mirror of
https://github.com/CloverHackyColor/CloverBootloader.git
synced 2025-01-18 20:21:40 +01:00
7c0aa811ec
Signed-off-by: Sergey Isakov <isakov-sl@bk.ru>
2772 lines
79 KiB
C
2772 lines
79 KiB
C
/** @file
|
|
PCI emumeration support functions implementation for PCI Bus module.
|
|
|
|
Copyright (c) 2006 - 2019, Intel Corporation. All rights reserved.<BR>
|
|
(C) Copyright 2015 Hewlett Packard Enterprise Development LP<BR>
|
|
SPDX-License-Identifier: BSD-2-Clause-Patent
|
|
|
|
**/
|
|
|
|
#include "PciBus.h"
|
|
|
|
extern CHAR16 *mBarTypeStr[];
|
|
|
|
#define OLD_ALIGN 0xFFFFFFFFFFFFFFFFULL
|
|
#define EVEN_ALIGN 0xFFFFFFFFFFFFFFFEULL
|
|
#define SQUAD_ALIGN 0xFFFFFFFFFFFFFFFDULL
|
|
#define DQUAD_ALIGN 0xFFFFFFFFFFFFFFFCULL
|
|
|
|
/**
|
|
This routine is used to check whether the pci device is present.
|
|
|
|
@param PciRootBridgeIo Pointer to instance of EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL.
|
|
@param Pci Output buffer for PCI device configuration space.
|
|
@param Bus PCI bus NO.
|
|
@param Device PCI device NO.
|
|
@param Func PCI Func NO.
|
|
|
|
@retval EFI_NOT_FOUND PCI device not present.
|
|
@retval EFI_SUCCESS PCI device is found.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
PciDevicePresent (
|
|
IN EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *PciRootBridgeIo,
|
|
OUT PCI_TYPE00 *Pci,
|
|
IN UINT8 Bus,
|
|
IN UINT8 Device,
|
|
IN UINT8 Func
|
|
)
|
|
{
|
|
UINT64 Address;
|
|
EFI_STATUS Status;
|
|
|
|
//
|
|
// Create PCI address map in terms of Bus, Device and Func
|
|
//
|
|
Address = EFI_PCI_ADDRESS (Bus, Device, Func, 0);
|
|
|
|
//
|
|
// Read the Vendor ID register
|
|
//
|
|
Status = PciRootBridgeIo->Pci.Read (
|
|
PciRootBridgeIo,
|
|
EfiPciWidthUint32,
|
|
Address,
|
|
1,
|
|
Pci
|
|
);
|
|
|
|
if (!EFI_ERROR (Status) && (Pci->Hdr).VendorId != 0xffff) {
|
|
//
|
|
// Read the entire config header for the device
|
|
//
|
|
Status = PciRootBridgeIo->Pci.Read (
|
|
PciRootBridgeIo,
|
|
EfiPciWidthUint32,
|
|
Address,
|
|
sizeof (PCI_TYPE00) / sizeof (UINT32),
|
|
Pci
|
|
);
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
/**
|
|
Collect all the resource information under this root bridge.
|
|
|
|
A database that records all the information about pci device subject to this
|
|
root bridge will then be created.
|
|
|
|
@param Bridge Parent bridge instance.
|
|
@param StartBusNumber Bus number of beginning.
|
|
|
|
@retval EFI_SUCCESS PCI device is found.
