mirror of
https://github.com/CloverHackyColor/CloverBootloader.git
synced 2025-01-24 21:21:30 +01:00
858 lines
26 KiB
C
858 lines
26 KiB
C
/*
|
|
* Copyright 2019-2022 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the Apache License 2.0 (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <string.h>
|
|
#include <openssl/core_names.h>
|
|
#include <openssl/core_dispatch.h>
|
|
#include <openssl/rand.h>
|
|
#include <openssl/params.h>
|
|
/* For TLS1_3_VERSION */
|
|
#include <openssl/ssl.h>
|
|
#include "internal/nelem.h"
|
|
|
|
static OSSL_FUNC_keymgmt_import_fn xor_import;
|
|
static OSSL_FUNC_keymgmt_import_types_fn xor_import_types;
|
|
static OSSL_FUNC_keymgmt_export_fn xor_export;
|
|
static OSSL_FUNC_keymgmt_export_types_fn xor_export_types;
|
|
|
|
int tls_provider_init(const OSSL_CORE_HANDLE *handle,
|
|
const OSSL_DISPATCH *in,
|
|
const OSSL_DISPATCH **out,
|
|
void **provctx);
|
|
|
|
#define XOR_KEY_SIZE 32
|
|
|
|
/*
|
|
* Top secret. This algorithm only works if no one knows what this number is.
|
|
* Please don't tell anyone what it is.
|
|
*
|
|
* This algorithm is for testing only - don't really use it!
|
|
*/
|
|
static const unsigned char private_constant[XOR_KEY_SIZE] = {
|
|
0xd3, 0x6b, 0x54, 0xec, 0x5b, 0xac, 0x89, 0x96, 0x8c, 0x2c, 0x66, 0xa5,
|
|
0x67, 0x0d, 0xe3, 0xdd, 0x43, 0x69, 0xbc, 0x83, 0x3d, 0x60, 0xc7, 0xb8,
|
|
0x2b, 0x1c, 0x5a, 0xfd, 0xb5, 0xcd, 0xd0, 0xf8
|
|
};
|
|
|
|
typedef struct xorkey_st {
|
|
unsigned char privkey[XOR_KEY_SIZE];
|
|
unsigned char pubkey[XOR_KEY_SIZE];
|
|
int hasprivkey;
|
|
int haspubkey;
|
|
} XORKEY;
|
|
|
|
|
|
/* Key Management for the dummy XOR KEX and KEM algorithms */
|
|
|
|
static OSSL_FUNC_keymgmt_new_fn xor_newdata;
|
|
static OSSL_FUNC_keymgmt_free_fn xor_freedata;
|
|
static OSSL_FUNC_keymgmt_has_fn xor_has;
|
|
static OSSL_FUNC_keymgmt_dup_fn xor_dup;
|
|
static OSSL_FUNC_keymgmt_gen_init_fn xor_gen_init;
|
|
static OSSL_FUNC_keymgmt_gen_set_params_fn xor_gen_set_params;
|
|
static OSSL_FUNC_keymgmt_gen_settable_params_fn xor_gen_settable_params;
|
|
static OSSL_FUNC_keymgmt_gen_fn xor_gen;
|
|
static OSSL_FUNC_keymgmt_gen_cleanup_fn xor_gen_cleanup;
|
|
static OSSL_FUNC_keymgmt_get_params_fn xor_get_params;
|
|
static OSSL_FUNC_keymgmt_gettable_params_fn xor_gettable_params;
|
|
static OSSL_FUNC_keymgmt_set_params_fn xor_set_params;
|
|
static OSSL_FUNC_keymgmt_settable_params_fn xor_settable_params;
|
|
|
|
/*
|
|
* Dummy "XOR" Key Exchange algorithm. We just xor the private and public keys
|
|
* together. Don't use this!
|
|
*/
|
|
|
|
static OSSL_FUNC_keyexch_newctx_fn xor_newctx;
|
|
static OSSL_FUNC_keyexch_init_fn xor_init;
|
|
static OSSL_FUNC_keyexch_set_peer_fn xor_set_peer;
|
|
static OSSL_FUNC_keyexch_derive_fn xor_derive;
|
|
static OSSL_FUNC_keyexch_freectx_fn xor_freectx;
|
|
static OSSL_FUNC_keyexch_dupctx_fn xor_dupctx;
|
|
|
|
/*
|
|
* Dummy "XOR" Key Encapsulation Method. We just build a KEM over the xor KEX.
|
|
* Don't use this!
