUENESS:
|
|
return TYPE_ANY;
|
|
}
|
|
}
|
|
|
|
static inline __u32 type2uniqueness(int type)
|
|
{
|
|
switch (type) {
|
|
case TYPE_STAT_DATA:
|
|
return V1_SD_UNIQUENESS;
|
|
case TYPE_INDIRECT:
|
|
return V1_INDIRECT_UNIQUENESS;
|
|
case TYPE_DIRECT:
|
|
return V1_DIRECT_UNIQUENESS;
|
|
case TYPE_DIRENTRY:
|
|
return V1_DIRENTRY_UNIQUENESS;
|
|
default:
|
|
reiserfs_warning(NULL, "vs-501: unknown type %d", type);
|
|
case TYPE_ANY:
|
|
return V1_ANY_UNIQUENESS;
|
|
}
|
|
}
|
|
*/
|
|
|
|
//
|
|
// key is pointer to on disk key which is stored in le, result is cpu,
|
|
// there is no way to get version of object from key, so, provide
|
|
// version to these defines
|
|
//
|
|
/*
|
|
static inline loff_t le_key_k_offset(int version,
|
|
const struct reiserfs_key *key)
|
|
{
|
|
return (version == KEY_FORMAT_3_5) ?
|
|
le32_to_cpu(key->u.k_offset_v1.k_offset) :
|
|
offset_v2_k_offset(&(key->u.k_offset_v2));
|
|
}
|
|
|
|
static inline loff_t le_ih_k_offset(const struct item_head *ih)
|
|
{
|
|
return le_key_k_offset(ih_version(ih), &(ih->ih_key));
|
|
}
|
|
|
|
static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
|
|
{
|
|
return (version == KEY_FORMAT_3_5) ?
|
|
uniqueness2type(le32_to_cpu(key->u.k_offset_v1.k_uniqueness)) :
|
|
offset_v2_k_type(&(key->u.k_offset_v2));
|
|
}
|
|
|
|
static inline loff_t le_ih_k_type(const struct item_head *ih)
|
|
{
|
|
return le_key_k_type(ih_version(ih), &(ih->ih_key));
|
|
}
|
|
*/
|
|
|
|
#define is_direntry_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRENTRY)
|
|
#define is_direct_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRECT)
|
|
#define is_indirect_le_key(version,key) (le_key_k_type (version, key) == TYPE_INDIRECT)
|
|
#define is_statdata_le_key(version,key) (le_key_k_type (version, key) == TYPE_STAT_DATA)
|
|
|
|
//
|
|
// item header has version.
|
|
//
|
|
#define is_direntry_le_ih(ih) is_direntry_le_key (ih_version (ih), &((ih)->ih_key))
|
|
#define is_direct_le_ih(ih) is_direct_le_key (ih_version (ih), &((ih)->ih_key))
|
|
#define is_indirect_le_ih(ih) is_indirect_le_key (ih_version(ih), &((ih)->ih_key))
|
|
#define is_statdata_le_ih(ih) is_statdata_le_key (ih_version (ih), &((ih)->ih_key))
|
|
|
|
//
|
|
// key is pointer to cpu key, result is cpu
|
|
//
|
|
/*
|
|
static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
|
|
{
|
|
return key->on_disk_key.k_offset;
|
|
}
|
|
|
|
static inline loff_t cpu_key_k_type(const struct cpu_key *key)
|
|
{
|
|
return key->on_disk_key.k_type;
|
|
}
|
|
|
|
static inline void cpu_key_k_offset_dec(struct cpu_key *key)
|
|
{
|
|
key->on_disk_key.k_offset--;
|
|
}
|
|
*/
|
|
|
|
#define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
|
|
#define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
|
|
#define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
|
|
#define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
|
|
|
|
/* are these used ? */
|
|
#define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
|
|
#define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
|
|
#define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
|
|
#define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
|
|
|
|
#define I_K_KEY_IN_ITEM(p_s_ih, p_s_key, n_blocksize) \
|
|
( ! COMP_SHORT_KEYS(p_s_ih, p_s_key) && \
|
|
I_OFF_BYTE_IN_ITEM(p_s_ih, k_offset (p_s_key), n_blocksize) )
|
|
|
|
/* maximal length of item */
|
|
#define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
|
|
#define MIN_ITEM_LEN 1
|
|
|
|
/* object identifier for root dir */
|
|
#define REISERFS_ROOT_OBJECTID 2
|
|
#define REISERFS_ROOT_PARENT_OBJECTID 1
|
|
|
|
/*
|
|
* Picture represents a leaf of the S+tree
|
|
* ______________________________________________________
|
|
* | | Array of | | |
|
|
* |Block | Object-Item | F r e e | Objects- |
|
|
* | head | Headers | S p a c e | Items |
|
|
* |______|_______________|___________________|___________|
|
|
*/
|
|
|
|
/* Header of a disk block. More precisely, header of a formatted leaf
|
|
or internal node, and not the header of an unformatted node. */
|
|
struct block_head {
|
|
__le16 blk_level; /* Level of a block in the tree. */
|
|
__le16 blk_nr_item; /* Number of keys/items in a block. */
|
|
__le16 blk_free_space; /* Block free space in bytes. */
|
|
__le16 blk_reserved;
|
|
/* dump this in v4/planA */
|
|
struct reiserfs_key blk_right_delim_key; /* kept only for compatibility */
|
|
};
|
|
|
|
#define BLKH_SIZE (sizeof(struct block_head))
|
|
#define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level))
|
|
#define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item))
|
|
#define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space))
|
|
#define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved))
|
|
#define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key)
|
|
|
|
/*
|
|
* values for blk_level field of the struct block_head
|
|
*/
|
|
|
|
#define FREE_LEVEL 0 /* when node gets removed from the tree its
|
|
blk_level is set to FREE_LEVEL. It is then
|
|
used to see whether the node is still in the
|
|
tree */
|
|
|
|
#define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */
|
|
|
|
/* Given the buffer head of a formatted node, resolve to the block head of that node. */
|
|
#define B_BLK_HEAD(p_s_bh) ((struct block_head *)((p_s_bh)->b_data))
|
|
/* Number of items that are in buffer. */
|
|
#define B_NR_ITEMS(p_s_bh) (blkh_nr_item(B_BLK_HEAD(p_s_bh)))
|
|
#define B_LEVEL(p_s_bh) (blkh_level(B_BLK_HEAD(p_s_bh)))
|
|
#define B_FREE_SPACE(p_s_bh) (blkh_free_space(B_BLK_HEAD(p_s_bh)))
|
|
|
|
/* Get right delimiting key. -- little endian */
|
|
#define B_PRIGHT_DELIM_KEY(p_s_bh) (&(blk_right_delim_key(B_BLK_HEAD(p_s_bh))
|
|
|
|
/* Does the buffer contain a disk leaf. */
|
|
#define B_IS_ITEMS_LEVEL(p_s_bh) (B_LEVEL(p_s_bh) == DISK_LEAF_NODE_LEVEL)
|
|
|
|
/* Does the buffer contain a disk internal node */
|
|
#define B_IS_KEYS_LEVEL(p_s_bh) (B_LEVEL(p_s_bh) > DISK_LEAF_NODE_LEVEL \
|
|
&& B_LEVEL(p_s_bh) <= MAX_HEIGHT)
|
|
|
|
/***************************************************************************/
|
|
/* STAT DATA */
|
|
/***************************************************************************/
|
|
|
|
//
|
|
// old stat data is 32 bytes long. We are going to distinguish new one by
|
|
// different size
|
|
//
|
|
struct stat_data_v1 {
|
|
__le16 sd_mode; /* file type, permissions */
|
|
__le16 sd_nlink; /* number of hard links */
|
|
__le16 sd_uid; /* owner */
|
|
__le16 sd_gid; /* group */
|
|
__le32 sd_size; /* file size */
|
|
__le32 sd_atime; /* time of last access */
|
|