|
|
@retval other Some error occurred when reading PCI bridge information.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
PciPciDeviceInfoCollector (
|
|
IN PCI_IO_DEVICE *Bridge,
|
|
IN UINT8 StartBusNumber
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
PCI_TYPE00 Pci;
|
|
UINT8 Device;
|
|
UINT8 Func;
|
|
UINT8 SecBus;
|
|
PCI_IO_DEVICE *PciIoDevice;
|
|
EFI_PCI_IO_PROTOCOL *PciIo;
|
|
|
|
Status = EFI_SUCCESS;
|
|
SecBus = 0;
|
|
|
|
for (Device = 0; Device <= PCI_MAX_DEVICE; Device++) {
|
|
|
|
for (Func = 0; Func <= PCI_MAX_FUNC; Func++) {
|
|
|
|
//
|
|
// Check to see whether PCI device is present
|
|
//
|
|
Status = PciDevicePresent (
|
|
Bridge->PciRootBridgeIo,
|
|
&Pci,
|
|
(UINT8) StartBusNumber,
|
|
(UINT8) Device,
|
|
(UINT8) Func
|
|
);
|
|
|
|
if (EFI_ERROR (Status) && Func == 0) {
|
|
//
|
|
// go to next device if there is no Function 0
|
|
//
|
|
break;
|
|
}
|
|
|
|
if (!EFI_ERROR (Status)) {
|
|
|
|
//
|
|
// Call back to host bridge function
|
|
//
|
|
PreprocessController (Bridge, (UINT8) StartBusNumber, Device, Func, EfiPciBeforeResourceCollection);
|
|
|
|
//
|
|
// Collect all the information about the PCI device discovered
|
|
//
|
|
Status = PciSearchDevice (
|
|
Bridge,
|
|
&Pci,
|
|
(UINT8) StartBusNumber,
|
|
Device,
|
|
Func,
|
|
&PciIoDevice
|
|
);
|
|
|
|
//
|
|
// Recursively scan PCI busses on the other side of PCI-PCI bridges
|
|
//
|
|
//
|
|
if (!EFI_ERROR (Status) && (IS_PCI_BRIDGE (&Pci) || IS_CARDBUS_BRIDGE (&Pci))) {
|
|
|
|
//
|
|
// If it is PPB, we need to get the secondary bus to continue the enumeration
|
|
//
|
|
PciIo = &(PciIoDevice->PciIo);
|
|
|
|
Status = PciIo->Pci.Read (PciIo, EfiPciIoWidthUint8, PCI_BRIDGE_SECONDARY_BUS_REGISTER_OFFSET, 1, &SecBus);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
|
|
//
|
|
// Ensure secondary bus number is greater than the primary bus number to avoid
|
|
// any potential dead loop when PcdPciDisableBusEnumeration is set to TRUE
|
|
//
|
|
if (SecBus <= StartBusNumber) {
|
|
break;
|
|
}
|
|
|
|
//
|
|
// Get resource padding for PPB
|
|
//
|
|
GetResourcePaddingPpb (PciIoDevice);
|
|
|
|
//
|
|
// Deep enumerate the next level bus
|
|
//
|
|
Status = PciPciDeviceInfoCollector (
|
|
PciIoDevice,
|
|
(UINT8) (SecBus)
|
|
);
|
|
|
|
}
|
|
|
|
if (Func == 0 && !IS_PCI_MULTI_FUNC (&Pci)) {
|
|
|
|
//
|
|
// Skip sub functions, this is not a multi function device
|
|
//
|
|
Func = PCI_MAX_FUNC;
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Search required device and create PCI device instance.
|
|
|
|
@param Bridge Parent bridge instance.
|
|
@param Pci Input PCI device information block.
|
|
@param Bus PCI bus NO.
|
|
@param Device PCI device NO.
|
|
@param Func PCI func NO.
|
|
@param PciDevice Output of searched PCI device instance.
|
|
|
|
@retval EFI_SUCCESS Successfully created PCI device instance.
|
|
@retval EFI_OUT_OF_RESOURCES Cannot get PCI device information.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
PciSearchDevice (
|
|
IN PCI_IO_DEVICE *Bridge,
|
|
IN PCI_TYPE00 *Pci,
|
|
IN UINT8 Bus,
|
|
IN UINT8 Device,
|
|
IN UINT8 Func,
|
|
OUT PCI_IO_DEVICE **PciDevice
|
|
)
|
|
{
|
|
PCI_IO_DEVICE *PciIoDevice;
|
|
|
|
PciIoDevice = NULL;
|
|
|
|
DEBUG ((
|
|
EFI_D_INFO,
|
|
"PciBus: Discovered %s @ [%02x|%02x|%02x]\n",
|
|
IS_PCI_BRIDGE (Pci) ? L"PPB" :
|
|
IS_CARDBUS_BRIDGE (Pci) ? L"P2C" :
|
|
L"PCI",
|
|
Bus, Device, Func
|
|
));
|
|
|
|
if (!IS_PCI_BRIDGE (Pci)) {
|
|
|
|
if (IS_CARDBUS_BRIDGE (Pci)) {
|
|
PciIoDevice = GatherP2CInfo (
|
|
Bridge,
|
|
Pci,
|
|
Bus,
|
|
Device,
|
|
Func
|
|
);
|
|
