mirror of
https://github.com/CloverHackyColor/CloverBootloader.git
synced 2024-11-30 12:43:41 +01:00
b1264ef1e3
Signed-off-by: Sergey Isakov <isakov-sl@bk.ru>
346 lines
8.0 KiB
C
Executable File
346 lines
8.0 KiB
C
Executable File
/* Abstract syntax tree manipulation functions
|
|
*
|
|
* SOFTWARE RIGHTS
|
|
*
|
|
* We reserve no LEGAL rights to the Purdue Compiler Construction Tool
|
|
* Set (PCCTS) -- PCCTS is in the public domain. An individual or
|
|
* company may do whatever they wish with source code distributed with
|
|
* PCCTS or the code generated by PCCTS, including the incorporation of
|
|
* PCCTS, or its output, into commerical software.
|
|
*
|
|
* We encourage users to develop software with PCCTS. However, we do ask
|
|
* that credit is given to us for developing PCCTS. By "credit",
|
|
* we mean that if you incorporate our source code into one of your
|
|
* programs (commercial product, research project, or otherwise) that you
|
|
* acknowledge this fact somewhere in the documentation, research report,
|
|
* etc... If you like PCCTS and have developed a nice tool with the
|
|
* output, please mention that you developed it using PCCTS. In
|
|
* addition, we ask that this header remain intact in our source code.
|
|
* As long as these guidelines are kept, we expect to continue enhancing
|
|
* this system and expect to make other tools available as they are
|
|
* completed.
|
|
*
|
|
* ANTLR 1.33
|
|
* Terence Parr
|
|
* Parr Research Corporation
|
|
* with Purdue University and AHPCRC, University of Minnesota
|
|
* 1989-2000
|
|
*/
|
|
|
|
#include "pcctscfg.h"
|
|
|
|
#ifdef PCCTS_USE_STDARG
|
|
#include "pccts_stdarg.h"
|
|
#else
|
|
#include <varargs.h>
|
|
#endif
|
|
|
|
/* ensure that tree manipulation variables are current after a rule
|
|
* reference
|
|
*/
|
|
|
|
void
|
|
#ifdef __USE_PROTOS
|
|
zzlink(AST **_root, AST **_sibling, AST **_tail)
|
|
#else
|
|
zzlink(_root, _sibling, _tail)
|
|
AST **_root, **_sibling, **_tail;
|
|
#endif
|
|
{
|
|
if ( *_sibling == NULL ) return;
|
|
if ( *_root == NULL ) *_root = *_sibling;
|
|
else if ( *_root != *_sibling ) (*_root)->down = *_sibling;
|
|
if ( *_tail==NULL ) *_tail = *_sibling;
|
|
while ( (*_tail)->right != NULL ) *_tail = (*_tail)->right;
|
|
}
|
|
|
|
AST *
|
|
#ifdef __USE_PROTOS
|
|
zzastnew(void)
|
|
#else
|
|
zzastnew()
|
|
#endif
|
|
{
|
|
AST *p = (AST *) calloc(1, sizeof(AST));
|
|
if ( p == NULL ) fprintf(stderr,"%s(%d): cannot allocate AST node\n",__FILE__,__LINE__);
|
|
return p;
|
|
}
|
|
|
|
/* add a child node to the current sibling list */
|
|
void
|
|
#ifdef __USE_PROTOS
|
|
zzsubchild(AST **_root, AST **_sibling, AST **_tail)
|
|
#else
|
|
zzsubchild(_root, _sibling, _tail)
|
|
AST **_root, **_sibling, **_tail;
|
|
#endif
|
|
{
|
|
AST *n;
|
|
zzNON_GUESS_MODE {
|
|
n = zzastnew();
|
|
#ifdef DEMAND_LOOK
|
|
zzcr_ast(n, &(zzaCur), LA(0), LATEXT(0));
|
|
#else
|
|
zzcr_ast(n, &(zzaCur), LA(1), LATEXT(1));
|
|
#endif
|
|
zzastPush( n );
|
|
if ( *_tail != NULL ) (*_tail)->right = n;
|
|
else {
|
|
*_sibling = n;
|
|
if ( *_root != NULL ) (*_root)->down = *_sibling;
|
|
}
|
|
*_tail = n;
|
|
if ( *_root == NULL ) *_root = *_sibling;
|
|
}
|
|
}
|
|
|
|
/* make a new AST node. Make the newly-created
|
|
* node the root for the current sibling list. If a root node already
|
|
* exists, make the newly-created node the root of the current root.
