mirror of
https://github.com/CloverHackyColor/CloverBootloader.git
synced 2025-01-09 19:08:20 +01:00
1607 lines
44 KiB
C
1607 lines
44 KiB
C
/** @file
|
|
IP4 input process.
|
|
|
|
Copyright (c) 2005 - 2020, Intel Corporation. All rights reserved.<BR>
|
|
(C) Copyright 2015 Hewlett-Packard Development Company, L.P.<BR>
|
|
|
|
SPDX-License-Identifier: BSD-2-Clause-Patent
|
|
|
|
**/
|
|
|
|
#include "Ip4Impl.h"
|
|
|
|
/**
|
|
Create an empty assemble entry for the packet identified by
|
|
(Dst, Src, Id, Protocol). The default life for the packet is
|
|
120 seconds.
|
|
|
|
@param[in] Dst The destination address
|
|
@param[in] Src The source address
|
|
@param[in] Id The ID field in IP header
|
|
@param[in] Protocol The protocol field in IP header
|
|
|
|
@return NULL if failed to allocate memory for the entry, otherwise
|
|
the point to just created reassemble entry.
|
|
|
|
**/
|
|
IP4_ASSEMBLE_ENTRY *
|
|
Ip4CreateAssembleEntry (
|
|
IN IP4_ADDR Dst,
|
|
IN IP4_ADDR Src,
|
|
IN UINT16 Id,
|
|
IN UINT8 Protocol
|
|
)
|
|
{
|
|
IP4_ASSEMBLE_ENTRY *Assemble;
|
|
|
|
Assemble = AllocatePool (sizeof (IP4_ASSEMBLE_ENTRY));
|
|
|
|
if (Assemble == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
InitializeListHead (&Assemble->Link);
|
|
InitializeListHead (&Assemble->Fragments);
|
|
|
|
Assemble->Dst = Dst;
|
|
Assemble->Src = Src;
|
|
Assemble->Id = Id;
|
|
Assemble->Protocol = Protocol;
|
|
Assemble->TotalLen = 0;
|
|
Assemble->CurLen = 0;
|
|
Assemble->Head = NULL;
|
|
Assemble->Info = NULL;
|
|
Assemble->Life = IP4_FRAGMENT_LIFE;
|
|
|
|
return Assemble;
|
|
}
|
|
|
|
/**
|
|
Release all the fragments of a packet, then free the assemble entry.
|
|
|
|
@param[in] Assemble The assemble entry to free
|
|
|
|
**/
|
|
VOID
|
|
Ip4FreeAssembleEntry (
|
|
IN IP4_ASSEMBLE_ENTRY *Assemble
|
|
)
|
|
{
|
|
LIST_ENTRY *Entry;
|
|
LIST_ENTRY *Next;
|
|
NET_BUF *Fragment;
|
|
|
|
NET_LIST_FOR_EACH_SAFE (Entry, Next, &Assemble->Fragments) {
|
|
Fragment = NET_LIST_USER_STRUCT (Entry, NET_BUF, List);
|
|
|
|
RemoveEntryList (Entry);
|
|
NetbufFree (Fragment);
|
|
}
|
|
|
|
FreePool (Assemble);
|
|
}
|
|
|
|
/**
|
|
Initialize an already allocated assemble table. This is generally
|
|
the assemble table embedded in the IP4 service instance.
|
|
|
|
@param[in, out] Table The assemble table to initialize.
|
|
|
|
**/
|
|
VOID
|
|
Ip4InitAssembleTable (
|
|
IN OUT IP4_ASSEMBLE_TABLE *Table
|
|
)
|
|
{
|
|
UINT32 Index;
|
|
|
|
for (Index = 0; Index < IP4_ASSEMLE_HASH_SIZE; Index++) {
|
|
InitializeListHead (&Table->Bucket[Index]);
|
|
}
|
|
}
|
|
|
|
/**
|
|
Clean up the assemble table: remove all the fragments
|
|
and assemble entries.
|
|
|
|
@param[in] Table The assemble table to clean up
|
|
|
|
**/
|
|
VOID
|
|
Ip4CleanAssembleTable (
|
|
IN IP4_ASSEMBLE_TABLE *Table
|
|
)
|
|
{
|
|
LIST_ENTRY *Entry;
|
|
LIST_ENTRY *Next;
|
|
IP4_ASSEMBLE_ENTRY *Assemble;
|
|
UINT32 Index;
|
|
|
|
for (Index = 0; Index < IP4_ASSEMLE_HASH_SIZE; Index++) {
|
|
NET_LIST_FOR_EACH_SAFE (Entry, Next, &Table->Bucket[Index]) {
|
|
Assemble = NET_LIST_USER_STRUCT (Entry, IP4_ASSEMBLE_ENTRY, Link);
|
|
|
|
RemoveEntryList (Entry);
|
|
Ip4FreeAssembleEntry (Assemble);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
Trim the packet to fit in [Start, End), and update the per
|
|
packet information.
|
|
|
|
@param Packet Packet to trim
|
|
@param Start The sequence of the first byte to fit in
|
|
@param End One beyond the sequence of last byte to fit in.
|
|
|
|
**/
|
|
VOID
|
|
Ip4TrimPacket (
|
|
IN OUT NET_BUF *Packet,
|
|
IN INTN Start,
|
|
IN INTN End
|
|
)
|
|
{
|
|
IP4_CLIP_INFO *Info;
|
|
INTN Len;
|
|
|
|
Info = IP4_GET_CLIP_INFO (Packet);
|
|
|
|
ASSERT (Info->Start + Info->Length == Info->End);
|
|
ASSERT ((Info->Start < End) && (Start < Info->End));
|
|
|
|
if (Info->Start < Start) {
|
|
Len = Start - Info->Start;
|
|
|
|
NetbufTrim (Packet, (UINT32)Len, NET_BUF_HEAD);
|
|
Info->Start = Start;
|
|
Info->Length -= Len;
|
|
}
|
|
|
|
if (End < Info->End) {
|
|
Len = End - Info->End;
|
|
|
|
NetbufTrim (Packet, (UINT32)Len, NET_BUF_TAIL);
|
|
Info->End = End;
|
|
Info->Length -= Len;
|
|
}
|
|
}
|
|
|
|
/**
|
|
Release all the fragments of the packet. This is the callback for
|
|
the assembled packet's OnFree. It will free the assemble entry,
|
|
which in turn will free all the fragments of the packet.
|
|
|
|
@param[in] Arg The assemble entry to free
|
|
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
Ip4OnFreeFragments (
|
|
IN VOID *Arg
|
|
)
|
|
{
|
|
Ip4FreeAssembleEntry ((IP4_ASSEMBLE_ENTRY *)Arg);
|
|
}
|
|
|
|
/**
|
|
Reassemble the IP fragments. If all the fragments of the packet
|
|
have been received, it will wrap the packet in a net buffer then
|
|
return it to caller. If the packet can't be assembled, NULL is
|
|
return.
|
|
|
|
@param Table The assemble table used. New assemble entry will be created
|
|
if the Packet is from a new chain of fragments.
|
|
@param Packet The fragment to assemble. It might be freed if the fragment
|
|
can't be re-assembled.
|
|
|
|
@return NULL if the packet can't be reassemble. The point to just assembled
|
|
packet if all the fragments of the packet have arrived.
