mirror of
https://github.com/CloverHackyColor/CloverBootloader.git
synced 2025-01-07 18:48:04 +01:00
1a23556796
Signed-off-by: Slice <sergey.slice@gmail.com>
1824 lines
50 KiB
C++
1824 lines
50 KiB
C++
/*
|
|
* Copyright (c) 2013-14 Mikko Mononen memon@inside.org
|
|
*
|
|
* This software is provided 'as-is', without any express or implied
|
|
* warranty. In no event will the authors be held liable for any damages
|
|
* arising from the use of this software.
|
|
*
|
|
* Permission is granted to anyone to use this software for any purpose,
|
|
* including commercial applications, and to alter it and redistribute it
|
|
* freely, subject to the following restrictions:
|
|
*
|
|
* 1. The origin of this software must not be misrepresented; you must not
|
|
* claim that you wrote the original software. If you use this software
|
|
* in a product, an acknowledgment in the product documentation would be
|
|
* appreciated but is not required.
|
|
* 2. Altered source versions must be plainly marked as such, and must not be
|
|
* misrepresented as being the original software.
|
|
* 3. This notice may not be removed or altered from any source distribution.
|
|
*
|
|
* The polygon rasterization is heavily based on stb_truetype rasterizer
|
|
* by Sean Barrett - http://nothings.org/
|
|
*
|
|
*/
|
|
|
|
/* Example Usage:
|
|
// Load SVG
|
|
struct SNVGImage* image = nsvgParseFromFile("test.svg.");
|
|
|
|
// Create rasterizer (can be used to render multiple images).
|
|
struct NSVGrasterizer* rast = nsvgCreateRasterizer();
|
|
// Allocate memory for image
|
|
UINT8* img = malloc(w*h*4);
|
|
// Rasterize
|
|
scaleX = width_to_see / design_width
|
|
nsvgRasterize(rast, image, 0,0, scaleX, scaleY, img, w, h, w*4);
|
|
*/
|
|
|
|
#include "nanosvg.h"
|
|
#include "FloatLib.h"
|
|
#include "XImage.h"
|
|
#include "../Platform/Utils.h"
|
|
|
|
#ifndef DEBUG_ALL
|
|
#define DEBUG_SVG 1
|
|
#else
|
|
#define DEBUG_SVG DEBUG_ALL
|
|
#endif
|
|
|
|
#if DEBUG_SVG == 0
|
|
#define DBG(...)
|
|
#else
|
|
#define DBG(...) DebugLog(DEBUG_SVG, __VA_ARGS__)
|
|
//#define DEBUG_TRACE
|
|
#endif
|
|
|
|
|
|
#define pow(x,n) PowF(x,n)
|
|
#define sqrtf(x) SqrtF(x)
|
|
#define sinf(x) SinF(x)
|
|
#define cosf(x) CosF(x)
|
|
#define tanf(x) TanF(x)
|
|
#define ceilf(x) CeilF(x)
|
|
#define floorf(x) FloorF(x)
|
|
#define fmodf(x,y) ModF(x,y)
|
|
#define acosf(x) AcosF(x)
|
|
#define atan2f(y,x) Atan2F(y,x)
|
|
#define fabsf(x) FabsF(x)
|
|
|
|
|
|
static void renderShape(NSVGrasterizer* r,
|
|
NSVGshape* shape, float *xform, float min_scale);
|
|
|
|
|
|
void nsvg_qsort(NSVGedge* Array, int Low, int High)
|
|
{
|
|
int i = Low, j = High;
|
|
NSVGedge Temp;
|
|
|
|
int Imed = (Low + High) / 2; // Central element, just pointer
|
|
float med = Array[Imed].y0;
|
|
|
|
// Sort around center
|
|
while (i <= j) {
|
|
while (Array[i].y0 < med) i++;
|
|
while (Array[j].y0 > med) j--;
|
|
// Change
|
|
if (i <= j) {
|
|
memcpy(&Temp, &Array[i], sizeof(NSVGedge));
|
|
memcpy(&Array[i++], &Array[j], sizeof(NSVGedge));
|
|
memcpy(&Array[j--], &Temp, sizeof(NSVGedge));
|
|
}
|
|
}
|
|
|
|
// Recursion
|
|
if (j > Low) nsvg_qsort(Array, Low, j);
|
|
if (High > i) nsvg_qsort(Array, i, High);
|
|
}
|
|
|
|
|
|
void nsvg_qsort(void* Array, int Num, INTN Size,
|
|
int (*compare)(const void* a, const void* b))
|
|
{
|
|
// QuickSort(Array, 0, Num - 1, Size, compare);
|
|
nsvg_qsort((NSVGedge*)Array, 0, Num - 1);
|
|
}
|
|
|
|
//caller is responsible for free memory
|
|
NSVGrasterizer* nsvg__createRasterizer()
|
|
{
|
|
NSVGrasterizer* r = (NSVGrasterizer*)AllocateZeroPool(sizeof(NSVGrasterizer));
|
|
if (r == NULL) return NULL;
|
|
r->tessTol = 0.1f; //0.25f;
|
|
r->distTol = 0.01f;
|
|
r->stencilList = NULL;
|
|
return r;
|
|
}
|
|
|
|
void nsvg__deleteRasterizer(NSVGrasterizer* r)
|
|
{
|
|
NSVGmemPage* p;
|
|
|
|
if (r == NULL) return;
|
|
|
|
p = r->pages;
|
|
while (p != NULL) {
|
|
NSVGmemPage* next = p->next;
|
|
FreePool(p);
|
|
p = next;
|
|
}
|
|
|
|
if (r->edges) FreePool(r->edges);
|
|
if (r->points) FreePool(r->points);
|
|
if (r->points2) FreePool(r->points2);
|
|
if (r->scanline) FreePool(r->scanline);
|
|
if (r->stencil) FreePool(r->stencil);
|
|
|
|
NSVGstencil* s = r->stencilList;
|
|
while ( s != NULL) {
|
|
NSVGstencil* next = s->next;
|
|
if (s->square) FreePool(s->square);
|
|
FreePool(s);
|
|
s = next;
|
|
}
|
|
|
|
FreePool(r);
|
|
}
|
|
|
|
static NSVGmemPage* nsvg__nextPage(NSVGrasterizer* r, NSVGmemPage* cur)
|
|
{
|
|
NSVGmemPage *newp;
|
|
|
|
// If using existing chain, return the next page in chain
|
|
if (cur != NULL && cur->next != NULL) {
|
|
return cur->next;
|
|
}
|
|
|
|
// Alloc new page
|
|
newp = (NSVGmemPage*)AllocateZeroPool(sizeof(NSVGmemPage));
|
|
if (newp == NULL) return NULL;
|
|
|
|
|
|
// Add to linked list
|
|
if (cur != NULL)
|
|
cur->next = newp;
|
|
else
|
|
r->pages = newp;
|
|
|
|
return newp;
|
|
}
|
|
|
|
static void nsvg__resetPool(NSVGrasterizer* r)
|
|
{
|
|
NSVGmemPage* p = r->pages;
|
|
while (p != NULL) {
|
|
p->size = 0;
|
|
p = p->next;
|
|
}
|
|
r->curpage = r->pages;
|
|
}
|
|
|
|
static UINT8* nsvgrast__alloc(NSVGrasterizer* r, int size)
|
|
{
|
|
UINT8* buf;
|
|
if (size > NSVG__MEMPAGE_SIZE) return NULL;
|
|
if (r->curpage == NULL || r->curpage->size+size > NSVG__MEMPAGE_SIZE) {
|
|
r->curpage = nsvg__nextPage(r, r->curpage);
|
|
}
|
|
buf = &r->curpage->mem[r->curpage->size];
|
|
r->curpage->size += size;
|
|
return buf;
|
|
}
|
|
|
|
static int nsvg__ptEquals(NSVGpoint* pt1, NSVGpoint* pt2, float tol)
|
|
{
|
|
float dx = pt2->x - pt1->x;
|
|
float dy = pt2->y - pt1->y;
|
|
return SqrF(dx) + SqrF(dy) < SqrF(tol);
|
|
}
|
|
|
|
// t is a matrix xform
|
|
static void nsvg__addPathPoint(NSVGrasterizer* r, NSVGpoint* pt, float* t, int flags)
|
|
{
|
|
NSVGpoint* pt1;
|
|
NSVGpoint pt2;
|
|
if (!t) {
|
|
pt2 = *pt;
|
|
} else {
|
|
pt2.x = pt->x*t[0] + pt->y*t[2] + t[4];
|
|
pt2.y = pt->x*t[1] + pt->y*t[3] + t[5];
|
|
}
|
|
|
|
if (r->npoints > 0) {
|
|
pt1 = &r->points[r->npoints-1];
|
|
if (nsvg__ptEquals(pt1, &pt2, r->distTol)) {
|
|
r->points[r->npoints-1].flags |= (UINT8)flags;
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (r->npoints+1 > r->cpoints) {
|
|
int OldSize = r->cpoints * sizeof(NSVGpoint);
|
|
r->cpoints = r->cpoints > 0 ? r->cpoints * 2 : 64;
|
|
if (OldSize == 0) {
|
|
r->points = (NSVGpoint*)AllocatePool(64 * sizeof(NSVGpoint));
|
|
} else {
|
|
r->points = (NSVGpoint*)ReallocatePool(OldSize, sizeof(NSVGpoint) * r->cpoints, r->points);
|
|
}
|
|
if (r->points == NULL) return;
|
|
}
|
|
|
|
pt1 = &r->points[r->npoints];
|
|
|
|
pt1->x = pt2.x;
|
|
pt1->y = pt2.y;
|
|
pt1->flags = (UINT8)flags;
|
|
r->npoints++;