|
|
*/
|
|
|
|
static OSSL_FUNC_kem_newctx_fn xor_newctx;
|
|
static OSSL_FUNC_kem_freectx_fn xor_freectx;
|
|
static OSSL_FUNC_kem_dupctx_fn xor_dupctx;
|
|
static OSSL_FUNC_kem_encapsulate_init_fn xor_init;
|
|
static OSSL_FUNC_kem_encapsulate_fn xor_encapsulate;
|
|
static OSSL_FUNC_kem_decapsulate_init_fn xor_init;
|
|
static OSSL_FUNC_kem_decapsulate_fn xor_decapsulate;
|
|
|
|
|
|
/*
|
|
* We define 2 dummy TLS groups called "xorgroup" and "xorkemgroup" for test
|
|
* purposes
|
|
*/
|
|
struct tls_group_st {
|
|
unsigned int group_id; /* for "tls-group-id", see provider-base(7) */
|
|
unsigned int secbits;
|
|
unsigned int mintls;
|
|
unsigned int maxtls;
|
|
unsigned int mindtls;
|
|
unsigned int maxdtls;
|
|
unsigned int is_kem; /* boolean */
|
|
};
|
|
|
|
#define XORGROUP_NAME "xorgroup"
|
|
#define XORGROUP_NAME_INTERNAL "xorgroup-int"
|
|
static struct tls_group_st xor_group = {
|
|
0, /* group_id, set by randomize_tls_group_id() */
|
|
128, /* secbits */
|
|
TLS1_3_VERSION, /* mintls */
|
|
0, /* maxtls */
|
|
-1, /* mindtls */
|
|
-1, /* maxdtls */
|
|
0 /* is_kem */
|
|
};
|
|
|
|
#define XORKEMGROUP_NAME "xorkemgroup"
|
|
#define XORKEMGROUP_NAME_INTERNAL "xorkemgroup-int"
|
|
static struct tls_group_st xor_kemgroup = {
|
|
0, /* group_id, set by randomize_tls_group_id() */
|
|
128, /* secbits */
|
|
TLS1_3_VERSION, /* mintls */
|
|
0, /* maxtls */
|
|
-1, /* mindtls */
|
|
-1, /* maxdtls */
|
|
1 /* is_kem */
|
|
};
|
|
|
|
#define ALGORITHM "XOR"
|
|
|
|
static const OSSL_PARAM xor_group_params[] = {
|
|
OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_NAME,
|
|
XORGROUP_NAME, sizeof(XORGROUP_NAME)),
|
|
OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL,
|
|
XORGROUP_NAME_INTERNAL,
|
|
sizeof(XORGROUP_NAME_INTERNAL)),
|
|
OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_ALG, ALGORITHM,
|
|
sizeof(ALGORITHM)),
|
|
OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_ID, &xor_group.group_id),
|
|
OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS,
|
|
&xor_group.secbits),
|
|
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MIN_TLS, &xor_group.mintls),
|
|
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MAX_TLS, &xor_group.maxtls),
|
|
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS, &xor_group.mindtls),
|
|
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS, &xor_group.maxdtls),
|
|
OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_IS_KEM, &xor_group.is_kem),
|
|
OSSL_PARAM_END
|
|
};
|
|
|
|
static const OSSL_PARAM xor_kemgroup_params[] = {
|
|
OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_NAME,
|
|
XORKEMGROUP_NAME, sizeof(XORKEMGROUP_NAME)),
|
|
OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL,
|
|
XORKEMGROUP_NAME_INTERNAL,
|
|
sizeof(XORKEMGROUP_NAME_INTERNAL)),
|
|
OSSL_PARAM_utf8_string(OSSL_CAPABILITY_TLS_GROUP_ALG, ALGORITHM,
|
|
sizeof(ALGORITHM)),
|
|
OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_ID, &xor_kemgroup.group_id),
|
|
OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS,
|
|
&xor_kemgroup.secbits),
|
|
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MIN_TLS, &xor_kemgroup.mintls),
|
|
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MAX_TLS, &xor_kemgroup.maxtls),
|
|
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS, &xor_kemgroup.mindtls),
|
|
OSSL_PARAM_int(OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS, &xor_kemgroup.maxdtls),
|
|
OSSL_PARAM_uint(OSSL_CAPABILITY_TLS_GROUP_IS_KEM, &xor_kemgroup.is_kem),
|
|
OSSL_PARAM_END
|
|
};
|
|
|
|
#define NUM_DUMMY_GROUPS 50
|
|
static char *dummy_group_names[NUM_DUMMY_GROUPS];
|
|
|
|
static int tls_prov_get_capabilities(void *provctx, const char *capability,
|
|
OSSL_CALLBACK *cb, void *arg)
|
|
{
|
|
int ret;
|
|
int i;
|
|
const char *dummy_base = "dummy";
|
|
const size_t dummy_name_max_size = strlen(dummy_base) + 3;
|
|
|
|
if (strcmp(capability, "TLS-GROUP") != 0) {
|
|
/* We don't support this capability */
|
|
return 0;
|
|
}
|
|
|
|
/* Register our 2 groups */
|
|
ret = cb(xor_group_params, arg);
|
|
ret &= cb(xor_kemgroup_params, arg);
|
|
|
|
/*
|
|
* Now register some dummy groups > GROUPLIST_INCREMENT (== 40) as defined
|
|
* in ssl/t1_lib.c, to make sure we exercise the code paths for registering
|
|
* large numbers of groups.