if ((PciIoDevice != NULL) && gFullEnumeration) {
|
|
InitializeP2C (PciIoDevice);
|
|
}
|
|
} else {
|
|
|
|
//
|
|
// Create private data for Pci Device
|
|
//
|
|
PciIoDevice = GatherDeviceInfo (
|
|
Bridge,
|
|
Pci,
|
|
Bus,
|
|
Device,
|
|
Func
|
|
);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
//
|
|
// Create private data for PPB
|
|
//
|
|
PciIoDevice = GatherPpbInfo (
|
|
Bridge,
|
|
Pci,
|
|
Bus,
|
|
Device,
|
|
Func
|
|
);
|
|
|
|
//
|
|
// Special initialization for PPB including making the PPB quiet
|
|
//
|
|
if ((PciIoDevice != NULL) && gFullEnumeration) {
|
|
InitializePpb (PciIoDevice);
|
|
}
|
|
}
|
|
|
|
if (PciIoDevice == NULL) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
//
|
|
// Update the bar information for this PCI device so as to support some specific device
|
|
//
|
|
UpdatePciInfo (PciIoDevice);
|
|
|
|
if (PciIoDevice->DevicePath == NULL) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
//
|
|
// Detect this function has option rom
|
|
//
|
|
if (gFullEnumeration) {
|
|
|
|
if (!IS_CARDBUS_BRIDGE (Pci)) {
|
|
|
|
GetOpRomInfo (PciIoDevice);
|
|
|
|
}
|
|
|
|
ResetPowerManagementFeature (PciIoDevice);
|
|
|
|
}
|
|
|
|
//
|
|
// Insert it into a global tree for future reference
|
|
//
|
|
InsertPciDevice (Bridge, PciIoDevice);
|
|
|
|
//
|
|
// Determine PCI device attributes
|
|
//
|
|
|
|
if (PciDevice != NULL) {
|
|
*PciDevice = PciIoDevice;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Dump the PPB padding resource information.
|
|
|
|
@param PciIoDevice PCI IO instance.
|
|
@param ResourceType The desired resource type to dump.
|
|
PciBarTypeUnknown means to dump all types of resources.
|
|
**/
|
|
VOID
|
|
DumpPpbPaddingResource (
|
|
IN PCI_IO_DEVICE *PciIoDevice,
|
|
IN PCI_BAR_TYPE ResourceType
|
|
)
|
|
{
|
|
EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Descriptor;
|
|
PCI_BAR_TYPE Type;
|
|
|
|
if (PciIoDevice->ResourcePaddingDescriptors == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (ResourceType == PciBarTypeIo16 || ResourceType == PciBarTypeIo32) {
|
|
ResourceType = PciBarTypeIo;
|
|
}
|
|
|
|
for (Descriptor = PciIoDevice->ResourcePaddingDescriptors; Descriptor->Desc != ACPI_END_TAG_DESCRIPTOR; Descriptor++) {
|
|
|
|
Type = PciBarTypeUnknown;
|
|
if (Descriptor->Desc == ACPI_ADDRESS_SPACE_DESCRIPTOR && Descriptor->ResType == ACPI_ADDRESS_SPACE_TYPE_IO) {
|
|
Type = PciBarTypeIo;
|
|
} else if (Descriptor->Desc == ACPI_ADDRESS_SPACE_DESCRIPTOR && Descriptor->ResType == ACPI_ADDRESS_SPACE_TYPE_MEM) {
|
|
|
|
if (Descriptor->AddrSpaceGranularity == 32) {
|
|
//
|
|
// prefetchable
|
|
//
|
|
if (Descriptor->SpecificFlag == EFI_ACPI_MEMORY_RESOURCE_SPECIFIC_FLAG_CACHEABLE_PREFETCHABLE) {
|
|
Type = PciBarTypePMem32;
|
|
}
|
|
|
|
//
|
|
// Non-prefetchable
|
|
//
|
|
if (Descriptor->SpecificFlag == 0) {
|
|
Type = PciBarTypeMem32;
|
|
}
|
|
}
|
|
|
|
if (Descriptor->AddrSpaceGranularity == 64) {
|
|
//
|
|
// prefetchable
|
|
//
|
|
if (Descriptor->SpecificFlag == EFI_ACPI_MEMORY_RESOURCE_SPECIFIC_FLAG_CACHEABLE_PREFETCHABLE) {
|
|
Type = PciBarTypePMem64;
|
|
}
|
|
|
|
//
|
|
// Non-prefetchable
|
|
//
|
|
if (Descriptor->SpecificFlag == 0) {
|
|
Type = PciBarTypeMem64;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((Type != PciBarTypeUnknown) && ((ResourceType == PciBarTypeUnknown) || (ResourceType == Type))) {
|
|
DEBUG ((
|
|
EFI_D_INFO,
|
|
" Padding: Type = %s; Alignment = 0x%lx;\tLength = 0x%lx\n",
|
|
mBarTypeStr[Type], Descriptor->AddrRangeMax, Descriptor->AddrLen
|
|
));
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
Dump the PCI BAR information.