|
|
*/
|
|
void
|
|
#ifdef __USE_PROTOS
|
|
zzsubroot(AST **_root, AST **_sibling, AST **_tail)
|
|
#else
|
|
zzsubroot(_root, _sibling, _tail)
|
|
AST **_root, **_sibling, **_tail;
|
|
#endif
|
|
{
|
|
AST *n;
|
|
zzNON_GUESS_MODE {
|
|
n = zzastnew();
|
|
#ifdef DEMAND_LOOK
|
|
zzcr_ast(n, &(zzaCur), LA(0), LATEXT(0));
|
|
#else
|
|
zzcr_ast(n, &(zzaCur), LA(1), LATEXT(1));
|
|
#endif
|
|
zzastPush( n );
|
|
if ( *_root != NULL )
|
|
if ( (*_root)->down == *_sibling ) *_sibling = *_tail = *_root;
|
|
*_root = n;
|
|
(*_root)->down = *_sibling;
|
|
}
|
|
}
|
|
|
|
/* Apply function to root then each sibling
|
|
* example: print tree in child-sibling LISP-format (AST has token field)
|
|
*
|
|
* void show(tree)
|
|
* AST *tree;
|
|
* {
|
|
* if ( tree == NULL ) return;
|
|
* printf(" %s", zztokens[tree->token]);
|
|
* }
|
|
*
|
|
* void before() { printf(" ("); }
|
|
* void after() { printf(" )"); }
|
|
*
|
|
* LISPdump() { zzpre_ast(tree, show, before, after); }
|
|
*
|
|
*/
|
|
void
|
|
#ifdef __USE_PROTOS
|
|
zzpre_ast(
|
|
AST *tree,
|
|
void (*func)(AST *), /* apply this to each tree node */
|
|
void (*before)(AST *), /* apply this to root of subtree before preordering it */
|
|
void (*after)(AST *)) /* apply this to root of subtree after preordering it */
|
|
#else
|
|
zzpre_ast(tree, func, before, after)
|
|
AST *tree;
|
|
void (*func)(), /* apply this to each tree node */
|
|
(*before)(), /* apply this to root of subtree before preordering it */
|
|
(*after)(); /* apply this to root of subtree after preordering it */
|
|
#endif
|
|
{
|
|
while ( tree!= NULL )
|
|
{
|
|
if ( tree->down != NULL ) (*before)(tree);
|
|
(*func)(tree);
|
|
zzpre_ast(tree->down, func, before, after);
|
|
if ( tree->down != NULL ) (*after)(tree);
|
|
tree = tree->right;
|
|
}
|
|
}
|
|
|
|
/* free all AST nodes in tree; apply func to each before freeing */
|
|
|
|
#if 0
|
|
////void
|
|
////#ifdef __USE_PROTOS
|
|
////zzfree_ast(AST *tree)
|
|
////#else
|
|
////zzfree_ast(tree)
|
|
////AST *tree;
|
|
////#endif
|
|
////{
|
|
//// if ( tree == NULL ) return;
|
|
//// zzfree_ast( tree->down );
|
|
//// zzfree_ast( tree->right );
|
|
//// zztfree( tree );
|
|
////}
|
|
#endif
|
|
|
|
/*
|
|
MR19 Optimize freeing of the following structure to limit recursion
|
|
SAKAI Kiyotaka (ksakai@isr.co.jp)
|
|
*/
|
|
|
|
/*
|
|
NULL o
|
|
/ \
|
|
NULL o
|
|
/ \
|
|
NULL NULL
|
|
*/
|
|
|
|
/*
|
|
MR21 Another refinement to replace recursion with iteration
|
|
NAKAJIMA Mutsuki (muc@isr.co.jp).