|
|
*/
|
|
|
|
for (i = 0; i < NUM_DUMMY_GROUPS; i++) {
|
|
OSSL_PARAM dummygroup[OSSL_NELEM(xor_group_params)];
|
|
|
|
memcpy(dummygroup, xor_group_params, sizeof(xor_group_params));
|
|
|
|
/* Give the dummy group a unique name */
|
|
if (dummy_group_names[i] == NULL) {
|
|
dummy_group_names[i] = OPENSSL_zalloc(dummy_name_max_size);
|
|
if (dummy_group_names[i] == NULL)
|
|
return 0;
|
|
BIO_snprintf(dummy_group_names[i],
|
|
dummy_name_max_size,
|
|
"%s%d", dummy_base, i);
|
|
}
|
|
dummygroup[0].data = dummy_group_names[i];
|
|
dummygroup[0].data_size = strlen(dummy_group_names[i]) + 1;
|
|
ret &= cb(dummygroup, arg);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Dummy "XOR" Key Exchange algorithm. We just xor the private and public keys
|
|
* together. Don't use this!
|
|
*/
|
|
|
|
typedef struct {
|
|
XORKEY *key;
|
|
XORKEY *peerkey;
|
|
void *provctx;
|
|
} PROV_XOR_CTX;
|
|
|
|
static void *xor_newctx(void *provctx)
|
|
{
|
|
PROV_XOR_CTX *pxorctx = OPENSSL_zalloc(sizeof(PROV_XOR_CTX));
|
|
|
|
if (pxorctx == NULL)
|
|
return NULL;
|
|
|
|
pxorctx->provctx = provctx;
|
|
|
|
return pxorctx;
|
|
}
|
|
|
|
static int xor_init(void *vpxorctx, void *vkey,
|
|
ossl_unused const OSSL_PARAM params[])
|
|
{
|
|
PROV_XOR_CTX *pxorctx = (PROV_XOR_CTX *)vpxorctx;
|
|
|
|
if (pxorctx == NULL || vkey == NULL)
|
|
return 0;
|
|
pxorctx->key = vkey;
|
|
return 1;
|
|
}
|
|
|
|
static int xor_set_peer(void *vpxorctx, void *vpeerkey)
|
|
{
|
|
PROV_XOR_CTX *pxorctx = (PROV_XOR_CTX *)vpxorctx;
|
|
|
|
if (pxorctx == NULL || vpeerkey == NULL)
|
|
return 0;
|
|
pxorctx->peerkey = vpeerkey;
|
|
return 1;
|
|
}
|
|
|
|
static int xor_derive(void *vpxorctx, unsigned char *secret, size_t *secretlen,
|
|
size_t outlen)
|
|
{
|
|
PROV_XOR_CTX *pxorctx = (PROV_XOR_CTX *)vpxorctx;
|
|
int i;
|
|
|
|
if (pxorctx->key == NULL || pxorctx->peerkey == NULL)
|
|
return 0;
|
|
|
|
*secretlen = XOR_KEY_SIZE;
|
|
if (secret == NULL)
|
|
return 1;
|
|
|
|
if (outlen < XOR_KEY_SIZE)
|
|
return 0;
|
|
|
|
for (i = 0; i < XOR_KEY_SIZE; i++)
|
|
secret[i] = pxorctx->key->privkey[i] ^ pxorctx->peerkey->pubkey[i];
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void xor_freectx(void *pxorctx)
|
|
{
|
|
OPENSSL_free(pxorctx);
|
|
}
|
|
|
|
static void *xor_dupctx(void *vpxorctx)
|
|
{
|
|
PROV_XOR_CTX *srcctx = (PROV_XOR_CTX *)vpxorctx;
|
|
PROV_XOR_CTX *dstctx;
|
|
|
|
dstctx = OPENSSL_zalloc(sizeof(*srcctx));
|
|
if (dstctx == NULL)
|
|
return NULL;
|
|
|
|
*dstctx = *srcctx;
|
|
|
|
return dstctx;
|
|
}
|
|
|
|
static const OSSL_DISPATCH xor_keyexch_functions[] = {
|
|
{ OSSL_FUNC_KEYEXCH_NEWCTX, (void (*)(void))xor_newctx },
|
|
{ OSSL_FUNC_KEYEXCH_INIT, (void (*)(void))xor_init },
|
|
{ OSSL_FUNC_KEYEXCH_DERIVE, (void (*)(void))xor_derive },
|
|
{ OSSL_FUNC_KEYEXCH_SET_PEER, (void (*)(void))xor_set_peer },
|
|
{ OSSL_FUNC_KEYEXCH_FREECTX, (void (*)(void))xor_freectx },
|
|
{ OSSL_FUNC_KEYEXCH_DUPCTX, (void (*)(void))xor_dupctx },
|
|
{ 0, NULL }
|
|
};
|
|
|
|
static const OSSL_ALGORITHM tls_prov_keyexch[] = {
|
|
/*
|
|
* Obviously this is not FIPS approved, but in order to test in conjuction
|
|
* with the FIPS provider we pretend that it is.