|
|
}
|
|
|
|
static void nsvg__appendPathPoint(NSVGrasterizer* r, NSVGpoint* pt)
|
|
{
|
|
#ifdef DEBUG_TRACE
|
|
DBG("nsvg__appendPathPoint\n");
|
|
#endif
|
|
if (r->npoints+1 > r->cpoints) {
|
|
int OldSize = r->cpoints * sizeof(NSVGpoint);
|
|
r->cpoints = r->cpoints > 0 ? r->cpoints * 2 : 64;
|
|
if (OldSize == 0) {
|
|
r->points = (NSVGpoint*)AllocatePool(64 * sizeof(NSVGpoint));
|
|
} else
|
|
r->points = (NSVGpoint*)ReallocatePool(OldSize, sizeof(NSVGpoint) * r->cpoints, r->points);
|
|
if (r->points == NULL) return;
|
|
}
|
|
r->points[r->npoints] = *pt;
|
|
r->npoints++;
|
|
}
|
|
|
|
static void nsvg__duplicatePoints(NSVGrasterizer* r)
|
|
{
|
|
#ifdef DEBUG_TRACE
|
|
DBG("nsvg__duplicatePoints\n");
|
|
#endif
|
|
if (r->npoints > r->cpoints2) {
|
|
int OldSize = r->cpoints2 * sizeof(NSVGpoint);
|
|
r->cpoints2 = r->npoints;
|
|
if (OldSize == 0) {
|
|
r->points2 = (NSVGpoint*)AllocatePool(r->npoints * sizeof(NSVGpoint));
|
|
} else
|
|
r->points2 = (NSVGpoint*)ReallocatePool(OldSize, sizeof(NSVGpoint) * r->cpoints2, r->points2);
|
|
if (r->points2 == NULL) return;
|
|
}
|
|
|
|
if (r->npoints) {
|
|
memcpy(r->points2, r->points, sizeof(NSVGpoint) * r->npoints);
|
|
}
|
|
|
|
r->npoints2 = r->npoints;
|
|
}
|
|
|
|
static void nsvg__addEdge(NSVGrasterizer* r, float x0, float y0, float x1, float y1)
|
|
{
|
|
#ifdef DEBUG_TRACE
|
|
DBG("nsvg__addEdge\n");
|
|
#endif
|
|
NSVGedge* e;
|
|
|
|
// Skip horizontal edges
|
|
if (y0 == y1)
|
|
return;
|
|
// DBG("nedges=%d cedges=%d\n", r->nedges, r->cedges);
|
|
if (r->nedges+1 > r->cedges) {
|
|
int OldSize = r->cedges * sizeof(NSVGedge);
|
|
r->cedges = r->cedges > 0 ? r->cedges * 2 : 64;
|
|
if (OldSize == 0) {
|
|
r->edges = (NSVGedge*)AllocatePool(64 * sizeof(NSVGedge));
|
|
} else
|
|
r->edges = (NSVGedge*)ReallocatePool(OldSize, sizeof(NSVGedge) * r->cedges, r->edges);
|
|
if (r->edges == NULL) return;
|
|
}
|
|
|
|
e = &r->edges[r->nedges];
|
|
r->nedges++;
|
|
|
|
if (y0 < y1) {
|
|
e->x0 = x0;
|
|
e->y0 = y0;
|
|
e->x1 = x1;
|
|
e->y1 = y1;
|
|
e->dir = 1;
|
|
} else {
|
|
e->x0 = x1;
|
|
e->y0 = y1;
|
|
e->x1 = x0;
|
|
e->y1 = y0;
|
|
e->dir = -1;
|
|
}
|
|
}
|
|
|
|
static float nsvg__normalize(float *x, float* y)
|
|
{
|
|
// float d = sqrtf((*x)*(*x) + (*y)*(*y));
|
|
float d = SqrtF(SqrF(*x) + SqrF(*y));
|
|
if (d > 1e-6f) {
|
|
float id = 1.0f / d;
|
|
*x *= id;
|
|
*y *= id;
|
|
}
|
|
return d;
|
|
}
|
|
|
|
//static float nsvg__absf(float x) { return x < 0 ? -x : x; }
|
|
#define nsvg__absf(x) FabsF(x)
|
|
//static float nsvg__sqr(float x) { return x*x; }
|
|
#define nsvg__sqr(x) SqrF(x)
|
|
|
|
// 0 1 2 3 4 5 6 7
|
|
static float nsvg__controlPathLength(float x1, float y1, float x2, float y2, float x3, float y3, float x4, float y4)
|
|
{
|
|
float l1, l2, l3;
|
|
|
|
l1 = (float) sqrtf(nsvg__sqr(x2 - x1) + nsvg__sqr(y2 - y1));
|
|
l2 = (float) sqrtf(nsvg__sqr(x3 - x2) + nsvg__sqr(y3 - y2));
|
|
l3 = (float) sqrtf(nsvg__sqr(x4 - x3) + nsvg__sqr(y4 - y3));
|
|
|
|
return l1 + l2 + l3;
|
|
}
|
|
|
|
static void nsvg__flattenCubicBez2(NSVGrasterizer* r, float* x, float* t, int type)
|
|
{
|
|
#ifdef DEBUG_TRACE
|
|
DBG("nsvg__flattenCubicBez2\n");
|
|
#endif
|
|
float ax, ay, bx, by, cx, cy, dx, dy;
|
|
float x1, y1, x2, y2, x3, y3, x4, y4;
|
|
// float pointX, pointY;
|
|
NSVGpoint p;
|
|
float firstFDX, firstFDY, secondFDX, secondFDY, thirdFDX, thirdFDY;
|
|
float h, h2, h3;
|
|
|
|
float control_path_len;
|
|
int N;
|
|
|
|
x1 = x[0]*t[0] + x[1]*t[2] + t[4];
|
|
y1 = x[0]*t[1] + x[1]*t[3] + t[5];
|
|
x2 = x[2]*t[0] + x[3]*t[2] + t[4];
|
|
y2 = x[2]*t[1] + x[3]*t[3] + t[5];
|
|
x3 = x[4]*t[0] + x[5]*t[2] + t[4];
|
|
y3 = x[4]*t[1] + x[5]*t[3] + t[5];
|
|
x4 = x[6]*t[0] + x[7]*t[2] + t[4];
|
|
y4 = x[6]*t[1] + x[7]*t[3] + t[5];
|
|
|
|
control_path_len = nsvg__controlPathLength(x1, y1, x2, y2, x3, y3, x4, y4);
|
|
|
|
/* This is going to need tweaking, gives approximate same number of divisons
|
|
as old code on the test image */
|
|
N = (int)(control_path_len / ( 32 * r->tessTol)) + 2;
|
|
|
|
if (N > 1024)
|
|
N = 1024;
|
|
|
|
/* Compute polynomial coefficients from Bezier points */
|
|
|
|
ax = -x1 + 3.f * x2 + -3.f * x3 + x4;
|
|
ay = -y1 + 3.f * y2 + -3.f * y3 + y4;
|
|
|
|
bx = 3.f * x1 - 6.f * x2 + 3.f * x3;
|
|
by = 3.f * y1 - 6.f * y2 + 3.f * y3;
|
|
|
|
cx = 3.0f * (x2 - x1); //-3 * x1 + 3 * x2;
|
|
cy = 3.0f * (y2 - y1); //-3 * y1 + 3 * y2;
|
|
|
|
dx = x1;
|
|
dy = y1;
|
|
|
|
/* Set up step size */
|
|
|
|
h = 1.0f / (N-1);
|
|
h2 = h * h;
|
|
h3 = h2 * h;
|
|
|
|
/* Compute forward differences from Bezier points and "h" */
|
|
|
|
p.x = dx;
|
|
p.y = dy;
|
|
|
|
firstFDX = ((ax * h + bx) * h + cx) * h;
|
|
firstFDY = ((ay * h + by) * h + cy) * h;
|
|
|
|
secondFDX = (6.0f * ax * h + 2.0f * bx) * h2;
|
|
secondFDY = (6.0f * ay * h + 2.0f * by) * h2;
|
|
|
|
thirdFDX = 6.0f * ax * h3;
|
|
thirdFDY = 6.0f * ay * h3;
|
|
|
|
/* Compute points at each step */
|
|
for (int i = 0; i < N-1; i++) {
|
|
nsvg__addPathPoint(r, &p, NULL, 0);
|
|
p.x += firstFDX;
|
|
p.y += firstFDY;
|
|
|
|
firstFDX += secondFDX;
|
|
firstFDY += secondFDY;
|
|
|
|
secondFDX += thirdFDX;
|
|
secondFDY += thirdFDY;
|
|
|
|
}
|
|
nsvg__addPathPoint(r, &p, NULL, type);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
static void nsvg__flattenShape(NSVGrasterizer* r, NSVGshape* shape, float* xform)
|
|
{
|
|
#ifdef DEBUG_TRACE
|
|
DBG("nsvg__flattenShape\n");
|
|
#endif
|
|
// int j;
|
|
NSVGpath* path;
|
|
NSVGpoint pt;
|
|
|
|
// nsvg__dumpFloat("flattenShape with", xform, 6);
|
|
for (path = shape->paths; path != NULL; path = path->next) {
|
|
r->npoints = 0;
|
|
// Flatten path
|
|
pt.x = path->pts[0];
|
|
pt.y = path->pts[1];
|
|
nsvg__addPathPoint(r, &pt, xform, 0);
|
|
for (int i = 0; i < path->npts-1; i += 3) {
|
|
float* p = &path->pts[i*2];
|
|
nsvg__flattenCubicBez2(r, p, xform, 0);
|
|
}
|
|
// Close path
|
|
nsvg__addPathPoint(r, &pt, xform, 0);
|
|
|
|
// Build edges
|
|
for (int i = 0, j = r->npoints-1; i < r->npoints; j = i++)
|
|
nsvg__addEdge(r, r->points[j].x, r->points[j].y, r->points[i].x, r->points[i].y);
|
|
}
|
|
}
|
|
|
|
enum NSVGpointFlags
|
|
{
|
|
NSVG_PT_CORNER = 0x01,
|
|
NSVG_PT_BEVEL = 0x02,
|
|
NSVG_PT_LEFT = 0x04
|
|
};
|
|
|
|
static void nsvg__initClosed(NSVGpoint* left, NSVGpoint* right, NSVGpoint* p0, NSVGpoint* p1, float lineWidth)
|
|
{
|
|
float w = lineWidth * 0.5f;
|
|
float dx = p1->x - p0->x;
|
|
float dy = p1->y - p0->y;
|
|
float len = nsvg__normalize(&dx, &dy);
|
|
float px = p0->x + dx*len*0.5f, py = p0->y + dy*len*0.5f;
|
|
float dlx = dy, dly = -dx;
|
|
float lx = px - dlx*w, ly = py - dly*w;
|
|
float rx = px + dlx*w, ry = py + dly*w;
