CloverBootloader/OvmfPkg/VirtNorFlashDxe/VirtNorFlash.c

698 lines
22 KiB
C

/** @file NorFlash.c
Copyright (c) 2011 - 2020, Arm Limited. All rights reserved.<BR>
Copyright (c) 2020, Linaro, Ltd. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include <Library/BaseMemoryLib.h>
#include "VirtNorFlash.h"
//
// Global variable declarations
//
extern NOR_FLASH_INSTANCE **mNorFlashInstances;
extern UINT32 mNorFlashDeviceCount;
UINT32
NorFlashReadStatusRegister (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN SR_Address
)
{
// Prepare to read the status register
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_READ_STATUS_REGISTER);
return MmioRead32 (Instance->DeviceBaseAddress);
}
STATIC
BOOLEAN
NorFlashBlockIsLocked (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN BlockAddress
)
{
UINT32 LockStatus;
// Send command for reading device id
SEND_NOR_COMMAND (BlockAddress, 2, P30_CMD_READ_DEVICE_ID);
// Read block lock status
LockStatus = MmioRead32 (CREATE_NOR_ADDRESS (BlockAddress, 2));
// Decode block lock status
LockStatus = FOLD_32BIT_INTO_16BIT (LockStatus);
if ((LockStatus & 0x2) != 0) {
DEBUG ((DEBUG_ERROR, "NorFlashBlockIsLocked: WARNING: Block LOCKED DOWN\n"));
}
return ((LockStatus & 0x1) != 0);
}
STATIC
EFI_STATUS
NorFlashUnlockSingleBlock (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN BlockAddress
)
{
UINT32 LockStatus;
// Raise the Task Priority Level to TPL_NOTIFY to serialise all its operations
// and to protect shared data structures.
// Request a lock setup
SEND_NOR_COMMAND (BlockAddress, 0, P30_CMD_LOCK_BLOCK_SETUP);
// Request an unlock
SEND_NOR_COMMAND (BlockAddress, 0, P30_CMD_UNLOCK_BLOCK);
// Wait until the status register gives us the all clear
do {
LockStatus = NorFlashReadStatusRegister (Instance, BlockAddress);
} while ((LockStatus & P30_SR_BIT_WRITE) != P30_SR_BIT_WRITE);
// Put device back into Read Array mode
SEND_NOR_COMMAND (BlockAddress, 0, P30_CMD_READ_ARRAY);
DEBUG ((DEBUG_BLKIO, "UnlockSingleBlock: BlockAddress=0x%08x\n", BlockAddress));
return EFI_SUCCESS;
}
EFI_STATUS
NorFlashUnlockSingleBlockIfNecessary (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN BlockAddress
)
{
EFI_STATUS Status;
Status = EFI_SUCCESS;
if (NorFlashBlockIsLocked (Instance, BlockAddress)) {
Status = NorFlashUnlockSingleBlock (Instance, BlockAddress);
}
return Status;
}
/**
* The following function presumes that the block has already been unlocked.
**/
EFI_STATUS
NorFlashEraseSingleBlock (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN BlockAddress
)
{
EFI_STATUS Status;
UINT32 StatusRegister;
Status = EFI_SUCCESS;
// Request a block erase and then confirm it
SEND_NOR_COMMAND (BlockAddress, 0, P30_CMD_BLOCK_ERASE_SETUP);
SEND_NOR_COMMAND (BlockAddress, 0, P30_CMD_BLOCK_ERASE_CONFIRM);
// Wait until the status register gives us the all clear
do {
StatusRegister = NorFlashReadStatusRegister (Instance, BlockAddress);
} while ((StatusRegister & P30_SR_BIT_WRITE) != P30_SR_BIT_WRITE);
if (StatusRegister & P30_SR_BIT_VPP) {
DEBUG ((DEBUG_ERROR, "EraseSingleBlock(BlockAddress=0x%08x: VPP Range Error\n", BlockAddress));
Status = EFI_DEVICE_ERROR;
}
if ((StatusRegister & (P30_SR_BIT_ERASE | P30_SR_BIT_PROGRAM)) == (P30_SR_BIT_ERASE | P30_SR_BIT_PROGRAM)) {
DEBUG ((DEBUG_ERROR, "EraseSingleBlock(BlockAddress=0x%08x: Command Sequence Error\n", BlockAddress));
Status = EFI_DEVICE_ERROR;
}
if (StatusRegister & P30_SR_BIT_ERASE) {
DEBUG ((DEBUG_ERROR, "EraseSingleBlock(BlockAddress=0x%08x: Block Erase Error StatusRegister:0x%X\n", BlockAddress, StatusRegister));
Status = EFI_DEVICE_ERROR;
}
if (StatusRegister & P30_SR_BIT_BLOCK_LOCKED) {
// The debug level message has been reduced because a device lock might happen. In this case we just retry it ...
