CloverBootloader/Library/MemLogLibDefault/printf_lite.c
2020-03-26 15:59:20 +03:00

1356 lines
43 KiB
C

//
// printf_lite.hpp
//
// Created by jief the 04 Apr 2019.
// Imported in CLover the 24 Feb 2020
//
/*
This code should be pasted within the files where this function is needed.
This function will not create any code conflicts.
The function call is similar to printf: ardprintf("Test %d %s", 25, "string");
To print the '%' character, use '%%'
This code was first posted on http://arduino.stackexchange.com/a/201
*/
#include "printf_lite.h"
//#include <stdio.h>
#include <stdarg.h>
//#include <stdint.h>
#include <limits.h>
#include <stdlib.h>
#if defined(__cplusplus)
extern "C"
{
#endif
#if PRINTF_LITE_TIMESTAMP_SUPPORT == 1
static void print_timestamp(PrintfParams* printfParams);
#endif
#if PRINTF_UTF8_OUTPUT_SUPPORT == 1 && PRINTF_UNICODE_OUTPUT_SUPPORT == 1
#define print_char_macro(c, printfParams) printfParams->printCharFunction(c, printfParams);
#elif PRINTF_UNICODE_OUTPUT_SUPPORT == 1
#define print_char_macro(c, printfParams) print_wchar(c, printfParams);
#elif PRINTF_UTF8_OUTPUT_SUPPORT == 1
#define print_char_macro(c, printfParams) print_char(c, printfParams);
#endif
typedef struct PrintfParams PrintfParams;
#if PRINTF_UTF8_OUTPUT_SUPPORT == 1 && PRINTF_UNICODE_OUTPUT_SUPPORT == 1
typedef void (*printCharType)(int c, PrintfParams* printfParams);
#endif
// using int for flags because this is what generate less code. It's a bit more on the stack but it's temporary.
typedef struct PrintfParams {
#if PRINTF_LITE_BUF_SIZE > 1
union {
#if PRINTF_UTF8_OUTPUT_SUPPORT == 1
# if PRINTF_UNICODE_OUTPUT_SUPPORT == 1
char buf[PRINTF_LITE_BUF_SIZE*sizeof(wchar_t)];
# else
char buf[PRINTF_LITE_BUF_SIZE];
# endif
#endif
#if PRINTF_UNICODE_OUTPUT_SUPPORT == 1
wchar_t wbuf[PRINTF_LITE_BUF_SIZE];
#endif
} buf;
unsigned char bufIdx;
#endif
printf_callback_t transmitBufCallBack;
#if PRINTF_UTF8_OUTPUT_SUPPORT == 1 && PRINTF_UNICODE_OUTPUT_SUPPORT == 1
// using a print_char function pointer forces to declare print_char and print_wchar the same prototype, withc is an int
// that breaks compiler type checking. If print_char is called with a char > 255, that won't work !
// if this is compiled with short-wchar and print_wchar is called with a char > 0xFFFF, that won't work !
int unicode_output;
printCharType printCharFunction;
#endif
int inDirective;
int l_modifier;
#if PRINTF_LITE_ZSPECIFIER_SUPPORT == 1
int z_modifier;
#endif
#if PRINTF_LITE_FIELDWIDTH_SUPPORT == 1
int inWidthField;
int width_specifier;
#endif
#if PRINTF_LITE_FIELDPRECISION_SUPPORT == 1 || (PRINTF_LITE_FALLBACK_FOR_UNSUPPORTED == 1 && PRINTF_LITE_FIELDWIDTH_SUPPORT == 1) // in that case, we need the inPrecisionField to know we are currently ignoring precision field
int inPrecisionField;
#endif
#if PRINTF_LITE_FIELDPRECISION_SUPPORT == 1
int precision_specifier;
#endif
#if PRINTF_LITE_PADCHAR_SUPPORT == 1
char pad_char;
#endif
#if PRINTF_LITE_TIMESTAMP_SUPPORT == 1
int *newlinePtr;
int timestamp; // not using bool in case of C compilation
#endif
#if PRINTF_LITE_XSPECIFIER_SUPPORT == 1
int uppercase;
#endif
void* context;
} PrintfParams;
#if PRINTF_UTF8_OUTPUT_SUPPORT == 1
// Print a char as is. Not analyse is made to check if it's a utf8 partial char
// c is an int for prototype compatibility, but must be < 255
static void print_char(int c, PrintfParams* printfParams)
{
#if PRINTF_LITE_TIMESTAMP_SUPPORT == 1
if ( printfParams->newlinePtr )
{
if ( *printfParams->newlinePtr )
{
*printfParams->newlinePtr = 0; // to do BEFORE call to printTimeStamp
if ( printfParams->timestamp ) print_timestamp(printfParams);
}
#if PRINTF_EMIT_CR == 1
if ( c == '\n' ) print_char('\r', printfParams);
#endif
#if PRINTF_LITE_BUF_SIZE > 1
printfParams->buf.buf[(printfParams->bufIdx)++] = (char)c;
#else
printfParams->transmitBufCallBack(&c, 1);
#endif
if ( c == '\n' ) *printfParams->newlinePtr = 1;
}else{
#if PRINTF_EMIT_CR == 1
if ( c == '\n' ) print_char('\r', printfParams);
#endif
#if PRINTF_LITE_BUF_SIZE > 1
printfParams->buf.buf[(printfParams->bufIdx)++] = (char)c;
#else
printfParams->transmitBufCallBack(&c, 1);
#endif
}
#else
{
#if PRINTF_EMIT_CR == 1
if ( c == '\n' ) print_char('\r', printfParams);
#endif
#if PRINTF_LITE_BUF_SIZE > 1
printfParams->buf.buf[(printfParams->bufIdx)++] = (char)c;
#else
printfParams->transmitBufCallBack.transmitBufCallBack((const char*)&c, (size_t)1);
#endif
}
#endif
#if PRINTF_LITE_BUF_SIZE > 1
if ( printfParams->bufIdx == PRINTF_LITE_BUF_SIZE ) {
printfParams->transmitBufCallBack.transmitBufCallBack(printfParams->buf.buf, printfParams->bufIdx, printfParams->context);
printfParams->bufIdx = 0;
}
#endif
}
#endif
#if PRINTF_UNICODE_OUTPUT_SUPPORT == 1
// print wchar_t char as is. No check is made if it's surrogate or not. Just send the wchar_t as is.
