mirror of
https://github.com/CloverHackyColor/CloverBootloader.git
synced 2025-01-08 18:57:39 +01:00
353 lines
8.9 KiB
C
353 lines
8.9 KiB
C
/**@file
|
|
Memory Detection for Virtual Machines.
|
|
|
|
Copyright (c) 2006 - 2016, Intel Corporation. All rights reserved.<BR>
|
|
Copyright (c) 2019, Citrix Systems, Inc.
|
|
|
|
SPDX-License-Identifier: BSD-2-Clause-Patent
|
|
|
|
Module Name:
|
|
|
|
MemDetect.c
|
|
|
|
**/
|
|
|
|
//
|
|
// The package level header files this module uses
|
|
//
|
|
#include <IndustryStandard/Q35MchIch9.h>
|
|
#include <PiPei.h>
|
|
|
|
//
|
|
// The Library classes this module consumes
|
|
//
|
|
#include <Library/BaseLib.h>
|
|
#include <Library/BaseMemoryLib.h>
|
|
#include <Library/DebugLib.h>
|
|
#include <Library/HobLib.h>
|
|
#include <Library/IoLib.h>
|
|
#include <Library/PcdLib.h>
|
|
#include <Library/PciLib.h>
|
|
#include <Library/PeimEntryPoint.h>
|
|
#include <Library/ResourcePublicationLib.h>
|
|
|
|
#include "Platform.h"
|
|
#include "Cmos.h"
|
|
|
|
UINT8 mPhysMemAddressWidth;
|
|
|
|
STATIC UINT32 mS3AcpiReservedMemoryBase;
|
|
STATIC UINT32 mS3AcpiReservedMemorySize;
|
|
|
|
STATIC UINT16 mQ35TsegMbytes;
|
|
|
|
VOID
|
|
Q35TsegMbytesInitialization (
|
|
VOID
|
|
)
|
|
{
|
|
UINT16 ExtendedTsegMbytes;
|
|
RETURN_STATUS PcdStatus;
|
|
|
|
if (mHostBridgeDevId != INTEL_Q35_MCH_DEVICE_ID) {
|
|
DEBUG ((
|
|
DEBUG_ERROR,
|
|
"%a: no TSEG (SMRAM) on host bridge DID=0x%04x; "
|
|
"only DID=0x%04x (Q35) is supported\n",
|
|
__func__,
|
|
mHostBridgeDevId,
|
|
INTEL_Q35_MCH_DEVICE_ID
|
|
));
|
|
ASSERT (FALSE);
|
|
CpuDeadLoop ();
|
|
}
|
|
|
|
//
|
|
// Check if QEMU offers an extended TSEG.
|
|
//
|
|
// This can be seen from writing MCH_EXT_TSEG_MB_QUERY to the MCH_EXT_TSEG_MB
|
|
// register, and reading back the register.
|
|
//
|
|
// On a QEMU machine type that does not offer an extended TSEG, the initial
|
|
// write overwrites whatever value a malicious guest OS may have placed in
|
|
// the (unimplemented) register, before entering S3 or rebooting.
|
|
// Subsequently, the read returns MCH_EXT_TSEG_MB_QUERY unchanged.
|
|
//
|
|
// On a QEMU machine type that offers an extended TSEG, the initial write
|
|
// triggers an update to the register. Subsequently, the value read back
|
|
// (which is guaranteed to differ from MCH_EXT_TSEG_MB_QUERY) tells us the
|
|
// number of megabytes.
|
|
//
|
|
PciWrite16 (DRAMC_REGISTER_Q35 (MCH_EXT_TSEG_MB), MCH_EXT_TSEG_MB_QUERY);
|
|
ExtendedTsegMbytes = PciRead16 (DRAMC_REGISTER_Q35 (MCH_EXT_TSEG_MB));
|
|
if (ExtendedTsegMbytes == MCH_EXT_TSEG_MB_QUERY) {
|
|
mQ35TsegMbytes = PcdGet16 (PcdQ35TsegMbytes);
|
|
return;
|
|
}
|
|
|
|
DEBUG ((
|
|
DEBUG_INFO,
|
|
"%a: QEMU offers an extended TSEG (%d MB)\n",
|
|
__func__,
|
|
ExtendedTsegMbytes
|
|
));
|
|
PcdStatus = PcdSet16S (PcdQ35TsegMbytes, ExtendedTsegMbytes);
|
|
ASSERT_RETURN_ERROR (PcdStatus);
|
|
mQ35TsegMbytes = ExtendedTsegMbytes;
|
|
}
|
|
|
|
STATIC
|
|
UINT64
|
|
GetHighestSystemMemoryAddress (
|
|
BOOLEAN Below4gb
|
|
)
|
|
{
|
|
EFI_E820_ENTRY64 *E820Map;
|
|
UINT32 E820EntriesCount;
|
|
EFI_E820_ENTRY64 *Entry;
|
|
EFI_STATUS Status;
|
|
UINT32 Loop;
|
|
UINT64 HighestAddress;
|
|
UINT64 EntryEnd;
|
|
|
|
HighestAddress = 0;
|
|
|
|
Status = XenGetE820Map (&E820Map, &E820EntriesCount);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
for (Loop = 0; Loop < E820EntriesCount; Loop++) {
|
|
Entry = E820Map + Loop;
|
|
EntryEnd = Entry->BaseAddr + Entry->Length;
|
|
|
|
if ((Entry->Type == EfiAcpiAddressRangeMemory) &&
|
|
(EntryEnd > HighestAddress))
|
|
{
|
|
if (Below4gb && (EntryEnd <= BASE_4GB)) {
|
|
HighestAddress = EntryEnd;
|
|
} else if (!Below4gb && (EntryEnd >= BASE_4GB)) {
|
|
HighestAddress = EntryEnd;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Round down the end address.