|
|
|
|
**/
|
|
NET_BUF *
|
|
Ip4Reassemble (
|
|
IN OUT IP4_ASSEMBLE_TABLE *Table,
|
|
IN OUT NET_BUF *Packet
|
|
)
|
|
{
|
|
IP4_HEAD *IpHead;
|
|
IP4_CLIP_INFO *This;
|
|
IP4_CLIP_INFO *Node;
|
|
IP4_ASSEMBLE_ENTRY *Assemble;
|
|
LIST_ENTRY *Head;
|
|
LIST_ENTRY *Prev;
|
|
LIST_ENTRY *Cur;
|
|
NET_BUF *Fragment;
|
|
NET_BUF *NewPacket;
|
|
INTN Index;
|
|
|
|
IpHead = Packet->Ip.Ip4;
|
|
This = IP4_GET_CLIP_INFO (Packet);
|
|
|
|
ASSERT (IpHead != NULL);
|
|
|
|
//
|
|
// First: find the related assemble entry
|
|
//
|
|
Assemble = NULL;
|
|
Index = IP4_ASSEMBLE_HASH (IpHead->Dst, IpHead->Src, IpHead->Id, IpHead->Protocol);
|
|
|
|
NET_LIST_FOR_EACH (Cur, &Table->Bucket[Index]) {
|
|
Assemble = NET_LIST_USER_STRUCT (Cur, IP4_ASSEMBLE_ENTRY, Link);
|
|
|
|
if ((Assemble->Dst == IpHead->Dst) && (Assemble->Src == IpHead->Src) &&
|
|
(Assemble->Id == IpHead->Id) && (Assemble->Protocol == IpHead->Protocol))
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Create a new assemble entry if no assemble entry is related to this packet
|
|
//
|
|
if (Cur == &Table->Bucket[Index]) {
|
|
Assemble = Ip4CreateAssembleEntry (
|
|
IpHead->Dst,
|
|
IpHead->Src,
|
|
IpHead->Id,
|
|
IpHead->Protocol
|
|
);
|
|
|
|
if (Assemble == NULL) {
|
|
goto DROP;
|
|
}
|
|
|
|
InsertHeadList (&Table->Bucket[Index], &Assemble->Link);
|
|
}
|
|
|
|
//
|
|
// Assemble shouldn't be NULL here
|
|
//
|
|
ASSERT (Assemble != NULL);
|
|
|
|
//
|
|
// Find the point to insert the packet: before the first
|
|
// fragment with THIS.Start < CUR.Start. the previous one
|
|
// has PREV.Start <= THIS.Start < CUR.Start.
|
|
//
|
|
Head = &Assemble->Fragments;
|
|
|
|
NET_LIST_FOR_EACH (Cur, Head) {
|
|
Fragment = NET_LIST_USER_STRUCT (Cur, NET_BUF, List);
|
|
|
|
if (This->Start < IP4_GET_CLIP_INFO (Fragment)->Start) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Check whether the current fragment overlaps with the previous one.
|
|
// It holds that: PREV.Start <= THIS.Start < THIS.End. Only need to
|
|
// check whether THIS.Start < PREV.End for overlap. If two fragments
|
|
// overlaps, trim the overlapped part off THIS fragment.
|
|
//
|
|
if ((Prev = Cur->BackLink) != Head) {
|
|
Fragment = NET_LIST_USER_STRUCT (Prev, NET_BUF, List);
|
|
Node = IP4_GET_CLIP_INFO (Fragment);
|
|
|
|
if (This->Start < Node->End) {
|
|
if (This->End <= Node->End) {
|
|
NetbufFree (Packet);
|
|
return NULL;
|
|
}
|
|
|
|
Ip4TrimPacket (Packet, Node->End, This->End);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Insert the fragment into the packet. The fragment may be removed
|
|
// from the list by the following checks.
|
|
//
|
|
NetListInsertBefore (Cur, &Packet->List);
|
|
|
|
//
|
|
// Check the packets after the insert point. It holds that:
|
|
// THIS.Start <= NODE.Start < NODE.End. The equality holds
|
|
// if PREV and NEXT are continuous. THIS fragment may fill
|
|
// several holes. Remove the completely overlapped fragments
|
|
//
|
|
while (Cur != Head) {
|
|
Fragment = NET_LIST_USER_STRUCT (Cur, NET_BUF, List);
|
|
Node = IP4_GET_CLIP_INFO (Fragment);
|
|
|
|
//
|
|
// Remove fragments completely overlapped by this fragment
|
|
//
|
|
if (Node->End <= This->End) {
|
|
Cur = Cur->ForwardLink;
|
|
|
|
RemoveEntryList (&Fragment->List);
|
|
Assemble->CurLen -= Node->Length;
|
|
|
|
NetbufFree (Fragment);
|
|
continue;
|
|
}
|
|
|
|
//
|
|
// The conditions are: THIS.Start <= NODE.Start, and THIS.End <
|
|
// NODE.End. Two fragments overlaps if NODE.Start < THIS.End.
|
|
// If two fragments start at the same offset, remove THIS fragment
|
|
// because ((THIS.Start == NODE.Start) && (THIS.End < NODE.End)).
|
|
//
|
|
if (Node->Start < This->End) {
|
|
if (This->Start == Node->Start) {
|
|
RemoveEntryList (&Packet->List);
|
|
goto DROP;
|
|
}
|
|
|
|
Ip4TrimPacket (Packet, This->Start, Node->Start);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
//
|
|
// Update the assemble info: increase the current length. If it is
|
|
// the frist fragment, update the packet's IP head and per packet
|
|
// info. If it is the last fragment, update the total length.
|
|
//
|
|
Assemble->CurLen += This->Length;
|
|
|
|
if (This->Start == 0) {
|
|
//
|
|
// Once the first fragment is enqueued, it can't be removed
|
|
// from the fragment list. So, Assemble->Head always point
|
|
// to valid memory area.
|
|
//
|
|
ASSERT (Assemble->Head == NULL);
|
|
|
|
Assemble->Head = IpHead;
|
|
Assemble->Info = IP4_GET_CLIP_INFO (Packet);
|
|
}
|
|
|
|
//
|
|
// Don't update the length more than once.
|
|
//
|
|
if (IP4_LAST_FRAGMENT (IpHead->Fragment) && (Assemble->TotalLen == 0)) {
|
|
Assemble->TotalLen = This->End;
|
|
}
|
|
|
|
//
|
|
// Deliver the whole packet if all the fragments received.
|
|
// All fragments received if:
|
|
// 1. received the last one, so, the total length is know
|
|
// 2. received all the data. If the last fragment on the
|
|
// queue ends at the total length, all data is received.
|
|
//
|
|
if ((Assemble->TotalLen != 0) && (Assemble->CurLen >= Assemble->TotalLen)) {
|
|
RemoveEntryList (&Assemble->Link);
|
|
|
|
//
|
|
// If the packet is properly formatted, the last fragment's End
|
|
// equals to the packet's total length. Otherwise, the packet
|
|
// is a fake, drop it now.