__le32 sd_mtime; /* time file was last modified */
|
|
__le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
|
|
union {
|
|
__le32 sd_rdev;
|
|
__le32 sd_blocks; /* number of blocks file uses */
|
|
} ATTR_PACKED u;
|
|
__le32 sd_first_direct_byte; /* first byte of file which is stored
|
|
in a direct item: except that if it
|
|
equals 1 it is a symlink and if it
|
|
equals ~(__u32)0 there is no
|
|
direct item. The existence of this
|
|
field really grates on me. Let's
|
|
replace it with a macro based on
|
|
sd_size and our tail suppression
|
|
policy. Someday. -Hans */
|
|
} ATTR_PACKED;
|
|
|
|
#define SD_V1_SIZE (sizeof(struct stat_data_v1))
|
|
#define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5)
|
|
#define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
|
|
#define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
|
|
#define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink))
|
|
#define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v))
|
|
#define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid))
|
|
#define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v))
|
|
#define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid))
|
|
#define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v))
|
|
#define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size))
|
|
#define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v))
|
|
#define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
|
|
#define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
|
|
#define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
|
|
#define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
|
|
#define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
|
|
#define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
|
|
#define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
|
|
#define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
|
|
#define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks))
|
|
#define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
|
|
#define sd_v1_first_direct_byte(sdp) \
|
|
(le32_to_cpu((sdp)->sd_first_direct_byte))
|
|
#define set_sd_v1_first_direct_byte(sdp,v) \
|
|
((sdp)->sd_first_direct_byte = cpu_to_le32(v))
|
|
|
|
/*
|
|
#include <linux/ext2_fs.h>
|
|
*/
|
|
|
|
/* inode flags stored in sd_attrs (nee sd_reserved) */
|
|
|
|
/* we want common flags to have the same values as in ext2,
|
|
so chattr(1) will work without problems */
|
|
#define REISERFS_IMMUTABLE_FL EXT2_IMMUTABLE_FL
|
|
#define REISERFS_APPEND_FL EXT2_APPEND_FL
|
|
#define REISERFS_SYNC_FL EXT2_SYNC_FL
|
|
#define REISERFS_NOATIME_FL EXT2_NOATIME_FL
|
|
#define REISERFS_NODUMP_FL EXT2_NODUMP_FL
|
|
#define REISERFS_SECRM_FL EXT2_SECRM_FL
|
|
#define REISERFS_UNRM_FL EXT2_UNRM_FL
|
|
#define REISERFS_COMPR_FL EXT2_COMPR_FL
|
|
#define REISERFS_NOTAIL_FL EXT2_NOTAIL_FL
|
|
|
|
/* persistent flags that file inherits from the parent directory */
|
|
#define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \
|
|
REISERFS_SYNC_FL | \
|
|
REISERFS_NOATIME_FL | \
|
|
REISERFS_NODUMP_FL | \
|
|
REISERFS_SECRM_FL | \
|
|
REISERFS_COMPR_FL | \
|
|
REISERFS_NOTAIL_FL )
|
|
|
|
/* Stat Data on disk (reiserfs version of UFS disk inode minus the
|
|
address blocks) */
|
|
struct stat_data {
|
|
__le16 sd_mode; /* file type, permissions */
|
|
__le16 sd_attrs; /* persistent inode flags */
|
|
__le32 sd_nlink; /* number of hard links */
|
|
__le64 sd_size; /* file size */
|
|
__le32 sd_uid; /* owner */
|
|
__le32 sd_gid; /* group */
|
|
__le32 sd_atime; /* time of last access */
|
|
__le32 sd_mtime; /* time file was last modified */
|
|
__le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
|
|
__le32 sd_blocks;
|
|
union {
|
|
__le32 sd_rdev;
|
|
__le32 sd_generation;
|
|
//__le32 sd_first_direct_byte;
|
|
/* first byte of file which is stored in a
|
|
direct item: except that if it equals 1
|
|
it is a symlink and if it equals
|
|
~(__u32)0 there is no direct item. The
|
|
existence of this field really grates
|
|
on me. Let's replace it with a macro
|
|
based on sd_size and our tail
|
|
suppression policy? */
|
|
} ATTR_PACKED u;
|
|
} ATTR_PACKED;
|
|
//
|
|
// this is 44 bytes long
|
|
//
|
|
#define SD_SIZE (sizeof(struct stat_data))
|
|
#define SD_V2_SIZE SD_SIZE
|
|
#define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6)
|
|
#define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
|
|
#define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
|
|
/* sd_reserved */
|
|
/* set_sd_reserved */
|
|
#define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink))
|
|
#define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v))
|
|
#define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size))
|
|
#define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v))
|
|
#define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid))
|
|
#define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v))
|
|
#define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid))
|
|
#define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v))
|
|
#define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
|
|
#define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
|
|
#define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
|
|
#define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
|
|
#define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
|
|
#define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
|
|
#define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks))
|
|
#define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
|
|
#define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
|
|
#define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
|
|
#define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation))
|
|
#define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
|
|
#define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs))
|
|
#define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v))
|
|
|
|
/***************************************************************************/
|
|
/* DIRECTORY STRUCTURE */
|
|
/***************************************************************************/
|
|
/*
|
|
Picture represents the structure of directory items
|
|
________________________________________________
|
|
| Array of | | | | | |
|
|
| directory |N-1| N-2 | .... | 1st |0th|
|
|
| entry headers | | | | | |
|
|
|_______________|___|_____|________|_______|___|
|
|
<---- directory entries ------>
|
|
|
|
First directory item has k_offset component 1. We store "." and ".."