|
|
|
|
@param PciIoDevice PCI IO instance.
|
|
**/
|
|
VOID
|
|
DumpPciBars (
|
|
IN PCI_IO_DEVICE *PciIoDevice
|
|
)
|
|
{
|
|
UINTN Index;
|
|
|
|
for (Index = 0; Index < PCI_MAX_BAR; Index++) {
|
|
if (PciIoDevice->PciBar[Index].BarType == PciBarTypeUnknown) {
|
|
continue;
|
|
}
|
|
|
|
DEBUG ((
|
|
EFI_D_INFO,
|
|
" BAR[%d]: Type = %s; Alignment = 0x%lx;\tLength = 0x%lx;\tOffset = 0x%02x\n",
|
|
Index, mBarTypeStr[MIN (PciIoDevice->PciBar[Index].BarType, PciBarTypeMaxType)],
|
|
PciIoDevice->PciBar[Index].Alignment, PciIoDevice->PciBar[Index].Length, PciIoDevice->PciBar[Index].Offset
|
|
));
|
|
}
|
|
|
|
for (Index = 0; Index < PCI_MAX_BAR; Index++) {
|
|
if ((PciIoDevice->VfPciBar[Index].BarType == PciBarTypeUnknown) && (PciIoDevice->VfPciBar[Index].Length == 0)) {
|
|
continue;
|
|
}
|
|
|
|
DEBUG ((
|
|
EFI_D_INFO,
|
|
" VFBAR[%d]: Type = %s; Alignment = 0x%lx;\tLength = 0x%lx;\tOffset = 0x%02x\n",
|
|
Index, mBarTypeStr[MIN (PciIoDevice->VfPciBar[Index].BarType, PciBarTypeMaxType)],
|
|
PciIoDevice->VfPciBar[Index].Alignment, PciIoDevice->VfPciBar[Index].Length, PciIoDevice->VfPciBar[Index].Offset
|
|
));
|
|
}
|
|
DEBUG ((EFI_D_INFO, "\n"));
|
|
}
|
|
|
|
/**
|
|
Create PCI device instance for PCI device.
|
|
|
|
@param Bridge Parent bridge instance.
|
|
@param Pci Input PCI device information block.
|
|
@param Bus PCI device Bus NO.
|
|
@param Device PCI device Device NO.
|
|
@param Func PCI device's func NO.
|
|
|
|
@return Created PCI device instance.
|
|
|
|
**/
|
|
PCI_IO_DEVICE *
|
|
GatherDeviceInfo (
|
|
IN PCI_IO_DEVICE *Bridge,
|
|
IN PCI_TYPE00 *Pci,
|
|
IN UINT8 Bus,
|
|
IN UINT8 Device,
|
|
IN UINT8 Func
|
|
)
|
|
{
|
|
UINTN Offset;
|
|
UINTN BarIndex;
|
|
PCI_IO_DEVICE *PciIoDevice;
|
|
|
|
PciIoDevice = CreatePciIoDevice (
|
|
Bridge,
|
|
Pci,
|
|
Bus,
|
|
Device,
|
|
Func
|
|
);
|
|
|
|
if (PciIoDevice == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
//
|
|
// If it is a full enumeration, disconnect the device in advance
|
|
//
|
|
if (gFullEnumeration) {
|
|
|
|
PCI_DISABLE_COMMAND_REGISTER (PciIoDevice, EFI_PCI_COMMAND_BITS_OWNED);
|
|
|
|
}
|
|
|
|
//
|
|
// Start to parse the bars
|
|
//
|
|
for (Offset = 0x10, BarIndex = 0; Offset <= 0x24 && BarIndex < PCI_MAX_BAR; BarIndex++) {
|
|
Offset = PciParseBar (PciIoDevice, Offset, BarIndex);
|
|
}
|
|
|
|
//
|
|
// Parse the SR-IOV VF bars
|
|
//
|
|
if (PcdGetBool (PcdSrIovSupport) && PciIoDevice->SrIovCapabilityOffset != 0) {
|
|
for (Offset = PciIoDevice->SrIovCapabilityOffset + EFI_PCIE_CAPABILITY_ID_SRIOV_BAR0, BarIndex = 0;
|
|
Offset <= PciIoDevice->SrIovCapabilityOffset + EFI_PCIE_CAPABILITY_ID_SRIOV_BAR5;
|
|
BarIndex++) {
|
|
|
|
ASSERT (BarIndex < PCI_MAX_BAR);
|
|
Offset = PciIovParseVfBar (PciIoDevice, Offset, BarIndex);
|
|
}
|
|
}
|
|
|
|
DEBUG_CODE (DumpPciBars (PciIoDevice););
|
|
return PciIoDevice;
|
|
}
|
|
|
|
/**
|
|
Create PCI device instance for PCI-PCI bridge.