|
|
*/
|
|
|
|
void
|
|
#ifdef __USE_PROTOS
|
|
zzfree_ast(AST *tree)
|
|
#else
|
|
zzfree_ast(tree)
|
|
AST *tree;
|
|
#endif
|
|
{
|
|
|
|
AST *otree;
|
|
|
|
if (tree == NULL) return;
|
|
|
|
while (tree->down == NULL || tree->right == NULL) {
|
|
|
|
if (tree->down == NULL && tree->right == NULL) {
|
|
zztfree(tree);
|
|
return;
|
|
}
|
|
|
|
otree = tree;
|
|
if (tree->down == NULL) {
|
|
tree = tree->right;
|
|
} else {
|
|
tree = tree->down;
|
|
}
|
|
zztfree( otree );
|
|
}
|
|
|
|
while (tree != NULL) {
|
|
zzfree_ast(tree->down);
|
|
otree = tree;
|
|
tree = otree->right;
|
|
zztfree(otree);
|
|
}
|
|
}
|
|
|
|
/* build a tree (root child1 child2 ... NULL)
|
|
* If root is NULL, simply make the children siblings and return ptr
|
|
* to 1st sibling (child1). If root is not single node, return NULL.
|
|
*
|
|
* Siblings that are actually siblins lists themselves are handled
|
|
* correctly. For example #( NULL, #( NULL, A, B, C), D) results
|
|
* in the tree ( NULL A B C D ).
|
|
*
|
|
* Requires at least two parameters with the last one being NULL. If
|
|
* both are NULL, return NULL.
|
|
*/
|
|
#ifdef PCCTS_USE_STDARG
|
|
AST *zztmake(AST *rt, ...)
|
|
#else
|
|
AST *zztmake(va_alist)
|
|
va_dcl
|
|
#endif
|
|
{
|
|
va_list ap;
|
|
register AST *child, *sibling=NULL, *tail=NULL /* MR20 */, *w;
|
|
AST *root;
|
|
|
|
#ifdef PCCTS_USE_STDARG
|
|
va_start(ap, rt);
|
|
root = rt;
|
|
#else
|
|
va_start(ap);
|
|
root = va_arg(ap, AST *);
|
|
#endif
|
|
|
|
if ( root != NULL )
|
|
if ( root->down != NULL ) return NULL;
|
|
child = va_arg(ap, AST *);
|
|
while ( child != NULL )
|
|
{
|
|
for (w=child; w->right!=NULL; w=w->right) {;} /* find end of child */
|
|
if ( sibling == NULL ) {sibling = child; tail = w;}
|
|
else {tail->right = child; tail = w;}
|
|
child = va_arg(ap, AST *);
|
|
}
|
|
if ( root==NULL ) root = sibling;
|
|
else root->down = sibling;
|
|
va_end(ap);
|
|
return root;
|
|
}
|
|
|
|
/* tree duplicate */
|
|
AST *
|
|
#ifdef __USE_PROTOS
|
|
zzdup_ast(AST *t)
|
|
#else
|
|
zzdup_ast(t)
|
|
AST *t;
|
|
#endif
|
|
{
|
|
AST *u;
|
|
|
|
if ( t == NULL ) return NULL;
|
|
u = zzastnew();
|
|
*u = *t;
|
|
#ifdef zzAST_DOUBLE
|
|
u->up = NULL; /* set by calling invocation */
|
|
u->left = NULL;
|
|
#endif
|
|
u->right = zzdup_ast(t->right);
|
|
u->down = zzdup_ast(t->down);
|
|
#ifdef zzAST_DOUBLE
|
|
if ( u->right!=NULL ) u->right->left = u;
|
|
if ( u->down!=NULL ) u->down->up = u;
|
|
#endif
|
|
return u;
|
|
}
|
|
|
|
void
|
|
#ifdef __USE_PROTOS
|
|
zztfree(AST *t)
|
|
#else
|
|
zztfree(t)
|
|
AST *t;
|
|
#endif
|
|
{
|
|
#ifdef zzd_ast
|
|
zzd_ast( t );
|
|
#endif
|
|
free( t );
|
|
}
|
|
|
|
#ifdef zzAST_DOUBLE
|
|
/*
|
|
* Set the 'up', and 'left' pointers of all nodes in 't'.
|
|
* Initial call is double_link(your_tree, NULL, NULL).
|
|
*/
|
|
void
|
|
#ifdef __USE_PROTOS
|
|
zzdouble_link(AST *t, AST *left, AST *up)
|
|
#else
|
|
zzdouble_link(t, left, up)
|
|
AST *t, *left, *up;
|
|
#endif
|
|
{
|
|
if ( t==NULL ) return;
|
|
t->left = left;
|
|
t->up = up;
|
|
zzdouble_link(t->down, NULL, t);
|
|
zzdouble_link(t->right, t, up);
|
|
}
|
|
#endif
|