|
|
in one item, always, we never split "." and ".." into differing
|
|
items. This makes, among other things, the code for removing
|
|
directories simpler. */
|
|
#define SD_OFFSET 0
|
|
#define SD_UNIQUENESS 0
|
|
#define DOT_OFFSET 1
|
|
#define DOT_DOT_OFFSET 2
|
|
#define DIRENTRY_UNIQUENESS 500
|
|
|
|
/* */
|
|
#define FIRST_ITEM_OFFSET 1
|
|
|
|
/*
|
|
Q: How to get key of object pointed to by entry from entry?
|
|
|
|
A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
|
|
of object, entry points to */
|
|
|
|
/* NOT IMPLEMENTED:
|
|
Directory will someday contain stat data of object */
|
|
|
|
struct reiserfs_de_head {
|
|
__le32 deh_offset; /* third component of the directory entry key */
|
|
__le32 deh_dir_id; /* objectid of the parent directory of the object, that is referenced
|
|
by directory entry */
|
|
__le32 deh_objectid; /* objectid of the object, that is referenced by directory entry */
|
|
__le16 deh_location; /* offset of name in the whole item */
|
|
__le16 deh_state; /* whether 1) entry contains stat data (for future), and 2) whether
|
|
entry is hidden (unlinked) */
|
|
} ATTR_PACKED;
|
|
#define DEH_SIZE sizeof(struct reiserfs_de_head)
|
|
#define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset))
|
|
#define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id))
|
|
#define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid))
|
|
#define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location))
|
|
#define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state))
|
|
|
|
#define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v)))
|
|
#define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v)))
|
|
#define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
|
|
#define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
|
|
#define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v)))
|
|
|
|
/* empty directory contains two entries "." and ".." and their headers */
|
|
#define EMPTY_DIR_SIZE \
|
|
(DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
|
|
|
|
/* old format directories have this size when empty */
|
|
#define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
|
|
|
|
#define DEH_Statdata 0 /* not used now */
|
|
#define DEH_Visible 2
|
|
|
|
/* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
|
|
#if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
|
|
# define ADDR_UNALIGNED_BITS (3)
|
|
#endif
|
|
|
|
/* These are only used to manipulate deh_state.
|
|
* Because of this, we'll use the ext2_ bit routines,
|
|
* since they are little endian */
|
|
#ifdef ADDR_UNALIGNED_BITS
|
|
|
|
# define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
|
|
# define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
|
|
|
|
# define set_bit_unaligned(nr, addr) ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr))
|
|
# define clear_bit_unaligned(nr, addr) ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr))
|
|
# define test_bit_unaligned(nr, addr) ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr))
|
|
|
|
#else
|
|
|
|
# define set_bit_unaligned(nr, addr) ext2_set_bit(nr, addr)
|
|
# define clear_bit_unaligned(nr, addr) ext2_clear_bit(nr, addr)
|
|
# define test_bit_unaligned(nr, addr) ext2_test_bit(nr, addr)
|
|
|
|
#endif
|
|
|
|
#define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
|
|
#define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
|
|
#define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
|
|
#define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
|
|
|
|
#define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
|
|
#define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
|
|
#define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
|
|
|
|
/*
|
|
extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
|
|
__le32 par_dirid, __le32 par_objid);
|
|
extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
|
|
__le32 par_dirid, __le32 par_objid);
|
|
*/
|
|
|
|
/* array of the entry headers */
|
|
/* get item body */
|
|
#define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
|
|
#define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
|
|
|
|
/* length of the directory entry in directory item. This define
|
|
calculates length of i-th directory entry using directory entry
|
|
locations from dir entry head. When it calculates length of 0-th
|
|
directory entry, it uses length of whole item in place of entry
|
|
location of the non-existent following entry in the calculation.
|
|
See picture above.*/
|
|
/*
|
|
#define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
|
|
((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
|
|
*/
|
|
/*
|
|
static inline int entry_length(const struct buffer_head *bh,
|
|
const struct item_head *ih, int pos_in_item)
|
|
{
|
|
struct reiserfs_de_head *deh;
|
|
|
|
deh = B_I_DEH(bh, ih) + pos_in_item;
|
|
if (pos_in_item)
|
|
return deh_location(deh - 1) - deh_location(deh);
|
|
|
|
return ih_item_len(ih) - deh_location(deh);
|
|
}
|
|
*/
|
|
|
|
/* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
|
|
#define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
|
|
|
|
/* name by bh, ih and entry_num */
|
|
#define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
|
|
|
|
// two entries per block (at least)
|
|
#define REISERFS_MAX_NAME(block_size) 255
|
|
|
|
/* this structure is used for operations on directory entries. It is
|
|
not a disk structure. */
|
|
/* When reiserfs_find_entry or search_by_entry_key find directory
|
|
entry, they return filled reiserfs_dir_entry structure */
|
|
struct reiserfs_dir_entry {
|
|
struct buffer_head *de_bh;
|
|
int de_item_num;
|
|
struct item_head *de_ih;
|
|
int de_entry_num;
|
|
struct reiserfs_de_head *de_deh;
|
|
int de_entrylen;
|
|
int de_namelen;
|
|
char *de_name;
|
|
unsigned long *de_gen_number_bit_string;
|
|
|
|
__u32 de_dir_id;
|
|
__u32 de_objectid;
|
|
|
|
struct cpu_key de_entry_key;
|
|
};
|
|
|
|
/* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
|
|
|
|
/* pointer to file name, stored in entry */
|
|
#define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