// c is an int for prototype compatibility, but it's a wchar_t. Assumption : a wchar_t cannot be bigger than an int. Don't know yet if it's 100% on embedded platform.
static void print_wchar(int c, PrintfParams* printfParams)
{
#if PRINTF_LITE_TIMESTAMP_SUPPORT == 1
if ( printfParams->newlinePtr )
{
if ( *printfParams->newlinePtr )
{
*printfParams->newlinePtr = 0; // to do BEFORE call to printTimeStamp
if ( printfParams->timestamp ) print_timestamp(printfParams);
}
#if PRINTF_LITE_BUF_SIZE > 1
printfParams->buf.wbuf[(printfParams->bufIdx)++] = (wchar_t)c;
#else
printfParams->transmitWBufCallBack(&c, 1);
#endif
if ( c == '\n' ) {
*printfParams->newlinePtr = 1;
}
}else{
#if PRINTF_LITE_BUF_SIZE > 1
printfParams->buf.wbuf[(printfParams->bufIdx)++] = (wchar_t)c;
#else
printfParams->transmitWBufCallBack(&c, 1);
#endif
}
#else
{
#if PRINTF_LITE_BUF_SIZE > 1
printfParams->buf.wbuf[(printfParams->bufIdx)++] = (wchar_t)c; // cast suposed to be safe, as this function must be called
#else
printfParams->transmitWBufCallBack(&c, 1);
#endif
}
#endif
#if PRINTF_LITE_BUF_SIZE > 1
if ( printfParams->bufIdx == PRINTF_LITE_BUF_SIZE ) {
printfParams->transmitBufCallBack.transmitWBufCallBack(printfParams->buf.wbuf, printfParams->bufIdx, printfParams->context);
printfParams->bufIdx = 0;
}
#endif
}
#endif
#if PRINTF_UTF8_OUTPUT_SUPPORT == 1 && PRINTF_UNICODE_INPUT_SUPPORT == 1
#define halfBase 0x0010000UL
#define halfMask 0x3FFUL
#define halfShift 10 /* used for shifting by 10 bits */
#define UNI_SUR_HIGH_START 0xD800u
#define UNI_SUR_LOW_START 0xDC00u
#if __WCHAR_MAX__ <= 0xFFFFu
static inline int printf_is_surrogate(char16_t uc) { return (uc - 0xd800u) < 2048u; }
static inline int printf_is_high_surrogate(char16_t uc) { return (uc & 0xfffffc00) == 0xd800; }
static inline int printf_is_low_surrogate(char16_t uc) { return (uc & 0xfffffc00) == 0xdc00; }
static inline char32_t printf_surrogate_to_utf32(char16_t high, char16_t low) {
return (char32_t)((high << 10) + low - 0x35fdc00); // Safe cast, it fits in 32 bits
}
#endif
/*
* Print char32_t to utf8 string.
* Only needed if PRINTF_UNICODE_OUTPUT_SUPPORT == 1 && PRINTF_UTF8_INPUT_SUPPORT == 1
*/
static void print_char32(const char32_t utf32_char, PrintfParams* printfParams)
{
/* assertion: utf32_char is a single UTF-4 value */
int bits;
if (utf32_char < 0x80) {
print_char((char)utf32_char, printfParams);
bits = -6;
}
else if (utf32_char < 0x800) {
print_char((char)(((utf32_char >> 6) & 0x1F) | 0xC0), printfParams);
bits = 0;
}
else if (utf32_char < 0x10000) {
print_char((char)(((utf32_char >> 12) & 0x0F) | 0xE0), printfParams);
bits = 6;
}
else {
print_char((char)(((utf32_char >> 18) & 0x07) | 0xF0), printfParams);
bits = 12;
}
for (; bits >= 0; bits -= 6) {
print_char((char)(((utf32_char >> bits) & 0x3F) | 0x80), printfParams);
}
}
/*
* Print wchar string to utf8 string.
* Only needed if PRINTF_UNICODE_OUTPUT_SUPPORT == 1 && PRINTF_UTF8_INPUT_SUPPORT == 1
*/
static void print_wchar_string(const wchar_t* s, PrintfParams* printfParams)
{
while ( *s ) {
#if __WCHAR_MAX__ <= 0xFFFFu
const char16_t uc = *s++;
if (!printf_is_surrogate(uc)) {
print_char32((char32_t)uc, printfParams);
} else {
if (printf_is_high_surrogate(uc) && *s && printf_is_low_surrogate(*s)) {
print_char32(printf_surrogate_to_utf32(uc, *s++), printfParams);
} else {
continue;
}
}
#else
print_char32((char32_t)(*s++), printfParams);
#endif
}
}
#endif
/*
UTF8
Number Bits for First Last
of bytes code point code point code point Byte 1 Byte 2 Byte 3 Byte 4
1 7 U+0000 U+007F 0xxxxxxx
2 11 U+0080 U+07FF 110xxxxx 10xxxxxx
3 16 U+0800 U+FFFF 1110xxxx 10xxxxxx 10xxxxxx
4 21 U+10000 U+10FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
*/
#if PRINTF_UNICODE_OUTPUT_SUPPORT == 1
/*
*
* Only needed if PRINTF_UNICODE_OUTPUT_SUPPORT == 1 && PRINTF_UTF8_INPUT_SUPPORT == 1
*/
static const char* get_utf32_from_utf8(const char* s, char32_t* utf32_letter)
{
tryagain:
if ( *((unsigned char*)s) & 0x80 ) {
// if Byte 1 is 1xxxxxxx : multi byte is at least 2 char
if (*(s+1) == 0) {
// Finished in the middle of an utf8 multibyte char
return NULL;
}
// Byte 2 should be 0b10xxxxxx
if ((*(((unsigned char*)s)+1) & 0xc0) != 0x80) { // 0xC0 = 0b11000000
// second byte is not multi byte char, ignore
s += 1;
goto tryagain;
}
// if Byte 1 is 111xxxxx : multi byte is at least 3 char
if ((*((unsigned char*)s) & 0xe0) == 0xe0) { // 0xE0 = 0b11100000
if (*(s+2) == 0) {
// Finished in the middle of an utf8 multibyte char
return NULL;
}
// Byte 3 should be 0b10xxxxxx
if ((*(((unsigned char*)s)+2) & 0xc0) != 0x80) {
s += 1;
goto tryagain;
}
// if Byte 1 is 1111xxxx : multi byte is 4 char
if ((*((unsigned char*)s) & 0xf0) == 0xf0) { // 0xF0 = 0b11110000
if (*(s+3) == 0) {
// Finished in the middle of an utf8 multibyte char
return NULL;
}
// if Byte 1 is not 0b11110xxx || Byte 4 not 0b10xxxxxx
if ((*((unsigned char*)s) & 0xf8) != 0xf0 || (*(((unsigned char*)s)+3) & 0xc0) != 0x80) {
s += 1;
goto tryagain;
}
/* 4-byte code */
*utf32_letter = (char32_t)((*((char32_t*)s) & 0x7) << 18);
*utf32_letter |= (char32_t)((*(((unsigned char*)s)+1) & 0x3f) << 12);
*utf32_letter |= (char32_t)((*(((unsigned char*)s)+2) & 0x3f) << 6);
*utf32_letter |= *(((unsigned char*)s)+3) & 0x3f;
return s + 4;
} else {
/* 3-byte code */
*utf32_letter = (char32_t)((*((unsigned char*)s) & 0xf) << 12);
*utf32_letter |= (char32_t)((*(((unsigned char*)s)+1) & 0x3f) << 6);
*utf32_letter |= *(((unsigned char*)s)+2) & 0x3f;
return s + 3;
}
} else {
/* 2-byte code */
*utf32_letter = (char32_t)((*((unsigned char*)s) & 0x1f) << 6);
*utf32_letter |= *(((unsigned char*)s)+1) & 0x3f;
return s + 2;
}
} else {
/* 1-byte code */
*utf32_letter = *((unsigned char*)s);
return s + 1;
}
}
#endif
#if PRINTF_UNICODE_OUTPUT_SUPPORT == 1 && PRINTF_UTF8_INPUT_SUPPORT == 1
#define halfBase 0x0010000UL
#define halfMask 0x3FFUL
#define halfShift 10 /* used for shifting by 10 bits */
#define UNI_SUR_HIGH_START 0xD800u
#define UNI_SUR_LOW_START 0xDC00u
/*
* Print UTF8 string to wchar string.