|
|
left->x = lx; left->y = ly;
|
|
right->x = rx; right->y = ry;
|
|
}
|
|
|
|
static void nsvg__buttCap(NSVGrasterizer* r, NSVGpoint* left, NSVGpoint* right, NSVGpoint* p, float dx, float dy, float lineWidth, int connect)
|
|
{
|
|
float w = lineWidth * 0.5f;
|
|
float px = p->x, py = p->y;
|
|
float dlx = dy, dly = -dx;
|
|
float lx = px - dlx*w, ly = py - dly*w;
|
|
float rx = px + dlx*w, ry = py + dly*w;
|
|
|
|
nsvg__addEdge(r, lx, ly, rx, ry);
|
|
|
|
if (connect) {
|
|
nsvg__addEdge(r, left->x, left->y, lx, ly);
|
|
nsvg__addEdge(r, rx, ry, right->x, right->y);
|
|
}
|
|
left->x = lx; left->y = ly;
|
|
right->x = rx; right->y = ry;
|
|
}
|
|
|
|
static void nsvg__squareCap(NSVGrasterizer* r, NSVGpoint* left, NSVGpoint* right, NSVGpoint* p, float dx, float dy, float lineWidth, int connect)
|
|
{
|
|
#ifdef DEBUG_TRACE
|
|
DBG("nsvg__squareCap\n");
|
|
#endif
|
|
float w = lineWidth * 0.5f;
|
|
float px = p->x - dx*w, py = p->y - dy*w;
|
|
float dlx = dy, dly = -dx;
|
|
float lx = px - dlx*w, ly = py - dly*w;
|
|
float rx = px + dlx*w, ry = py + dly*w;
|
|
|
|
nsvg__addEdge(r, lx, ly, rx, ry);
|
|
|
|
if (connect) {
|
|
nsvg__addEdge(r, left->x, left->y, lx, ly);
|
|
nsvg__addEdge(r, rx, ry, right->x, right->y);
|
|
}
|
|
left->x = lx; left->y = ly;
|
|
right->x = rx; right->y = ry;
|
|
}
|
|
|
|
#ifndef NSVG_PI
|
|
const float NSVG_PI = 3.141592653589793f;
|
|
#endif
|
|
|
|
static void nsvg__roundCap(NSVGrasterizer* r, NSVGpoint* left, NSVGpoint* right, NSVGpoint* p, float dx, float dy, float lineWidth, int ncap, int connect)
|
|
{
|
|
#ifdef DEBUG_TRACE
|
|
DBG("nsvg__roundCap\n");
|
|
#endif
|
|
|
|
float w = lineWidth * 0.5f;
|
|
float px = p->x, py = p->y;
|
|
float dlx = dy, dly = -dx;
|
|
float lx = 0, ly = 0, rx = 0, ry = 0, prevx = 0, prevy = 0;
|
|
|
|
for (int i = 0; i < ncap; i++) {
|
|
float a = (float)i/(float)(ncap-1)*NSVG_PI;
|
|
float ax = cosf(a) * w, ay = sinf(a) * w;
|
|
float x = px - dlx*ax - dx*ay;
|
|
float y = py - dly*ax - dy*ay;
|
|
|
|
if (i > 0)
|
|
nsvg__addEdge(r, prevx, prevy, x, y);
|
|
|
|
prevx = x;
|
|
prevy = y;
|
|
|
|
if (i == 0) {
|
|
lx = x; ly = y;
|
|
} else if (i == ncap-1) {
|
|
rx = x; ry = y;
|
|
}
|
|
}
|
|
|
|
if (connect) {
|
|
nsvg__addEdge(r, left->x, left->y, lx, ly);
|
|
nsvg__addEdge(r, rx, ry, right->x, right->y);
|
|
}
|
|
|
|
left->x = lx; left->y = ly;
|
|
right->x = rx; right->y = ry;
|
|
}
|
|
|
|
static void nsvg__bevelJoin(NSVGrasterizer* r, NSVGpoint* left, NSVGpoint* right, NSVGpoint* p0, NSVGpoint* p1, float lineWidth)
|
|
{
|
|
#ifdef DEBUG_TRACE
|
|
DBG("nsvg__bevelJoin\n");
|
|
#endif
|
|
float w = lineWidth * 0.5f;
|
|
float dlx0 = p0->dy, dly0 = -p0->dx;
|
|
float dlx1 = p1->dy, dly1 = -p1->dx;
|
|
float lx0 = p1->x - (dlx0 * w), ly0 = p1->y - (dly0 * w);
|
|
float rx0 = p1->x + (dlx0 * w), ry0 = p1->y + (dly0 * w);
|
|
float lx1 = p1->x - (dlx1 * w), ly1 = p1->y - (dly1 * w);
|
|
float rx1 = p1->x + (dlx1 * w), ry1 = p1->y + (dly1 * w);
|
|
|
|
nsvg__addEdge(r, lx0, ly0, left->x, left->y);
|
|
nsvg__addEdge(r, lx1, ly1, lx0, ly0);
|
|
|
|
nsvg__addEdge(r, right->x, right->y, rx0, ry0);
|
|
nsvg__addEdge(r, rx0, ry0, rx1, ry1);
|
|
|
|
left->x = lx1; left->y = ly1;
|
|
right->x = rx1; right->y = ry1;
|
|
}
|
|
|
|
static void nsvg__miterJoin(NSVGrasterizer* r, NSVGpoint* left, NSVGpoint* right, NSVGpoint* p0, NSVGpoint* p1, float lineWidth)
|
|
{
|
|
#ifdef DEBUG_TRACE
|
|
DBG("nsvg__miterJoin\n");
|
|
#endif
|
|
float w = lineWidth * 0.5f;
|
|
float dlx0 = p0->dy, dly0 = -p0->dx;
|
|
float dlx1 = p1->dy, dly1 = -p1->dx;
|
|
float lx0, rx0, lx1, rx1;
|
|
float ly0, ry0, ly1, ry1;
|
|
|
|
if (p1->flags & NSVG_PT_LEFT) {
|
|
lx0 = lx1 = p1->x - p1->dmx * w;
|
|
ly0 = ly1 = p1->y - p1->dmy * w;
|
|
nsvg__addEdge(r, lx1, ly1, left->x, left->y);
|
|
|
|
rx0 = p1->x + (dlx0 * w);
|
|
ry0 = p1->y + (dly0 * w);
|
|
rx1 = p1->x + (dlx1 * w);
|
|
ry1 = p1->y + (dly1 * w);
|
|
nsvg__addEdge(r, right->x, right->y, rx0, ry0);
|
|
nsvg__addEdge(r, rx0, ry0, rx1, ry1);
|
|
} else {
|
|
lx0 = p1->x - (dlx0 * w);
|
|
ly0 = p1->y - (dly0 * w);
|
|
lx1 = p1->x - (dlx1 * w);
|
|
ly1 = p1->y - (dly1 * w);
|
|
nsvg__addEdge(r, lx0, ly0, left->x, left->y);
|
|
nsvg__addEdge(r, lx1, ly1, lx0, ly0);
|
|
|
|
rx0 = rx1 = p1->x + p1->dmx * w;
|
|
ry0 = ry1 = p1->y + p1->dmy * w;
|
|
nsvg__addEdge(r, right->x, right->y, rx1, ry1);
|
|
}
|
|
|
|
left->x = lx1; left->y = ly1;
|
|
right->x = rx1; right->y = ry1;
|
|
}
|
|
|
|
static void nsvg__roundJoin(NSVGrasterizer* r, NSVGpoint* left, NSVGpoint* right, NSVGpoint* p0, NSVGpoint* p1, float lineWidth, int ncap)
|
|
{
|
|
#ifdef DEBUG_TRACE
|
|
DBG("nsvg__roundJoin\n");
|
|
#endif
|
|
int n;
|
|
float w = lineWidth * 0.5f;
|
|
float dlx0 = p0->dy, dly0 = -p0->dx;
|
|
float dlx1 = p1->dy, dly1 = -p1->dx;
|
|
float a0 = atan2f(dly0, dlx0);
|
|
float a1 = atan2f(dly1, dlx1);
|
|
float da = a1 - a0;
|
|
float lx, ly, rx, ry;
|
|
|
|
if (da < -NSVG_PI) da += PI2; //NSVG_PI*2;
|
|
if (da > NSVG_PI) da -= PI2; //NSVG_PI*2;
|
|
|
|
n = (int)ceilf((nsvg__absf(da) / NSVG_PI) * (float)ncap);
|
|
if (n < 2) n = 2;
|
|
if (n > ncap) n = ncap;
|
|
|
|
lx = left->x;
|
|
ly = left->y;
|
|
rx = right->x;
|
|
ry = right->y;
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
float u = (float)i/(float)(n-1);
|
|
float a = a0 + u*da;
|
|
float ax = cosf(a) * w, ay = sinf(a) * w;
|
|
float lx1 = p1->x - ax, ly1 = p1->y - ay;
|
|
float rx1 = p1->x + ax, ry1 = p1->y + ay;
|
|
|
|
nsvg__addEdge(r, lx1, ly1, lx, ly);
|
|
nsvg__addEdge(r, rx, ry, rx1, ry1);
|
|
|
|
lx = lx1; ly = ly1;
|
|
rx = rx1; ry = ry1;
|
|
}
|
|
|
|
left->x = lx; left->y = ly;
|
|
right->x = rx; right->y = ry;
|
|
}
|
|
|
|
static void nsvg__straightJoin(NSVGrasterizer* r, NSVGpoint* left, NSVGpoint* right, NSVGpoint* p1, float lineWidth)
|
|
{
|
|
float w = lineWidth * 0.5f;
|
|
float lx = p1->x - (p1->dmx * w), ly = p1->y - (p1->dmy * w);
|
|
float rx = p1->x + (p1->dmx * w), ry = p1->y + (p1->dmy * w);
|
|
|
|
nsvg__addEdge(r, lx, ly, left->x, left->y);
|
|
nsvg__addEdge(r, right->x, right->y, rx, ry);
|
|
|
|
left->x = lx; left->y = ly;
|
|
right->x = rx; right->y = ry;
|
|
}
|
|
|
|
static int nsvg__curveDivs(float r, float arc, float tol)
|
|
{
|
|
float da = acosf(r / (r + tol)) * 2.0f;
|
|
int divs = (int)ceilf(arc / da);
|
|
if (divs < 2) divs = 2;
|
|
return divs;
|
|
}
|
|
|
|
static void nsvg__expandStroke(NSVGrasterizer* r, NSVGpoint* points, int npoints, int closed, int lineJoin, int lineCap, float lineWidth)
|
|
{
|
|
#ifdef DEBUG_TRACE
|
|
DBG("nsvg__expandStroke\n");
|
|
#endif
|
|
int ncap = nsvg__curveDivs(lineWidth*0.5f, NSVG_PI, r->tessTol); // Calculate divisions per half circle.