|
|
*/
|
|
{ "XOR", "provider=tls-provider,fips=yes", xor_keyexch_functions },
|
|
{ NULL, NULL, NULL }
|
|
};
|
|
|
|
/*
|
|
* Dummy "XOR" Key Encapsulation Method. We just build a KEM over the xor KEX.
|
|
* Don't use this!
|
|
*/
|
|
|
|
static int xor_encapsulate(void *vpxorctx,
|
|
unsigned char *ct, size_t *ctlen,
|
|
unsigned char *ss, size_t *sslen)
|
|
{
|
|
/*
|
|
* We are building this around a KEX:
|
|
*
|
|
* 1. we generate ephemeral keypair
|
|
* 2. we encode our ephemeral pubkey as the outgoing ct
|
|
* 3. we derive using our ephemeral privkey in combination with the peer
|
|
* pubkey from the ctx; the result is our ss.
|
|
*/
|
|
int rv = 0;
|
|
void *genctx = NULL, *derivectx = NULL;
|
|
XORKEY *ourkey = NULL;
|
|
PROV_XOR_CTX *pxorctx = vpxorctx;
|
|
|
|
if (ct == NULL || ss == NULL) {
|
|
/* Just return sizes */
|
|
|
|
if (ctlen == NULL && sslen == NULL)
|
|
return 0;
|
|
if (ctlen != NULL)
|
|
*ctlen = XOR_KEY_SIZE;
|
|
if (sslen != NULL)
|
|
*sslen = XOR_KEY_SIZE;
|
|
return 1;
|
|
}
|
|
|
|
/* 1. Generate keypair */
|
|
genctx = xor_gen_init(pxorctx->provctx, OSSL_KEYMGMT_SELECT_KEYPAIR, NULL);
|
|
if (genctx == NULL)
|
|
goto end;
|
|
ourkey = xor_gen(genctx, NULL, NULL);
|
|
if (ourkey == NULL)
|
|
goto end;
|
|
|
|
/* 2. Encode ephemeral pubkey as ct */
|
|
memcpy(ct, ourkey->pubkey, XOR_KEY_SIZE);
|
|
*ctlen = XOR_KEY_SIZE;
|
|
|
|
/* 3. Derive ss via KEX */
|
|
derivectx = xor_newctx(pxorctx->provctx);
|
|
if (derivectx == NULL
|
|
|| !xor_init(derivectx, ourkey, NULL)
|
|
|| !xor_set_peer(derivectx, pxorctx->key)
|
|
|| !xor_derive(derivectx, ss, sslen, XOR_KEY_SIZE))
|
|
goto end;
|
|
|
|
rv = 1;
|
|
|
|
end:
|
|
xor_gen_cleanup(genctx);
|
|
xor_freedata(ourkey);
|
|
xor_freectx(derivectx);
|
|
return rv;
|
|
}
|
|
|
|
static int xor_decapsulate(void *vpxorctx,
|
|
unsigned char *ss, size_t *sslen,
|
|
const unsigned char *ct, size_t ctlen)
|
|
{
|
|
/*
|
|
* We are building this around a KEX:
|
|
*
|
|
* - ct is our peer's pubkey
|
|
* - decapsulate is just derive.