* Only needed if PRINTF_UNICODE_OUTPUT_SUPPORT == 1 && PRINTF_UTF8_INPUT_SUPPORT == 1
*/
static void print_utf8_to_wchar_string(const char* s, PrintfParams* printfParams)
{
while ( *s ) {
char32_t c;
if ( *((unsigned char*)s) & 0x80 ) {
if (*(s+1) == 0) {
// Finished in the middle of an utf8 multibyte char
return;
}
if ((*(((unsigned char*)s)+1) & 0xc0) != 0x80) {
s += 1;
continue;
}
if ((*((unsigned char*)s) & 0xe0) == 0xe0) {
if (*(s+2) == 0) {
// Finished in the middle of an utf8 multibyte char
return;
}
if ((*(((unsigned char*)s)+2) & 0xc0) != 0x80) {
s += 2;
continue;
}
if ((*((unsigned char*)s) & 0xf0) == 0xf0) {
if (*(s+3) == 0) {
// Finished in the middle of an utf8 multibyte char
return;
}
if ((*((unsigned char*)s) & 0xf8) != 0xf0 || (*(((unsigned char*)s)+3) & 0xc0) != 0x80) {
s += 3;
continue;
}
/* 4-byte code */
c = (char32_t)((*((char32_t*)s) & 0x7) << 18);
c |= (char32_t)((*(((unsigned char*)s)+1) & 0x3f) << 12);
c |= (char32_t)((*(((unsigned char*)s)+2) & 0x3f) << 6);
c |= *(((unsigned char*)s)+3) & 0x3f;
s += 4;
} else {
/* 3-byte code */
c = (char32_t)((*((unsigned char*)s) & 0xf) << 12);
c |= (char32_t)((*(((unsigned char*)s)+1) & 0x3f) << 6);
c |= *(((unsigned char*)s)+2) & 0x3f;
s += 3;
}
} else {
/* 2-byte code */
c = (char32_t)((*((unsigned char*)s) & 0x1f) << 6);
c |= *(((unsigned char*)s)+1) & 0x3f;
s += 2;
}
} else {
/* 1-byte code */
c = *((unsigned char*)s);
s += 1;
}
#if __WCHAR_MAX__ > 0xFFFFu
print_wchar((wchar_t)c, printfParams);
#else
if ( c <= 0xFFFF) {
print_wchar((wchar_t)c, printfParams);
} else {
c -= halfBase;
print_wchar((wchar_t)((c >> halfShift) + UNI_SUR_HIGH_START), printfParams);
print_wchar((wchar_t)((c & halfMask) + UNI_SUR_LOW_START), printfParams);
}
#endif
}
}
#endif
/*
* Print string with no conversion
*/
#if DEFINE_SECTIONS == 1
__attribute__((noinline, section(".print_string")))
#elif DEFINE_SECTIONS == 2
__attribute__((noinline, section(".printf_lite")))
#endif
static void print_string(const char* s, PrintfParams* printfParams)
{
if ( s ) while ( *s ) print_char(*s++, printfParams);
}
#if PRINTF_UNICODE_OUTPUT_SUPPORT
static void wprint_string(const wchar_t* s, PrintfParams* printfParams)
{
if ( s ) while ( *s ) print_wchar(*s++, printfParams);
}
#endif
#if defined(ARDUINO) && PRINTF_LITE_FLASHSTRING_SUPPORT == 1
static void print_Fstring(const char* s, PrintfParams* printfParams)
{
PGM_P p_to_print = reinterpret_cast<PGM_P>(s);
unsigned char c_to_print = pgm_read_byte(p_to_print++);
while ( c_to_print != 0 ) {
print_char_macro(c_to_print, printfParams);
c_to_print = pgm_read_byte(p_to_print++);
}
}
#endif
#if PRINTF_LITE_LONGLONGINT_SUPPORT == 1 && PRINTF_LITE_LONGINT_SUPPORT == 1
#define INT_BIGGEST_TYPE long long int
#define UINT_BIGGEST_TYPE unsigned long long int
#else
#if PRINTF_LITE_LONGINT_SUPPORT == 1
#define INT_BIGGEST_TYPE long int
#define UINT_BIGGEST_TYPE unsigned long int
#else
#define INT_BIGGEST_TYPE int
#define UINT_BIGGEST_TYPE unsigned int
#endif
#endif
/* Jief : I found this here : https://github.com/cjlano/tinyprintf/blob/master/tinyprintf.c. Thanks CJlano */
#if DEFINE_SECTIONS == 1
__attribute__((noinline, section(".print_ulonglong")))
#elif DEFINE_SECTIONS == 2
__attribute__((noinline, section(".printf_lite")))
#endif
static void print_ulonglong(UINT_BIGGEST_TYPE v, unsigned int base, PrintfParams* printfParams, int printfSign)
{
int n = 0;
unsigned INT_BIGGEST_TYPE d = 1;
#if PRINTF_LITE_FIELDWIDTH_SUPPORT == 1
int nbDigits = 1 + printfSign;
#endif
while (v / d >= base) {
d *= base;
#if PRINTF_LITE_FIELDWIDTH_SUPPORT == 1
nbDigits += 1;
#endif
}
#if PRINTF_LITE_FIELDWIDTH_SUPPORT == 1 && PRINTF_LITE_PADCHAR_SUPPORT == 1
if ( printfSign && printfParams->pad_char != ' ' ) print_char_macro('-', printfParams);
#endif
#if PRINTF_LITE_FIELDWIDTH_SUPPORT == 1
while ( printfParams->width_specifier > nbDigits ) {
#if PRINTF_LITE_PADCHAR_SUPPORT == 1
print_char_macro(printfParams->pad_char, printfParams);
#else
printfParams->printCharFunction(' ', printfParams);
#endif
nbDigits += 1;
}
#endif
#if PRINTF_LITE_FIELDWIDTH_SUPPORT == 1 && PRINTF_LITE_PADCHAR_SUPPORT == 1
if ( printfSign && printfParams->pad_char == ' ' ) print_char_macro('-', printfParams);
#else
if ( printfSign ) print_char_macro('-', printfParams);
#endif
while (d != 0) {
unsigned int dgt = (unsigned int)(v / d); // cast is safe as v/d < 10
v %= d;
d /= base;
#if PRINTF_LITE_XSPECIFIER_SUPPORT == 1
print_char_macro( (char)(dgt + (dgt < 10 ? '0' : (printfParams->uppercase ? 'A' : 'a') - 10)), printfParams);
#else
print_char_macro( (char)(dgt + '0'), printfParams);
#endif
n += 1;
}
}
#if PRINTF_LITE_TIMESTAMP_SUPPORT == 1
#if defined(EFIAPI)
#error TODO
#elif defined(__APPLE__)
#include <mach/mach_time.h>
uint32_t getUptimeInMilliseconds()
{
static mach_timebase_info_data_t s_timebase_info;
kern_return_t result = mach_timebase_info(&s_timebase_info);
(void(result));
// assert(result == 0);
// multiply to get value in the nano seconds
double multiply = (double)s_timebase_info.numer / (double)s_timebase_info.denom;
// divide to get value in the seconds
multiply /= 1000;
return mach_absolute_time() * multiply;
}
#endif
#endif //PRINTF_LITE_TIMESTAMP_SUPPORT
#if DEFINE_SECTIONS == 1
__attribute__((noinline, section(".print_longlong")))
#elif DEFINE_SECTIONS == 2
__attribute__((noinline, section(".printf_lite")))
#endif
static void print_longlong(INT_BIGGEST_TYPE v, unsigned int base, PrintfParams* printfParams)
{
if ( v >= 0 ) print_ulonglong((UINT_BIGGEST_TYPE)v, base, printfParams, 0); // cast ok, v >= 0
else print_ulonglong((UINT_BIGGEST_TYPE)-v, base, printfParams, 1); // -(INT64_MIN) == INT64_MIN !!! But cast as UINT64, it becomes +v. Good for us.