DEBUG ((DEBUG_INFO, "EraseSingleBlock(BlockAddress=0x%08x: Block Locked Error\n", BlockAddress));
Status = EFI_WRITE_PROTECTED;
}
if (EFI_ERROR (Status)) {
// Clear the Status Register
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_CLEAR_STATUS_REGISTER);
}
// Put device back into Read Array mode
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_READ_ARRAY);
return Status;
}
EFI_STATUS
NorFlashWriteSingleWord (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN WordAddress,
IN UINT32 WriteData
)
{
EFI_STATUS Status;
UINT32 StatusRegister;
Status = EFI_SUCCESS;
// Request a write single word command
SEND_NOR_COMMAND (WordAddress, 0, P30_CMD_WORD_PROGRAM_SETUP);
// Store the word into NOR Flash;
MmioWrite32 (WordAddress, WriteData);
// Wait for the write to complete and then check for any errors; i.e. check the Status Register
do {
// Prepare to read the status register
StatusRegister = NorFlashReadStatusRegister (Instance, WordAddress);
// The chip is busy while the WRITE bit is not asserted
} while ((StatusRegister & P30_SR_BIT_WRITE) != P30_SR_BIT_WRITE);
// Perform a full status check:
// Mask the relevant bits of Status Register.
// Everything should be zero, if not, we have a problem
if (StatusRegister & P30_SR_BIT_VPP) {
DEBUG ((DEBUG_ERROR, "NorFlashWriteSingleWord(WordAddress:0x%X): VPP Range Error\n", WordAddress));
Status = EFI_DEVICE_ERROR;
}
if (StatusRegister & P30_SR_BIT_PROGRAM) {
DEBUG ((DEBUG_ERROR, "NorFlashWriteSingleWord(WordAddress:0x%X): Program Error\n", WordAddress));
Status = EFI_DEVICE_ERROR;
}
if (StatusRegister & P30_SR_BIT_BLOCK_LOCKED) {
DEBUG ((DEBUG_ERROR, "NorFlashWriteSingleWord(WordAddress:0x%X): Device Protect Error\n", WordAddress));
Status = EFI_DEVICE_ERROR;
}
if (!EFI_ERROR (Status)) {
// Clear the Status Register
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_CLEAR_STATUS_REGISTER);
}
return Status;
}
/*
* Writes data to the NOR Flash using the Buffered Programming method.
*
* The maximum size of the on-chip buffer is 32-words, because of hardware restrictions.
* Therefore this function will only handle buffers up to 32 words or 128 bytes.
* To deal with larger buffers, call this function again.
*
* This function presumes that both the TargetAddress and the TargetAddress+BufferSize
* exist entirely within the NOR Flash. Therefore these conditions will not be checked here.
*
* In buffered programming, if the target address not at the beginning of a 32-bit word boundary,
* then programming time is doubled and power consumption is increased.
* Therefore, it is a requirement to align buffer writes to 32-bit word boundaries.