|
|
|
|
@param Bridge Parent bridge instance.
|
|
@param Pci Input PCI device information block.
|
|
@param Bus PCI device Bus NO.
|
|
@param Device PCI device Device NO.
|
|
@param Func PCI device's func NO.
|
|
|
|
@return Created PCI device instance.
|
|
|
|
**/
|
|
PCI_IO_DEVICE *
|
|
GatherPpbInfo (
|
|
IN PCI_IO_DEVICE *Bridge,
|
|
IN PCI_TYPE00 *Pci,
|
|
IN UINT8 Bus,
|
|
IN UINT8 Device,
|
|
IN UINT8 Func
|
|
)
|
|
{
|
|
PCI_IO_DEVICE *PciIoDevice;
|
|
EFI_STATUS Status;
|
|
UINT8 Value;
|
|
EFI_PCI_IO_PROTOCOL *PciIo;
|
|
UINT8 Temp;
|
|
UINT32 PMemBaseLimit;
|
|
UINT16 PrefetchableMemoryBase;
|
|
UINT16 PrefetchableMemoryLimit;
|
|
|
|
PciIoDevice = CreatePciIoDevice (
|
|
Bridge,
|
|
Pci,
|
|
Bus,
|
|
Device,
|
|
Func
|
|
);
|
|
|
|
if (PciIoDevice == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (gFullEnumeration) {
|
|
PCI_DISABLE_COMMAND_REGISTER (PciIoDevice, EFI_PCI_COMMAND_BITS_OWNED);
|
|
|
|
//
|
|
// Initialize the bridge control register
|
|
//
|
|
PCI_DISABLE_BRIDGE_CONTROL_REGISTER (PciIoDevice, EFI_PCI_BRIDGE_CONTROL_BITS_OWNED);
|
|
|
|
}
|
|
|
|
//
|
|
// PPB can have two BARs
|
|
//
|
|
if (PciParseBar (PciIoDevice, 0x10, PPB_BAR_0) == 0x14) {
|
|
//
|
|
// Not 64-bit bar
|
|
//
|
|
PciParseBar (PciIoDevice, 0x14, PPB_BAR_1);
|
|
}
|
|
|
|
PciIo = &PciIoDevice->PciIo;
|
|
|
|
//
|
|
// Test whether it support 32 decode or not
|
|
//
|
|
PciIo->Pci.Read (PciIo, EfiPciIoWidthUint8, 0x1C, 1, &Temp);
|
|
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint8, 0x1C, 1, &gAllOne);
|
|
PciIo->Pci.Read (PciIo, EfiPciIoWidthUint8, 0x1C, 1, &Value);
|
|
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint8, 0x1C, 1, &Temp);
|
|
|
|
if (Value != 0) {
|
|
if ((Value & 0x01) != 0) {
|
|
PciIoDevice->Decodes |= EFI_BRIDGE_IO32_DECODE_SUPPORTED;
|
|
} else {
|
|
PciIoDevice->Decodes |= EFI_BRIDGE_IO16_DECODE_SUPPORTED;
|
|
}
|
|
}
|
|
|
|
//
|
|
// if PcdPciBridgeIoAlignmentProbe is TRUE, PCI bus driver probes
|
|
// PCI bridge supporting non-standard I/O window alignment less than 4K.
|
|
//
|
|
|
|
PciIoDevice->BridgeIoAlignment = 0xFFF;
|
|
if (FeaturePcdGet (PcdPciBridgeIoAlignmentProbe)) {
|
|
//
|
|
// Check any bits of bit 3-1 of I/O Base Register are writable.
|
|
// if so, it is assumed non-standard I/O window alignment is supported by this bridge.
|
|
// Per spec, bit 3-1 of I/O Base Register are reserved bits, so its content can't be assumed.