}
#define PRINTF_LITE_REENTRANT 1
#if PRINTF_LITE_REENTRANT == 1 && PRINTF_LITE_TIMESTAMP_SUPPORT == 1
void printf_with_callback(const char* format, transmitBufCallBackType transmitBufCallBack,
#if PRINTF_LITE_TIMESTAMP_SUPPORT == 1
int* newline, int timestamp,
#endif // PRINTF_LITE_TIMESTAMP_SUPPORT
...);
#ifdef ARDUINO
void printf_with_callback(const __FlashStringHelper* format, transmitBufCallBackType transmitBufCallBack
#if PRINTF_LITE_TIMESTAMP_SUPPORT == 1
, int* newline, int timestamp,
#endif // PRINTF_LITE_TIMESTAMP_SUPPORT
...);
#endif // ARDUINO
#include <inttypes.h> // for PRIu32
#endif // PRINTF_LITE_REENTRANT
#if PRINTF_LITE_TIMESTAMP_SUPPORT == 1
static void print_timestamp(PrintfParams* printfParams)
{
#ifdef USE_HAL_DRIVER
uint32_t ms = HAL_GetTick();
#endif
#ifdef ARDUINO
uint32_t ms = millis();
#endif
#ifdef NRF51
uint32_t p_ticks;
uint32_t error_code = app_timer_cnt_get(&p_ticks);
APP_ERROR_CHECK(error_code);
uint32_t ms = p_ticks * ( ( NRF_RTC1->PRESCALER + 1 ) * 1000 ) / APP_TIMER_CLOCK_FREQ;
#endif
#ifdef __APPLE__
uint32_t ms = getUptimeInMilliseconds();
#endif
uint32_t s = ms/1000;
uint32_t m = s/60;
uint32_t h = m/60;
m %= 60;
s %= 60;
ms %= 1000;
#if PRINTF_LITE_REENTRANT == 1
#ifdef ARDUINO
printf_with_callback(F("%03" PRIu32 ":%02" PRIu32 ":%02" PRIu32 ".%03" PRIu32 " - "), printfParams->transmitBufCallBack, NULL, 0, h, m, s, ms);
#else
printf_with_callback("%03" PRIu32 ":%02" PRIu32 ":%02" PRIu32 ".%03" PRIu32 " - ", printfParams->transmitBufCallBack, NULL, 0, h, m, s, ms);
#endif
#else
// non reentrant version take a bit more code size
#if PRINTF_LITE_PADCHAR_SUPPORT == 1
char pad_char = printfParams->pad_char;
printfParams->pad_char = '0';
#endif
#if PRINTF_LITE_FIELDWIDTH_SUPPORT == 1
int width_specifier = printfParams->width_specifier;
printfParams->width_specifier = 3;
#endif
print_longlong(h, 10, printfParams);
printfParams->printCharFunction(':', printfParams);
#if PRINTF_LITE_FIELDWIDTH_SUPPORT == 1
printfParams->width_specifier = 2;
#endif
print_longlong(m, 10, printfParams);
printfParams->printCharFunction(':', printfParams);
print_longlong(s, 10, printfParams);
printfParams->printCharFunction('.', printfParams);
#if PRINTF_LITE_FIELDWIDTH_SUPPORT == 1
printfParams->width_specifier = 3;
#endif
print_longlong(ms, 10, printfParams);
printfParams->printCharFunction(' ', printfParams);
printfParams->printCharFunction('-', printfParams);
printfParams->printCharFunction(' ', printfParams);
#if PRINTF_LITE_PADCHAR_SUPPORT == 1
printfParams->pad_char = pad_char;
#endif
#if PRINTF_LITE_FIELDWIDTH_SUPPORT == 1
printfParams->width_specifier = width_specifier;
#endif
#endif
}
#endif
#if PRINTF_LITE_FLOAT_SUPPORT == 1
/* Jief : I found this in Arduino code */
/* According to snprintf(),
*
* nextafter((double)numeric_limits<long long>::max(), 0.0) ~= 9.22337e+18
*
* This slightly smaller value was picked semi-arbitrarily. */
#define LARGE_DOUBLE_TRESHOLD (9.1e18)
/* THIS FUNCTION SHOULDN'T BE USED IF YOU NEED ACCURATE RESULTS.
*
* This implementation is meant to be simple and not occupy too much
* code size. However, printing floating point values accurately is a
* subtle task, best left to a well-tested library function.
*
* See Steele and White 2003 for more details:
*
* http://kurtstephens.com/files/p372-steele.pdf
*/
static void print_double(double number, PrintfParams* printfParams)
{
// Hackish fail-fast behavior for large-magnitude doubles
if (number >= LARGE_DOUBLE_TRESHOLD || number <= -LARGE_DOUBLE_TRESHOLD) {
if (number < 0.0) {
print_char_macro('-', printfParams);
}
#if PRINTF_UNICODE_OUTPUT_SUPPORT == 1 && PRINTF_UTF8_OUTPUT_SUPPORT == 0
print_string(L"<large double>", printfParams);
#else
print_string("<large double>", printfParams);
#endif
}
int negative = 0;
if (number < 0.0) {
negative = 1;
number = -number;
}
// Simplistic rounding strategy so that e.g. print(1.999, 2)
// prints as "2.00"
double rounding = 0.5;
#if PRINTF_LITE_FIELDPRECISION_SUPPORT == 1
for (int i = 0; i < printfParams->precision_specifier; i++) {
rounding /= 10.0;
}
#else
for (unsigned int i = 0; i < 6; i++) {
rounding /= 10.0;
}
#endif
number += rounding;
// Extract the integer part of the number and print it
unsigned INT_BIGGEST_TYPE int_part = (unsigned INT_BIGGEST_TYPE)number; // we're sure it's positive number here.
double remainder = number - (double)int_part;
#if PRINTF_LITE_FIELDWIDTH_SUPPORT == 1
int width_specifier = printfParams->width_specifier;
#if PRINTF_LITE_FIELDPRECISION_SUPPORT == 1
printfParams->width_specifier -= printfParams->precision_specifier + (printfParams->precision_specifier ? 1 : 0); // doesn't matter if width_specifier is negative.