|
|
|
|
/* length of name */
|
|
#define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
|
|
(I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
|
|
|
|
/* hash value occupies bits from 7 up to 30 */
|
|
#define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
|
|
/* generation number occupies 7 bits starting from 0 up to 6 */
|
|
#define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
|
|
#define MAX_GENERATION_NUMBER 127
|
|
|
|
#define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
|
|
|
|
/*
|
|
* Picture represents an internal node of the reiserfs tree
|
|
* ______________________________________________________
|
|
* | | Array of | Array of | Free |
|
|
* |block | keys | pointers | space |
|
|
* | head | N | N+1 | |
|
|
* |______|_______________|___________________|___________|
|
|
*/
|
|
|
|
/***************************************************************************/
|
|
/* DISK CHILD */
|
|
/***************************************************************************/
|
|
/* Disk child pointer: The pointer from an internal node of the tree
|
|
to a node that is on disk. */
|
|
struct disk_child {
|
|
__le32 dc_block_number; /* Disk child's block number. */
|
|
__le16 dc_size; /* Disk child's used space. */
|
|
__le16 dc_reserved;
|
|
};
|
|
|
|
#define DC_SIZE (sizeof(struct disk_child))
|
|
#define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number))
|
|
#define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size))
|
|
|
|
/* Get disk child by buffer header and position in the tree node. */
|
|
#define B_N_CHILD(p_s_bh,n_pos) ((struct disk_child *)\
|
|
((p_s_bh)->b_data+BLKH_SIZE+B_NR_ITEMS(p_s_bh)*KEY_SIZE+DC_SIZE*(n_pos)))
|
|
|
|
/* Get disk child number by buffer header and position in the tree node. */
|
|
#define B_N_CHILD_NUM(p_s_bh,n_pos) (dc_block_number(B_N_CHILD(p_s_bh,n_pos)))
|
|
#define PUT_B_N_CHILD_NUM(p_s_bh,n_pos, val) (put_dc_block_number(B_N_CHILD(p_s_bh,n_pos), val ))
|
|
|
|
/* maximal value of field child_size in structure disk_child */
|
|
/* child size is the combined size of all items and their headers */
|
|
#define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
|
|
|
|
/* amount of used space in buffer (not including block head) */
|
|
#define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
|
|
|
|
/* max and min number of keys in internal node */
|
|
#define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
|
|
#define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2)
|
|
|
|
/***************************************************************************/
|
|
/* PATH STRUCTURES AND DEFINES */
|
|
/***************************************************************************/
|
|
|
|
/* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
|
|
key. It uses reiserfs_bread to try to find buffers in the cache given their block number. If it
|
|
does not find them in the cache it reads them from disk. For each node search_by_key finds using
|
|
reiserfs_bread it then uses bin_search to look through that node. bin_search will find the
|
|
position of the block_number of the next node if it is looking through an internal node. If it
|
|
is looking through a leaf node bin_search will find the position of the item which has key either
|
|
equal to given key, or which is the maximal key less than the given key. */
|
|
|
|
struct path_element {
|
|
struct buffer_head *pe_buffer; /* Pointer to the buffer at the path in the tree. */
|
|
int pe_position; /* Position in the tree node which is placed in the */
|
|
/* buffer above. */
|
|
};
|
|
|
|
#define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
|
|
#define EXTENDED_MAX_HEIGHT 7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
|
|
#define FIRST_PATH_ELEMENT_OFFSET 2 /* Must be equal to at least 2. */
|
|
|
|
#define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
|
|
#define MAX_FEB_SIZE 6 /* this MUST be MAX_HEIGHT + 1. See about FEB below */
|
|
|
|
/* We need to keep track of who the ancestors of nodes are. When we
|
|
perform a search we record which nodes were visited while
|
|
descending the tree looking for the node we searched for. This list
|
|
of nodes is called the path. This information is used while
|
|
performing balancing. Note that this path information may become
|
|
invalid, and this means we must check it when using it to see if it
|
|
is still valid. You'll need to read search_by_key and the comments
|
|
in it, especially about decrement_counters_in_path(), to understand
|
|
this structure.
|
|
|
|
Paths make the code so much harder to work with and debug.... An
|
|
enormous number of bugs are due to them, and trying to write or modify
|
|
code that uses them just makes my head hurt. They are based on an
|
|
excessive effort to avoid disturbing the precious VFS code.:-( The
|
|
gods only know how we are going to SMP the code that uses them.
|
|
znodes are the way! */
|
|
|
|
#define PATH_READA 0x1 /* do read ahead */
|
|
#define PATH_READA_BACK 0x2 /* read backwards */
|
|
|
|
struct path {
|
|
int path_length; /* Length of the array above. */
|
|
int reada;
|
|
struct path_element path_elements[EXTENDED_MAX_HEIGHT]; /* Array of the path elements. */
|
|
int pos_in_item;
|
|
};
|
|
|
|
#define pos_in_item(path) ((path)->pos_in_item)
|
|
|
|
#define INITIALIZE_PATH(var) \
|
|
struct path var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
|
|
|
|
/* Get path element by path and path position. */
|
|
#define PATH_OFFSET_PELEMENT(p_s_path,n_offset) ((p_s_path)->path_elements +(n_offset))
|
|
|
|
/* Get buffer header at the path by path and path position. */
|
|
#define PATH_OFFSET_PBUFFER(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_buffer)
|
|
|
|
/* Get position in the element at the path by path and path position. */
|
|
#define PATH_OFFSET_POSITION(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_position)
|
|
|
|
#define PATH_PLAST_BUFFER(p_s_path) (PATH_OFFSET_PBUFFER((p_s_path), (p_s_path)->path_length))
|
|
/* you know, to the person who didn't
|
|
write this the macro name does not
|
|
at first suggest what it does.