|
|
*/
|
|
int rv = 0;
|
|
void *derivectx = NULL;
|
|
XORKEY *peerkey = NULL;
|
|
PROV_XOR_CTX *pxorctx = vpxorctx;
|
|
|
|
if (ss == NULL) {
|
|
/* Just return size */
|
|
if (sslen == NULL)
|
|
return 0;
|
|
*sslen = XOR_KEY_SIZE;
|
|
return 1;
|
|
}
|
|
|
|
if (ctlen != XOR_KEY_SIZE)
|
|
return 0;
|
|
peerkey = xor_newdata(pxorctx->provctx);
|
|
if (peerkey == NULL)
|
|
goto end;
|
|
memcpy(peerkey->pubkey, ct, XOR_KEY_SIZE);
|
|
|
|
/* Derive ss via KEX */
|
|
derivectx = xor_newctx(pxorctx->provctx);
|
|
if (derivectx == NULL
|
|
|| !xor_init(derivectx, pxorctx->key, NULL)
|
|
|| !xor_set_peer(derivectx, peerkey)
|
|
|| !xor_derive(derivectx, ss, sslen, XOR_KEY_SIZE))
|
|
goto end;
|
|
|
|
rv = 1;
|
|
|
|
end:
|
|
xor_freedata(peerkey);
|
|
xor_freectx(derivectx);
|
|
return rv;
|
|
}
|
|
|
|
static const OSSL_DISPATCH xor_kem_functions[] = {
|
|
{ OSSL_FUNC_KEM_NEWCTX, (void (*)(void))xor_newctx },
|
|
{ OSSL_FUNC_KEM_FREECTX, (void (*)(void))xor_freectx },
|
|
{ OSSL_FUNC_KEM_DUPCTX, (void (*)(void))xor_dupctx },
|
|
{ OSSL_FUNC_KEM_ENCAPSULATE_INIT, (void (*)(void))xor_init },
|
|
{ OSSL_FUNC_KEM_ENCAPSULATE, (void (*)(void))xor_encapsulate },
|
|
{ OSSL_FUNC_KEM_DECAPSULATE_INIT, (void (*)(void))xor_init },
|
|
{ OSSL_FUNC_KEM_DECAPSULATE, (void (*)(void))xor_decapsulate },
|
|
{ 0, NULL }
|
|
};
|
|
|
|
static const OSSL_ALGORITHM tls_prov_kem[] = {
|
|
/*
|
|
* Obviously this is not FIPS approved, but in order to test in conjuction
|
|
* with the FIPS provider we pretend that it is.
|
|
*/
|
|
{ "XOR", "provider=tls-provider,fips=yes", xor_kem_functions },
|
|
{ NULL, NULL, NULL }
|
|
};
|
|
|
|
/* Key Management for the dummy XOR key exchange algorithm */
|
|
|
|
static void *xor_newdata(void *provctx)
|
|
{
|
|
return OPENSSL_zalloc(sizeof(XORKEY));
|
|
}
|
|
|
|
static void xor_freedata(void *keydata)
|
|
{
|
|
OPENSSL_free(keydata);
|
|
}
|
|
|
|
static int xor_has(const void *vkey, int selection)
|
|
{
|
|
const XORKEY *key = vkey;
|
|
int ok = 0;
|
|
|
|
if (key != NULL) {
|
|
ok = 1;
|
|
|
|
if ((selection & OSSL_KEYMGMT_SELECT_PUBLIC_KEY) != 0)
|
|
ok = ok && key->haspubkey;
|
|
if ((selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY) != 0)
|
|
ok = ok && key->hasprivkey;
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
static void *xor_dup(const void *vfromkey, int selection)
|
|
{
|
|
XORKEY *tokey = xor_newdata(NULL);
|
|
const XORKEY *fromkey = vfromkey;
|
|
int ok = 0;
|
|
|
|
if (tokey != NULL && fromkey != NULL) {
|
|
ok = 1;
|
|
|
|
if ((selection & OSSL_KEYMGMT_SELECT_PUBLIC_KEY) != 0) {
|
|
if (fromkey->haspubkey) {
|
|
memcpy(tokey->pubkey, fromkey->pubkey, XOR_KEY_SIZE);
|
|
tokey->haspubkey = 1;
|
|
} else {
|
|
tokey->haspubkey = 0;
|
|
}
|
|
}
|
|
if ((selection & OSSL_KEYMGMT_SELECT_PRIVATE_KEY) != 0) {
|
|
if (fromkey->hasprivkey) {
|
|
memcpy(tokey->privkey, fromkey->privkey, XOR_KEY_SIZE);
|
|
tokey->hasprivkey = 1;
|
|
} else {
|
|
tokey->hasprivkey = 0;
|
|
}
|
|
}
|
|
}
|
|
if (!ok) {
|
|
xor_freedata(tokey);
|
|
tokey = NULL;
|
|
}
|
|
return tokey;
|
|
}
|
|
|
|
static ossl_inline int xor_get_params(void *vkey, OSSL_PARAM params[])
|
|
{
|
|
XORKEY *key = vkey;
|
|
OSSL_PARAM *p;
|
|
|
|
if ((p = OSSL_PARAM_locate(params, OSSL_PKEY_PARAM_BITS)) != NULL
|
|
&& !OSSL_PARAM_set_int(p, XOR_KEY_SIZE))
|
|
return 0;
|
|
|
|
if ((p = OSSL_PARAM_locate(params, OSSL_PKEY_PARAM_SECURITY_BITS)) != NULL
|
|
&& !OSSL_PARAM_set_int(p, xor_group.secbits))
|
|
return 0;
|
|
|
|
if ((p = OSSL_PARAM_locate(params,
|
|
OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY)) != NULL) {
|
|
