CloverBootloader/MdeModulePkg/Bus/Pci/EhciPei/EhciSched.c
2019-09-03 12:58:42 +03:00

463 lines
12 KiB
C

/** @file
PEIM to produce gPeiUsb2HostControllerPpiGuid based on gPeiUsbControllerPpiGuid
which is used to enable recovery function from USB Drivers.
Copyright (c) 2010 - 2018, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "EhcPeim.h"
/**
Create helper QTD/QH for the EHCI device.
@param Ehc The EHCI device.
@retval EFI_OUT_OF_RESOURCES Failed to allocate resource for helper QTD/QH.
@retval EFI_SUCCESS Helper QH/QTD are created.
**/
EFI_STATUS
EhcCreateHelpQ (
IN PEI_USB2_HC_DEV *Ehc
)
{
USB_ENDPOINT Ep;
PEI_EHC_QH *Qh;
QH_HW *QhHw;
PEI_EHC_QTD *Qtd;
//
// Create an inactive Qtd to terminate the short packet read.
//
Qtd = EhcCreateQtd (Ehc, NULL, 0, QTD_PID_INPUT, 0, 64);
if (Qtd == NULL) {
return EFI_OUT_OF_RESOURCES;
}
Qtd->QtdHw.Status = QTD_STAT_HALTED;
Ehc->ShortReadStop = Qtd;
//
// Create a QH to act as the EHC reclamation header.
// Set the header to loopback to itself.
//
Ep.DevAddr = 0;
Ep.EpAddr = 1;
Ep.Direction = EfiUsbDataIn;
Ep.DevSpeed = EFI_USB_SPEED_HIGH;
Ep.MaxPacket = 64;
Ep.HubAddr = 0;
Ep.HubPort = 0;
Ep.Toggle = 0;
Ep.Type = EHC_BULK_TRANSFER;
Ep.PollRate = 1;
Qh = EhcCreateQh (Ehc, &Ep);
if (Qh == NULL) {
return EFI_OUT_OF_RESOURCES;
}
QhHw = &Qh->QhHw;
QhHw->HorizonLink = QH_LINK (QhHw, EHC_TYPE_QH, FALSE);
QhHw->Status = QTD_STAT_HALTED;
QhHw->ReclaimHead = 1;
Ehc->ReclaimHead = Qh;
//
// Create a dummy QH to act as the terminator for periodical schedule
//
Ep.EpAddr = 2;
Ep.Type = EHC_INT_TRANSFER_SYNC;
Qh = EhcCreateQh (Ehc, &Ep);
if (Qh == NULL) {
return EFI_OUT_OF_RESOURCES;
}
Qh->QhHw.Status = QTD_STAT_HALTED;
Ehc->PeriodOne = Qh;
return EFI_SUCCESS;
}
/**
Initialize the schedule data structure such as frame list.
@param Ehc The EHCI device to init schedule data for.
@retval EFI_OUT_OF_RESOURCES Failed to allocate resource to init schedule data.
@retval EFI_SUCCESS The schedule data is initialized.
**/
EFI_STATUS
EhcInitSched (
IN PEI_USB2_HC_DEV *Ehc
)
{
VOID *Buf;
EFI_PHYSICAL_ADDRESS PhyAddr;
VOID *Map;
UINTN Index;
UINT32 *Desc;
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS PciAddr;
//
// First initialize the periodical schedule data:
// 1. Allocate and map the memory for the frame list
// 2. Create the help QTD/QH
// 3. Initialize the frame entries
// 4. Set the frame list register
//
//
// The Frame List ocupies 4K bytes,
// and must be aligned on 4-Kbyte boundaries.
//
Status = IoMmuAllocateBuffer (
Ehc->IoMmu,
1,
&Buf,
&PhyAddr,
&Map
);
if (EFI_ERROR (Status) || (Buf == NULL)) {
return EFI_OUT_OF_RESOURCES;
}
Ehc->PeriodFrame = Buf;
Ehc->PeriodFrameMap = Map;
Ehc->High32bitAddr = EHC_HIGH_32BIT (PhyAddr);
//
// Init memory pool management then create the helper
// QTD/QH. If failed, previously allocated resources
// will be freed by EhcFreeSched
//
Ehc->MemPool = UsbHcInitMemPool (
Ehc,
EHC_BIT_IS_SET (Ehc->HcCapParams, HCCP_64BIT),
Ehc->High32bitAddr
);
if (Ehc->MemPool == NULL) {
return EFI_OUT_OF_RESOURCES;
}
Status = EhcCreateHelpQ (Ehc);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Initialize the frame list entries then set the registers
//
Desc = (UINT32 *) Ehc->PeriodFrame;
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, Ehc->PeriodOne, sizeof (PEI_EHC_QH));
for (Index = 0; Index < EHC_FRAME_LEN; Index++) {
Desc[Index] = QH_LINK (PciAddr, EHC_TYPE_QH, FALSE);
}
EhcWriteOpReg (Ehc, EHC_FRAME_BASE_OFFSET, EHC_LOW_32BIT (PhyAddr));
//
// Second initialize the asynchronous schedule:
// Only need to set the AsynListAddr register to
// the reclamation header
//
PciAddr = UsbHcGetPciAddressForHostMem (Ehc->MemPool, Ehc->ReclaimHead, sizeof (PEI_EHC_QH));
EhcWriteOpReg (Ehc, EHC_ASYNC_HEAD_OFFSET, EHC_LOW_32BIT (PciAddr));
return EFI_SUCCESS;
}
/**
Free the schedule data. It may be partially initialized.