#else
printfParams->width_specifier -= 7; // doesn't matter if width_specifier is negative.
#endif
#endif
print_ulonglong(int_part, 10, printfParams, negative);
#if PRINTF_LITE_FIELDWIDTH_SUPPORT == 1
printfParams->width_specifier = width_specifier;
#endif
#if PRINTF_LITE_FIELDPRECISION_SUPPORT == 1
// Print the decimal point, but only if there are digits beyond
if (printfParams->precision_specifier > 0) {
print_char_macro('.', printfParams);
}
#else
// if no precision support, it's always 6, so always a decimal point.
printfParams->printCharFunction('.', printfParams);
#endif
// Extract digits from the remainder one at a time
#if PRINTF_LITE_FIELDPRECISION_SUPPORT == 1
while (printfParams->precision_specifier-- > 0) {
#else
for ( int i=0 ; i<6 ; i++) {
#endif
remainder *= 10.0;
int to_print = (int)remainder;
print_char_macro((char)(to_print + '0'), printfParams);
remainder -= to_print;
}
}
#endif
#if DEFINE_SECTIONS == 1
__attribute__((noinline, section(".printf_handle_format_char")))
#elif DEFINE_SECTIONS == 2
__attribute__((noinline, section(".printf_lite")))
#endif
void printf_handle_format_char(char c, VALIST_PARAM_TYPE valist, PrintfParams* printfParams)
{
if ( printfParams->inDirective )
{
switch(c)
{
#if PRINTF_LITE_FALLBACK_FOR_UNSUPPORTED == 1 || PRINTF_LITE_FIELDWIDTH_SUPPORT == 1 || PRINTF_LITE_FIELDPRECISION_SUPPORT == 1 || PRINTF_LITE_PADCHAR_SUPPORT == 1
case '0':
#if PRINTF_LITE_FIELDWIDTH_SUPPORT == 1
if ( printfParams->inWidthField ) {
printfParams->width_specifier *= 10;
}else
#endif
#if PRINTF_LITE_FIELDPRECISION_SUPPORT == 1
if ( printfParams->inPrecisionField ) {
printfParams->precision_specifier *= 10;
}
else
#endif
#if PRINTF_LITE_PADCHAR_SUPPORT == 1
printfParams->pad_char = '0';
#else
#if PRINTF_LITE_FALLBACK_FOR_UNSUPPORTED == 0
printfParams->inDirective = 0;
#endif
#endif
break;
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
#if PRINTF_LITE_FIELDPRECISION_SUPPORT == 1 || (PRINTF_LITE_FALLBACK_FOR_UNSUPPORTED == 1 && PRINTF_LITE_FIELDWIDTH_SUPPORT == 1)
if ( printfParams->inPrecisionField )
{
#if PRINTF_LITE_FIELDPRECISION_SUPPORT == 1 // just ignore if we don't support precision field
printfParams->precision_specifier *= 10;
printfParams->precision_specifier += ( c - '0');
#endif
}
else
#endif
{
#if PRINTF_LITE_FIELDWIDTH_SUPPORT == 1
printfParams->inWidthField = 1;
printfParams->width_specifier *= 10;
printfParams->width_specifier += ( c - '0');
#else
#if PRINTF_LITE_FALLBACK_FOR_UNSUPPORTED == 1
// We just have to ignore field width
#else
// It's considered a mistake. Get out directive. Nothing will be printed. Harder to debug the format string for the user, but save sapce.
printfParams->inDirective = 0;
#endif
#endif
}
break;
#if PRINTF_LITE_FALLBACK_FOR_UNSUPPORTED == 1 || PRINTF_LITE_FIELDPRECISION_SUPPORT == 1
case '.':
#if PRINTF_LITE_FIELDWIDTH_SUPPORT == 1
printfParams->inWidthField = 0;
#endif
#if PRINTF_LITE_FIELDPRECISION_SUPPORT == 1 || (PRINTF_LITE_FALLBACK_FOR_UNSUPPORTED == 1 && PRINTF_LITE_FIELDWIDTH_SUPPORT == 1)
printfParams->inPrecisionField = 1;
#endif
#if PRINTF_LITE_FIELDPRECISION_SUPPORT == 1
printfParams->precision_specifier = 0;
#endif
break;
#endif
#endif // PRINTF_LITE_FALLBACK_FOR_UNSUPPORTED == 1 || PRINTF_LITE_FIELDWIDTH_SUPPORT == 1 || PRINTF_LITE_FIELDPRECISION_SUPPORT == 1
#if PRINTF_LITE_FALLBACK_FOR_UNSUPPORTED == 1 || PRINTF_LITE_ZSPECIFIER_SUPPORT == 1
case 'z':
#if PRINTF_LITE_ZSPECIFIER_SUPPORT == 1
printfParams->z_modifier = 1;
#else
printfParams->l_modifier = 2;
#endif
break;
#endif // PRINTF_LITE_FALLBACK_FOR_UNSUPPORTED == 1 || PRINTF_LITE_ZSPECIFIER_SUPPORT == 1
#if PRINTF_LITE_FALLBACK_FOR_UNSUPPORTED == 1 || PRINTF_LITE_XSPECIFIER_SUPPORT == 1
case 'x':
case 'X':
#if PRINTF_LITE_XSPECIFIER_SUPPORT == 1
printfParams->uppercase = c == 'X';
#if PRINTF_LITE_ZSPECIFIER_SUPPORT == 1
if ( printfParams->z_modifier ) print_ulonglong(va_arg(VALIST_ACCESS(valist), size_t), 16, printfParams, 0);
else
#endif
#if PRINTF_LITE_LONGLONGINT_SUPPORT == 1 && PRINTF_LITE_LONGINT_SUPPORT == 1
if ( printfParams->l_modifier == 2 ) print_ulonglong(va_arg(VALIST_ACCESS(valist), unsigned long long int), 16, printfParams, 0);
else
#endif
#if PRINTF_LITE_LONGINT_SUPPORT == 1
if ( printfParams->l_modifier != 0 ) print_ulonglong(va_arg(VALIST_ACCESS(valist), unsigned long int), 16, printfParams, 0);
else
#endif
print_ulonglong(va_arg(VALIST_ACCESS(valist), unsigned int), 16, printfParams, 0);
printfParams->inDirective = 0;
break;
#endif
#endif // PRINTF_LITE_FALLBACK_FOR_UNSUPPORTED == 1 || PRINTF_LITE_XSPECIFIER_SUPPORT == 1
#if PRINTF_LITE_FALLBACK_FOR_UNSUPPORTED == 1 || PRINTF_LITE_USPECIFIER_SUPPORT == 1
case 'u':
#if PRINTF_LITE_USPECIFIER_SUPPORT == 1
#if PRINTF_LITE_ZSPECIFIER_SUPPORT == 1
if ( printfParams->z_modifier ) print_ulonglong(va_arg(VALIST_ACCESS(valist), size_t), 10, printfParams, 0);
else
#endif
#if PRINTF_LITE_LONGLONGINT_SUPPORT == 1 && PRINTF_LITE_LONGINT_SUPPORT == 1
if ( printfParams->l_modifier == 2 ) print_ulonglong(va_arg(VALIST_ACCESS(valist), unsigned long long int), 10, printfParams, 0);
else
#endif // PRINTF_LITE_LONGLONGINT_SUPPORT == 1 && PRINTF_LITE_LONGINT_SUPPORT == 1
#if PRINTF_LITE_LONGINT_SUPPORT == 1
if ( printfParams->l_modifier != 0 ) print_ulonglong(va_arg(VALIST_ACCESS(valist), unsigned long int), 10, printfParams, 0);
else
#endif // PRINTF_LITE_LONGINT_SUPPORT == 1
print_ulonglong(va_arg(VALIST_ACCESS(valist), unsigned int), 10, printfParams, 0);
printfParams->inDirective = 0;
break;
#endif // PRINTF_LITE_USPECIFIER_SUPPORT
#endif // PRINTF_LITE_FALLBACK_FOR_UNSUPPORTED == 1 || PRINTF_LITE_USPECIFIER_SUPPORT == 1
case 'd':
#if PRINTF_LITE_ZSPECIFIER_SUPPORT == 1
if ( printfParams->z_modifier ) print_ulonglong((UINT_BIGGEST_TYPE)va_arg(VALIST_ACCESS(valist), size_t), (unsigned int)10, printfParams, 0); // we are using longlong version for every int to save code size.