|
|
//
|
|
Fragment = NET_LIST_USER_STRUCT (Head->BackLink, NET_BUF, List);
|
|
|
|
if (IP4_GET_CLIP_INFO (Fragment)->End != Assemble->TotalLen) {
|
|
Ip4FreeAssembleEntry (Assemble);
|
|
return NULL;
|
|
}
|
|
|
|
//
|
|
// Wrap the packet in a net buffer then deliver it up
|
|
//
|
|
NewPacket = NetbufFromBufList (
|
|
&Assemble->Fragments,
|
|
0,
|
|
0,
|
|
Ip4OnFreeFragments,
|
|
Assemble
|
|
);
|
|
|
|
if (NewPacket == NULL) {
|
|
Ip4FreeAssembleEntry (Assemble);
|
|
return NULL;
|
|
}
|
|
|
|
NewPacket->Ip.Ip4 = Assemble->Head;
|
|
|
|
ASSERT (Assemble->Info != NULL);
|
|
|
|
CopyMem (
|
|
IP4_GET_CLIP_INFO (NewPacket),
|
|
Assemble->Info,
|
|
sizeof (*IP4_GET_CLIP_INFO (NewPacket))
|
|
);
|
|
|
|
return NewPacket;
|
|
}
|
|
|
|
return NULL;
|
|
|
|
DROP:
|
|
NetbufFree (Packet);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
The callback function for the net buffer which wraps the packet processed by
|
|
IPsec. It releases the wrap packet and also signals IPsec to free the resources.
|
|
|
|
@param[in] Arg The wrap context
|
|
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
Ip4IpSecFree (
|
|
IN VOID *Arg
|
|
)
|
|
{
|
|
IP4_IPSEC_WRAP *Wrap;
|
|
|
|
Wrap = (IP4_IPSEC_WRAP *)Arg;
|
|
|
|
if (Wrap->IpSecRecycleSignal != NULL) {
|
|
gBS->SignalEvent (Wrap->IpSecRecycleSignal);
|
|
}
|
|
|
|
NetbufFree (Wrap->Packet);
|
|
|
|
FreePool (Wrap);
|
|
|
|
return;
|
|
}
|
|
|
|
/**
|
|
The work function to locate IPsec protocol to process the inbound or
|
|
outbound IP packets. The process routine handls the packet with following
|
|
actions: bypass the packet, discard the packet, or protect the packet.
|
|
|
|
@param[in] IpSb The IP4 service instance.
|
|
@param[in, out] Head The caller supplied IP4 header.
|
|
@param[in, out] Netbuf The IP4 packet to be processed by IPsec.
|
|
@param[in, out] Options The caller supplied options.
|
|
@param[in, out] OptionsLen The length of the option.
|
|
@param[in] Direction The directionality in an SPD entry,
|
|
EfiIPsecInBound or EfiIPsecOutBound.
|
|
@param[in] Context The token's wrap.
|
|
|
|
@retval EFI_SUCCESS The IPsec protocol is not available or disabled.
|
|
@retval EFI_SUCCESS The packet was bypassed and all buffers remain the same.
|
|
@retval EFI_SUCCESS The packet was protected.
|
|
@retval EFI_ACCESS_DENIED The packet was discarded.
|
|
@retval EFI_OUT_OF_RESOURCES There is no sufficient resource to complete the operation.
|
|
@retval EFI_BUFFER_TOO_SMALL The number of non-empty block is bigger than the
|
|
number of input data blocks when build a fragment table.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
Ip4IpSecProcessPacket (
|
|
IN IP4_SERVICE *IpSb,
|
|
IN OUT IP4_HEAD **Head,
|
|
IN OUT NET_BUF **Netbuf,
|
|
IN OUT UINT8 **Options,
|
|
IN OUT UINT32 *OptionsLen,
|
|
IN EFI_IPSEC_TRAFFIC_DIR Direction,
|
|
IN VOID *Context
|
|
)
|
|
{
|
|
NET_FRAGMENT *FragmentTable;
|
|
NET_FRAGMENT *OriginalFragmentTable;
|
|
UINT32 FragmentCount;
|
|
UINT32 OriginalFragmentCount;
|
|
EFI_EVENT RecycleEvent;
|
|
NET_BUF *Packet;
|
|
IP4_TXTOKEN_WRAP *TxWrap;
|
|
IP4_IPSEC_WRAP *IpSecWrap;
|
|
EFI_STATUS Status;
|
|
IP4_HEAD ZeroHead;
|
|
|
|
Status = EFI_SUCCESS;
|
|
|
|
if (!mIpSec2Installed) {
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
ASSERT (mIpSec != NULL);
|
|
|
|
Packet = *Netbuf;
|
|
RecycleEvent = NULL;
|
|
IpSecWrap = NULL;
|
|
FragmentTable = NULL;
|
|
TxWrap = (IP4_TXTOKEN_WRAP *)Context;
|
|
FragmentCount = Packet->BlockOpNum;
|
|
|
|
ZeroMem (&ZeroHead, sizeof (IP4_HEAD));
|
|
|
|
//
|
|
// Check whether the IPsec enable variable is set.
|
|
//
|
|
if (mIpSec->DisabledFlag) {
|
|
//
|
|
// If IPsec is disabled, restore the original MTU
|
|
//
|
|
IpSb->MaxPacketSize = IpSb->OldMaxPacketSize;
|
|
goto ON_EXIT;
|
|
} else {
|
|
//
|
|
// If IPsec is enabled, use the MTU which reduce the IPsec header length.
|
|
//
|
|
IpSb->MaxPacketSize = IpSb->OldMaxPacketSize - IP4_MAX_IPSEC_HEADLEN;
|
|
}
|
|
|
|
//
|
|
// Rebuild fragment table from netbuf to ease IPsec process.
|
|
//
|
|
FragmentTable = AllocateZeroPool (FragmentCount * sizeof (NET_FRAGMENT));
|
|
|
|
if (FragmentTable == NULL) {
|
|
Status = EFI_OUT_OF_RESOURCES;
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
Status = NetbufBuildExt (Packet, FragmentTable, &FragmentCount);
|
|
|
|
//
|
|
// Record the original FragmentTable and count.
|
|
//
|
|
OriginalFragmentTable = FragmentTable;
|
|
OriginalFragmentCount = FragmentCount;
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
FreePool (FragmentTable);
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
//
|
|
// Convert host byte order to network byte order
|
|
//
|
|
Ip4NtohHead (*Head);
|
|
|
|
Status = mIpSec->ProcessExt (
|
|
mIpSec,
|
|
IpSb->Controller,
|
|
IP_VERSION_4,
|
|
(VOID *)(*Head),
|
|
&(*Head)->Protocol,
|
|
(VOID **)Options,
|
|
OptionsLen,
|
|
(EFI_IPSEC_FRAGMENT_DATA **)(&FragmentTable),
|
|
&FragmentCount,
|
|
Direction,
|
|
&RecycleEvent
|
|
);
|
|
//
|
|
// Convert back to host byte order
|
|
//
|
|
Ip4NtohHead (*Head);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
FreePool (OriginalFragmentTable);
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
if ((OriginalFragmentTable == FragmentTable) && (OriginalFragmentCount == FragmentCount)) {
|
|
//
|
|
// For ByPass Packet
|
|
//
|
|
FreePool (FragmentTable);
|
|
goto ON_EXIT;
|
|
} else {
|
|
//
|
|
// Free the FragmentTable which allocated before calling the IPsec.
|
|
//
|
|
FreePool (OriginalFragmentTable);
|
|
}
|
|
|
|
if ((Direction == EfiIPsecOutBound) && (TxWrap != NULL)) {
|
|
TxWrap->IpSecRecycleSignal = RecycleEvent;
|
|
TxWrap->Packet = NetbufFromExt (
|
|
FragmentTable,
|
|
FragmentCount,
|
|
IP4_MAX_HEADLEN,
|
|
0,
|
|
Ip4FreeTxToken,
|
|
TxWrap
|
|
);
|
|
if (TxWrap->Packet == NULL) {
|
|
//
|
|
// Recover the TxWrap->Packet, if meet a error, and the caller will free
|
|
// the TxWrap.