|
|
NSVGpoint left = {0,0,0,0,0,0,0,0,{0,0,0}}, right = {0,0,0,0,0,0,0,0,{0,0,0}}, firstLeft = {0,0,0,0,0,0,0,0,{0,0,0}}, firstRight = {0,0,0,0,0,0,0,0,{0,0,0}};
|
|
NSVGpoint* p0, *p1;
|
|
int s, e;
|
|
|
|
// Build stroke edges
|
|
if (closed) {
|
|
// Looping
|
|
p0 = &points[npoints-1];
|
|
p1 = &points[0];
|
|
s = 0;
|
|
e = npoints;
|
|
} else {
|
|
// Add cap
|
|
p0 = &points[0];
|
|
p1 = &points[1];
|
|
s = 1;
|
|
e = npoints-1;
|
|
}
|
|
|
|
if (closed) {
|
|
nsvg__initClosed(&left, &right, p0, p1, lineWidth);
|
|
firstLeft = left;
|
|
firstRight = right;
|
|
} else {
|
|
// Add cap
|
|
float dx = p1->x - p0->x;
|
|
float dy = p1->y - p0->y;
|
|
nsvg__normalize(&dx, &dy);
|
|
if (lineCap == NSVG_CAP_BUTT)
|
|
nsvg__buttCap(r, &left, &right, p0, dx, dy, lineWidth, 0);
|
|
else if (lineCap == NSVG_CAP_SQUARE)
|
|
nsvg__squareCap(r, &left, &right, p0, dx, dy, lineWidth, 0);
|
|
else if (lineCap == NSVG_CAP_ROUND)
|
|
nsvg__roundCap(r, &left, &right, p0, dx, dy, lineWidth, ncap, 0);
|
|
}
|
|
|
|
for (int j = s; j < e; ++j) {
|
|
if (p1->flags & NSVG_PT_CORNER) {
|
|
if (lineJoin == NSVG_JOIN_ROUND)
|
|
nsvg__roundJoin(r, &left, &right, p0, p1, lineWidth, ncap);
|
|
else if (lineJoin == NSVG_JOIN_BEVEL || (p1->flags & NSVG_PT_BEVEL))
|
|
nsvg__bevelJoin(r, &left, &right, p0, p1, lineWidth);
|
|
else
|
|
nsvg__miterJoin(r, &left, &right, p0, p1, lineWidth);
|
|
} else {
|
|
nsvg__straightJoin(r, &left, &right, p1, lineWidth);
|
|
}
|
|
p0 = p1++;
|
|
}
|
|
|
|
if (closed) {
|
|
// Loop it
|
|
nsvg__addEdge(r, firstLeft.x, firstLeft.y, left.x, left.y);
|
|
nsvg__addEdge(r, right.x, right.y, firstRight.x, firstRight.y);
|
|
} else {
|
|
// Add cap
|
|
float dx = p1->x - p0->x;
|
|
float dy = p1->y - p0->y;
|
|
nsvg__normalize(&dx, &dy);
|
|
if (lineCap == NSVG_CAP_BUTT)
|
|
nsvg__buttCap(r, &right, &left, p1, -dx, -dy, lineWidth, 1);
|
|
else if (lineCap == NSVG_CAP_SQUARE)
|
|
nsvg__squareCap(r, &right, &left, p1, -dx, -dy, lineWidth, 1);
|
|
else if (lineCap == NSVG_CAP_ROUND)
|
|
nsvg__roundCap(r, &right, &left, p1, -dx, -dy, lineWidth, ncap, 1);
|
|
}
|
|
}
|
|
|
|
static void nsvg__prepareStroke(NSVGrasterizer* r, float miterLimit, int lineJoin)
|
|
{
|
|
#ifdef DEBUG_TRACE
|
|
DBG("nsvg__prepareStroke\n");
|
|
#endif
|
|
|
|
NSVGpoint *p0, *p1;
|
|
|
|
p0 = &r->points[r->npoints-1];
|
|
p1 = &r->points[0];
|
|
for (int i = 0; i < r->npoints; i++) {
|
|
// Calculate segment direction and length
|
|
p0->dx = p1->x - p0->x;
|
|
p0->dy = p1->y - p0->y;
|
|
p0->len = nsvg__normalize(&p0->dx, &p0->dy);
|
|
// Advance
|
|
p0 = p1++;
|
|
}
|
|
|
|
// calculate joins
|
|
p0 = &r->points[r->npoints-1];
|
|
p1 = &r->points[0];
|
|
for (int j = 0; j < r->npoints; j++) {
|
|
float dlx0, dly0, dlx1, dly1, dmr2, cross;
|
|
dlx0 = p0->dy;
|
|
dly0 = -p0->dx;
|
|
dlx1 = p1->dy;
|
|
dly1 = -p1->dx;
|
|
// Calculate extrusions
|
|
p1->dmx = (dlx0 + dlx1) * 0.5f;
|
|
p1->dmy = (dly0 + dly1) * 0.5f;
|
|
dmr2 = p1->dmx*p1->dmx + p1->dmy*p1->dmy;
|
|
if (dmr2 > 0.000001f) {
|
|
float s2 = 1.0f / dmr2;
|
|
if (s2 > 600.0f) {
|
|
s2 = 600.0f;
|
|
}
|
|
p1->dmx *= s2;
|
|
p1->dmy *= s2;
|
|
}
|
|
|
|
// Clear flags, but keep the corner.
|
|
p1->flags = (p1->flags & NSVG_PT_CORNER) ? NSVG_PT_CORNER : 0;
|
|
|
|
// Keep track of left turns.
|
|
cross = p1->dx * p0->dy - p0->dx * p1->dy;
|
|
if (cross > 0.0f)
|
|
p1->flags |= NSVG_PT_LEFT;
|
|
|
|
// Check to see if the corner needs to be beveled.
|
|
if (p1->flags & NSVG_PT_CORNER) {
|
|
if ((dmr2 * miterLimit*miterLimit) < 1.0f || lineJoin == NSVG_JOIN_BEVEL || lineJoin == NSVG_JOIN_ROUND) {
|
|
p1->flags |= NSVG_PT_BEVEL;
|
|
}
|
|
}
|
|
|
|
p0 = p1++;
|
|
}
|
|
}
|
|
|
|
static void nsvg__flattenShapeStroke(NSVGrasterizer* r, NSVGshape* shape, float* xform)
|
|
{
|
|
#ifdef DEBUG_TRACE
|
|
DBG("nsvg__flattenShapeStroke\n");
|
|
#endif
|
|
int closed;
|
|
NSVGpath* path;
|
|
NSVGpoint* p0, *p1;
|
|
NSVGpoint p;
|
|
float lineWidth = 0.5;
|
|
float scalex1 = fabsf(xform[0]);
|
|
float scalex2 = fabsf(xform[2]);
|
|
float scaley1 = fabsf(xform[1]);
|
|
float scaley2 = fabsf(xform[3]);
|
|
// float scale = (scalex > scaley)?scalex:scaley; //(scalex + scaley) * 0.5f
|
|
float scale = (sqrtf(scalex1*scalex1 + scalex2*scalex2) +
|
|
sqrtf(scaley1*scaley1 + scaley2*scaley2)) * 0.5f;
|
|
|
|
float miterLimit = shape->miterLimit;
|
|
int lineJoin = shape->strokeLineJoin;
|
|
int lineCap = shape->strokeLineCap;
|
|
/* if (shape->isText) {
|
|
lineWidth = shape->strokeWidth;
|
|
} else { */
|
|
lineWidth = shape->strokeWidth * scale;
|
|
// }
|
|
//nsvg__dumpFloat("shapeStroke", xform, 6);
|
|
for (path = shape->paths; path != NULL; path = path->next) {
|
|
// Flatten path
|
|
r->npoints = 0;
|
|
p.x = path->pts[0];
|
|
p.y = path->pts[1];
|
|
nsvg__addPathPoint(r, &p, xform, NSVG_PT_CORNER);
|
|
for (int i = 0; i < path->npts-1; i += 3) {
|
|
float* pt = &path->pts[i*2];
|
|
nsvg__flattenCubicBez2(r, pt, xform, NSVG_PT_CORNER);
|
|
}
|
|
if (r->npoints < 2)
|
|
continue;
|
|
|
|
closed = path->closed;
|
|
|
|
// If the first and last points are the same, remove the last, mark as closed path.
|
|
p0 = &r->points[r->npoints-1];
|
|
p1 = &r->points[0];
|
|
if (nsvg__ptEquals(p0, p1, r->distTol)) {
|
|
r->npoints--;
|
|
p0 = &r->points[r->npoints-1];
|
|
closed = 1;
|
|
}
|
|
|
|
if (shape->strokeDashCount > 0) {
|
|
int idash = 0, dashState = 1;
|
|
float totalDist = 0, dashLen, allDashLen, dashOffset;
|
|
NSVGpoint* cur;
|
|
|
|
if (closed)
|
|
nsvg__appendPathPoint(r, p1);
|
|
|
|
// Duplicate points -> points2.
|
|
nsvg__duplicatePoints(r);
|
|
|
|
r->npoints = 0;
|
|
cur = &r->points2[0];
|
|
nsvg__appendPathPoint(r, cur);
|
|
|
|
// Figure out dash offset.