|
|
Maybe POSITION_FROM_PATH_END? Or
|
|
maybe we should just focus on
|
|
dumping paths... -Hans */
|
|
#define PATH_LAST_POSITION(p_s_path) (PATH_OFFSET_POSITION((p_s_path), (p_s_path)->path_length))
|
|
|
|
#define PATH_PITEM_HEAD(p_s_path) B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_path),PATH_LAST_POSITION(p_s_path))
|
|
|
|
/* in do_balance leaf has h == 0 in contrast with path structure,
|
|
where root has level == 0. That is why we need these defines */
|
|
#define PATH_H_PBUFFER(p_s_path, h) PATH_OFFSET_PBUFFER (p_s_path, p_s_path->path_length - (h)) /* tb->S[h] */
|
|
#define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1) /* tb->F[h] or tb->S[0]->b_parent */
|
|
#define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))
|
|
#define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) /* tb->S[h]->b_item_order */
|
|
|
|
#define PATH_H_PATH_OFFSET(p_s_path, n_h) ((p_s_path)->path_length - (n_h))
|
|
|
|
#define get_last_bh(path) PATH_PLAST_BUFFER(path)
|
|
#define get_ih(path) PATH_PITEM_HEAD(path)
|
|
#define get_item_pos(path) PATH_LAST_POSITION(path)
|
|
#define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
|
|
#define item_moved(ih,path) comp_items(ih, path)
|
|
#define path_changed(ih,path) comp_items (ih, path)
|
|
|
|
/***************************************************************************/
|
|
/* MISC */
|
|
/***************************************************************************/
|
|
|
|
/* Size of pointer to the unformatted node. */
|
|
#define UNFM_P_SIZE (sizeof(unp_t))
|
|
#define UNFM_P_SHIFT 2
|
|
|
|
// in in-core inode key is stored on le form
|
|
#define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
|
|
|
|
#define MAX_UL_INT 0xffffffff
|
|
#define MAX_INT 0x7ffffff
|
|
#define MAX_US_INT 0xffff
|
|
|
|
// reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
|
|
#define U32_MAX (~(__u32)0)
|
|
|
|
/*
|
|
static inline loff_t max_reiserfs_offset(struct inode *inode)
|
|
{
|
|
if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
|
|
return (loff_t) U32_MAX;
|
|
|
|
return (loff_t) ((~(__u64) 0) >> 4);
|
|
}
|
|
*/
|
|
|
|
/*#define MAX_KEY_UNIQUENESS MAX_UL_INT*/
|
|
#define MAX_KEY_OBJECTID MAX_UL_INT
|
|
|
|
#define MAX_B_NUM MAX_UL_INT
|
|
#define MAX_FC_NUM MAX_US_INT
|
|
|
|
/* the purpose is to detect overflow of an unsigned short */
|
|
#define REISERFS_LINK_MAX (MAX_US_INT - 1000)
|
|
|
|
/* The following defines are used in reiserfs_insert_item and reiserfs_append_item */
|
|
#define REISERFS_KERNEL_MEM 0 /* reiserfs kernel memory mode */
|
|
#define REISERFS_USER_MEM 1 /* reiserfs user memory mode */
|
|
|
|
#define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
|
|
#define get_generation(s) atomic_read (&fs_generation(s))
|
|
#define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen)
|
|
#define __fs_changed(gen,s) (gen != get_generation (s))
|
|
#define fs_changed(gen,s) ({cond_resched(); __fs_changed(gen, s);})
|
|
|
|
/***************************************************************************/
|
|
/* FIXATE NODES */
|
|
/***************************************************************************/
|
|
|
|
#define VI_TYPE_LEFT_MERGEABLE 1
|
|
#define VI_TYPE_RIGHT_MERGEABLE 2
|
|
|
|
/* To make any changes in the tree we always first find node, that
|
|
contains item to be changed/deleted or place to insert a new
|
|
item. We call this node S. To do balancing we need to decide what
|
|
we will shift to left/right neighbor, or to a new node, where new
|
|
item will be etc. To make this analysis simpler we build virtual
|
|
node. Virtual node is an array of items, that will replace items of
|
|
node S. (For instance if we are going to delete an item, virtual
|
|
node does not contain it). Virtual node keeps information about
|
|
item sizes and types, mergeability of first and last items, sizes
|
|
of all entries in directory item. We use this array of items when
|
|
calculating what we can shift to neighbors and how many nodes we
|
|
have to have if we do not any shiftings, if we shift to left/right
|
|
neighbor or to both. */
|
|
struct virtual_item {
|
|
int vi_index; // index in the array of item operations
|
|
unsigned short vi_type; // left/right mergeability
|
|
unsigned short vi_item_len; /* length of item that it will have after balancing */
|
|
struct item_head *vi_ih;
|
|
const char *vi_item; // body of item (old or new)
|
|
const void *vi_new_data; // 0 always but paste mode
|
|
void *vi_uarea; // item specific area
|
|
};
|
|
|
|
struct virtual_node {
|
|
char *vn_free_ptr; /* this is a pointer to the free space in the buffer */
|
|
unsigned short vn_nr_item; /* number of items in virtual node */
|
|
short vn_size; /* size of node , that node would have if it has unlimited size and no balancing is performed */
|
|
short vn_mode; /* mode of balancing (paste, insert, delete, cut) */
|
|
short vn_affected_item_num;
|
|
short vn_pos_in_item;
|
|
struct item_head *vn_ins_ih; /* item header of inserted item, 0 for other modes */
|
|
const void *vn_data;
|
|
struct virtual_item *vn_vi; /* array of items (including a new one, excluding item to be deleted) */
|
|
};
|
|
|
|
/* used by directory items when creating virtual nodes */
|
|
struct direntry_uarea {
|
|
int flags;
|
|
__u16 entry_count;
|
|
__u16 entry_sizes[1];
|
|
} ATTR_PACKED;
|
|
|
|
/***************************************************************************/
|
|
/* TREE BALANCE */
|
|
/***************************************************************************/
|
|
|
|
/* This temporary structure is used in tree balance algorithms, and
|
|
constructed as we go to the extent that its various parts are
|
|
needed. It contains arrays of nodes that can potentially be