@param Ehc The EHCI device.
**/
VOID
EhcFreeSched (
IN PEI_USB2_HC_DEV *Ehc
)
{
EhcWriteOpReg (Ehc, EHC_FRAME_BASE_OFFSET, 0);
EhcWriteOpReg (Ehc, EHC_ASYNC_HEAD_OFFSET, 0);
if (Ehc->PeriodOne != NULL) {
UsbHcFreeMem (Ehc, Ehc->MemPool, Ehc->PeriodOne, sizeof (PEI_EHC_QH));
Ehc->PeriodOne = NULL;
}
if (Ehc->ReclaimHead != NULL) {
UsbHcFreeMem (Ehc, Ehc->MemPool, Ehc->ReclaimHead, sizeof (PEI_EHC_QH));
Ehc->ReclaimHead = NULL;
}
if (Ehc->ShortReadStop != NULL) {
UsbHcFreeMem (Ehc, Ehc->MemPool, Ehc->ShortReadStop, sizeof (PEI_EHC_QTD));
Ehc->ShortReadStop = NULL;
}
if (Ehc->MemPool != NULL) {
UsbHcFreeMemPool (Ehc, Ehc->MemPool);
Ehc->MemPool = NULL;
}
if (Ehc->PeriodFrame != NULL) {
IoMmuFreeBuffer (Ehc->IoMmu, 1, Ehc->PeriodFrame, Ehc->PeriodFrameMap);
Ehc->PeriodFrame = NULL;
}
}
/**
Link the queue head to the asynchronous schedule list.
UEFI only supports one CTRL/BULK transfer at a time
due to its interfaces. This simplifies the AsynList
management: A reclamation header is always linked to
the AsyncListAddr, the only active QH is appended to it.
@param Ehc The EHCI device.
@param Qh The queue head to link.
**/
VOID
EhcLinkQhToAsync (
IN PEI_USB2_HC_DEV *Ehc,
IN PEI_EHC_QH *Qh
)
{
PEI_EHC_QH *Head;
//
// Append the queue head after the reclaim header, then
// fix the hardware visiable parts (EHCI R1.0 page 72).
// ReclaimHead is always linked to the EHCI's AsynListAddr.
//
Head = Ehc->ReclaimHead;
Qh->NextQh = Head->NextQh;
Head->NextQh = Qh;
Qh->QhHw.HorizonLink = QH_LINK (Head, EHC_TYPE_QH, FALSE);;
Head->QhHw.HorizonLink = QH_LINK (Qh, EHC_TYPE_QH, FALSE);
}
/**
Unlink a queue head from the asynchronous schedule list.
Need to synchronize with hardware.
@param Ehc The EHCI device.
@param Qh The queue head to unlink.
**/
VOID
EhcUnlinkQhFromAsync (
IN PEI_USB2_HC_DEV *Ehc,
IN PEI_EHC_QH *Qh
)
{
PEI_EHC_QH *Head;
ASSERT (Ehc->ReclaimHead->NextQh == Qh);
//
// Remove the QH from reclamation head, then update the hardware
// visiable part: Only need to loopback the ReclaimHead. The Qh
// is pointing to ReclaimHead (which is staill in the list).
//
Head = Ehc->ReclaimHead;
Head->NextQh = Qh->NextQh;
Qh->NextQh = NULL;
Head->QhHw.HorizonLink = QH_LINK (Head, EHC_TYPE_QH, FALSE);
//
// Set and wait the door bell to synchronize with the hardware
//
EhcSetAndWaitDoorBell (Ehc, EHC_GENERIC_TIMEOUT);
return;
}
/**
Check the URB's execution result and update the URB's
result accordingly.
@param Ehc The EHCI device.
@param Urb The URB to check result.
@retval TRUE URB transfer is finialized.
@retval FALSE URB transfer is not finialized.