else
#endif
#if PRINTF_LITE_LONGLONGINT_SUPPORT == 1 && PRINTF_LITE_LONGINT_SUPPORT == 1
if ( printfParams->l_modifier == 2 ) print_longlong(va_arg(VALIST_ACCESS(valist), long long int), 10, printfParams); // we are using longlong version for every int to save code size.
else
#endif
#if PRINTF_LITE_LONGINT_SUPPORT == 1
if ( printfParams->l_modifier != 0 ) print_longlong(va_arg(VALIST_ACCESS(valist), long int), 10, printfParams); // we are using longlong version for every int to save code size.
else
#endif
print_longlong(va_arg(VALIST_ACCESS(valist), int), 10, printfParams);
printfParams->inDirective = 0;
break;
#if PRINTF_LITE_FALLBACK_FOR_UNSUPPORTED == 1 || PRINTF_LITE_FLOAT_SUPPORT == 1
case 'f':
#if PRINTF_LITE_FLOAT_SUPPORT == 1
print_double(va_arg(VALIST_ACCESS(valist), double), printfParams); // 'float' is promoted to 'double' when passed through '...'
#elif PRINTF_LITE_FLOAT_AS_INT_SUPPORT == 1
print_longlong((INT_BIGGEST_TYPE)va_arg(VALIST_ACCESS(valist), double), 10, printfParams); // Cost 144 byte on Arduino
#else
va_arg(VALIST_ACCESS(valist), double); // this cost 16 bytes on stm32, 8 bytes on Arduino
#endif
printfParams->inDirective = 0;
break;
#endif // PRINTF_LITE_FALLBACK_FOR_UNSUPPORTED == 1 || PRINTF_LITE_FLOAT_SUPPORT == 1
#if PRINTF_LITE_FALLBACK_FOR_UNSUPPORTED == 1 || PRINTF_LITE_LONGINT_SUPPORT == 1 || PRINTF_LITE_FLOAT_SUPPORT == 1
case 'l':
#if PRINTF_LITE_LONGINT_SUPPORT == 1
printfParams->l_modifier += 1;
#endif
break;
#endif
case 'c':
{
int c1 = va_arg(VALIST_ACCESS(valist), int);
//#if PRINTF_UNICODE_OUTPUT_SUPPORT == 1
// if ( printfParams->l_modifier >= 1 ) {
// printfParams->printCharFunction((wchar_t)c1, printfParams); // 'char' is promoted to 'int' when passed through '...'
// }else
//#endif
#if PRINTF_UTF8_INPUT_SUPPORT == 1
{
// wchar_t tmp2 = L'a';
// int tmp1 = va_arg(VALIST_ACCESS(valist), int);
// int tmp3 = va_arg(VALIST_ACCESS(valist), wchar_t);
if ( !printfParams->unicode_output && printfParams->l_modifier == 1 ) {
print_char32((char32_t)c1, printfParams);
}else{
print_char_macro((int)c1, printfParams); // 'char' is promoted to 'int' when passed through '...'
}
}
#endif
printfParams->inDirective = 0;
}
break;
//#ifdef ARDUINO
//#if PRINTF_LITE_FALLBACK_FOR_UNSUPPORTED == 1 || PRINTF_LITE_FLASHSTRING_SUPPORT == 1
// case 'F':
// #if PRINTF_LITE_FLASHSTRING_SUPPORT == 1
// print_Fstring(va_arg(VALIST_ACCESS(valist), char *), printfParams);
// #endif
// printfParams->inDirective = 0;
// break;
//#endif //PRINTF_LITE_FALLBACK_FOR_UNSUPPORTED == 1 || PRINTF_LITE_FLASHSTRING_SUPPORT == 1
//#else //ARDUINO
//#if PRINTF_LITE_FALLBACK_FOR_UNSUPPORTED == 1 || PRINTF_LITE_FLASHSTRING_SUPPORT == 0
// case 'F':
//#endif
//#endif
#if PRINTF_LITE_FALLBACK_FOR_UNSUPPORTED == 1 || PRINTF_LITE_FLASHSTRING_SUPPORT == 1
case 'F':
#endif
#if defined(ARDUINO) && PRINTF_LITE_FLASHSTRING_SUPPORT == 1
print_Fstring(va_arg(VALIST_ACCESS(valist), char *), printfParams);
printfParams->inDirective = 0;
break;
#endif //defined(ARDUINO) && PRINTF_LITE_FLASHSTRING_SUPPORT == 1
case 's':
{
#if PRINTF_CHECK_UNSUPPORTED_STRING_FORMAT == 1 && (PRINTF_UTF8_INPUT_SUPPORT==0 || PRINTF_UNICODE_INPUT_SUPPORT==0)
// If both input support disabled, we can't even print "unsupported"
# if PRINTF_UTF8_INPUT_SUPPORT == 1 || PRINTF_UNICODE_INPUT_SUPPORT== 1
# if PRINTF_UTF8_INPUT_SUPPORT == 0
if ( printfParams->l_modifier == 0 ) {
va_arg(VALIST_ACCESS(valist), const char*);
# endif
# if PRINTF_UNICODE_INPUT_SUPPORT == 0
if ( printfParams->l_modifier == 1 ) {
va_arg(VALIST_ACCESS(valist), const wchar_t*);
# endif
# if PRINTF_UNICODE_OUTPUT_SUPPORT == 1 && PRINTF_UTF8_INPUT_SUPPORT == 0
print_string(L"unsupported", printfParams);
# else
print_string("unsupported", printfParams);
# endif
printfParams->inDirective = 0;
}
else
# endif
#endif
#if PRINTF_UNICODE_INPUT_SUPPORT == 1
if ( printfParams->l_modifier == 1 ) {
const wchar_t* s = va_arg(VALIST_ACCESS(valist), const wchar_t*);