|
|
//
|
|
TxWrap->Packet = *Netbuf;
|
|
Status = EFI_OUT_OF_RESOURCES;
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
//
|
|
// Free original Netbuf.
|
|
//
|
|
NetIpSecNetbufFree (*Netbuf);
|
|
*Netbuf = TxWrap->Packet;
|
|
} else {
|
|
IpSecWrap = AllocateZeroPool (sizeof (IP4_IPSEC_WRAP));
|
|
|
|
if (IpSecWrap == NULL) {
|
|
Status = EFI_OUT_OF_RESOURCES;
|
|
gBS->SignalEvent (RecycleEvent);
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
IpSecWrap->IpSecRecycleSignal = RecycleEvent;
|
|
IpSecWrap->Packet = Packet;
|
|
Packet = NetbufFromExt (
|
|
FragmentTable,
|
|
FragmentCount,
|
|
IP4_MAX_HEADLEN,
|
|
0,
|
|
Ip4IpSecFree,
|
|
IpSecWrap
|
|
);
|
|
|
|
if (Packet == NULL) {
|
|
Packet = IpSecWrap->Packet;
|
|
gBS->SignalEvent (RecycleEvent);
|
|
FreePool (IpSecWrap);
|
|
Status = EFI_OUT_OF_RESOURCES;
|
|
goto ON_EXIT;
|
|
}
|
|
|
|
if ((Direction == EfiIPsecInBound) && (0 != CompareMem (*Head, &ZeroHead, sizeof (IP4_HEAD)))) {
|
|
Ip4PrependHead (Packet, *Head, *Options, *OptionsLen);
|
|
Ip4NtohHead (Packet->Ip.Ip4);
|
|
NetbufTrim (Packet, ((*Head)->HeadLen << 2), TRUE);
|
|
|
|
CopyMem (
|
|
IP4_GET_CLIP_INFO (Packet),
|
|
IP4_GET_CLIP_INFO (IpSecWrap->Packet),
|
|
sizeof (IP4_CLIP_INFO)
|
|
);
|
|
}
|
|
|
|
*Netbuf = Packet;
|
|
}
|
|
|
|
ON_EXIT:
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Pre-process the IPv4 packet. First validates the IPv4 packet, and
|
|
then reassembles packet if it is necessary.
|
|
|
|
@param[in] IpSb Pointer to IP4_SERVICE.
|
|
@param[in, out] Packet Pointer to the Packet to be processed.
|
|
@param[in] Head Pointer to the IP4_HEAD.
|
|
@param[in] Option Pointer to a buffer which contains the IPv4 option.
|
|
@param[in] OptionLen The length of Option in bytes.
|
|
@param[in] Flag The link layer flag for the packet received, such
|
|
as multicast.
|
|
|
|
@retval EFI_SUCCESS The received packet is in well form.
|
|
@retval EFI_INVALID_PARAMETER The received packet is malformed.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
Ip4PreProcessPacket (
|
|
IN IP4_SERVICE *IpSb,
|
|
IN OUT NET_BUF **Packet,
|
|
IN IP4_HEAD *Head,
|
|
IN UINT8 *Option,
|
|
IN UINT32 OptionLen,
|
|
IN UINT32 Flag
|
|
)
|
|
{
|
|
IP4_CLIP_INFO *Info;
|
|
UINT32 HeadLen;
|
|
UINT32 TotalLen;
|
|
UINT16 Checksum;
|
|
|
|
//
|
|
// Check if the IP4 header is correctly formatted.
|
|
//
|
|
HeadLen = (Head->HeadLen << 2);
|
|
TotalLen = NTOHS (Head->TotalLen);
|
|
|
|
//
|
|
// Mnp may deliver frame trailer sequence up, trim it off.
|
|
//
|
|
if (TotalLen < (*Packet)->TotalSize) {
|
|
NetbufTrim (*Packet, (*Packet)->TotalSize - TotalLen, FALSE);
|
|
}
|
|
|
|
if ((Head->Ver != 4) || (HeadLen < IP4_MIN_HEADLEN) ||
|
|
(TotalLen < HeadLen) || (TotalLen != (*Packet)->TotalSize))
|
|
{
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
//
|
|
// Some OS may send IP packets without checksum.
|
|
//
|
|
Checksum = (UINT16)(~NetblockChecksum ((UINT8 *)Head, HeadLen));
|
|
|
|
if ((Head->Checksum != 0) && (Checksum != 0)) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
//
|
|
// Convert the IP header to host byte order, then get the per packet info.
|
|
//
|
|
(*Packet)->Ip.Ip4 = Ip4NtohHead (Head);
|
|
|
|
Info = IP4_GET_CLIP_INFO (*Packet);
|
|
Info->LinkFlag = Flag;
|
|
Info->CastType = Ip4GetHostCast (IpSb, Head->Dst, Head->Src);
|
|
Info->Start = (Head->Fragment & IP4_HEAD_OFFSET_MASK) << 3;
|
|
Info->Length = Head->TotalLen - HeadLen;
|
|
Info->End = Info->Start + Info->Length;
|
|
Info->Status = EFI_SUCCESS;
|
|
|
|
//
|
|
// The packet is destinated to us if the CastType is non-zero.
|
|
//
|
|
if ((Info->CastType == 0) || (Info->End > IP4_MAX_PACKET_SIZE)) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
//
|
|
// Validate the options. Don't call the Ip4OptionIsValid if
|
|
// there is no option to save some CPU process.
|
|
//
|
|
|
|
if ((OptionLen > 0) && !Ip4OptionIsValid (Option, OptionLen, TRUE)) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
//
|
|
// Trim the head off, after this point, the packet is headless,
|
|
// and Packet->TotalLen == Info->Length.
|
|
//
|
|
NetbufTrim (*Packet, HeadLen, TRUE);
|
|
|
|
//
|
|
// Reassemble the packet if this is a fragment. The packet is a
|
|
// fragment if its head has MF (more fragment) set, or it starts
|
|
// at non-zero byte.
|
|
//
|
|
if (((Head->Fragment & IP4_HEAD_MF_MASK) != 0) || (Info->Start != 0)) {
|
|
//
|
|
// Drop the fragment if DF is set but it is fragmented. Gateway
|
|
// need to send a type 4 destination unreache ICMP message here.
|
|
//
|
|
if ((Head->Fragment & IP4_HEAD_DF_MASK) != 0) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
//
|
|
// The length of all but the last fragments is in the unit of 8 bytes.
|
|
//
|
|
if (((Head->Fragment & IP4_HEAD_MF_MASK) != 0) && (Info->Length % 8 != 0)) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
*Packet = Ip4Reassemble (&IpSb->Assemble, *Packet);
|
|
|
|
//
|
|
// Packet assembly isn't complete, start receive more packet.
|
|
//
|
|
if (*Packet == NULL) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
This function checks the IPv4 packet length.
|
|
|
|
@param[in] Packet Pointer to the IPv4 Packet to be checked.
|
|
|
|
@retval TRUE The input IPv4 packet length is valid.
|
|
@retval FALSE The input IPv4 packet length is invalid.