if (p->data_type != OSSL_PARAM_OCTET_STRING)
|
|
return 0;
|
|
p->return_size = XOR_KEY_SIZE;
|
|
if (p->data != NULL && p->data_size >= XOR_KEY_SIZE)
|
|
memcpy(p->data, key->pubkey, XOR_KEY_SIZE);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static const OSSL_PARAM xor_params[] = {
|
|
OSSL_PARAM_int(OSSL_PKEY_PARAM_BITS, NULL),
|
|
OSSL_PARAM_int(OSSL_PKEY_PARAM_SECURITY_BITS, NULL),
|
|
OSSL_PARAM_octet_string(OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY, NULL, 0),
|
|
OSSL_PARAM_END
|
|
};
|
|
|
|
static const OSSL_PARAM *xor_gettable_params(void *provctx)
|
|
{
|
|
return xor_params;
|
|
}
|
|
|
|
static int xor_set_params(void *vkey, const OSSL_PARAM params[])
|
|
{
|
|
XORKEY *key = vkey;
|
|
const OSSL_PARAM *p;
|
|
|
|
p = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY);
|
|
if (p != NULL) {
|
|
if (p->data_type != OSSL_PARAM_OCTET_STRING
|
|
|| p->data_size != XOR_KEY_SIZE)
|
|
return 0;
|
|
memcpy(key->pubkey, p->data, XOR_KEY_SIZE);
|
|
key->haspubkey = 1;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static const OSSL_PARAM xor_known_settable_params[] = {
|
|
OSSL_PARAM_octet_string(OSSL_PKEY_PARAM_ENCODED_PUBLIC_KEY, NULL, 0),
|
|
OSSL_PARAM_END
|
|
};
|
|
|
|
static const OSSL_PARAM *xor_settable_params(void *provctx)
|
|
{
|
|
return xor_known_settable_params;
|
|
}
|
|
|
|
struct xor_gen_ctx {
|
|
int selection;
|
|
OSSL_LIB_CTX *libctx;
|
|
};
|
|
|
|
static void *xor_gen_init(void *provctx, int selection,
|
|
const OSSL_PARAM params[])
|
|
{
|
|
struct xor_gen_ctx *gctx = NULL;
|
|
|
|
if ((selection & (OSSL_KEYMGMT_SELECT_KEYPAIR
|
|
| OSSL_KEYMGMT_SELECT_DOMAIN_PARAMETERS)) == 0)
|
|
return NULL;
|
|
|
|
if ((gctx = OPENSSL_zalloc(sizeof(*gctx))) != NULL)
|
|
gctx->selection = selection;
|
|
|
|
/* Our provctx is really just an OSSL_LIB_CTX */
|
|
gctx->libctx = (OSSL_LIB_CTX *)provctx;
|
|
|
|
if (!xor_gen_set_params(gctx, params)) {
|
|
OPENSSL_free(gctx);
|
|
return NULL;
|
|
}
|
|
return gctx;
|
|
}
|
|
|
|
static int xor_gen_set_params(void *genctx, const OSSL_PARAM params[])
|
|
{
|
|
struct xor_gen_ctx *gctx = genctx;
|
|
const OSSL_PARAM *p;
|
|
|
|
if (gctx == NULL)
|
|
return 0;
|
|
|
|
p = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_GROUP_NAME);
|
|
if (p != NULL) {
|
|
if (p->data_type != OSSL_PARAM_UTF8_STRING
|
|
|| (strcmp(p->data, XORGROUP_NAME_INTERNAL) != 0
|
|
&& strcmp(p->data, XORKEMGROUP_NAME_INTERNAL) != 0))
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static const OSSL_PARAM *xor_gen_settable_params(ossl_unused void *genctx,
|
|
ossl_unused void *provctx)
|
|
{
|
|
static OSSL_PARAM settable[] = {
|
|
OSSL_PARAM_utf8_string(OSSL_PKEY_PARAM_GROUP_NAME, NULL, 0),
|
|
OSSL_PARAM_END
|
|
};
|
|
return settable;
|
|
}
|
|
|
|
static void *xor_gen(void *genctx, OSSL_CALLBACK *osslcb, void *cbarg)
|
|
{
|
|
struct xor_gen_ctx *gctx = genctx;
|
|
XORKEY *key = OPENSSL_zalloc(sizeof(*key));
|
|
size_t i;
|
|
|
|
if (key == NULL)
|
|
return NULL;
|
|
|
|
if ((gctx->selection & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0) {
|
|
if (RAND_bytes_ex(gctx->libctx, key->privkey, XOR_KEY_SIZE, 0) <= 0) {
|
|
OPENSSL_free(key);
|
|
return NULL;
|
|
}
|
|
for (i = 0; i < XOR_KEY_SIZE; i++)
|
|
key->pubkey[i] = key->privkey[i] ^ private_constant[i];
|
|
key->hasprivkey = 1;
|
|
key->haspubkey = 1;
|
|
}
|
|
|
|
return key;
|
|
}
|
|
|
|
/* IMPORT + EXPORT */
|
|
|
|
static int xor_import(void *vkey, int select, const OSSL_PARAM params[])
|
|
{
|
|
XORKEY *key = vkey;
|
|
const OSSL_PARAM *param_priv_key, *param_pub_key;
|
|
unsigned char privkey[XOR_KEY_SIZE];
|
|