if ( printfParams->unicode_output ) {
wprint_string(s, printfParams);
}else{
print_wchar_string(s, printfParams);
}
printfParams->inDirective = 0;
}else
#endif
#if PRINTF_UTF8_INPUT_SUPPORT == 1
{
const char* s = va_arg(VALIST_ACCESS(valist), const char*);
#if PRINTF_UTF8_OUTPUT_SUPPORT == 1 && PRINTF_UNICODE_OUTPUT_SUPPORT == 1
if ( printfParams->unicode_output ) {
print_utf8_to_wchar_string(s, printfParams);
}else{
print_string(s, printfParams);
}
#elif PRINTF_UTF8_OUTPUT_SUPPORT == 1
print_string(s, printfParams);
#elif PRINTF_UNICODE_OUTPUT_SUPPORT == 1
print_utf8_to_wchar_string(s, printfParams);
#endif
}
#endif
printfParams->inDirective = 0;
}
// {
// print_string(va_arg(VALIST_ACCESS(valist), const output_char_type*), printfParams);
// printfParams->inDirective = 0;
// }
//#if PRINTF_UNICODE_INPUT_SUPPORT == 1 && PRINTF_UTF8_OUTPUT_SUPPORT == 1
// if ( printfParams->l_modifier == 0 ) {
// print_string(va_arg(VALIST_ACCESS(valist), const char*), printfParams);
// printfParams->inDirective = 0;
// }else
//#elif PRINTF_UTF8_INPUT_SUPPORT == 1 && PRINTF_UNICODE_OUTPUT_SUPPORT == 1
//#arning TODO
// if ( printfParams->l_modifier == 1 ) {
// print_string(va_arg(VALIST_ACCESS(valist), const char*), printfParams);
// printfParams->inDirective = 0;
// }else
//#endif
// {
// print_string(va_arg(VALIST_ACCESS(valist), const output_char_type*), printfParams);
// printfParams->inDirective = 0;
// }
break;
default: {
print_char_macro('%', printfParams);
if ( c != '%' ) print_char_macro(c, printfParams);
printfParams->inDirective = 0;
}
}
}
else
{
if ( c == '%' )
{
printfParams->inDirective = 1;
printfParams->l_modifier = 0;
#if PRINTF_LITE_ZSPECIFIER_SUPPORT == 1
printfParams->z_modifier = 0;
#endif
#if PRINTF_LITE_FIELDWIDTH_SUPPORT == 1
printfParams->inWidthField = 0;
printfParams->width_specifier = 0;
#endif
#if PRINTF_LITE_FIELDPRECISION_SUPPORT == 1 || (PRINTF_LITE_FALLBACK_FOR_UNSUPPORTED == 1 && PRINTF_LITE_FIELDWIDTH_SUPPORT == 1)
printfParams->inPrecisionField = 0;
#endif
#if PRINTF_LITE_FIELDPRECISION_SUPPORT == 1
printfParams->precision_specifier = 6; // 6 digits for float, as specified by ANSI, if I remeber well
#endif
#if PRINTF_LITE_PADCHAR_SUPPORT == 1
printfParams->pad_char = ' ';
#endif
}
else
{
// print_char(c, printfParams);
print_char_macro(c, printfParams);
}
}
}
#if DEFINE_SECTIONS == 1
__attribute__((noinline, section(".vprintf_with_callback")))
#elif DEFINE_SECTIONS == 2
__attribute__((noinline, section(".printf_lite")))
#endif
void vprintf_with_callback(const char* format, va_list valist, transmitBufCallBackType transmitBufCallBack, void* context
#if PRINTF_LITE_TIMESTAMP_SUPPORT == 1
, int* newline, int timestamp
#endif
)
{
PrintfParams printfParams;
#if PRINTF_LITE_TIMESTAMP_SUPPORT == 1
printfParams.newlinePtr = newline;
printfParams.timestamp = timestamp;
#endif
#if PRINTF_LITE_BUF_SIZE > 1
printfParams.bufIdx = 0;
#endif
printfParams.inDirective = 0;
#if PRINTF_UTF8_OUTPUT_SUPPORT == 1 && PRINTF_UNICODE_OUTPUT_SUPPORT == 1
printfParams.unicode_output = 0;
printfParams.printCharFunction = print_char;
#endif
printfParams.transmitBufCallBack.transmitBufCallBack = transmitBufCallBack;
printfParams.context = context;
while ( 1 ) //Iterate over formatting string
{
char c = *format++;
if (c == 0) break;
printf_handle_format_char(c, VALIST_PARAM(valist), &printfParams);
}
#if PRINTF_LITE_BUF_SIZE > 1
if ( printfParams.bufIdx > 0 ) printfParams.transmitBufCallBack.transmitBufCallBack(printfParams.buf.buf, printfParams.bufIdx, printfParams.context);
#endif
va_end(valist);
}
#if DEFINE_SECTIONS == 1
__attribute__((noinline, section(".printf_with_callback")))
#elif DEFINE_SECTIONS == 2
__attribute__((noinline, section(".printf_lite")))
#endif
void printf_with_callback(const char* format, transmitBufCallBackType transmitBufCallBack, void* context,
#if PRINTF_LITE_TIMESTAMP_SUPPORT == 1
int* newline, int timestamp,
#endif
...)