|
|
|
|
**/
|
|
BOOLEAN
|
|
Ip4IsValidPacketLength (
|
|
IN NET_BUF *Packet
|
|
)
|
|
{
|
|
//
|
|
// Check the IP4 packet length.
|
|
//
|
|
if (Packet->TotalSize < IP4_MIN_HEADLEN) {
|
|
return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/**
|
|
The IP4 input routine. It is called by the IP4_INTERFACE when a
|
|
IP4 fragment is received from MNP.
|
|
|
|
@param[in] Ip4Instance The IP4 child that request the receive, most like
|
|
it is NULL.
|
|
@param[in] Packet The IP4 packet received.
|
|
@param[in] IoStatus The return status of receive request.
|
|
@param[in] Flag The link layer flag for the packet received, such
|
|
as multicast.
|
|
@param[in] Context The IP4 service instance that own the MNP.
|
|
|
|
**/
|
|
VOID
|
|
Ip4AccpetFrame (
|
|
IN IP4_PROTOCOL *Ip4Instance,
|
|
IN NET_BUF *Packet,
|
|
IN EFI_STATUS IoStatus,
|
|
IN UINT32 Flag,
|
|
IN VOID *Context
|
|
)
|
|
{
|
|
IP4_SERVICE *IpSb;
|
|
IP4_HEAD *Head;
|
|
EFI_STATUS Status;
|
|
IP4_HEAD ZeroHead;
|
|
UINT8 *Option;
|
|
UINT32 OptionLen;
|
|
|
|
IpSb = (IP4_SERVICE *)Context;
|
|
Option = NULL;
|
|
|
|
if (EFI_ERROR (IoStatus) || (IpSb->State == IP4_SERVICE_DESTROY)) {
|
|
goto DROP;
|
|
}
|
|
|
|
if (!Ip4IsValidPacketLength (Packet)) {
|
|
goto RESTART;
|
|
}
|
|
|
|
Head = (IP4_HEAD *)NetbufGetByte (Packet, 0, NULL);
|
|
ASSERT (Head != NULL);
|
|
OptionLen = (Head->HeadLen << 2) - IP4_MIN_HEADLEN;
|
|
if (OptionLen > 0) {
|
|
Option = (UINT8 *)(Head + 1);
|
|
}
|
|
|
|
//
|
|
// Validate packet format and reassemble packet if it is necessary.
|
|
//
|
|
Status = Ip4PreProcessPacket (
|
|
IpSb,
|
|
&Packet,
|
|
Head,
|
|
Option,
|
|
OptionLen,
|
|
Flag
|
|
);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
goto RESTART;
|
|
}
|
|
|
|
//
|
|
// After trim off, the packet is a esp/ah/udp/tcp/icmp6 net buffer,
|
|
// and no need consider any other ahead ext headers.
|
|
//
|
|
Status = Ip4IpSecProcessPacket (
|
|
IpSb,
|
|
&Head,
|
|
&Packet,
|
|
&Option,
|
|
&OptionLen,
|
|
EfiIPsecInBound,
|
|
NULL
|
|
);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
goto RESTART;
|
|
}
|
|
|
|
//
|
|
// If the packet is protected by tunnel mode, parse the inner Ip Packet.
|
|
//
|
|
ZeroMem (&ZeroHead, sizeof (IP4_HEAD));
|
|
if (0 == CompareMem (Head, &ZeroHead, sizeof (IP4_HEAD))) {
|
|
// Packet may have been changed. Head, HeadLen, TotalLen, and
|
|
// info must be reloaded before use. The ownership of the packet
|
|
// is transferred to the packet process logic.
|
|
//
|
|
if (!Ip4IsValidPacketLength (Packet)) {
|
|
goto RESTART;
|
|
}
|
|
|
|
Head = (IP4_HEAD *)NetbufGetByte (Packet, 0, NULL);
|
|
ASSERT (Head != NULL);
|
|
Status = Ip4PreProcessPacket (
|
|
IpSb,
|
|
&Packet,
|
|
Head,
|
|
Option,
|
|
OptionLen,
|
|
Flag
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
goto RESTART;
|
|
}
|
|
}
|
|
|
|
ASSERT (Packet != NULL);
|
|
Head = Packet->Ip.Ip4;
|
|
IP4_GET_CLIP_INFO (Packet)->Status = EFI_SUCCESS;
|
|
|
|
switch (Head->Protocol) {
|
|
case EFI_IP_PROTO_ICMP:
|
|
Ip4IcmpHandle (IpSb, Head, Packet);
|
|
break;
|
|
|
|
case IP4_PROTO_IGMP:
|
|
Ip4IgmpHandle (IpSb, Head, Packet);
|
|
break;
|
|
|
|
default:
|
|
Ip4Demultiplex (IpSb, Head, Packet, Option, OptionLen);
|
|
}
|
|
|
|
Packet = NULL;
|
|
|
|
//
|
|
// Dispatch the DPCs queued by the NotifyFunction of the rx token's events
|
|
// which are signaled with received data.
|
|
//
|
|
DispatchDpc ();
|
|
|
|
RESTART:
|
|
Ip4ReceiveFrame (IpSb->DefaultInterface, NULL, Ip4AccpetFrame, IpSb);
|
|
|
|
DROP:
|
|
if (Packet != NULL) {
|
|
NetbufFree (Packet);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/**
|
|
Check whether this IP child accepts the packet.
|
|
|
|
@param[in] IpInstance The IP child to check
|
|
@param[in] Head The IP header of the packet
|
|
@param[in] Packet The data of the packet
|
|
|
|
@retval TRUE If the child wants to receive the packet.
|
|
@retval FALSE Otherwise.
|
|
|
|
**/
|
|
BOOLEAN
|
|
Ip4InstanceFrameAcceptable (
|
|
IN IP4_PROTOCOL *IpInstance,
|
|
IN IP4_HEAD *Head,
|
|
IN NET_BUF *Packet
|
|
)
|
|
{
|
|
IP4_ICMP_ERROR_HEAD Icmp;
|
|
EFI_IP4_CONFIG_DATA *Config;
|
|
IP4_CLIP_INFO *Info;
|
|
UINT16 Proto;
|
|
UINT32 Index;
|
|
|
|
Config = &IpInstance->ConfigData;
|
|
|
|
//
|
|
// Dirty trick for the Tiano UEFI network stack implementation. If
|
|
// ReceiveTimeout == -1, the receive of the packet for this instance
|
|
// is disabled. The UEFI spec don't have such capability. We add
|
|
// this to improve the performance because IP will make a copy of
|
|
// the received packet for each accepting instance. Some IP instances
|
|
// used by UDP/TCP only send packets, they don't wants to receive.
|
|
//
|
|
if (Config->ReceiveTimeout == (UINT32)(-1)) {
|
|
return FALSE;
|
|
}
|
|
|
|
if (Config->AcceptPromiscuous) {
|
|
return TRUE;
|
|
}
|
|
|
|
//
|
|
// Use protocol from the IP header embedded in the ICMP error
|
|
// message to filter, instead of ICMP itself. ICMP handle will
|
|
// call Ip4Demultiplex to deliver ICMP errors.