|
|
//
|
|
Value = (UINT8)(Temp ^ (BIT3 | BIT2 | BIT1));
|
|
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint8, 0x1C, 1, &Value);
|
|
PciIo->Pci.Read (PciIo, EfiPciIoWidthUint8, 0x1C, 1, &Value);
|
|
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint8, 0x1C, 1, &Temp);
|
|
Value = (UINT8)((Value ^ Temp) & (BIT3 | BIT2 | BIT1));
|
|
switch (Value) {
|
|
case BIT3:
|
|
PciIoDevice->BridgeIoAlignment = 0x7FF;
|
|
break;
|
|
case BIT3 | BIT2:
|
|
PciIoDevice->BridgeIoAlignment = 0x3FF;
|
|
break;
|
|
case BIT3 | BIT2 | BIT1:
|
|
PciIoDevice->BridgeIoAlignment = 0x1FF;
|
|
break;
|
|
}
|
|
}
|
|
|
|
Status = BarExisted (
|
|
PciIoDevice,
|
|
0x24,
|
|
NULL,
|
|
&PMemBaseLimit
|
|
);
|
|
|
|
//
|
|
// Test if it supports 64 memory or not
|
|
//
|
|
// The bottom 4 bits of both the Prefetchable Memory Base and Prefetchable Memory Limit
|
|
// registers:
|
|
// 0 - the bridge supports only 32 bit addresses.
|
|
// 1 - the bridge supports 64-bit addresses.
|
|
//
|
|
PrefetchableMemoryBase = (UINT16)(PMemBaseLimit & 0xffff);
|
|
PrefetchableMemoryLimit = (UINT16)(PMemBaseLimit >> 16);
|
|
if (!EFI_ERROR (Status) &&
|
|
(PrefetchableMemoryBase & 0x000f) == 0x0001 &&
|
|
(PrefetchableMemoryLimit & 0x000f) == 0x0001) {
|
|
Status = BarExisted (
|
|
PciIoDevice,
|
|
0x28,
|
|
NULL,
|
|
NULL
|
|
);
|
|
|
|
if (!EFI_ERROR (Status)) {
|
|
PciIoDevice->Decodes |= EFI_BRIDGE_PMEM32_DECODE_SUPPORTED;
|
|
PciIoDevice->Decodes |= EFI_BRIDGE_PMEM64_DECODE_SUPPORTED;
|
|
} else {
|
|
PciIoDevice->Decodes |= EFI_BRIDGE_PMEM32_DECODE_SUPPORTED;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Memory 32 code is required for ppb
|
|
//
|
|
PciIoDevice->Decodes |= EFI_BRIDGE_MEM32_DECODE_SUPPORTED;
|
|
|
|
GetResourcePaddingPpb (PciIoDevice);
|
|
|
|
DEBUG_CODE (
|
|
DumpPpbPaddingResource (PciIoDevice, PciBarTypeUnknown);
|
|
DumpPciBars (PciIoDevice);
|
|
);
|
|
|
|
return PciIoDevice;
|
|
}
|
|
|
|
|
|
/**
|
|
Create PCI device instance for PCI Card bridge device.
|
|
|
|
@param Bridge Parent bridge instance.
|
|
@param Pci Input PCI device information block.
|
|
@param Bus PCI device Bus NO.
|
|
@param Device PCI device Device NO.
|
|
@param Func PCI device's func NO.
|
|
|
|
@return Created PCI device instance.
|
|
|
|
**/
|
|
PCI_IO_DEVICE *
|
|
GatherP2CInfo (
|
|
IN PCI_IO_DEVICE *Bridge,
|
|
IN PCI_TYPE00 *Pci,
|
|
IN UINT8 Bus,
|
|
IN UINT8 Device,
|
|
IN UINT8 Func
|
|
)
|
|
{
|
|
PCI_IO_DEVICE *PciIoDevice;
|
|
|
|
PciIoDevice = CreatePciIoDevice (
|
|
Bridge,
|
|
Pci,
|
|
Bus,
|
|
Device,
|
|
Func
|
|
);
|
|
|
|
if (PciIoDevice == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (gFullEnumeration) {
|
|
PCI_DISABLE_COMMAND_REGISTER (PciIoDevice, EFI_PCI_COMMAND_BITS_OWNED);
|
|
|
|
//
|
|
// Initialize the bridge control register
|
|
//
|
|
PCI_DISABLE_BRIDGE_CONTROL_REGISTER (PciIoDevice, EFI_PCCARD_BRIDGE_CONTROL_BITS_OWNED);
|
|
}
|
|
|
|
//
|
|
// P2C only has one bar that is in 0x10
|
|
//
|
|
PciParseBar (PciIoDevice, 0x10, P2C_BAR_0);
|
|
|
|
//
|
|
// Read PciBar information from the bar register
|
|
//
|
|
GetBackPcCardBar (PciIoDevice);
|
|
PciIoDevice->Decodes = EFI_BRIDGE_MEM32_DECODE_SUPPORTED |
|
|
EFI_BRIDGE_PMEM32_DECODE_SUPPORTED |
|
|
EFI_BRIDGE_IO32_DECODE_SUPPORTED;
|
|
|
|
DEBUG_CODE (DumpPciBars (PciIoDevice););
|
|
|
|
return PciIoDevice;
|
|
}
|
|
|
|
/**
|
|
Create device path for pci device.