{
va_list valist;
#if PRINTF_LITE_TIMESTAMP_SUPPORT == 1
va_start(valist, timestamp);
#else
va_start(valist, context);
#endif
vprintf_with_callback(format, valist, transmitBufCallBack, context
#if PRINTF_LITE_TIMESTAMP_SUPPORT == 1
, NULL, 0
#endif
);
va_end(valist);
}
#if PRINTF_UNICODE_OUTPUT_SUPPORT == 1
void vwprintf_with_callback(const char* format, va_list valist, transmitWBufCallBackType transmitWBufCallBack, void* context
#if PRINTF_LITE_TIMESTAMP_SUPPORT == 1
, int* newline, int timestamp
#endif
)
{
PrintfParams printfParams;
#if PRINTF_LITE_TIMESTAMP_SUPPORT == 1
printfParams.newlinePtr = newline;
printfParams.timestamp = timestamp;
#endif
#if PRINTF_LITE_BUF_SIZE > 1
printfParams.bufIdx = 0;
#endif
printfParams.inDirective = 0;
printfParams.unicode_output = 1;
printfParams.printCharFunction = print_wchar;
printfParams.transmitBufCallBack.transmitWBufCallBack = transmitWBufCallBack;
printfParams.context = context;
while ( *format ) //Iterate over formatting string
{
char32_t c;
format = get_utf32_from_utf8(format, &c);
if (format == 0) break;
if ( c <= 0x80) {
printf_handle_format_char((char)c, VALIST_PARAM(valist), &printfParams);
continue;
}
#if __WCHAR_MAX__ <= 0xFFFFu
if ( c <= 0xFFFF) {
print_wchar((wchar_t)c, &printfParams);
} else {
c -= halfBase;
print_wchar((wchar_t)((c >> halfShift) + UNI_SUR_HIGH_START), &printfParams);
print_wchar((wchar_t)((c & halfMask) + UNI_SUR_LOW_START), &printfParams);
}
#else
print_wchar((wchar_t)c, &printfParams);
#endif
}
#if PRINTF_LITE_BUF_SIZE > 1
if ( printfParams.bufIdx > 0 ) printfParams.transmitBufCallBack.transmitBufCallBack(printfParams.buf.buf, printfParams.bufIdx, printfParams.context);
#endif
va_end(valist);
}
void wprintf_with_callback(const char* format, transmitWBufCallBackType transmitWBufCallBack, void* context,
#if PRINTF_LITE_TIMESTAMP_SUPPORT == 1
int* newline, int timestamp,
#endif
...)
{
va_list valist;
#if PRINTF_LITE_TIMESTAMP_SUPPORT == 1
va_start(valist, timestamp);
#else
va_start(valist, context);
#endif
vwprintf_with_callback(format, valist, transmitWBufCallBack, context
#if PRINTF_LITE_TIMESTAMP_SUPPORT == 1
, NULL, 0
#endif
);
va_end(valist);
}
#endif
/* ------------------------------------------------- SNPRINTF ------------------------------------------------- */
#if PRINTF_LITE_SNPRINTF_SUPPORT == 1
typedef struct SPrintfContext_t
{
void* printf_callback_vsnprintf_buffer;
size_t printf_callback_vsnprintf_buffer_len;
int printf_callback_vsnprintf_count;
} SPrintfContext_t;
/* --------------- vsnprintf,snprintf (Output UTF8) --------------- */
void transmitSPrintf(const char* buf, unsigned int nbchar, void* context)
{
SPrintfContext_t* SPrintfContext = (SPrintfContext_t*)context;
unsigned int i=0;
for ( ; SPrintfContext->printf_callback_vsnprintf_buffer_len>0 && i<nbchar ; i++) {
char** sprintfBufChar = (char**)&(SPrintfContext->printf_callback_vsnprintf_buffer);
*(*sprintfBufChar)++ = buf[i];
SPrintfContext->printf_callback_vsnprintf_buffer_len--;
}
SPrintfContext->printf_callback_vsnprintf_count += nbchar;
}
int PRINTF_FUNCTION_NAME(PRINTF_CFUNCTION_PREFIX, vsnprint, PRINTF_CFUNCTION_SUFFIX)(char* buf, size_t len, const char *__restrict format, va_list valist)
{
SPrintfContext_t SPrintfContext;
SPrintfContext.printf_callback_vsnprintf_buffer = buf;
SPrintfContext.printf_callback_vsnprintf_buffer_len = len-1;
SPrintfContext.printf_callback_vsnprintf_count = 0;
vprintf_with_callback(format, valist, transmitSPrintf, (void*)&SPrintfContext
#if PRINTF_LITE_TIMESTAMP_SUPPORT == 1
, NULL, 0
#endif
);
*(char*)(SPrintfContext.printf_callback_vsnprintf_buffer) = 0;
return SPrintfContext.printf_callback_vsnprintf_count;
}
int PRINTF_FUNCTION_NAME(PRINTF_CFUNCTION_PREFIX, snprint, PRINTF_CFUNCTION_SUFFIX)(char* buf, size_t len, const char *__restrict format, ...)
{
va_list valist;
va_start(valist, format);
int ret = PRINTF_FUNCTION_NAME(PRINTF_CFUNCTION_PREFIX, vsnprint, PRINTF_CFUNCTION_SUFFIX)(buf, len, format, valist);
va_end(valist);
return ret;
}
#if PRINTF_UNICODE_OUTPUT_SUPPORT == 1
/* --------------- vsnwprintf,snwprintf (Output Unicode) --------------- */
typedef struct SWPrintfContext_t
{
wchar_t* printf_callback_vsnprintf_buffer;
size_t printf_callback_vsnprintf_buffer_len;
int printf_callback_vsnprintf_count;
} SWPrintfContext_t;
void transmitSWPrintf(const wchar_t* buf, unsigned int nbchar, void* context)
{
SWPrintfContext_t* SWPrintfContext = (SWPrintfContext_t*)context;
unsigned int i=0;
for ( ; SWPrintfContext->printf_callback_vsnprintf_buffer_len>0 && i<nbchar ; i++) {
wchar_t** sprintfBufChar = (wchar_t**)&(SWPrintfContext->printf_callback_vsnprintf_buffer);
*(*sprintfBufChar)++ = buf[i];
SWPrintfContext->printf_callback_vsnprintf_buffer_len--;
}
SWPrintfContext->printf_callback_vsnprintf_count += nbchar;
}
int PRINTF_FUNCTION_NAME(PRINTF_CFUNCTION_PREFIX, vsnwprint, PRINTF_CFUNCTION_SUFFIX)(wchar_t* buf, size_t len, const char *__restrict format, va_list valist)
{
SWPrintfContext_t SWPrintfContext;
SWPrintfContext.printf_callback_vsnprintf_buffer = buf;
SWPrintfContext.printf_callback_vsnprintf_buffer_len = len-1;
SWPrintfContext.printf_callback_vsnprintf_count = 0;
vwprintf_with_callback(format, valist, transmitSWPrintf, (void*)(&SWPrintfContext)
#if PRINTF_LITE_TIMESTAMP_SUPPORT == 1
, NULL, 0
#endif
);
*(wchar_t*)(SWPrintfContext.printf_callback_vsnprintf_buffer) = 0;
#if VSNWPRINTF_RETURN_MINUS1_ON_OVERFLOW == 1
if ( (size_t)(SWPrintfContext.printf_callback_vsnprintf_count) >= len ) return -1;
#endif
return SWPrintfContext.printf_callback_vsnprintf_count;
}
int PRINTF_FUNCTION_NAME(PRINTF_CFUNCTION_PREFIX, snwprint, PRINTF_CFUNCTION_SUFFIX)(wchar_t* buf, size_t len, const char *__restrict format, ...)
{
va_list valist;
va_start(valist, format);
int ret = PRINTF_FUNCTION_NAME(PRINTF_CFUNCTION_PREFIX, vsnwprint, PRINTF_CFUNCTION_SUFFIX)(buf, len, format, valist);
va_end(valist);
return ret;
}
#endif // PRINTF_UNICODE_OUTPUT_SUPPORT == 1
#endif // PRINTF_LITE_SNPRINTF_SUPPORT == 1
#if defined(__cplusplus)
}
#endif