unsigned char pubkey[XOR_KEY_SIZE];
|
|
void *pprivkey = privkey, *ppubkey = pubkey;
|
|
size_t priv_len = 0, pub_len = 0;
|
|
int res = 0;
|
|
|
|
if (key == NULL || (select & OSSL_KEYMGMT_SELECT_KEYPAIR) == 0)
|
|
return 0;
|
|
|
|
memset(privkey, 0, sizeof(privkey));
|
|
memset(pubkey, 0, sizeof(pubkey));
|
|
param_priv_key = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_PRIV_KEY);
|
|
param_pub_key = OSSL_PARAM_locate_const(params, OSSL_PKEY_PARAM_PUB_KEY);
|
|
|
|
if ((param_priv_key != NULL
|
|
&& !OSSL_PARAM_get_octet_string(param_priv_key, &pprivkey,
|
|
sizeof(privkey), &priv_len))
|
|
|| (param_pub_key != NULL
|
|
&& !OSSL_PARAM_get_octet_string(param_pub_key, &ppubkey,
|
|
sizeof(pubkey), &pub_len)))
|
|
goto err;
|
|
|
|
if (priv_len > 0) {
|
|
memcpy(key->privkey, privkey, priv_len);
|
|
key->hasprivkey = 1;
|
|
}
|
|
if (pub_len > 0) {
|
|
memcpy(key->pubkey, pubkey, pub_len);
|
|
key->haspubkey = 1;
|
|
}
|
|
res = 1;
|
|
err:
|
|
return res;
|
|
}
|
|
|
|
static int xor_export(void *vkey, int select, OSSL_CALLBACK *param_cb,
|
|
void *cbarg)
|
|
{
|
|
XORKEY *key = vkey;
|
|
OSSL_PARAM params[3], *p = params;
|
|
|
|
if (key == NULL || (select & OSSL_KEYMGMT_SELECT_KEYPAIR) == 0)
|
|
return 0;
|
|
|
|
*p++ = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_PRIV_KEY,
|
|
key->privkey,
|
|
sizeof(key->privkey));
|
|
*p++ = OSSL_PARAM_construct_octet_string(OSSL_PKEY_PARAM_PUB_KEY,
|
|
key->pubkey, sizeof(key->pubkey));
|
|
*p++ = OSSL_PARAM_construct_end();
|
|
|
|
return param_cb(params, cbarg);
|
|
}
|
|
|
|
static const OSSL_PARAM xor_key_types[] = {
|
|
OSSL_PARAM_BN(OSSL_PKEY_PARAM_PUB_KEY, NULL, 0),
|
|
OSSL_PARAM_BN(OSSL_PKEY_PARAM_PRIV_KEY, NULL, 0),
|
|
OSSL_PARAM_END
|
|
};
|
|
|
|
static const OSSL_PARAM *xor_import_types(int select)
|
|
{
|
|
return (select & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0 ? xor_key_types : NULL;
|
|
}
|
|
|
|
static const OSSL_PARAM *xor_export_types(int select)
|
|
{
|
|
return (select & OSSL_KEYMGMT_SELECT_KEYPAIR) != 0 ? xor_key_types : NULL;
|
|
}
|
|
|
|
static void xor_gen_cleanup(void *genctx)
|
|
{
|
|
OPENSSL_free(genctx);
|
|
}
|
|
|
|
static const OSSL_DISPATCH xor_keymgmt_functions[] = {
|
|
{ OSSL_FUNC_KEYMGMT_NEW, (void (*)(void))xor_newdata },
|
|
{ OSSL_FUNC_KEYMGMT_GEN_INIT, (void (*)(void))xor_gen_init },
|
|
{ OSSL_FUNC_KEYMGMT_GEN_SET_PARAMS, (void (*)(void))xor_gen_set_params },
|
|
{ OSSL_FUNC_KEYMGMT_GEN_SETTABLE_PARAMS,
|
|
(void (*)(void))xor_gen_settable_params },
|
|
{ OSSL_FUNC_KEYMGMT_GEN, (void (*)(void))xor_gen },
|
|
{ OSSL_FUNC_KEYMGMT_GEN_CLEANUP, (void (*)(void))xor_gen_cleanup },
|
|
{ OSSL_FUNC_KEYMGMT_GET_PARAMS, (void (*) (void))xor_get_params },
|
|
{ OSSL_FUNC_KEYMGMT_GETTABLE_PARAMS, (void (*) (void))xor_gettable_params },
|
|
{ OSSL_FUNC_KEYMGMT_SET_PARAMS, (void (*) (void))xor_set_params },
|
|
{ OSSL_FUNC_KEYMGMT_SETTABLE_PARAMS, (void (*) (void))xor_settable_params },
|
|
{ OSSL_FUNC_KEYMGMT_HAS, (void (*)(void))xor_has },
|
|
{ OSSL_FUNC_KEYMGMT_DUP, (void (*)(void))xor_dup },
|
|
{ OSSL_FUNC_KEYMGMT_FREE, (void (*)(void))xor_freedata },
|
|
{ OSSL_FUNC_KEYMGMT_IMPORT, (void (*)(void))xor_import },
|
|
{ OSSL_FUNC_KEYMGMT_IMPORT_TYPES, (void (*)(void))xor_import_types },
|
|
{ OSSL_FUNC_KEYMGMT_EXPORT, (void (*)(void))xor_export },
|
|
{ OSSL_FUNC_KEYMGMT_EXPORT_TYPES, (void (*)(void))xor_export_types },
|
|
{ 0, NULL }
|
|
};
|
|
|
|
static const OSSL_ALGORITHM tls_prov_keymgmt[] = {
|
|
/*
|
|
* Obviously this is not FIPS approved, but in order to test in conjuction
|
|
* with the FIPS provider we pretend that it is.