|
|
|
|
@param ParentDevicePath Parent bridge's path.
|
|
@param PciIoDevice Pci device instance.
|
|
|
|
@return Device path protocol instance for specific pci device.
|
|
|
|
**/
|
|
EFI_DEVICE_PATH_PROTOCOL *
|
|
CreatePciDevicePath (
|
|
IN EFI_DEVICE_PATH_PROTOCOL *ParentDevicePath,
|
|
IN PCI_IO_DEVICE *PciIoDevice
|
|
)
|
|
{
|
|
|
|
PCI_DEVICE_PATH PciNode;
|
|
|
|
//
|
|
// Create PCI device path
|
|
//
|
|
PciNode.Header.Type = HARDWARE_DEVICE_PATH;
|
|
PciNode.Header.SubType = HW_PCI_DP;
|
|
SetDevicePathNodeLength (&PciNode.Header, sizeof (PciNode));
|
|
|
|
PciNode.Device = PciIoDevice->DeviceNumber;
|
|
PciNode.Function = PciIoDevice->FunctionNumber;
|
|
PciIoDevice->DevicePath = AppendDevicePathNode (ParentDevicePath, &PciNode.Header);
|
|
|
|
return PciIoDevice->DevicePath;
|
|
}
|
|
|
|
/**
|
|
Check whether the PCI IOV VF bar is existed or not.
|
|
|
|
@param PciIoDevice A pointer to the PCI_IO_DEVICE.
|
|
@param Offset The offset.
|
|
@param BarLengthValue The bar length value returned.
|
|
@param OriginalBarValue The original bar value returned.
|
|
|
|
@retval EFI_NOT_FOUND The bar doesn't exist.
|
|
@retval EFI_SUCCESS The bar exist.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
VfBarExisted (
|
|
IN PCI_IO_DEVICE *PciIoDevice,
|
|
IN UINTN Offset,
|
|
OUT UINT32 *BarLengthValue,
|
|
OUT UINT32 *OriginalBarValue
|
|
)
|
|
{
|
|
EFI_PCI_IO_PROTOCOL *PciIo;
|
|
UINT32 OriginalValue;
|
|
UINT32 Value;
|
|
EFI_TPL OldTpl;
|
|
|
|
//
|
|
// Ensure it is called properly
|
|
//
|
|
ASSERT (PciIoDevice->SrIovCapabilityOffset != 0);
|
|
if (PciIoDevice->SrIovCapabilityOffset == 0) {
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
PciIo = &PciIoDevice->PciIo;
|
|
|
|
//
|
|
// Preserve the original value
|
|
//
|
|
|
|
PciIo->Pci.Read (PciIo, EfiPciIoWidthUint32, (UINT32)Offset, 1, &OriginalValue);
|
|
|
|
//
|
|
// Raise TPL to high level to disable timer interrupt while the BAR is probed
|
|
//
|
|
OldTpl = gBS->RaiseTPL (TPL_HIGH_LEVEL);
|
|
|
|
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint32, (UINT32)Offset, 1, &gAllOne);
|
|
PciIo->Pci.Read (PciIo, EfiPciIoWidthUint32, (UINT32)Offset, 1, &Value);
|
|
|
|
//
|
|
// Write back the original value
|
|
//
|
|
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint32, (UINT32)Offset, 1, &OriginalValue);
|
|
|
|
//
|
|
// Restore TPL to its original level
|
|
//
|
|
gBS->RestoreTPL (OldTpl);
|
|
|
|
if (BarLengthValue != NULL) {
|
|
*BarLengthValue = Value;
|
|
}
|
|
|
|
if (OriginalBarValue != NULL) {
|
|
*OriginalBarValue = OriginalValue;
|
|
}
|
|
|
|
if (Value == 0) {
|
|
return EFI_NOT_FOUND;
|
|
} else {
|
|
return EFI_SUCCESS;
|
|
}
|
|
}
|
|
|
|
/**
|
|
Check whether the bar is existed or not.