|
|
allDashLen = 0;
|
|
for (int j = 0; j < shape->strokeDashCount; j++)
|
|
allDashLen += shape->strokeDashArray[j];
|
|
if (shape->strokeDashCount & 1)
|
|
allDashLen *= 2.0f;
|
|
// Find location inside pattern
|
|
dashOffset = fmodf(shape->strokeDashOffset, allDashLen);
|
|
if (dashOffset < 0.0f)
|
|
dashOffset += allDashLen;
|
|
|
|
while (dashOffset > shape->strokeDashArray[idash]) {
|
|
dashOffset -= shape->strokeDashArray[idash];
|
|
idash = (idash + 1) % shape->strokeDashCount;
|
|
}
|
|
dashLen = (shape->strokeDashArray[idash] - dashOffset) * scale;
|
|
|
|
for (int j = 1; j < r->npoints2; ) {
|
|
float dx = r->points2[j].x - cur->x;
|
|
float dy = r->points2[j].y - cur->y;
|
|
float dist = sqrtf(dx*dx + dy*dy);
|
|
|
|
if ((totalDist + dist) > dashLen) {
|
|
// Calculate intermediate point
|
|
float d = (dashLen - totalDist) / dist;
|
|
NSVGpoint pc;
|
|
pc.x = cur->x + dx * d;
|
|
pc.y = cur->y + dy * d;
|
|
nsvg__addPathPoint(r, &pc, NULL, NSVG_PT_CORNER);
|
|
|
|
// Stroke
|
|
if (r->npoints > 1 && dashState) {
|
|
nsvg__prepareStroke(r, miterLimit, lineJoin);
|
|
nsvg__expandStroke(r, r->points, r->npoints, 0, lineJoin, lineCap, lineWidth);
|
|
}
|
|
// Advance dash pattern
|
|
dashState = !dashState;
|
|
idash = (idash+1) % shape->strokeDashCount;
|
|
dashLen = shape->strokeDashArray[idash] * scale;
|
|
// Restart
|
|
cur->x = pc.x;
|
|
cur->y = pc.y;
|
|
cur->flags = NSVG_PT_CORNER;
|
|
totalDist = 0.0f;
|
|
r->npoints = 0;
|
|
nsvg__appendPathPoint(r, cur);
|
|
} else {
|
|
totalDist += dist;
|
|
cur = &r->points2[j];
|
|
nsvg__appendPathPoint(r, cur);
|
|
j++;
|
|
}
|
|
}
|
|
// Stroke any leftover path
|
|
if (r->npoints > 1 && dashState)
|
|
nsvg__expandStroke(r, r->points, r->npoints, 0, lineJoin, lineCap, lineWidth);
|
|
} else {
|
|
nsvg__prepareStroke(r, miterLimit, lineJoin);
|
|
nsvg__expandStroke(r, r->points, r->npoints, closed, lineJoin, lineCap, lineWidth);
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
static int nsvg__cmpEdge(const void *p, const void *q)
|
|
{
|
|
const NSVGedge* a = (const NSVGedge*)p;
|
|
const NSVGedge* b = (const NSVGedge*)q;
|
|
|
|
if (a->y0 < b->y0) return -1;
|
|
if (a->y0 > b->y0) return 1;
|
|
return 0;
|
|
}
|
|
*/
|
|
|
|
static NSVGactiveEdge* nsvg__addActive(NSVGrasterizer* r, NSVGedge* e, float startPoint)
|
|
{
|
|
NSVGactiveEdge* z;
|
|
|
|
if (r->freelist != NULL) {
|
|
// Restore from freelist.
|
|
z = r->freelist;
|
|
r->freelist = z->next;
|
|
} else {
|
|
// Alloc new edge.
|
|
z = (NSVGactiveEdge*)nsvgrast__alloc(r, sizeof(NSVGactiveEdge));
|
|
if (z == NULL) return NULL;
|
|
}
|
|
|
|
float dxdy = (e->x1 - e->x0) / (e->y1 - e->y0);
|
|
// STBTT_assert(e->y0 <= start_point);
|
|
// round dx down to avoid going too far
|
|
if (dxdy < 0)
|
|
z->dx = (int)(-floorf(NSVG__FIX * -dxdy));
|
|
else
|
|
z->dx = (int)floorf(NSVG__FIX * dxdy);
|
|
z->x = (int)floorf(NSVG__FIX * (e->x0 + dxdy * (startPoint - e->y0)));
|
|
// z->x -= off_x * FIX;
|
|
z->ey = e->y1;
|
|
z->next = 0;
|
|
z->dir = e->dir;
|
|
|
|
return z;
|
|
}
|
|
|
|
static void nsvg__freeActive(NSVGrasterizer* r, NSVGactiveEdge* z)
|
|
{
|
|
z->next = r->freelist;
|
|
r->freelist = z;
|
|
}
|
|
|
|
static void nsvg__fillScanline(UINT8* scanline, int len, int x0, int x1, int maxWeight, int* xmin, int* xmax)
|
|
{
|
|
int i = x0 >> NSVG__FIXSHIFT;
|
|
int j = x1 >> NSVG__FIXSHIFT;
|
|
if (i < *xmin) *xmin = i;
|
|
if (j > *xmax) *xmax = j;
|
|
if (i < len && j >= 0) {
|
|
if (i == j) {
|
|
// x0,x1 are the same pixel, so compute combined coverage
|
|
scanline[i] = (UINT8)(scanline[i] + ((x1 - x0) * maxWeight >> NSVG__FIXSHIFT));
|
|
} else {
|
|
if (i >= 0) // add antialiasing for x0
|
|
scanline[i] = (UINT8)(scanline[i] + (((NSVG__FIX - (x0 & NSVG__FIXMASK)) * maxWeight) >> NSVG__FIXSHIFT));
|
|
else
|
|
i = -1; // clip
|
|
|
|
if (j < len) // add antialiasing for x1
|
|
scanline[j] = (UINT8)(scanline[j] + (((x1 & NSVG__FIXMASK) * maxWeight) >> NSVG__FIXSHIFT));
|
|
else
|
|
j = len; // clip
|
|
|
|
for (++i; i < j; ++i) // fill pixels between x0 and x1
|
|
scanline[i] = (UINT8)(scanline[i] + maxWeight);
|
|
}
|
|
}
|
|
}
|
|
|
|
// note: this routine clips fills that extend off the edges... ideally this
|
|
// wouldn't happen, but it could happen if the truetype glyph bounding boxes
|
|
// are wrong, or if the user supplies a too-small bitmap
|
|
static void nsvg__fillActiveEdges(UINT8* scanline, int len, NSVGactiveEdge* e, int maxWeight, int* xmin, int* xmax, char fillRule)
|
|
{
|
|
#ifdef DEBUG_TRACE
|
|
DBG("nsvg__fillActiveEdges\n");
|
|
#endif
|
|
// non-zero winding fill
|
|
int x0 = 0, w = 0;
|
|
|
|
if (fillRule == NSVG_FILLRULE_NONZERO) {
|
|
// Non-zero
|
|
while (e != NULL) {
|
|
if (w == 0) {
|
|
// if we're currently at zero, we need to record the edge start point
|
|
x0 = e->x; w += e->dir;
|
|
} else {
|
|
int x1 = e->x; w += e->dir;
|
|
// if we went to zero, we need to draw
|
|
if (w == 0)
|
|
nsvg__fillScanline(scanline, len, x0, x1, maxWeight, xmin, xmax);
|
|
}
|
|
e = e->next;
|
|
}
|
|
} else if (fillRule == NSVG_FILLRULE_EVENODD) {
|
|
// Even-odd
|
|
while (e != NULL) {
|
|
if (w == 0) {
|
|
// if we're currently at zero, we need to record the edge start point
|
|
x0 = e->x; w = 1;
|
|
} else {
|
|
int x1 = e->x; w = 0;
|
|
nsvg__fillScanline(scanline, len, x0, x1, maxWeight, xmin, xmax);
|
|
}
|
|
e = e->next;
|
|
}
|
|
}
|
|
}
|
|
|
|
static float nsvg__clampf(float a, float mn, float mx)
|
|
{
|
|
return a < mn ? mn : (a > mx ? mx : a);
|
|
}
|
|
|
|
static UINT32 nsvg__RGBA(UINT8 r, UINT8 g, UINT8 b, UINT8 a)
|
|
{
|
|
return (b) | (g << 8) | (r << 16) | (a << 24);
|
|
}
|
|
|
|
static unsigned int nsvg__lerpRGBA(unsigned int c0, unsigned int c1, float u, float opacity)
|
|
{
|
|
float xu = nsvg__clampf(u, 0.0f, 1.0f) * 256.0f;
|
|
int iu = (int)(xu); //0..256
|
|
int ia = (int)(nsvg__clampf(opacity, 0.0f, 1.0f) * 256.0f);
|
|
int b = (((c0) & 0xff)*(256-iu) + (((c1) & 0xff)*iu)) >> 8;
|
|
int g = (((c0>>8) & 0xff)*(256-iu) + (((c1>>8) & 0xff)*iu)) >> 8;
|
|
int r = (((c0>>16) & 0xff)*(256-iu) + (((c1>>16) & 0xff)*iu)) >> 8;
|
|
int a = ((((c0>>24) & 0xff)*(256-iu) + (((c1>>24) & 0xff)*iu)) * ia) >> 16;
|
|
return nsvg__RGBA((UINT8)r, (UINT8)g, (UINT8)b, (UINT8)a);
|
|
}
|
|
|
|
static unsigned int nsvg__applyOpacity(unsigned int c, float u)
|
|
{
|
|
int iu = (int)(nsvg__clampf(u, 0.0f, 1.0f) * 256.0f);
|
|
int b = (c) & 0xff;
|
|
int g = (c>>8) & 0xff;
|
|
int r = (c>>16) & 0xff;
|
|
int a = (((c>>24) & 0xff)*iu) >> 8;
|
|
return nsvg__RGBA((UINT8)r, (UINT8)g, (UINT8)b, (UINT8)a);
|
|
}
|
|
|
|
static inline int nsvg__div255(int x)
|
|
{
|
|
return ((x+1) * 257) >> 16;
|
|
}
|
|
|
|
static void nsvg__scanlineBit(
|
|
UINT8* row, int count, UINT8* cover, int x, int y,
|
|
/* float tx, float ty, float scalex, float scaley, */ NSVGcachedPaint* cache)
|
|
{
|
|
#ifdef DEBUG_TRACE
|
|
DBG("nsvg__scanlineBit\n");
|
|
#endif
|
|
//xxx where is security check that x/8 and (x+count)/8 is inside row[] index?