|
|
involved in the balancing of node S, and parameters that define how
|
|
each of the nodes must be balanced. Note that in these algorithms
|
|
for balancing the worst case is to need to balance the current node
|
|
S and the left and right neighbors and all of their parents plus
|
|
create a new node. We implement S1 balancing for the leaf nodes
|
|
and S0 balancing for the internal nodes (S1 and S0 are defined in
|
|
our papers.)*/
|
|
|
|
#define MAX_FREE_BLOCK 7 /* size of the array of buffers to free at end of do_balance */
|
|
|
|
/* maximum number of FEB blocknrs on a single level */
|
|
#define MAX_AMOUNT_NEEDED 2
|
|
|
|
/* someday somebody will prefix every field in this struct with tb_ */
|
|
struct tree_balance {
|
|
int tb_mode;
|
|
int need_balance_dirty;
|
|
struct super_block *tb_sb;
|
|
struct reiserfs_transaction_handle *transaction_handle;
|
|
struct path *tb_path;
|
|
struct buffer_head *L[MAX_HEIGHT]; /* array of left neighbors of nodes in the path */
|
|
struct buffer_head *R[MAX_HEIGHT]; /* array of right neighbors of nodes in the path */
|
|
struct buffer_head *FL[MAX_HEIGHT]; /* array of fathers of the left neighbors */
|
|
struct buffer_head *FR[MAX_HEIGHT]; /* array of fathers of the right neighbors */
|
|
struct buffer_head *CFL[MAX_HEIGHT]; /* array of common parents of center node and its left neighbor */
|
|
struct buffer_head *CFR[MAX_HEIGHT]; /* array of common parents of center node and its right neighbor */
|
|
|
|
struct buffer_head *FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals
|
|
cur_blknum. */
|
|
struct buffer_head *used[MAX_FEB_SIZE];
|
|
struct buffer_head *thrown[MAX_FEB_SIZE];
|
|
int lnum[MAX_HEIGHT]; /* array of number of items which must be
|
|
shifted to the left in order to balance the
|
|
current node; for leaves includes item that
|
|
will be partially shifted; for internal
|
|
nodes, it is the number of child pointers
|
|
rather than items. It includes the new item
|
|
being created. The code sometimes subtracts
|
|
one to get the number of wholly shifted
|
|
items for other purposes. */
|
|
int rnum[MAX_HEIGHT]; /* substitute right for left in comment above */
|
|
int lkey[MAX_HEIGHT]; /* array indexed by height h mapping the key delimiting L[h] and
|
|
S[h] to its item number within the node CFL[h] */
|
|
int rkey[MAX_HEIGHT]; /* substitute r for l in comment above */
|
|
int insert_size[MAX_HEIGHT]; /* the number of bytes by we are trying to add or remove from
|
|
S[h]. A negative value means removing. */
|
|
int blknum[MAX_HEIGHT]; /* number of nodes that will replace node S[h] after
|
|
balancing on the level h of the tree. If 0 then S is
|
|
being deleted, if 1 then S is remaining and no new nodes
|
|
are being created, if 2 or 3 then 1 or 2 new nodes is
|
|
being created */
|
|
|
|
/* fields that are used only for balancing leaves of the tree */
|
|
int cur_blknum; /* number of empty blocks having been already allocated */
|
|
int s0num; /* number of items that fall into left most node when S[0] splits */
|
|
int s1num; /* number of items that fall into first new node when S[0] splits */
|
|
int s2num; /* number of items that fall into second new node when S[0] splits */
|
|
int lbytes; /* number of bytes which can flow to the left neighbor from the left */
|
|
/* most liquid item that cannot be shifted from S[0] entirely */
|
|
/* if -1 then nothing will be partially shifted */
|
|
int rbytes; /* number of bytes which will flow to the right neighbor from the right */
|
|
/* most liquid item that cannot be shifted from S[0] entirely */
|
|
/* if -1 then nothing will be partially shifted */
|
|
int s1bytes; /* number of bytes which flow to the first new node when S[0] splits */
|
|
/* note: if S[0] splits into 3 nodes, then items do not need to be cut */
|
|
int s2bytes;
|
|
struct buffer_head *buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */
|
|
char *vn_buf; /* kmalloced memory. Used to create
|
|
virtual node and keep map of
|
|
dirtied bitmap blocks */
|
|
int vn_buf_size; /* size of the vn_buf */
|
|
struct virtual_node *tb_vn; /* VN starts after bitmap of bitmap blocks */
|
|
|
|
int fs_gen; /* saved value of `reiserfs_generation' counter
|
|
see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
|
|
#ifdef DISPLACE_NEW_PACKING_LOCALITIES
|
|
struct in_core_key key; /* key pointer, to pass to block allocator or
|
|
another low-level subsystem */
|
|
#endif
|
|
};
|
|
|
|
/* These are modes of balancing */
|
|
|
|
/* When inserting an item. */
|
|
#define M_INSERT 'i'
|
|
/* When inserting into (directories only) or appending onto an already
|
|
existant item. */
|
|
#define M_PASTE 'p'
|
|
/* When deleting an item. */
|
|
#define M_DELETE 'd'
|
|
/* When truncating an item or removing an entry from a (directory) item. */
|
|
#define M_CUT 'c'
|
|
|
|
/* used when balancing on leaf level skipped (in reiserfsck) */
|
|
#define M_INTERNAL 'n'
|
|
|
|
/* When further balancing is not needed, then do_balance does not need
|
|
to be called. */
|
|
#define M_SKIP_BALANCING 's'
|
|
#define M_CONVERT 'v'
|
|
|
|
/* modes of leaf_move_items */
|
|
#define LEAF_FROM_S_TO_L 0
|
|
#define LEAF_FROM_S_TO_R 1
|
|
#define LEAF_FROM_R_TO_L 2
|
|
#define LEAF_FROM_L_TO_R 3
|
|
#define LEAF_FROM_S_TO_SNEW 4
|
|
|
|
#define FIRST_TO_LAST 0
|
|
#define LAST_TO_FIRST 1
|
|
|
|
/* used in do_balance for passing parent of node information that has
|
|
been gotten from tb struct */
|
|
struct buffer_info {
|
|
struct tree_balance *tb;
|
|
struct buffer_head *bi_bh;
|
|
struct buffer_head *bi_parent;
|
|
int bi_position;
|
|
};
|
|
|
|
/* there are 4 types of items: stat data, directory item, indirect, direct.