* i.e. the last 4 bits of the target start address must be zero: 0x......00
*/
EFI_STATUS
NorFlashWriteBuffer (
IN NOR_FLASH_INSTANCE *Instance,
IN UINTN TargetAddress,
IN UINTN BufferSizeInBytes,
IN UINT32 *Buffer
)
{
EFI_STATUS Status;
UINTN BufferSizeInWords;
UINTN Count;
volatile UINT32 *Data;
UINTN WaitForBuffer;
BOOLEAN BufferAvailable;
UINT32 StatusRegister;
WaitForBuffer = MAX_BUFFERED_PROG_ITERATIONS;
BufferAvailable = FALSE;
// Check that the target address does not cross a 32-word boundary.
if ((TargetAddress & BOUNDARY_OF_32_WORDS) != 0) {
return EFI_INVALID_PARAMETER;
}
// Check there are some data to program
if (BufferSizeInBytes == 0) {
return EFI_BUFFER_TOO_SMALL;
}
// Check that the buffer size does not exceed the maximum hardware buffer size on chip.
if (BufferSizeInBytes > P30_MAX_BUFFER_SIZE_IN_BYTES) {
return EFI_BAD_BUFFER_SIZE;
}
// Check that the buffer size is a multiple of 32-bit words
if ((BufferSizeInBytes % 4) != 0) {
return EFI_BAD_BUFFER_SIZE;
}
// Pre-programming conditions checked, now start the algorithm.
// Prepare the data destination address
Data = (UINT32 *)TargetAddress;
// Check the availability of the buffer
do {
// Issue the Buffered Program Setup command
SEND_NOR_COMMAND (TargetAddress, 0, P30_CMD_BUFFERED_PROGRAM_SETUP);
// Read back the status register bit#7 from the same address
if (((*Data) & P30_SR_BIT_WRITE) == P30_SR_BIT_WRITE) {
BufferAvailable = TRUE;
}
// Update the loop counter
WaitForBuffer--;
} while ((WaitForBuffer > 0) && (BufferAvailable == FALSE));
// The buffer was not available for writing
if (WaitForBuffer == 0) {
return EFI_DEVICE_ERROR;
}
// From now on we work in 32-bit words
BufferSizeInWords = BufferSizeInBytes / (UINTN)4;
// Write the word count, which is (buffer_size_in_words - 1),
// because word count 0 means one word.
SEND_NOR_COMMAND (TargetAddress, 0, (BufferSizeInWords - 1));
// Write the data to the NOR Flash, advancing each address by 4 bytes
for (Count = 0; Count < BufferSizeInWords; Count++, Data++, Buffer++) {
MmioWrite32 ((UINTN)Data, *Buffer);
}
// Issue the Buffered Program Confirm command, to start the programming operation
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_BUFFERED_PROGRAM_CONFIRM);
// Wait for the write to complete and then check for any errors; i.e. check the Status Register
do {
StatusRegister = NorFlashReadStatusRegister (Instance, TargetAddress);
// The chip is busy while the WRITE bit is not asserted
} while ((StatusRegister & P30_SR_BIT_WRITE) != P30_SR_BIT_WRITE);
// Perform a full status check:
// Mask the relevant bits of Status Register.
// Everything should be zero, if not, we have a problem
Status = EFI_SUCCESS;
if (StatusRegister & P30_SR_BIT_VPP) {
DEBUG ((DEBUG_ERROR, "NorFlashWriteBuffer(TargetAddress:0x%X): VPP Range Error\n", TargetAddress));
Status = EFI_DEVICE_ERROR;
}
if (StatusRegister & P30_SR_BIT_PROGRAM) {
DEBUG ((DEBUG_ERROR, "NorFlashWriteBuffer(TargetAddress:0x%X): Program Error\n", TargetAddress));
Status = EFI_DEVICE_ERROR;
}
if (StatusRegister & P30_SR_BIT_BLOCK_LOCKED) {
DEBUG ((DEBUG_ERROR, "NorFlashWriteBuffer(TargetAddress:0x%X): Device Protect Error\n", TargetAddress));
Status = EFI_DEVICE_ERROR;
}
if (!EFI_ERROR (Status)) {
// Clear the Status Register
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_CLEAR_STATUS_REGISTER);
}
return Status;
}
EFI_STATUS
NorFlashWriteBlocks (
IN NOR_FLASH_INSTANCE *Instance,
IN EFI_LBA Lba,
IN UINTN BufferSizeInBytes,
IN VOID *Buffer
)
{
UINT32 *pWriteBuffer;
EFI_STATUS Status;
EFI_LBA CurrentBlock;
UINT32 BlockSizeInWords;
UINT32 NumBlocks;
UINT32 BlockCount;
Status = EFI_SUCCESS;
// The buffer must be valid
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
// We must have some bytes to read