|
|
//
|
|
return HighestAddress & ~(UINT64)EFI_PAGE_MASK;
|
|
}
|
|
|
|
UINT32
|
|
GetSystemMemorySizeBelow4gb (
|
|
VOID
|
|
)
|
|
{
|
|
UINT8 Cmos0x34;
|
|
UINT8 Cmos0x35;
|
|
|
|
//
|
|
// In PVH case, there is no CMOS, we have to calculate the memory size
|
|
// from parsing the E820
|
|
//
|
|
if (XenPvhDetected ()) {
|
|
UINT64 HighestAddress;
|
|
|
|
HighestAddress = GetHighestSystemMemoryAddress (TRUE);
|
|
ASSERT (HighestAddress > 0 && HighestAddress <= BASE_4GB);
|
|
|
|
return (UINT32)HighestAddress;
|
|
}
|
|
|
|
//
|
|
// CMOS 0x34/0x35 specifies the system memory above 16 MB.
|
|
// * CMOS(0x35) is the high byte
|
|
// * CMOS(0x34) is the low byte
|
|
// * The size is specified in 64kb chunks
|
|
// * Since this is memory above 16MB, the 16MB must be added
|
|
// into the calculation to get the total memory size.
|
|
//
|
|
|
|
Cmos0x34 = (UINT8)CmosRead8 (0x34);
|
|
Cmos0x35 = (UINT8)CmosRead8 (0x35);
|
|
|
|
return (UINT32)(((UINTN)((Cmos0x35 << 8) + Cmos0x34) << 16) + SIZE_16MB);
|
|
}
|
|
|
|
/**
|
|
Initialize the mPhysMemAddressWidth variable, based on CPUID data.
|
|
**/
|
|
VOID
|
|
AddressWidthInitialization (
|
|
VOID
|
|
)
|
|
{
|
|
UINT32 RegEax;
|
|
|
|
AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
|
|
if (RegEax >= 0x80000008) {
|
|
AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);
|
|
mPhysMemAddressWidth = (UINT8)RegEax;
|
|
} else {
|
|
mPhysMemAddressWidth = 36;
|
|
}
|
|
|
|
//
|
|
// IA-32e paging translates 48-bit linear addresses to 52-bit physical addresses.
|
|
//
|
|
ASSERT (mPhysMemAddressWidth <= 52);
|
|
if (mPhysMemAddressWidth > 48) {
|
|
mPhysMemAddressWidth = 48;
|
|
}
|
|
}
|
|
|
|
/**
|
|
Calculate the cap for the permanent PEI memory.
|
|
**/
|
|
STATIC
|
|
UINT32
|
|
GetPeiMemoryCap (
|
|
VOID
|
|
)
|
|
{
|
|
BOOLEAN Page1GSupport;
|
|
UINT32 RegEax;
|
|
UINT32 RegEdx;
|
|
UINT32 Pml4Entries;
|
|
UINT32 PdpEntries;
|
|
UINTN TotalPages;
|
|
|
|
//
|
|
// If DXE is 32-bit, then just return the traditional 64 MB cap.
|
|
//
|
|
#ifdef MDE_CPU_IA32
|
|
if (!FeaturePcdGet (PcdDxeIplSwitchToLongMode)) {
|
|
return SIZE_64MB;
|
|
}
|
|
|
|
#endif
|
|
|
|
//
|
|
// Dependent on physical address width, PEI memory allocations can be
|
|
// dominated by the page tables built for 64-bit DXE. So we key the cap off
|
|
// of those. The code below is based on CreateIdentityMappingPageTables() in
|
|
// "MdeModulePkg/Core/DxeIplPeim/X64/VirtualMemory.c".