**/
BOOLEAN
EhcCheckUrbResult (
IN PEI_USB2_HC_DEV *Ehc,
IN PEI_URB *Urb
)
{
EFI_LIST_ENTRY *Entry;
PEI_EHC_QTD *Qtd;
QTD_HW *QtdHw;
UINT8 State;
BOOLEAN Finished;
ASSERT ((Ehc != NULL) && (Urb != NULL) && (Urb->Qh != NULL));
Finished = TRUE;
Urb->Completed = 0;
Urb->Result = EFI_USB_NOERROR;
if (EhcIsHalt (Ehc) || EhcIsSysError (Ehc)) {
Urb->Result |= EFI_USB_ERR_SYSTEM;
goto ON_EXIT;
}
EFI_LIST_FOR_EACH (Entry, &Urb->Qh->Qtds) {
Qtd = EFI_LIST_CONTAINER (Entry, PEI_EHC_QTD, QtdList);
QtdHw = &Qtd->QtdHw;
State = (UINT8) QtdHw->Status;
if (EHC_BIT_IS_SET (State, QTD_STAT_HALTED)) {
//
// EHCI will halt the queue head when met some error.
// If it is halted, the result of URB is finialized.
//
if ((State & QTD_STAT_ERR_MASK) == 0) {
Urb->Result |= EFI_USB_ERR_STALL;
}
if (EHC_BIT_IS_SET (State, QTD_STAT_BABBLE_ERR)) {
Urb->Result |= EFI_USB_ERR_BABBLE;
}
if (EHC_BIT_IS_SET (State, QTD_STAT_BUFF_ERR)) {
Urb->Result |= EFI_USB_ERR_BUFFER;
}
if (EHC_BIT_IS_SET (State, QTD_STAT_TRANS_ERR) && (QtdHw->ErrCnt == 0)) {
Urb->Result |= EFI_USB_ERR_TIMEOUT;
}
Finished = TRUE;
goto ON_EXIT;
} else if (EHC_BIT_IS_SET (State, QTD_STAT_ACTIVE)) {
//
// The QTD is still active, no need to check furthur.
//
Urb->Result |= EFI_USB_ERR_NOTEXECUTE;
Finished = FALSE;
goto ON_EXIT;
} else {
//
// This QTD is finished OK or met short packet read. Update the
// transfer length if it isn't a setup.
//
if (QtdHw->Pid != QTD_PID_SETUP) {
Urb->Completed += Qtd->DataLen - QtdHw->TotalBytes;
}
if ((QtdHw->TotalBytes != 0) && (QtdHw->Pid == QTD_PID_INPUT)) {
//EHC_DUMP_QH ((Urb->Qh, "Short packet read", FALSE));
//
// Short packet read condition. If it isn't a setup transfer,
// no need to check furthur: the queue head will halt at the
// ShortReadStop. If it is a setup transfer, need to check the
// Status Stage of the setup transfer to get the finial result
//
if (QtdHw->AltNext == QTD_LINK (Ehc->ShortReadStop, FALSE)) {
Finished = TRUE;
goto ON_EXIT;
}
}
}
}
ON_EXIT:
//
// Return the data toggle set by EHCI hardware, bulk and interrupt
// transfer will use this to initialize the next transaction. For
// Control transfer, it always start a new data toggle sequence for
// new transfer.
//
// NOTICE: don't move DT update before the loop, otherwise there is
// a race condition that DT is wrong.
//
Urb->DataToggle = (UINT8) Urb->Qh->QhHw.DataToggle;
return Finished;
}
/**
Execute the transfer by polling the URB. This is a synchronous operation.
@param Ehc The EHCI device.
@param Urb The URB to execute.
@param TimeOut The time to wait before abort, in millisecond.
@retval EFI_DEVICE_ERROR The transfer failed due to transfer error.
@retval EFI_TIMEOUT The transfer failed due to time out.
@retval EFI_SUCCESS The transfer finished OK.
**/
EFI_STATUS
EhcExecTransfer (
IN PEI_USB2_HC_DEV *Ehc,
IN PEI_URB *Urb,
IN UINTN TimeOut
)
{
EFI_STATUS Status;
UINTN Index;
UINTN Loop;
BOOLEAN Finished;
BOOLEAN InfiniteLoop;
Status = EFI_SUCCESS;
Loop = TimeOut * EHC_1_MILLISECOND;
Finished = FALSE;
InfiniteLoop = FALSE;
//
// If Timeout is 0, then the caller must wait for the function to be completed
// until EFI_SUCCESS or EFI_DEVICE_ERROR is returned.
//
if (TimeOut == 0) {
InfiniteLoop = TRUE;
}
for (Index = 0; InfiniteLoop || (Index < Loop); Index++) {
Finished = EhcCheckUrbResult (Ehc, Urb);
if (Finished) {
break;
}
MicroSecondDelay (EHC_1_MICROSECOND);
}
if (!Finished) {
Status = EFI_TIMEOUT;
} else if (Urb->Result != EFI_USB_NOERROR) {
Status = EFI_DEVICE_ERROR;
}
return Status;
}