|
|
+-------------------+------------+--------------+------------+
|
|
| | k_offset | k_uniqueness | mergeable? |
|
|
+-------------------+------------+--------------+------------+
|
|
| stat data | 0 | 0 | no |
|
|
+-------------------+------------+--------------+------------+
|
|
| 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS| no |
|
|
| non 1st directory | hash value | | yes |
|
|
| item | | | |
|
|
+-------------------+------------+--------------+------------+
|
|
| indirect item | offset + 1 |TYPE_INDIRECT | if this is not the first indirect item of the object
|
|
+-------------------+------------+--------------+------------+
|
|
| direct item | offset + 1 |TYPE_DIRECT | if not this is not the first direct item of the object
|
|
+-------------------+------------+--------------+------------+
|
|
*/
|
|
|
|
struct item_operations {
|
|
int (*bytes_number) (struct item_head * ih, int block_size);
|
|
void (*decrement_key) (struct cpu_key *);
|
|
int (*is_left_mergeable) (struct reiserfs_key * ih,
|
|
unsigned long bsize);
|
|
void (*print_item) (struct item_head *, char *item);
|
|
void (*check_item) (struct item_head *, char *item);
|
|
|
|
int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
|
|
int is_affected, int insert_size);
|
|
int (*check_left) (struct virtual_item * vi, int free,
|
|
int start_skip, int end_skip);
|
|
int (*check_right) (struct virtual_item * vi, int free);
|
|
int (*part_size) (struct virtual_item * vi, int from, int to);
|
|
int (*unit_num) (struct virtual_item * vi);
|
|
void (*print_vi) (struct virtual_item * vi);
|
|
};
|
|
|
|
extern struct item_operations *item_ops[TYPE_ANY + 1];
|
|
|
|
#define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
|
|
#define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
|
|
#define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item)
|
|
#define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item)
|
|
#define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
|
|
#define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
|
|
#define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free)
|
|
#define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to)
|
|
#define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi)
|
|
#define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi)
|
|
|
|
#define COMP_SHORT_KEYS comp_short_keys
|
|
|
|
/* number of blocks pointed to by the indirect item */
|
|
#define I_UNFM_NUM(p_s_ih) ( ih_item_len(p_s_ih) / UNFM_P_SIZE )
|
|
|
|
/* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
|
|
#define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
|
|
|
|
/* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
|
|
|
|
/* get the item header */
|
|
#define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
|
|
|
|
/* get key */
|
|
#define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
|
|
|
|
/* get the key */
|
|
#define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
|
|
|
|
/* get item body */
|
|
#define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
|
|
|
|
/* get the stat data by the buffer header and the item order */
|
|
#define B_N_STAT_DATA(bh,nr) \
|
|
( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
|
|
|
|
/* following defines use reiserfs buffer header and item header */
|
|
|
|
/* get stat-data */
|
|
#define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
|
|
|
|
// this is 3976 for size==4096
|
|
#define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
|
|
|
|
/* indirect items consist of entries which contain blocknrs, pos
|
|
indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
|
|
blocknr contained by the entry pos points to */
|
|
#define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
|
|
#define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
|
|
|
|
struct reiserfs_iget_args {
|
|
__u32 objectid;
|
|
__u32 dirid;
|
|
};
|
|
|
|
/***************************************************************************/
|
|
/* FUNCTION DECLARATIONS */
|
|
/***************************************************************************/
|
|
|
|
/*#ifdef __KERNEL__*/
|
|
#define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
|
|
|
|
#define journal_trans_half(blocksize) \
|
|
((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
|
|
|
|
/* journal.c see journal.c for all the comments here */
|
|
|
|
/* first block written in a commit. */
|
|
struct reiserfs_journal_desc {
|
|
__le32 j_trans_id; /* id of commit */
|
|
__le32 j_len; /* length of commit. len +1 is the commit block */
|
|
__le32 j_mount_id; /* mount id of this trans */
|
|
__le32 j_realblock[1]; /* real locations for each block */
|
|
};
|
|
|
|
#define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id)
|
|
#define get_desc_trans_len(d) le32_to_cpu((d)->j_len)
|
|
#define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id)
|
|
|
|
#define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
|
|
#define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0)
|
|
#define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
|
|
|
|
/* last block written in a commit */
|
|
struct reiserfs_journal_commit {
|
|
__le32 j_trans_id; /* must match j_trans_id from the desc block */
|
|
__le32 j_len; /* ditto */
|
|
__le32 j_realblock[1]; /* real locations for each block */
|
|
};
|
|
|
|
#define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
|
|
#define get_commit_trans_len(c) le32_to_cpu((c)->j_len)
|
|
#define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
|
|
|
|
#define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
|
|
#define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0)
|
|
|
|
/* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
|
|
** last fully flushed transaction. fully flushed means all the log blocks and all the real blocks are on disk,
|
|
** and this transaction does not need to be replayed.
|
|
*/
|
|
struct reiserfs_journal_header {
|
|
__le32 j_last_flush_trans_id; /* id of last fully flushed transaction */
|
|
__le32 j_first_unflushed_offset; /* offset in the log of where to start replay after a crash */
|
|
__le32 j_mount_id;
|
|
/* 12 */ struct journal_params jh_journal;
|
|
};
|
|
|
|
/* biggest tunable defines are right here */
|
|
#define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */
|
|
#define JOURNAL_TRANS_MAX_DEFAULT 1024 /* biggest possible single transaction, don't change for now (8/3/99) */
|
|
#define JOURNAL_TRANS_MIN_DEFAULT 256
|
|
#define JOURNAL_MAX_BATCH_DEFAULT 900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */
|
|
#define JOURNAL_MIN_RATIO 2
|
|
#define JOURNAL_MAX_COMMIT_AGE 30
|
|
#define JOURNAL_MAX_TRANS_AGE 30
|
|
#define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
|
|
#ifdef CONFIG_QUOTA
|
|
/* We need to update data and inode (atime) */
|
|
#define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? 2 : 0)