|
|
*/
|
|
{ "XOR", "provider=tls-provider,fips=yes", xor_keymgmt_functions },
|
|
{ NULL, NULL, NULL }
|
|
};
|
|
|
|
static const OSSL_ALGORITHM *tls_prov_query(void *provctx, int operation_id,
|
|
int *no_cache)
|
|
{
|
|
*no_cache = 0;
|
|
switch (operation_id) {
|
|
case OSSL_OP_KEYMGMT:
|
|
return tls_prov_keymgmt;
|
|
case OSSL_OP_KEYEXCH:
|
|
return tls_prov_keyexch;
|
|
case OSSL_OP_KEM:
|
|
return tls_prov_kem;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void tls_prov_teardown(void *provctx)
|
|
{
|
|
int i;
|
|
|
|
OSSL_LIB_CTX_free(provctx);
|
|
|
|
for (i = 0; i < NUM_DUMMY_GROUPS; i++) {
|
|
OPENSSL_free(dummy_group_names[i]);
|
|
dummy_group_names[i] = NULL;
|
|
}
|
|
}
|
|
|
|
/* Functions we provide to the core */
|
|
static const OSSL_DISPATCH tls_prov_dispatch_table[] = {
|
|
{ OSSL_FUNC_PROVIDER_TEARDOWN, (void (*)(void))tls_prov_teardown },
|
|
{ OSSL_FUNC_PROVIDER_QUERY_OPERATION, (void (*)(void))tls_prov_query },
|
|
{ OSSL_FUNC_PROVIDER_GET_CAPABILITIES, (void (*)(void))tls_prov_get_capabilities },
|
|
{ 0, NULL }
|
|
};
|
|
|
|
static
|
|
unsigned int randomize_tls_group_id(OSSL_LIB_CTX *libctx)
|
|
{
|
|
/*
|
|
* Randomise the group_id we're going to use to ensure we don't interoperate
|
|
* with anything but ourselves.
|
|
*/
|
|
unsigned int group_id;
|
|
static unsigned int mem[10] = { 0 };
|
|
static int in_mem = 0;
|
|
int i;
|
|
|
|
retry:
|
|
if (RAND_bytes_ex(libctx, (unsigned char *)&group_id, sizeof(group_id), 0) <= 0)
|
|
return 0;
|
|
/*
|
|
* Ensure group_id is within the IANA Reserved for private use range
|
|
* (65024-65279)
|
|
*/
|
|
group_id %= 65279 - 65024;
|
|
group_id += 65024;
|
|
|
|
/* Ensure we did not already issue this group_id */
|
|
for (i = 0; i < in_mem; i++)
|
|
if (mem[i] == group_id)
|
|
goto retry;
|
|
|
|
/* Add this group_id to the list of ids issued by this function */
|
|
mem[in_mem++] = group_id;
|
|
|
|
return group_id;
|
|
}
|
|
|
|
int tls_provider_init(const OSSL_CORE_HANDLE *handle,
|
|
const OSSL_DISPATCH *in,
|
|
const OSSL_DISPATCH **out,
|
|
void **provctx)
|
|
{
|
|
OSSL_LIB_CTX *libctx = OSSL_LIB_CTX_new();
|
|
|
|
if (libctx == NULL)
|
|
return 0;
|
|
|
|
*provctx = libctx;
|
|
|
|
/*
|
|
* Randomise the group_id we're going to use to ensure we don't interoperate
|
|
* with anything but ourselves.
|
|
*/
|
|
xor_group.group_id = randomize_tls_group_id(libctx);
|
|
xor_kemgroup.group_id = randomize_tls_group_id(libctx);
|
|
|
|
*out = tls_prov_dispatch_table;
|
|
return 1;
|
|
}
|