DEBUG ((DEBUG_BLKIO, "NorFlashWriteBlocks: BufferSizeInBytes=0x%x\n", BufferSizeInBytes));
if (BufferSizeInBytes == 0) {
return EFI_BAD_BUFFER_SIZE;
}
// The size of the buffer must be a multiple of the block size
DEBUG ((DEBUG_BLKIO, "NorFlashWriteBlocks: BlockSize in bytes =0x%x\n", Instance->BlockSize));
if ((BufferSizeInBytes % Instance->BlockSize) != 0) {
return EFI_BAD_BUFFER_SIZE;
}
// All blocks must be within the device
NumBlocks = ((UINT32)BufferSizeInBytes) / Instance->BlockSize;
DEBUG ((DEBUG_BLKIO, "NorFlashWriteBlocks: NumBlocks=%d, LastBlock=%ld, Lba=%ld.\n", NumBlocks, Instance->LastBlock, Lba));
if ((Lba + NumBlocks) > (Instance->LastBlock + 1)) {
DEBUG ((DEBUG_ERROR, "NorFlashWriteBlocks: ERROR - Write will exceed last block.\n"));
return EFI_INVALID_PARAMETER;
}
BlockSizeInWords = Instance->BlockSize / 4;
// Because the target *Buffer is a pointer to VOID, we must put all the data into a pointer
// to a proper data type, so use *ReadBuffer
pWriteBuffer = (UINT32 *)Buffer;
CurrentBlock = Lba;
for (BlockCount = 0; BlockCount < NumBlocks; BlockCount++, CurrentBlock++, pWriteBuffer = pWriteBuffer + BlockSizeInWords) {
DEBUG ((DEBUG_BLKIO, "NorFlashWriteBlocks: Writing block #%d\n", (UINTN)CurrentBlock));
Status = NorFlashWriteFullBlock (Instance, CurrentBlock, pWriteBuffer, BlockSizeInWords);
if (EFI_ERROR (Status)) {
break;
}
}
DEBUG ((DEBUG_BLKIO, "NorFlashWriteBlocks: Exit Status = \"%r\".\n", Status));
return Status;
}
EFI_STATUS
NorFlashReadBlocks (
IN NOR_FLASH_INSTANCE *Instance,
IN EFI_LBA Lba,
IN UINTN BufferSizeInBytes,
OUT VOID *Buffer
)
{
UINT32 NumBlocks;
UINTN StartAddress;
DEBUG ((
DEBUG_BLKIO,
"NorFlashReadBlocks: BufferSize=0x%xB BlockSize=0x%xB LastBlock=%ld, Lba=%ld.\n",
BufferSizeInBytes,
Instance->BlockSize,
Instance->LastBlock,
Lba
));
// The buffer must be valid
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
// Return if we have not any byte to read
if (BufferSizeInBytes == 0) {
return EFI_SUCCESS;
}
// The size of the buffer must be a multiple of the block size
if ((BufferSizeInBytes % Instance->BlockSize) != 0) {
return EFI_BAD_BUFFER_SIZE;
}
// All blocks must be within the device
NumBlocks = ((UINT32)BufferSizeInBytes) / Instance->BlockSize;
if ((Lba + NumBlocks) > (Instance->LastBlock + 1)) {
DEBUG ((DEBUG_ERROR, "NorFlashReadBlocks: ERROR - Read will exceed last block\n"));
return EFI_INVALID_PARAMETER;
}
// Get the address to start reading from
StartAddress = GET_NOR_BLOCK_ADDRESS (
Instance->RegionBaseAddress,
Lba,
Instance->BlockSize
);
// Put the device into Read Array mode
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_READ_ARRAY);
// Readout the data
CopyMem (Buffer, (VOID *)StartAddress, BufferSizeInBytes);
return EFI_SUCCESS;
}
EFI_STATUS
NorFlashRead (
IN NOR_FLASH_INSTANCE *Instance,
IN EFI_LBA Lba,
IN UINTN Offset,
IN UINTN BufferSizeInBytes,
OUT VOID *Buffer
)
{
UINTN StartAddress;
// The buffer must be valid
if (Buffer == NULL) {
return EFI_INVALID_PARAMETER;
}
// Return if we have not any byte to read
if (BufferSizeInBytes == 0) {
return EFI_SUCCESS;
}
if (((Lba * Instance->BlockSize) + Offset + BufferSizeInBytes) > Instance->Size) {
DEBUG ((DEBUG_ERROR, "NorFlashRead: ERROR - Read will exceed device size.\n"));
return EFI_INVALID_PARAMETER;
}
// Get the address to start reading from
StartAddress = GET_NOR_BLOCK_ADDRESS (
Instance->RegionBaseAddress,
Lba,
Instance->BlockSize
);
// Put the device into Read Array mode
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_READ_ARRAY);
// Readout the data
CopyMem (Buffer, (VOID *)(StartAddress + Offset), BufferSizeInBytes);
return EFI_SUCCESS;
}
/*
Write a full or portion of a block. It must not span block boundaries; that is,
Offset + *NumBytes <= Instance->BlockSize.