|
|
/* 1 balancing, 1 bitmap, 1 data per write + stat data update */
|
|
#define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \
|
|
(DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
|
|
/* same as with INIT */
|
|
#define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \
|
|
(DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
|
|
#else
|
|
#define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
|
|
#define REISERFS_QUOTA_INIT_BLOCKS(s) 0
|
|
#define REISERFS_QUOTA_DEL_BLOCKS(s) 0
|
|
#endif
|
|
|
|
/* both of these can be as low as 1, or as high as you want. The min is the
|
|
** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
|
|
** as needed, and released when transactions are committed. On release, if
|
|
** the current number of nodes is > max, the node is freed, otherwise,
|
|
** it is put on a free list for faster use later.
|
|
*/
|
|
#define REISERFS_MIN_BITMAP_NODES 10
|
|
#define REISERFS_MAX_BITMAP_NODES 100
|
|
|
|
#define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */
|
|
#define JBH_HASH_MASK 8191
|
|
|
|
#define _jhashfn(sb,block) \
|
|
(((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
|
|
(((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
|
|
#define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
|
|
|
|
// We need these to make journal.c code more readable
|
|
#define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
|
|
#define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
|
|
#define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
|
|
|
|
//enum reiserfs_bh_state_bits {
|
|
// BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */
|
|
// BH_JDirty_wait,
|
|
// BH_JNew, /* disk block was taken off free list before
|
|
// * being in a finished transaction, or
|
|
// * written to disk. Can be reused immed. */
|
|
// BH_JPrepared,
|
|
// BH_JRestore_dirty,
|
|
// BH_JTest, // debugging only will go away
|
|
//};
|
|
|
|
/*
|
|
BUFFER_FNS(JDirty, journaled);
|
|
TAS_BUFFER_FNS(JDirty, journaled);
|
|
BUFFER_FNS(JDirty_wait, journal_dirty);
|
|
TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
|
|
BUFFER_FNS(JNew, journal_new);
|
|
TAS_BUFFER_FNS(JNew, journal_new);
|
|
BUFFER_FNS(JPrepared, journal_prepared);
|
|
TAS_BUFFER_FNS(JPrepared, journal_prepared);
|
|
BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
|
|
TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
|
|
BUFFER_FNS(JTest, journal_test);
|
|
TAS_BUFFER_FNS(JTest, journal_test);
|
|
*/
|
|
|
|
/*
|
|
** transaction handle which is passed around for all journal calls
|
|
*/
|
|
struct reiserfs_transaction_handle {
|
|
struct super_block *t_super; /* super for this FS when journal_begin was
|
|
called. saves calls to reiserfs_get_super
|
|
also used by nested transactions to make
|
|
sure they are nesting on the right FS
|
|
_must_ be first in the handle
|
|
*/
|
|
int t_refcount;
|
|
int t_blocks_logged; /* number of blocks this writer has logged */
|
|
int t_blocks_allocated; /* number of blocks this writer allocated */
|
|
unsigned long t_trans_id; /* sanity check, equals the current trans id */
|
|
void *t_handle_save; /* save existing current->journal_info */
|
|
unsigned displace_new_blocks:1; /* if new block allocation occurres, that block
|
|
should be displaced from others */
|
|
//struct list_head t_list;
|
|
};
|
|
|
|
/* used to keep track of ordered and tail writes, attached to the buffer
|
|
* head through b_journal_head.
|
|
*/
|
|
struct reiserfs_jh {
|
|
struct reiserfs_journal_list *jl;
|
|
struct buffer_head *bh;
|
|
//struct list_head list;
|
|
};
|
|
|
|
//
|
|
// get key version from on disk key - kludge
|
|
//
|
|
/*
|
|
static inline int le_key_version(const struct reiserfs_key *key)
|
|
{
|
|
int type;
|
|
|
|
type = offset_v2_k_type(&(key->u.k_offset_v2));
|
|
if (type != TYPE_DIRECT && type != TYPE_INDIRECT
|
|
&& type != TYPE_DIRENTRY)
|
|
return KEY_FORMAT_3_5;
|
|
|
|
return KEY_FORMAT_3_6;
|
|
|
|
}
|
|
|
|
static inline void copy_key(struct reiserfs_key *to,
|
|
const struct reiserfs_key *from)
|
|
{
|
|
memcpy(to, from, KEY_SIZE);
|
|
}
|
|
*/
|
|
|
|
#define i_block_size(inode) ((inode)->i_sb->s_blocksize)
|
|
#define file_size(inode) ((inode)->i_size)
|
|
#define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
|
|
|
|
#define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
|
|
!STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
|
|
|
|
/* inode.c */
|
|
/* args for the create parameter of reiserfs_get_block */
|
|
#define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */
|
|
#define GET_BLOCK_CREATE 1 /* add anything you need to find block */
|
|
#define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */
|
|
#define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */
|
|
#define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */
|
|
#define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */
|
|
|
|
/* bitmap.c */
|
|
|
|
/* structure contains hints for block allocator, and it is a container for
|
|
* arguments, such as node, search path, transaction_handle, etc. */
|
|
struct __reiserfs_blocknr_hint {
|
|
struct inode *inode; /* inode passed to allocator, if we allocate unf. nodes */
|
|
long block; /* file offset, in blocks */
|
|
struct in_core_key key;
|
|
struct path *path; /* search path, used by allocator to deternine search_start by
|
|
* various ways */
|
|
struct reiserfs_transaction_handle *th; /* transaction handle is needed to log super blocks and
|
|
* bitmap blocks changes */
|
|
b_blocknr_t beg, end;
|
|
b_blocknr_t search_start; /* a field used to transfer search start value (block number)
|
|
* between different block allocator procedures
|
|
* (determine_search_start() and others) */
|
|
int prealloc_size; /* is set in determine_prealloc_size() function, used by underlayed
|
|
* function that do actual allocation */
|
|
|
|
unsigned formatted_node:1; /* the allocator uses different polices for getting disk space for
|
|
* formatted/unformatted blocks with/without preallocation */
|
|
unsigned preallocate:1;
|
|
};
|
|
|
|
typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
|
|
|
|
/* hashes.c */
|
|
__u32 keyed_hash(const signed char *msg, int len);
|
|
__u32 yura_hash(const signed char *msg, int len);
|
|
__u32 r5_hash(const signed char *msg, int len);
|
|
|
|
/* the ext2 bit routines adjust for big or little endian as
|
|
** appropriate for the arch, so in our laziness we use them rather
|
|
** than using the bit routines they call more directly. These
|
|
** routines must be used when changing on disk bitmaps. */
|
|
#define reiserfs_test_and_set_le_bit ext2_set_bit
|
|
#define reiserfs_test_and_clear_le_bit ext2_clear_bit
|
|
#define reiserfs_test_le_bit ext2_test_bit
|
|
#define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit
|
|
|
|
/* sometimes reiserfs_truncate may require to allocate few new blocks
|
|
to perform indirect2direct conversion. People probably used to
|
|
think, that truncate should work without problems on a filesystem
|
|
without free disk space. They may complain that they can not
|
|
truncate due to lack of free disk space. This spare space allows us
|
|
to not worry about it. 500 is probably too much, but it should be
|
|
absolutely safe */
|
|
#define SPARE_SPACE 500
|
|
|
|
/* ioctl's command */
|
|
#define REISERFS_IOC_UNPACK _IOW(0xCD,1,long)
|
|
/* define following flags to be the same as in ext2, so that chattr(1),
|
|
lsattr(1) will work with us. */
|
|
#define REISERFS_IOC_GETFLAGS EXT2_IOC_GETFLAGS
|
|
#define REISERFS_IOC_SETFLAGS EXT2_IOC_SETFLAGS
|
|
#define REISERFS_IOC_GETVERSION EXT2_IOC_GETVERSION
|
|
#define REISERFS_IOC_SETVERSION EXT2_IOC_SETVERSION
|
|
|
|
|
|
|
|
#pragma pack()
|
|
|
|
|
|
#endif
|