|
|
//
|
|
Page1GSupport = FALSE;
|
|
if (PcdGetBool (PcdUse1GPageTable)) {
|
|
AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);
|
|
if (RegEax >= 0x80000001) {
|
|
AsmCpuid (0x80000001, NULL, NULL, NULL, &RegEdx);
|
|
if ((RegEdx & BIT26) != 0) {
|
|
Page1GSupport = TRUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (mPhysMemAddressWidth <= 39) {
|
|
Pml4Entries = 1;
|
|
PdpEntries = 1 << (mPhysMemAddressWidth - 30);
|
|
ASSERT (PdpEntries <= 0x200);
|
|
} else {
|
|
Pml4Entries = 1 << (mPhysMemAddressWidth - 39);
|
|
ASSERT (Pml4Entries <= 0x200);
|
|
PdpEntries = 512;
|
|
}
|
|
|
|
TotalPages = Page1GSupport ? Pml4Entries + 1 :
|
|
(PdpEntries + 1) * Pml4Entries + 1;
|
|
ASSERT (TotalPages <= 0x40201);
|
|
|
|
//
|
|
// Add 64 MB for miscellaneous allocations. Note that for
|
|
// mPhysMemAddressWidth values close to 36, the cap will actually be
|
|
// dominated by this increment.
|
|
//
|
|
return (UINT32)(EFI_PAGES_TO_SIZE (TotalPages) + SIZE_64MB);
|
|
}
|
|
|
|
/**
|
|
Publish PEI core memory
|
|
|
|
@return EFI_SUCCESS The PEIM initialized successfully.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
PublishPeiMemory (
|
|
VOID
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
EFI_PHYSICAL_ADDRESS MemoryBase;
|
|
UINT64 MemorySize;
|
|
UINT32 LowerMemorySize;
|
|
UINT32 PeiMemoryCap;
|
|
|
|
LowerMemorySize = GetSystemMemorySizeBelow4gb ();
|
|
|
|
if (mBootMode == BOOT_ON_S3_RESUME) {
|
|
MemoryBase = mS3AcpiReservedMemoryBase;
|
|
MemorySize = mS3AcpiReservedMemorySize;
|
|
} else {
|
|
PeiMemoryCap = GetPeiMemoryCap ();
|
|
DEBUG ((
|
|
DEBUG_INFO,
|
|
"%a: mPhysMemAddressWidth=%d PeiMemoryCap=%u KB\n",
|
|
__func__,
|
|
mPhysMemAddressWidth,
|
|
PeiMemoryCap >> 10
|
|
));
|
|
|
|
//
|
|
// Determine the range of memory to use during PEI
|
|
//
|
|
MemoryBase =
|
|
PcdGet32 (PcdOvmfDxeMemFvBase) + PcdGet32 (PcdOvmfDxeMemFvSize);
|
|
MemorySize = LowerMemorySize - MemoryBase;
|
|
if (MemorySize > PeiMemoryCap) {
|
|
MemoryBase = LowerMemorySize - PeiMemoryCap;
|
|
MemorySize = PeiMemoryCap;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Publish this memory to the PEI Core
|
|
//
|
|
Status = PublishSystemMemory (MemoryBase, MemorySize);
|
|
ASSERT_EFI_ERROR (Status);
|
|
|
|
return Status;
|
|
}
|
|
|
|
/**
|
|
Publish system RAM and reserve memory regions
|
|
|
|
**/
|
|
VOID
|
|
InitializeRamRegions (
|
|
VOID
|
|
)
|
|
{
|
|
XenPublishRamRegions ();
|
|
|
|
if (mBootMode != BOOT_ON_S3_RESUME) {
|
|
//
|
|
// Reserve the lock box storage area
|
|
//
|
|
// Since this memory range will be used on S3 resume, it must be
|
|
// reserved as ACPI NVS.
|
|
//
|
|
// If S3 is unsupported, then various drivers might still write to the
|
|
// LockBox area. We ought to prevent DXE from serving allocation requests
|
|
// such that they would overlap the LockBox storage.
|
|
//
|
|
ZeroMem (
|
|
(VOID *)(UINTN)PcdGet32 (PcdOvmfLockBoxStorageBase),
|
|
(UINTN)PcdGet32 (PcdOvmfLockBoxStorageSize)
|
|
);
|
|
BuildMemoryAllocationHob (
|
|
(EFI_PHYSICAL_ADDRESS)(UINTN)PcdGet32 (PcdOvmfLockBoxStorageBase),
|
|
(UINT64)(UINTN)PcdGet32 (PcdOvmfLockBoxStorageSize),
|
|
EfiBootServicesData
|
|
);
|
|
}
|
|
}
|