*/
EFI_STATUS
NorFlashWriteSingleBlock (
IN NOR_FLASH_INSTANCE *Instance,
IN EFI_LBA Lba,
IN UINTN Offset,
IN OUT UINTN *NumBytes,
IN UINT8 *Buffer
)
{
EFI_STATUS Status;
UINTN CurOffset;
UINTN BlockSize;
UINTN BlockAddress;
UINT8 *OrigData;
DEBUG ((DEBUG_BLKIO, "NorFlashWriteSingleBlock(Parameters: Lba=%ld, Offset=0x%x, *NumBytes=0x%x, Buffer @ 0x%08x)\n", Lba, Offset, *NumBytes, Buffer));
// Check we did get some memory. Buffer is BlockSize.
if (Instance->ShadowBuffer == NULL) {
DEBUG ((DEBUG_ERROR, "FvbWrite: ERROR - Buffer not ready\n"));
return EFI_DEVICE_ERROR;
}
// Cache the block size to avoid de-referencing pointers all the time
BlockSize = Instance->BlockSize;
// The write must not span block boundaries.
// We need to check each variable individually because adding two large values together overflows.
if ((Offset >= BlockSize) ||
(*NumBytes > BlockSize) ||
((Offset + *NumBytes) > BlockSize))
{
DEBUG ((DEBUG_ERROR, "NorFlashWriteSingleBlock: ERROR - EFI_BAD_BUFFER_SIZE: (Offset=0x%x + NumBytes=0x%x) > BlockSize=0x%x\n", Offset, *NumBytes, BlockSize));
return EFI_BAD_BUFFER_SIZE;
}
// We must have some bytes to write
if (*NumBytes == 0) {
DEBUG ((DEBUG_ERROR, "NorFlashWriteSingleBlock: ERROR - EFI_BAD_BUFFER_SIZE: (Offset=0x%x + NumBytes=0x%x) > BlockSize=0x%x\n", Offset, *NumBytes, BlockSize));
return EFI_BAD_BUFFER_SIZE;
}
// Pick P30_MAX_BUFFER_SIZE_IN_BYTES (== 128 bytes) as a good start for word
// operations as opposed to erasing the block and writing the data regardless
// if an erase is really needed. It looks like most individual NV variable
// writes are smaller than 128 bytes.
// To avoid pathological cases were a 2 byte write is disregarded because it
// occurs right at a 128 byte buffered write alignment boundary, permit up to
// twice the max buffer size, and perform two writes if needed.
if ((*NumBytes + (Offset & BOUNDARY_OF_32_WORDS)) <= (2 * P30_MAX_BUFFER_SIZE_IN_BYTES)) {
// Check to see if we need to erase before programming the data into NOR.
// If the destination bits are only changing from 1s to 0s we can just write.
// After a block is erased all bits in the block is set to 1.
// If any byte requires us to erase we just give up and rewrite all of it.