|
|
//
|
|
Proto = Head->Protocol;
|
|
|
|
if ((Proto == EFI_IP_PROTO_ICMP) && (!Config->AcceptAnyProtocol) && (Proto != Config->DefaultProtocol)) {
|
|
NetbufCopy (Packet, 0, sizeof (Icmp.Head), (UINT8 *)&Icmp.Head);
|
|
|
|
if (mIcmpClass[Icmp.Head.Type].IcmpClass == ICMP_ERROR_MESSAGE) {
|
|
if (!Config->AcceptIcmpErrors) {
|
|
return FALSE;
|
|
}
|
|
|
|
NetbufCopy (Packet, 0, sizeof (Icmp), (UINT8 *)&Icmp);
|
|
Proto = Icmp.IpHead.Protocol;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Match the protocol
|
|
//
|
|
if (!Config->AcceptAnyProtocol && (Proto != Config->DefaultProtocol)) {
|
|
return FALSE;
|
|
}
|
|
|
|
//
|
|
// Check for broadcast, the caller has computed the packet's
|
|
// cast type for this child's interface.
|
|
//
|
|
Info = IP4_GET_CLIP_INFO (Packet);
|
|
|
|
if (IP4_IS_BROADCAST (Info->CastType)) {
|
|
return Config->AcceptBroadcast;
|
|
}
|
|
|
|
//
|
|
// If it is a multicast packet, check whether we are in the group.
|
|
//
|
|
if (Info->CastType == IP4_MULTICAST) {
|
|
//
|
|
// Receive the multicast if the instance wants to receive all packets.
|
|
//
|
|
if (!IpInstance->ConfigData.UseDefaultAddress && (IpInstance->Interface->Ip == 0)) {
|
|
return TRUE;
|
|
}
|
|
|
|
for (Index = 0; Index < IpInstance->GroupCount; Index++) {
|
|
if (IpInstance->Groups[Index] == HTONL (Head->Dst)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return (BOOLEAN)(Index < IpInstance->GroupCount);
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/**
|
|
Enqueue a shared copy of the packet to the IP4 child if the
|
|
packet is acceptable to it. Here the data of the packet is
|
|
shared, but the net buffer isn't.
|
|
|
|
@param[in] IpInstance The IP4 child to enqueue the packet to
|
|
@param[in] Head The IP header of the received packet
|
|
@param[in] Packet The data of the received packet
|
|
|
|
@retval EFI_NOT_STARTED The IP child hasn't been configured.
|
|
@retval EFI_INVALID_PARAMETER The child doesn't want to receive the packet
|
|
@retval EFI_OUT_OF_RESOURCES Failed to allocate some resource
|
|
@retval EFI_SUCCESS A shared copy the packet is enqueued to the child.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
Ip4InstanceEnquePacket (
|
|
IN IP4_PROTOCOL *IpInstance,
|
|
IN IP4_HEAD *Head,
|
|
IN NET_BUF *Packet
|
|
)
|
|
{
|
|
IP4_CLIP_INFO *Info;
|
|
NET_BUF *Clone;
|
|
|
|
//
|
|
// Check whether the packet is acceptable to this instance.
|
|
//
|
|
if (IpInstance->State != IP4_STATE_CONFIGED) {
|
|
return EFI_NOT_STARTED;
|
|
}
|
|
|
|
if (!Ip4InstanceFrameAcceptable (IpInstance, Head, Packet)) {
|
|
return EFI_INVALID_PARAMETER;
|
|
}
|
|
|
|
//
|
|
// Enqueue a shared copy of the packet.
|
|
//
|
|
Clone = NetbufClone (Packet);
|
|
|
|
if (Clone == NULL) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
//
|
|
// Set the receive time out for the assembled packet. If it expires,
|
|
// packet will be removed from the queue.
|
|
//
|
|
Info = IP4_GET_CLIP_INFO (Clone);
|
|
Info->Life = IP4_US_TO_SEC (IpInstance->ConfigData.ReceiveTimeout);
|
|
|
|
InsertTailList (&IpInstance->Received, &Clone->List);
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
The signal handle of IP4's recycle event. It is called back
|
|
when the upper layer release the packet.
|
|
|
|
@param Event The IP4's recycle event.
|
|
@param Context The context of the handle, which is a
|
|
IP4_RXDATA_WRAP
|
|
|
|
**/
|
|
VOID
|
|
EFIAPI
|
|
Ip4OnRecyclePacket (
|
|
IN EFI_EVENT Event,
|
|
IN VOID *Context
|
|
)
|
|
{
|
|
IP4_RXDATA_WRAP *Wrap;
|
|
|
|
Wrap = (IP4_RXDATA_WRAP *)Context;
|
|
|
|
EfiAcquireLockOrFail (&Wrap->IpInstance->RecycleLock);
|
|
RemoveEntryList (&Wrap->Link);
|
|
EfiReleaseLock (&Wrap->IpInstance->RecycleLock);
|
|
|
|
ASSERT (!NET_BUF_SHARED (Wrap->Packet));
|
|
NetbufFree (Wrap->Packet);
|
|
|
|
gBS->CloseEvent (Wrap->RxData.RecycleSignal);
|
|
FreePool (Wrap);
|
|
}
|
|
|
|
/**
|
|
Wrap the received packet to a IP4_RXDATA_WRAP, which will be
|
|
delivered to the upper layer. Each IP4 child that accepts the
|
|
packet will get a not-shared copy of the packet which is wrapped
|
|
in the IP4_RXDATA_WRAP. The IP4_RXDATA_WRAP->RxData is passed
|
|
to the upper layer. Upper layer will signal the recycle event in
|
|
it when it is done with the packet.
|
|
|
|
@param[in] IpInstance The IP4 child to receive the packet.
|
|
@param[in] Packet The packet to deliver up.
|
|
|
|
@retval Wrap if warp the packet succeed.
|
|
@retval NULL failed to wrap the packet .
|
|
|
|
**/
|
|
IP4_RXDATA_WRAP *
|
|
Ip4WrapRxData (
|
|
IN IP4_PROTOCOL *IpInstance,
|
|
IN NET_BUF *Packet
|
|
)
|
|
{
|
|
IP4_RXDATA_WRAP *Wrap;
|
|
EFI_IP4_RECEIVE_DATA *RxData;
|
|
EFI_STATUS Status;
|
|
BOOLEAN RawData;
|
|
|
|
Wrap = AllocatePool (IP4_RXDATA_WRAP_SIZE (Packet->BlockOpNum));
|
|
|
|
if (Wrap == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
InitializeListHead (&Wrap->Link);
|
|
|
|
Wrap->IpInstance = IpInstance;
|
|
Wrap->Packet = Packet;
|
|
RxData = &Wrap->RxData;
|
|
|
|
ZeroMem (RxData, sizeof (EFI_IP4_RECEIVE_DATA));
|
|
|
|
Status = gBS->CreateEvent (
|
|
EVT_NOTIFY_SIGNAL,
|
|
TPL_NOTIFY,
|
|
Ip4OnRecyclePacket,
|
|
Wrap,
|
|
&RxData->RecycleSignal
|
|
);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
FreePool (Wrap);
|
|
return NULL;
|
|
}
|
|
|
|
ASSERT (Packet->Ip.Ip4 != NULL);
|
|
|
|
ASSERT (IpInstance != NULL);
|
|
RawData = IpInstance->ConfigData.RawData;
|
|
|
|
//
|
|
// The application expects a network byte order header.