|
|
// called by r->fscanline(&r->bitmap[y * r->stride], xmax-xmin+1, &r->scanline[xmin], xmin, y,/* tx,ty, scalex, scaley, */ cache);
|
|
int x1 = x + count;
|
|
for (; x < x1; x++) {
|
|
row[x / 8] |= 1 << (x % 8);
|
|
}
|
|
}
|
|
|
|
static void nsvg__scanlineSolid(UINT8* row, int count, UINT8* cover, int x, int y,
|
|
/* float tx, float ty, float scalex, float scaley, */ NSVGcachedPaint* cache)
|
|
{
|
|
#ifdef DEBUG_TRACE
|
|
DBG("nsvg__scanlineSolid\n");
|
|
#endif
|
|
// static int once = 0;
|
|
UINT8* dst = row + x*4;
|
|
if (cache->type == NSVG_PAINT_COLOR) {
|
|
int cr, cg, cb, ca;
|
|
cr = cache->colors[0] & 0xff;
|
|
cg = (cache->colors[0] >> 8) & 0xff;
|
|
cb = (cache->colors[0] >> 16) & 0xff;
|
|
ca = (cache->colors[0] >> 24) & 0xff;
|
|
|
|
for (int i = 0; i < count; i++) {
|
|
int r,g,b;
|
|
int a = nsvg__div255((int)cover[0] * ca);
|
|
int ia = 255 - a;
|
|
// Premultiply
|
|
r = nsvg__div255(cr * a);
|
|
g = nsvg__div255(cg * a);
|
|
b = nsvg__div255(cb * a);
|
|
|
|
// Blend over
|
|
r += nsvg__div255(ia * (int)dst[0]);
|
|
g += nsvg__div255(ia * (int)dst[1]);
|
|
b += nsvg__div255(ia * (int)dst[2]);
|
|
a += nsvg__div255(ia * (int)dst[3]);
|
|
|
|
dst[0] = (UINT8)r;
|
|
dst[1] = (UINT8)g;
|
|
dst[2] = (UINT8)b;
|
|
dst[3] = (UINT8)a;
|
|
|
|
cover++;
|
|
dst += 4;
|
|
}
|
|
} else if (cache->type == NSVG_PAINT_LINEAR_GRADIENT) {
|
|
// TODO: spread modes.
|
|
// TODO: plenty of opportunities to optimize.
|
|
float fx, fy, gy;
|
|
float* t = cache->xform;
|
|
|
|
// nsvg__dumpFloat("cache grad xform", t, 6);
|
|
int cr, cg, cb, ca;
|
|
unsigned int c;
|
|
//x,y - pixels
|
|
fx = (float)x;
|
|
fy = (float)y;
|
|
// dx = 1.0f;
|
|
gy = fx*t[1] + fy*t[3] + t[5]; //gradient direction. Point at cut
|
|
|
|
for (int i = 0; i < count; i++) {
|
|
int r,g,b,a,ia;
|
|
int level = cache->coarse;
|
|
c = cache->colors[dither(nsvg__clampf(gy*(255.0f-level), 0, (float)(255-level)), level)]; //assumed gy = 0.0 ... 1.0f
|
|
cr = (c) & 0xff;
|
|
cg = (c >> 8) & 0xff;
|
|
cb = (c >> 16) & 0xff;
|
|
ca = (c >> 24) & 0xff;
|
|
a = nsvg__div255((int)cover[0] * ca);
|
|
ia = 255 - a;
|
|
|
|
// Premultiply
|
|
r = nsvg__div255(cr * a);
|
|
g = nsvg__div255(cg * a);
|
|
b = nsvg__div255(cb * a);
|
|
// Blend over
|
|
r += nsvg__div255(ia * (int)dst[0]);
|
|
g += nsvg__div255(ia * (int)dst[1]);
|
|
b += nsvg__div255(ia * (int)dst[2]);
|
|
a += nsvg__div255(ia * (int)dst[3]);
|
|
dst[0] = (UINT8)r;
|
|
dst[1] = (UINT8)g;
|
|
dst[2] = (UINT8)b;
|
|
dst[3] = (UINT8)a;
|
|
|
|
cover++;
|
|
dst += 4;
|
|
// fx += dx;
|
|
gy += t[1];
|
|
}
|
|
} else if (cache->type == NSVG_PAINT_RADIAL_GRADIENT) {
|
|
// TODO: spread modes.
|
|
// TODO: plenty of opportunities to optimize.
|
|
// TODO: focus (fx,fy)
|
|
float fx, fy, gx, gy, gd;
|
|
float* t = cache->xform;
|
|
// nsvg__dumpFloat("cache grad xform", t, 6);
|
|
int cr, cg, cb, ca;
|
|
unsigned int c;
|
|
fx = (float)x;
|
|
fy = (float)y;
|
|
// dx = 1.0f;
|
|
gx = fx*t[0] + fy*t[2] + t[4];
|
|
gy = fx*t[1] + fy*t[3] + t[5];
|
|
|
|
for (int i = 0; i < count; i++) {
|
|
int r,g,b,a,ia;
|
|
gd = sqrtf(gx*gx + gy*gy);
|
|
// DBG("gx=%f gy=%f\n", gx, gy);
|
|
int level = cache->coarse;
|
|
c = cache->colors[dither(nsvg__clampf(gd*(255.0f-level*2), 0, (254.99f-level*2)), level)];
|
|
cr = (c) & 0xff;
|
|
cg = (c >> 8) & 0xff;
|
|
cb = (c >> 16) & 0xff;
|
|
ca = (c >> 24) & 0xff;
|
|
|
|
a = nsvg__div255((int)cover[0] * ca);
|
|
ia = 255 - a;
|
|
|
|
// Premultiply
|
|
r = nsvg__div255(cr * a);
|
|
g = nsvg__div255(cg * a);
|
|
b = nsvg__div255(cb * a);
|
|
|
|
// Blend over
|
|
r += nsvg__div255(ia * (int)dst[0]);
|
|
g += nsvg__div255(ia * (int)dst[1]);
|
|
b += nsvg__div255(ia * (int)dst[2]);
|
|
a += nsvg__div255(ia * (int)dst[3]);
|
|
|
|
dst[0] = (UINT8)r;
|
|
dst[1] = (UINT8)g;
|
|
dst[2] = (UINT8)b;
|
|
dst[3] = (UINT8)a;
|
|
|
|
cover++;
|
|
dst += 4;
|
|
// fx += dx;
|
|
gx += t[0];
|
|
gy += t[1];
|
|
}
|
|
} else if (cache->type == NSVG_PAINT_PATTERN) {
|
|
// TODO
|
|
float fx, fy, dx, gx, gy;
|
|
float* t = cache->xform;
|
|
// EG_IMAGE *Pattern = (EG_IMAGE *)cache->image;
|
|
XImage *Pattern = (XImage*)cache->image;
|
|
if (!Pattern) {
|
|
DBG("no pattern to fill\n");
|
|
return;
|
|
}
|
|
INTN Width = Pattern->GetWidth();
|
|
INTN Height = Pattern->GetHeight();
|
|
int ix, iy;
|
|
// INTN j;
|
|
fx = (float)x;
|
|
fy = (float)y;
|
|
dx = 1.0f;
|
|
|
|
// unsigned int c;
|
|
for (int i = 0; i < count; i++) {
|
|
int r,g,b,a,ia;
|
|
gx = fx*t[0] + fy*t[2] + t[4];
|
|
gy = fx*t[1] + fy*t[3] + t[5];
|
|
ix = dither(gx * Width, 2) % Width;
|
|
iy = dither(gy * Height, 2) % Height;
|
|
// j = iy * Width + ix;
|
|
EFI_GRAPHICS_OUTPUT_BLT_PIXEL cp = Pattern->GetPixel(ix, iy);
|
|
// cr = Pattern->PixelData[j].r;
|
|
// cb = Pattern->PixelData[j].b;
|
|
// cg = Pattern->PixelData[j].g;
|
|
// ca = Pattern->PixelData[j].a;
|
|
// cr = cp.Red;
|
|
a = nsvg__div255((int)cover[0] * cp.Reserved);
|
|
ia = 255 - a;
|
|
// Premultiply
|
|
r = nsvg__div255(cp.Red * a);
|
|
g = nsvg__div255(cp.Green * a);
|
|
b = nsvg__div255(cp.Blue * a);
|
|
|
|
// Blend over
|
|
r += nsvg__div255(ia * (int)dst[0]);
|
|
g += nsvg__div255(ia * (int)dst[1]);
|
|
b += nsvg__div255(ia * (int)dst[2]);
|
|
a += nsvg__div255(ia * (int)dst[3]);
|
|
|
|
dst[0] = (UINT8)r;
|
|
dst[1] = (UINT8)g;
|
|
dst[2] = (UINT8)b;
|
|
dst[3] = (UINT8)a;
|
|
|
|
cover++;
|
|
dst += 4;
|
|
fx += dx;
|
|
}
|
|
|
|
} else if (cache->type == NSVG_PAINT_CONIC_GRADIENT) {
|
|
// TODO: spread modes.
|
|
// TODO: plenty of opportunities to optimize.