// Read the old version of the data into the shadow buffer
Status = NorFlashRead (
Instance,
Lba,
Offset & ~BOUNDARY_OF_32_WORDS,
(*NumBytes | BOUNDARY_OF_32_WORDS) + 1,
Instance->ShadowBuffer
);
if (EFI_ERROR (Status)) {
return EFI_DEVICE_ERROR;
}
// Make OrigData point to the start of the old version of the data inside
// the word aligned buffer
OrigData = Instance->ShadowBuffer + (Offset & BOUNDARY_OF_32_WORDS);
// Update the buffer containing the old version of the data with the new
// contents, while checking whether the old version had any bits cleared
// that we want to set. In that case, we will need to erase the block first.
for (CurOffset = 0; CurOffset < *NumBytes; CurOffset++) {
if (~OrigData[CurOffset] & Buffer[CurOffset]) {
goto DoErase;
}
OrigData[CurOffset] = Buffer[CurOffset];
}
//
// Write the updated buffer to NOR.
//
BlockAddress = GET_NOR_BLOCK_ADDRESS (Instance->RegionBaseAddress, Lba, BlockSize);
// Unlock the block if we have to
Status = NorFlashUnlockSingleBlockIfNecessary (Instance, BlockAddress);
if (EFI_ERROR (Status)) {
goto Exit;
}
Status = NorFlashWriteBuffer (
Instance,
BlockAddress + (Offset & ~BOUNDARY_OF_32_WORDS),
P30_MAX_BUFFER_SIZE_IN_BYTES,
Instance->ShadowBuffer
);
if (EFI_ERROR (Status)) {
goto Exit;
}
if ((*NumBytes + (Offset & BOUNDARY_OF_32_WORDS)) > P30_MAX_BUFFER_SIZE_IN_BYTES) {
BlockAddress += P30_MAX_BUFFER_SIZE_IN_BYTES;
Status = NorFlashWriteBuffer (
Instance,
BlockAddress + (Offset & ~BOUNDARY_OF_32_WORDS),
P30_MAX_BUFFER_SIZE_IN_BYTES,
Instance->ShadowBuffer + P30_MAX_BUFFER_SIZE_IN_BYTES
);
}
Exit:
// Put device back into Read Array mode
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_READ_ARRAY);
return Status;
}
DoErase:
// Read NOR Flash data into shadow buffer
Status = NorFlashReadBlocks (Instance, Lba, BlockSize, Instance->ShadowBuffer);
if (EFI_ERROR (Status)) {
// Return one of the pre-approved error statuses
return EFI_DEVICE_ERROR;
}
// Put the data at the appropriate location inside the buffer area
CopyMem ((VOID *)((UINTN)Instance->ShadowBuffer + Offset), Buffer, *NumBytes);
// Write the modified buffer back to the NorFlash
Status = NorFlashWriteBlocks (Instance, Lba, BlockSize, Instance->ShadowBuffer);
if (EFI_ERROR (Status)) {
// Return one of the pre-approved error statuses
return EFI_DEVICE_ERROR;
}
return EFI_SUCCESS;
}
EFI_STATUS
NorFlashReset (
IN NOR_FLASH_INSTANCE *Instance
)
{
// As there is no specific RESET to perform, ensure that the devices is in the default Read Array mode
SEND_NOR_COMMAND (Instance->DeviceBaseAddress, 0, P30_CMD_READ_ARRAY);
return EFI_SUCCESS;
}
/**
Fixup internal data so that EFI can be call in virtual mode.
Call the passed in Child Notify event and convert any pointers in
lib to virtual mode.
@param[in] Event The Event that is being processed
@param[in] Context Event Context
**/
VOID
EFIAPI
NorFlashVirtualNotifyEvent (
IN EFI_EVENT Event,
IN VOID *Context
)
{
UINTN Index;
for (Index = 0; Index < mNorFlashDeviceCount; Index++) {
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->DeviceBaseAddress);
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->RegionBaseAddress);
// Convert Fvb
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->FvbProtocol.EraseBlocks);
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->FvbProtocol.GetAttributes);
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->FvbProtocol.GetBlockSize);
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->FvbProtocol.GetPhysicalAddress);
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->FvbProtocol.Read);
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->FvbProtocol.SetAttributes);
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->FvbProtocol.Write);
if (mNorFlashInstances[Index]->ShadowBuffer != NULL) {
EfiConvertPointer (0x0, (VOID **)&mNorFlashInstances[Index]->ShadowBuffer);
}
}
return;
}