|
|
//
|
|
if (!RawData) {
|
|
RxData->HeaderLength = (Packet->Ip.Ip4->HeadLen << 2);
|
|
RxData->Header = (EFI_IP4_HEADER *)Ip4NtohHead (Packet->Ip.Ip4);
|
|
RxData->OptionsLength = RxData->HeaderLength - IP4_MIN_HEADLEN;
|
|
RxData->Options = NULL;
|
|
|
|
if (RxData->OptionsLength != 0) {
|
|
RxData->Options = (VOID *)(RxData->Header + 1);
|
|
}
|
|
}
|
|
|
|
RxData->DataLength = Packet->TotalSize;
|
|
|
|
//
|
|
// Build the fragment table to be delivered up.
|
|
//
|
|
RxData->FragmentCount = Packet->BlockOpNum;
|
|
NetbufBuildExt (Packet, (NET_FRAGMENT *)RxData->FragmentTable, &RxData->FragmentCount);
|
|
|
|
return Wrap;
|
|
}
|
|
|
|
/**
|
|
Deliver the received packets to upper layer if there are both received
|
|
requests and enqueued packets. If the enqueued packet is shared, it will
|
|
duplicate it to a non-shared packet, release the shared packet, then
|
|
deliver the non-shared packet up.
|
|
|
|
@param[in] IpInstance The IP child to deliver the packet up.
|
|
|
|
@retval EFI_OUT_OF_RESOURCES Failed to allocate resources to deliver the
|
|
packets.
|
|
@retval EFI_SUCCESS All the enqueued packets that can be delivered
|
|
are delivered up.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
Ip4InstanceDeliverPacket (
|
|
IN IP4_PROTOCOL *IpInstance
|
|
)
|
|
{
|
|
EFI_IP4_COMPLETION_TOKEN *Token;
|
|
IP4_RXDATA_WRAP *Wrap;
|
|
NET_BUF *Packet;
|
|
NET_BUF *Dup;
|
|
UINT8 *Head;
|
|
UINT32 HeadLen;
|
|
|
|
//
|
|
// Deliver a packet if there are both a packet and a receive token.
|
|
//
|
|
while (!IsListEmpty (&IpInstance->Received) &&
|
|
!NetMapIsEmpty (&IpInstance->RxTokens))
|
|
{
|
|
Packet = NET_LIST_HEAD (&IpInstance->Received, NET_BUF, List);
|
|
|
|
if (!NET_BUF_SHARED (Packet)) {
|
|
//
|
|
// If this is the only instance that wants the packet, wrap it up.
|
|
//
|
|
Wrap = Ip4WrapRxData (IpInstance, Packet);
|
|
|
|
if (Wrap == NULL) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
RemoveEntryList (&Packet->List);
|
|
} else {
|
|
//
|
|
// Create a duplicated packet if this packet is shared
|
|
//
|
|
if (IpInstance->ConfigData.RawData) {
|
|
HeadLen = 0;
|
|
} else {
|
|
HeadLen = IP4_MAX_HEADLEN;
|
|
}
|
|
|
|
Dup = NetbufDuplicate (Packet, NULL, HeadLen);
|
|
|
|
if (Dup == NULL) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
if (!IpInstance->ConfigData.RawData) {
|
|
//
|
|
// Copy the IP head over. The packet to deliver up is
|
|
// headless. Trim the head off after copy. The IP head
|
|
// may be not continuous before the data.
|
|
//
|
|
Head = NetbufAllocSpace (Dup, IP4_MAX_HEADLEN, NET_BUF_HEAD);
|
|
ASSERT (Head != NULL);
|
|
|
|
Dup->Ip.Ip4 = (IP4_HEAD *)Head;
|
|
|
|
CopyMem (Head, Packet->Ip.Ip4, Packet->Ip.Ip4->HeadLen << 2);
|
|
NetbufTrim (Dup, IP4_MAX_HEADLEN, TRUE);
|
|
}
|
|
|
|
Wrap = Ip4WrapRxData (IpInstance, Dup);
|
|
|
|
if (Wrap == NULL) {
|
|
NetbufFree (Dup);
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
RemoveEntryList (&Packet->List);
|
|
NetbufFree (Packet);
|
|
|
|
Packet = Dup;
|
|
}
|
|
|
|
//
|
|
// Insert it into the delivered packet, then get a user's
|
|
// receive token, pass the wrapped packet up.
|
|
//
|
|
EfiAcquireLockOrFail (&IpInstance->RecycleLock);
|
|
InsertHeadList (&IpInstance->Delivered, &Wrap->Link);
|
|
EfiReleaseLock (&IpInstance->RecycleLock);
|
|
|
|
Token = NetMapRemoveHead (&IpInstance->RxTokens, NULL);
|
|
Token->Status = IP4_GET_CLIP_INFO (Packet)->Status;
|
|
Token->Packet.RxData = &Wrap->RxData;
|
|
|
|
gBS->SignalEvent (Token->Event);
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Enqueue a received packet to all the IP children that share
|
|
the same interface.
|
|
|
|
@param[in] IpSb The IP4 service instance that receive the packet.
|
|
@param[in] Head The header of the received packet.
|
|
@param[in] Packet The data of the received packet.
|
|
@param[in] Option Point to the IP4 packet header options.
|
|
@param[in] OptionLen Length of the IP4 packet header options.
|
|
@param[in] IpIf The interface to enqueue the packet to.
|
|
|
|
@return The number of the IP4 children that accepts the packet
|
|
|
|
**/
|
|
INTN
|
|
Ip4InterfaceEnquePacket (
|
|
IN IP4_SERVICE *IpSb,
|
|
IN IP4_HEAD *Head,
|
|
IN NET_BUF *Packet,
|
|
IN UINT8 *Option,
|
|
IN UINT32 OptionLen,
|
|
IN IP4_INTERFACE *IpIf
|
|
)
|
|
{
|
|
IP4_PROTOCOL *IpInstance;
|
|
IP4_CLIP_INFO *Info;
|
|
LIST_ENTRY *Entry;
|
|
INTN Enqueued;
|
|
INTN LocalType;
|
|
INTN SavedType;
|
|
|
|
//
|
|
// First, check that the packet is acceptable to this interface
|
|
// and find the local cast type for the interface. A packet sent
|
|
// to say 192.168.1.1 should NOT be deliver to 10.0.0.1 unless
|
|
// promiscuous receiving.
|
|
//
|
|
LocalType = 0;
|
|
Info = IP4_GET_CLIP_INFO (Packet);
|
|
|
|
if ((Info->CastType == IP4_MULTICAST) || (Info->CastType == IP4_LOCAL_BROADCAST)) {
|
|
//
|
|
// If the CastType is multicast, don't need to filter against
|
|
// the group address here, Ip4InstanceFrameAcceptable will do
|
|
// that later.
|
|
//
|
|
LocalType = Info->CastType;
|
|
} else {
|
|
//
|
|
// Check the destination against local IP. If the station
|
|
// address is 0.0.0.0, it means receiving all the IP destined
|
|
// to local non-zero IP. Otherwise, it is necessary to compare
|
|
// the destination to the interface's IP address.
|
|
//
|
|
if (IpIf->Ip == IP4_ALLZERO_ADDRESS) {
|
|
LocalType = IP4_LOCAL_HOST;
|
|
} else {
|
|
LocalType = Ip4GetNetCast (Head->Dst, IpIf);
|
|
|
|
if ((LocalType == 0) && IpIf->PromiscRecv) {
|
|
LocalType = IP4_PROMISCUOUS;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (LocalType == 0) {
|
|
return 0;
|
|
}
|
|
|
|
//
|
|
// Iterate through the ip instances on the interface, enqueue
|
|
// the packet if filter passed. Save the original cast type,
|
|
// and pass the local cast type to the IP children on the
|
|
// interface. The global cast type will be restored later.