|
|
// TODO: focus (fx,fy)
|
|
float fx, fy, gx, gy, gd;
|
|
float* t = cache->xform;
|
|
// nsvg__dumpFloat("cache grad xform", t, 6);
|
|
int cr, cg, cb, ca;
|
|
unsigned int c;
|
|
|
|
fx = (float)x;
|
|
fy = (float)y;
|
|
// dx = 1.0f;
|
|
gx = fx*t[0] + fy*t[2] + t[4];
|
|
gy = fx*t[1] + fy*t[3] + t[5];
|
|
|
|
for (int i = 0; i < count; i++) {
|
|
int r,g,b,a,ia;
|
|
if ((gx == 0.f) && (gy == 0.f)) {
|
|
c = 0;
|
|
} else {
|
|
gd = (Atan2F(gy, gx) + PI) / PI2;
|
|
c = cache->colors[dither(nsvg__clampf(gd*254.0f, 0, 253.99f), 1)];
|
|
}
|
|
cr = (c) & 0xff;
|
|
cg = (c >> 8) & 0xff;
|
|
cb = (c >> 16) & 0xff;
|
|
ca = (c >> 24) & 0xff;
|
|
|
|
a = nsvg__div255((int)cover[0] * ca);
|
|
ia = 255 - a;
|
|
|
|
// Premultiply
|
|
r = nsvg__div255(cr * a);
|
|
g = nsvg__div255(cg * a);
|
|
b = nsvg__div255(cb * a);
|
|
|
|
// Blend over
|
|
r += nsvg__div255(ia * (int)dst[0]);
|
|
g += nsvg__div255(ia * (int)dst[1]);
|
|
b += nsvg__div255(ia * (int)dst[2]);
|
|
a += nsvg__div255(ia * (int)dst[3]);
|
|
|
|
dst[0] = (UINT8)r;
|
|
dst[1] = (UINT8)g;
|
|
dst[2] = (UINT8)b;
|
|
dst[3] = (UINT8)a;
|
|
|
|
cover++;
|
|
dst += 4;
|
|
// fx += dx;
|
|
gx += t[0];
|
|
gy += t[1];
|
|
}
|
|
}
|
|
}
|
|
|
|
UINT8* nsvg__findStencil(NSVGrasterizer *r, int index)
|
|
{
|
|
NSVGstencil* sl = r->stencilList;
|
|
while (sl != NULL) {
|
|
if (sl->index == index) return sl->square;
|
|
sl = sl->next;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void nsvg__rasterizeSortedEdges(NSVGrasterizer *r,
|
|
/* float tx, float ty, float scalex, float scaley, */
|
|
NSVGcachedPaint* cache, char fillRule, NSVGclip* clip)
|
|
{
|
|
#ifdef DEBUG_TRACE
|
|
DBG("nsvg__rasterizeSortedEdges\n");
|
|
#endif
|
|
NSVGactiveEdge *active = NULL;
|
|
|
|
int e = 0;
|
|
int maxWeight = (255 / NSVG__SUBSAMPLES); // weight per vertical scanline
|
|
int xmin, xmax;
|
|
|
|
for (int y = 0; y < r->height; y++) {
|
|
SetMem(r->scanline, r->width, 0);
|
|
xmin = r->width;
|
|
xmax = 0;
|
|
for (int s = 0; s < NSVG__SUBSAMPLES; ++s) {
|
|
// find center of pixel for this scanline
|
|
float scany = (float)(y*NSVG__SUBSAMPLES + s) + 0.5f;
|
|
NSVGactiveEdge **step = &active;
|
|
|
|
// update all active edges;
|
|
// remove all active edges that terminate before the center of this scanline
|
|
while (*step) {
|
|
NSVGactiveEdge *z = *step;
|
|
if (z->ey <= scany) {
|
|
*step = z->next; // delete from list
|
|
nsvg__freeActive(r, z);
|
|
} else {
|
|
z->x += z->dx; // advance to position for current scanline
|
|
step = &((*step)->next); // advance through list
|
|
}
|
|
}
|
|
|
|
// resort the list if needed
|
|
for (;;) {
|
|
int changed = 0;
|
|
step = &active;
|
|
while (*step && (*step)->next) {
|
|
if ((*step)->x > (*step)->next->x) {
|
|
NSVGactiveEdge* t = *step;
|
|
NSVGactiveEdge* q = t->next;
|
|
t->next = q->next;
|
|
q->next = t;
|
|
*step = q;
|
|
changed = 1;
|
|
}
|
|
step = &(*step)->next;
|
|
}
|
|
if (!changed) break;
|
|
}
|
|
|
|
// insert all edges that start before the center of this scanline -- omit ones that also end on this scanline
|
|
while (e < r->nedges && r->edges[e].y0 <= scany) {
|
|
if (r->edges[e].y1 > scany) {
|
|
NSVGactiveEdge* z = nsvg__addActive(r, &r->edges[e], scany);
|
|
if (z == NULL) break;
|
|
// find insertion point
|
|
if (active == NULL) {
|
|
active = z;
|
|
} else if (z->x < active->x) {
|
|
// insert at front
|
|
z->next = active;
|
|
active = z;
|
|
} else {
|
|
// find thing to insert AFTER
|
|
NSVGactiveEdge* p = active;
|
|
while (p->next && p->next->x < z->x)
|
|
p = p->next;
|
|
// at this point, p->next->x is NOT < z->x
|
|
z->next = p->next;
|
|
p->next = z;
|
|
}
|
|
}
|
|
e++;
|
|
}
|
|
|
|
// now process all active edges in non-zero fashion
|
|
if (active != NULL)
|
|
nsvg__fillActiveEdges(r->scanline, r->width, active, maxWeight, &xmin, &xmax, fillRule);
|
|
}
|
|
// Blit
|
|
if (xmin < 0) xmin = 0;
|
|
if (xmax > r->width-1) xmax = r->width-1;
|
|
if (xmin <= xmax) {
|
|
|
|
for (int i = 0; i < clip->count; i++) {
|
|
UINT8* stencil = &r->stencil[r->stencilSize * clip->index[i] + y * r->stencilStride];
|
|
// UINT8* stencil = FindStencil(r, clip->index[i]);
|
|
if (stencil) {
|
|
for (int j = xmin; j <= xmax; j++) {
|
|
if (((stencil[j / 8] >> (j % 8)) & 1) == 0) {
|
|
r->scanline[j] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
r->fscanline(&r->bitmap[y * r->stride], xmax-xmin+1, &r->scanline[xmin], xmin, y,/* tx,ty, scalex, scaley, */ cache);
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
static void nsvg__unpremultiplyAlpha(UINT8* image, int w, int h, int stride)
|
|
{
|
|
#ifdef DEBUG_TRACE
|
|
DBG("nsvg__unpremultiplyAlpha\n");
|
|
#endif
|
|
|
|
// Unpremultiply
|
|
for (int y = 0; y < h; y++) {
|
|
UINT8 *row = &image[y*stride];
|
|
for (int x = 0; x < w; x++) {
|
|
int r = row[0], g = row[1], b = row[2], a = row[3];
|
|
if (a != 0) {
|
|
row[0] = (UINT8)(r*255/a);
|
|
row[1] = (UINT8)(g*255/a);
|
|
row[2] = (UINT8)(b*255/a);
|
|
}
|
|
row += 4;
|
|
}
|
|
}
|
|
|
|
// Defringe
|
|
for (int y = 0; y < h; y++) {
|
|
UINT8 *row = &image[y*stride];
|
|
for (int x = 0; x < w; x++) {
|
|
int r = 0, g = 0, b = 0, a = row[3], n = 0;
|
|
if (a == 0) {
|
|
if (x-1 > 0 && row[-1] != 0) {
|
|
r += row[-4];
|
|
g += row[-3];
|
|
b += row[-2];
|
|
n++;
|
|
}
|
|
if (x+1 < w && row[7] != 0) {
|
|
r += row[4];
|
|
g += row[5];
|
|
b += row[6];
|
|
n++;
|
|
}
|
|
if (y-1 > 0 && row[-stride+3] != 0) {
|
|
r += row[-stride];
|
|
g += row[-stride+1];
|
|
b += row[-stride+2];
|
|
n++;
|
|
}
|
|
if (y+1 < h && row[stride+3] != 0) {
|
|
r += row[stride];
|
|
g += row[stride+1];
|
|
b += row[stride+2];
|
|
n++;
|
|
}
|
|
if (n > 0) {
|
|
row[0] = (UINT8)(r/n);
|
|
row[1] = (UINT8)(g/n);
|
|
row[2] = (UINT8)(b/n);
|
|
}
|
|
}
|
|
row += 4;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void nsvg__initPaint(NSVGcachedPaint* cache, NSVGpaint* paint, NSVGshape* shape, float *xformShape)
|
|
{
|
|
#ifdef DEBUG_TRACE
|
|
DBG("nsvg__initPaint\n");
|
|
#endif
|
|
|
|
NSVGgradient* grad = paint->paint.gradient;
|
|
|
|
float opacity = shape->opacity;
|
|
|
|
cache->type = paint->type;
|
|
|
|
// DBG("shape=%s, paint-type=%d\n", shape->id, cache->type);
|
|
|
|
if (cache->type == NSVG_PAINT_COLOR) {
|
|
cache->colors[0] = nsvg__applyOpacity(paint->paint.color, opacity);
|
|
return;
|
|
}
|
|
if (grad) {
|
|
cache->coarse = grad->ditherCoarse;
|
|
}
|
|
if (cache->type == NSVG_PAINT_PATTERN) {
|
|
cache->colors[0] = nsvg__applyOpacity(0, opacity);
|
|
if (grad) {
|
|
cache->image = ((NSVGpattern*)grad)->image;
|
|
}
|
|
float xform[6];
|
|
nsvg__xformIdentity(xform);
|
|
xform[0] = shape->bounds[2] - shape->bounds[0];
|
|
xform[3] = shape->bounds[3] - shape->bounds[1];
|
|
xform[4] = shape->bounds[0];
|
|
xform[5] = shape->bounds[1];
|
|
nsvg__xformMultiply(xform, xformShape);
|
|
nsvg__xformInverse(cache->xform, xform);
|
|
return;
|
|
}
|
|
|
|
cache->spread = grad->spread;
|
|
nsvg__xformInverse(cache->xform, xformShape);
|
|
nsvg__xformMultiply(cache->xform, grad->xform);
|
|
|
|
if (grad->nstops == 0) {
|
|
SetMem(cache->colors, sizeof(cache->colors), 0);
|
|
} else if (grad->nstops == 1) {
|
|
for (int i = 0; i < 256; i++) {
|
|