|
|
//
|
|
SavedType = Info->CastType;
|
|
Info->CastType = LocalType;
|
|
|
|
Enqueued = 0;
|
|
|
|
NET_LIST_FOR_EACH (Entry, &IpIf->IpInstances) {
|
|
IpInstance = NET_LIST_USER_STRUCT (Entry, IP4_PROTOCOL, AddrLink);
|
|
NET_CHECK_SIGNATURE (IpInstance, IP4_PROTOCOL_SIGNATURE);
|
|
|
|
//
|
|
// In RawData mode, add IPv4 headers and options back to packet.
|
|
//
|
|
if ((IpInstance->ConfigData.RawData) && (Option != NULL) && (OptionLen != 0)) {
|
|
Ip4PrependHead (Packet, Head, Option, OptionLen);
|
|
}
|
|
|
|
if (Ip4InstanceEnquePacket (IpInstance, Head, Packet) == EFI_SUCCESS) {
|
|
Enqueued++;
|
|
}
|
|
}
|
|
|
|
Info->CastType = SavedType;
|
|
return Enqueued;
|
|
}
|
|
|
|
/**
|
|
Deliver the packet for each IP4 child on the interface.
|
|
|
|
@param[in] IpSb The IP4 service instance that received the packet
|
|
@param[in] IpIf The IP4 interface to deliver the packet.
|
|
|
|
@retval EFI_SUCCESS It always returns EFI_SUCCESS now
|
|
|
|
**/
|
|
EFI_STATUS
|
|
Ip4InterfaceDeliverPacket (
|
|
IN IP4_SERVICE *IpSb,
|
|
IN IP4_INTERFACE *IpIf
|
|
)
|
|
{
|
|
IP4_PROTOCOL *Ip4Instance;
|
|
LIST_ENTRY *Entry;
|
|
|
|
NET_LIST_FOR_EACH (Entry, &IpIf->IpInstances) {
|
|
Ip4Instance = NET_LIST_USER_STRUCT (Entry, IP4_PROTOCOL, AddrLink);
|
|
Ip4InstanceDeliverPacket (Ip4Instance);
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Demultiple the packet. the packet delivery is processed in two
|
|
passes. The first pass will enqueue a shared copy of the packet
|
|
to each IP4 child that accepts the packet. The second pass will
|
|
deliver a non-shared copy of the packet to each IP4 child that
|
|
has pending receive requests. Data is copied if more than one
|
|
child wants to consume the packet because each IP child needs
|
|
its own copy of the packet to make changes.
|
|
|
|
@param[in] IpSb The IP4 service instance that received the packet.
|
|
@param[in] Head The header of the received packet.
|
|
@param[in] Packet The data of the received packet.
|
|
@param[in] Option Point to the IP4 packet header options.
|
|
@param[in] OptionLen Length of the IP4 packet header options.
|
|
|
|
@retval EFI_NOT_FOUND No IP child accepts the packet.
|
|
@retval EFI_SUCCESS The packet is enqueued or delivered to some IP
|
|
children.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
Ip4Demultiplex (
|
|
IN IP4_SERVICE *IpSb,
|
|
IN IP4_HEAD *Head,
|
|
IN NET_BUF *Packet,
|
|
IN UINT8 *Option,
|
|
IN UINT32 OptionLen
|
|
)
|
|
{
|
|
LIST_ENTRY *Entry;
|
|
IP4_INTERFACE *IpIf;
|
|
INTN Enqueued;
|
|
|
|
//
|
|
// Two pass delivery: first, enqueue a shared copy of the packet
|
|
// to each instance that accept the packet.
|
|
//
|
|
Enqueued = 0;
|
|
|
|
NET_LIST_FOR_EACH (Entry, &IpSb->Interfaces) {
|
|
IpIf = NET_LIST_USER_STRUCT (Entry, IP4_INTERFACE, Link);
|
|
|
|
if (IpIf->Configured) {
|
|
Enqueued += Ip4InterfaceEnquePacket (
|
|
IpSb,
|
|
Head,
|
|
Packet,
|
|
Option,
|
|
OptionLen,
|
|
IpIf
|
|
);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Second: deliver a duplicate of the packet to each instance.
|
|
// Release the local reference first, so that the last instance
|
|
// getting the packet will not copy the data.
|
|
//
|
|
NetbufFree (Packet);
|
|
|
|
if (Enqueued == 0) {
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
NET_LIST_FOR_EACH (Entry, &IpSb->Interfaces) {
|
|
IpIf = NET_LIST_USER_STRUCT (Entry, IP4_INTERFACE, Link);
|
|
|
|
if (IpIf->Configured) {
|
|
Ip4InterfaceDeliverPacket (IpSb, IpIf);
|
|
}
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Timeout the fragment and enqueued packets.
|
|
|
|
@param[in] IpSb The IP4 service instance to timeout
|
|
|
|
**/
|
|
VOID
|
|
Ip4PacketTimerTicking (
|
|
IN IP4_SERVICE *IpSb
|
|
)
|
|
{
|
|
LIST_ENTRY *InstanceEntry;
|
|
LIST_ENTRY *Entry;
|
|
LIST_ENTRY *Next;
|
|
IP4_PROTOCOL *IpInstance;
|
|
IP4_ASSEMBLE_ENTRY *Assemble;
|
|
NET_BUF *Packet;
|
|
IP4_CLIP_INFO *Info;
|
|
UINT32 Index;
|
|
|
|
//
|
|
// First, time out the fragments. The packet's life is counting down
|
|
// once the first-arrived fragment was received.
|
|
//
|
|
for (Index = 0; Index < IP4_ASSEMLE_HASH_SIZE; Index++) {
|
|
NET_LIST_FOR_EACH_SAFE (Entry, Next, &IpSb->Assemble.Bucket[Index]) {
|
|
Assemble = NET_LIST_USER_STRUCT (Entry, IP4_ASSEMBLE_ENTRY, Link);
|
|
|
|
if ((Assemble->Life > 0) && (--Assemble->Life == 0)) {
|
|
RemoveEntryList (Entry);
|
|
Ip4FreeAssembleEntry (Assemble);
|
|
}
|
|
}
|
|
}
|
|
|
|
NET_LIST_FOR_EACH (InstanceEntry, &IpSb->Children) {
|
|
IpInstance = NET_LIST_USER_STRUCT (InstanceEntry, IP4_PROTOCOL, Link);
|
|
|
|
//
|
|
// Second, time out the assembled packets enqueued on each IP child.
|
|
//
|
|
NET_LIST_FOR_EACH_SAFE (Entry, Next, &IpInstance->Received) {
|
|
Packet = NET_LIST_USER_STRUCT (Entry, NET_BUF, List);
|
|
Info = IP4_GET_CLIP_INFO (Packet);
|
|
|
|
if ((Info->Life > 0) && (--Info->Life == 0)) {
|
|
RemoveEntryList (Entry);
|
|
NetbufFree (Packet);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Third: time out the transmitted packets.
|
|
//
|
|
NetMapIterate (&IpInstance->TxTokens, Ip4SentPacketTicking, NULL);
|
|
}
|
|
}
|