cache->colors[i] = nsvg__applyOpacity(grad->stops[i].color, opacity);
|
|
}
|
|
} else { //nstops=2 as usual gradient
|
|
unsigned int ca, cb = 0;
|
|
float ua, ub, du, u;
|
|
int ia, ib, count;
|
|
|
|
ca = nsvg__applyOpacity(grad->stops[0].color, opacity);
|
|
ua = nsvg__clampf(grad->stops[0].offset, 0, 1);
|
|
ub = nsvg__clampf(grad->stops[grad->nstops-1].offset, ua, 1);
|
|
ia = (int)(ua * 255.0f);
|
|
ib = (int)(ub * 255.0f);
|
|
for (int i = 0; i < ia; i++) {
|
|
cache->colors[i] = ca; //color from stop0
|
|
}
|
|
|
|
for (int i = 0; i < grad->nstops-1; i++) {
|
|
|
|
ca = grad->stops[i].color;
|
|
cb = grad->stops[i+1].color;
|
|
ua = nsvg__clampf(grad->stops[i].offset, 0, 1); //=0
|
|
ub = nsvg__clampf(grad->stops[i+1].offset, 0, 1); //=1
|
|
ia = (int)(ua * 255.0f); //=0
|
|
ib = (int)(ub * 255.0f); //=255
|
|
count = ib - ia;
|
|
if (count <= 0) continue;
|
|
u = 0;
|
|
du = 1.0f / (float)count;
|
|
for (int j = 0; j < count; j++) {
|
|
cache->colors[ia+j] = nsvg__lerpRGBA(ca,cb,u, opacity);
|
|
u += du;
|
|
}
|
|
}
|
|
|
|
for (int i = ib; i < 256; i++) { //tail
|
|
cache->colors[i] = cb;
|
|
// cache->colors2[i] = cb;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
static void nsvg__rasterizeShapes(NSVGrasterizer* r,
|
|
NSVGshape* shapes, const char* groupName,
|
|
float tx, float ty, float scalex, float scaley,
|
|
UINT8* dst, int w, int h, int stride,
|
|
NSVGscanlineFunction fscanline)
|
|
{
|
|
#ifdef DEBUG_TRACE
|
|
DBG("nsvg__rasterizeShapes %s %f %f %f %f\n", groupName ? groupName : "", tx, ty, scalex, scaley);
|
|
#endif
|
|
NSVGshape *shape = NULL, *shapeLink = NULL;
|
|
float xform[6], xform2[6];
|
|
float min_scale = fabsf(scalex) < fabsf(scaley) ? fabsf(scalex) : fabsf(scaley);
|
|
|
|
r->bitmap = dst;
|
|
r->width = w;
|
|
r->height = h;
|
|
r->stride = stride;
|
|
r->fscanline = fscanline;
|
|
|
|
if (w > r->cscanline) {
|
|
int oldw = r->cscanline;
|
|
r->cscanline = w;
|
|
if (oldw == 0) {
|
|
r->scanline = (UINT8*)AllocatePool(w);
|
|
} else {
|
|
r->scanline = (UINT8*)ReallocatePool(oldw, w, r->scanline);
|
|
}
|
|
if (r->scanline == NULL) return;
|
|
}
|
|
|
|
nsvg__xformSetScale(&xform2[0], scalex, scaley);
|
|
xform2[4] = tx; xform2[5] = ty;
|
|
|
|
for (shape = shapes; shape != NULL; shape = shape->next) {
|
|
if (!(shape->flags & NSVG_VIS_VISIBLE))
|
|
continue;
|
|
if ( groupName && !nsvg__isShapeInGroup(shape, groupName) ) {
|
|
continue;
|
|
}
|
|
|
|
memcpy(&xform[0], shape->xform, sizeof(float)*6);
|
|
|
|
xform[0] *= scalex;
|
|
xform[1] *= scaley;
|
|
xform[2] *= scalex;
|
|
xform[3] *= scaley;
|
|
xform[4] = xform[4] * scalex + tx;
|
|
xform[5] = xform[5] * scaley + ty;
|
|
|
|
if (!shape->link) {
|
|
renderShape(r, shape, &xform[0], min_scale);
|
|
}
|
|
shapeLink = shape->link; //this is <use>
|
|
while (shapeLink) {
|
|
memcpy(&xform2[0], &xform[0], sizeof(float)*6);
|
|
nsvg__xformPremultiply(&xform2[0], shapeLink->xform);
|
|
renderShape(r, shapeLink, &xform2[0], min_scale);
|
|
if (!shape->isSymbol) {
|
|
break;
|
|
}
|
|
shapeLink = shapeLink->next;
|
|
}
|
|
}
|
|
|
|
r->bitmap = NULL;
|
|
r->width = 0;
|
|
r->height = 0;
|
|
r->stride = 0;
|
|
r->fscanline = NULL;
|
|
}
|
|
|
|
static void renderShape(NSVGrasterizer* r,
|
|
NSVGshape* shape, float *xform, float min_scale)
|
|
{
|
|
#ifdef DEBUG_TRACE
|
|
DBG("render shape %s %f %f %f %f %f %f\n", shape->id, xform[0], xform[1], xform[2], xform[3], xform[4], xform[5]);
|
|
#endif
|
|
NSVGedge *e = NULL;
|
|
NSVGcachedPaint cache;
|
|
|
|
SetMem(&cache, sizeof(NSVGcachedPaint), 0);
|
|
// NSVGclip& clip = shape->clip;
|
|
// DBG("renderShape %s with clips", shape->id);
|
|
// for (int i=0; i < clip.count; i++) {
|
|
// DBG(" %d", clip.index[i]);
|
|
// }
|
|
// DBG("\n");
|
|
|
|
if (shape->fill.type != NSVG_PAINT_NONE) {
|
|
nsvg__resetPool(r);
|
|
r->freelist = NULL;
|
|
r->nedges = 0;
|
|
|
|
nsvg__flattenShape(r, shape, xform);
|
|
// Scale and translate edges
|
|
for (int i = 0; i < r->nedges; i++) {
|
|
e = &r->edges[i];
|
|
e->y0 *= NSVG__SUBSAMPLES;
|
|
e->y1 *= NSVG__SUBSAMPLES;
|
|
}
|
|
|
|
// Rasterize edges
|
|
nsvg_qsort(r->edges, r->nedges, sizeof(NSVGedge), NULL);
|
|
|
|
// now, traverse the scanlines and find the intersections on each scanline, use non-zero rule
|
|
nsvg__initPaint(&cache, &shape->fill, shape, xform);
|
|
nsvg__rasterizeSortedEdges(r, &cache, shape->fillRule, &shape->clip);
|
|
}
|
|
if (shape->stroke.type != NSVG_PAINT_NONE && (shape->strokeWidth * min_scale) > 0.01f) {
|
|
nsvg__resetPool(r);
|
|
r->freelist = NULL;
|
|
r->nedges = 0;
|
|
nsvg__flattenShapeStroke(r, shape, xform);
|
|
|
|
// Scale and translate edges
|
|
for (int i = 0; i < r->nedges; i++) {
|
|
e = &r->edges[i];
|
|
e->y0 *= NSVG__SUBSAMPLES;
|
|
e->y1 *= NSVG__SUBSAMPLES;
|
|
}
|
|
|
|
// Rasterize edges
|
|
nsvg_qsort(r->edges, r->nedges, sizeof(NSVGedge), NULL);
|
|
|
|
// now, traverse the scanlines and find the intersections on each scanline, use non-zero rule
|
|
nsvg__initPaint(&cache, &shape->stroke, shape, xform);
|
|
nsvg__rasterizeSortedEdges(r, &cache, NSVG_FILLRULE_NONZERO, &shape->clip);
|
|
}
|
|
}
|
|
|
|
void nsvg__rasterizeClipPaths(
|
|
NSVGrasterizer* r, NSVGimage* image, int w, int h,
|
|
float tx, float ty, float scalex, float scaley)
|
|
{
|
|
int clipPathCount = 0;
|
|
|
|
NSVGclipPath* clipPath = image->clipPaths;
|
|
if (clipPath == NULL) {
|
|
r->stencil = NULL;
|
|
return;
|
|
}
|
|
|
|
while (clipPath != NULL) {
|
|
clipPathCount++;
|
|
clipPath = clipPath->next;
|
|
}
|
|
UINTN oldSize = r->stencilSize * clipPathCount;
|
|
r->stencilStride = w / 8 + (w % 8 != 0 ? 1 : 0);
|
|
r->stencilSize = h * r->stencilStride;
|
|
|
|
if (oldSize == 0) {
|
|
r->stencil = (unsigned char*)AllocateZeroPool(r->stencilSize * clipPathCount);
|
|
if (r->stencil == NULL) return;
|
|
} else {
|
|
r->stencil = (unsigned char*)ReallocatePool(oldSize, r->stencilSize * clipPathCount, r->stencil);
|
|
if (r->stencil == NULL) return;
|
|
SetMem(r->stencil, r->stencilSize * clipPathCount, 0);
|
|
}
|
|
|
|
clipPath = image->clipPaths;
|
|
while (clipPath != NULL) {
|
|
nsvg__rasterizeShapes(r, clipPath->shapes, NULL, tx, ty, scalex, scaley,
|
|
&r->stencil[r->stencilSize * clipPath->index],
|
|
w, h, r->stencilStride, nsvg__scanlineBit);
|
|
clipPath = clipPath->next;
|
|
}
|
|
}
|
|
|
|
void nsvgRasterize(NSVGrasterizer* r,
|
|
NSVGimage* image, float tx, float ty, float scalex, float scaley,
|
|
UINT8* dst, int w, int h, int stride)
|
|
{
|
|
nsvgRasterize(r, image, &image->realBounds[0], NULL, tx, ty, scalex, scaley, dst, w, h, stride);
|
|
}
|
|
|
|
void nsvgRasterize(NSVGrasterizer* r,
|
|
NSVGimage* image, float* bounds, const char* groupName,
|
|
float tx, float ty, float scalex, float scaley,
|
|
UINT8* dst, int w, int h, int stride)
|
|
{
|
|
tx -= bounds[0] * scalex;
|
|
ty -= bounds[1] * scaley;
|
|
// DBG(" image %s will be scaled by [%f]\n", image->id, scalex);
|
|
// nsvg__dumpFloat(" image real bounds ", image->realBounds, 4);
|
|
|
|
nsvg__rasterizeClipPaths(r, image, w, h, tx, ty, scalex, scaley);
|
|
|
|
nsvg__rasterizeShapes(r, image->shapes, groupName, tx, ty, scalex, scaley,
|
|
dst, w, h, stride, nsvg__scanlineSolid);
|
|
|
|
nsvg__unpremultiplyAlpha(dst, w, h, stride);
|
|
}
|
|
|