|
|
|
|
@param PciIoDevice A pointer to the PCI_IO_DEVICE.
|
|
@param Offset The offset.
|
|
@param BarLengthValue The bar length value returned.
|
|
@param OriginalBarValue The original bar value returned.
|
|
|
|
@retval EFI_NOT_FOUND The bar doesn't exist.
|
|
@retval EFI_SUCCESS The bar exist.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
BarExisted (
|
|
IN PCI_IO_DEVICE *PciIoDevice,
|
|
IN UINTN Offset,
|
|
OUT UINT32 *BarLengthValue,
|
|
OUT UINT32 *OriginalBarValue
|
|
)
|
|
{
|
|
EFI_PCI_IO_PROTOCOL *PciIo;
|
|
UINT32 OriginalValue;
|
|
UINT32 Value;
|
|
EFI_TPL OldTpl;
|
|
|
|
PciIo = &PciIoDevice->PciIo;
|
|
|
|
//
|
|
// Preserve the original value
|
|
//
|
|
PciIo->Pci.Read (PciIo, EfiPciIoWidthUint32, (UINT8) Offset, 1, &OriginalValue);
|
|
|
|
//
|
|
// Raise TPL to high level to disable timer interrupt while the BAR is probed
|
|
//
|
|
OldTpl = gBS->RaiseTPL (TPL_HIGH_LEVEL);
|
|
|
|
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint32, (UINT8) Offset, 1, &gAllOne);
|
|
PciIo->Pci.Read (PciIo, EfiPciIoWidthUint32, (UINT8) Offset, 1, &Value);
|
|
|
|
//
|
|
// Write back the original value
|
|
//
|
|
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint32, (UINT8) Offset, 1, &OriginalValue);
|
|
|
|
//
|
|
// Restore TPL to its original level
|
|
//
|
|
gBS->RestoreTPL (OldTpl);
|
|
|
|
if (BarLengthValue != NULL) {
|
|
*BarLengthValue = Value;
|
|
}
|
|
|
|
if (OriginalBarValue != NULL) {
|
|
*OriginalBarValue = OriginalValue;
|
|
}
|
|
|
|
if (Value == 0) {
|
|
return EFI_NOT_FOUND;
|
|
} else {
|
|
return EFI_SUCCESS;
|
|
}
|
|
}
|
|
|
|
/**
|
|
Test whether the device can support given attributes.
|
|
|
|
@param PciIoDevice Pci device instance.
|
|
@param Command Input command register value, and
|
|
returned supported register value.
|
|
@param BridgeControl Input bridge control value for PPB or P2C, and
|
|
returned supported bridge control value.
|
|
@param OldCommand Returned and stored old command register offset.
|
|
@param OldBridgeControl Returned and stored old Bridge control value for PPB or P2C.
|
|
|
|
**/
|
|
VOID
|
|
PciTestSupportedAttribute (
|
|
IN PCI_IO_DEVICE *PciIoDevice,
|
|
IN OUT UINT16 *Command,
|
|
IN OUT UINT16 *BridgeControl,
|
|
OUT UINT16 *OldCommand,
|
|
OUT UINT16 *OldBridgeControl
|
|
)
|
|
{
|
|
EFI_TPL OldTpl;
|
|
|
|
//
|
|
// Preserve the original value
|
|
//
|
|
PCI_READ_COMMAND_REGISTER (PciIoDevice, OldCommand);
|
|
|
|
//
|
|
// Raise TPL to high level to disable timer interrupt while the BAR is probed
|
|
//
|
|
OldTpl = gBS->RaiseTPL (TPL_HIGH_LEVEL);
|
|
|
|
PCI_SET_COMMAND_REGISTER (PciIoDevice, *Command);
|
|
PCI_READ_COMMAND_REGISTER (PciIoDevice, Command);
|
|
|
|
//
|
|
// Write back the original value
|
|
//
|
|
PCI_SET_COMMAND_REGISTER (PciIoDevice, *OldCommand);
|
|
|
|
//
|
|
// Restore TPL to its original level
|
|
//
|
|
gBS->RestoreTPL (OldTpl);
|
|
|
|
if (IS_PCI_BRIDGE (&PciIoDevice->Pci) || IS_CARDBUS_BRIDGE (&PciIoDevice->Pci)) {
|
|
|
|
//
|
|
// Preserve the original value
|
|
//
|
|
PCI_READ_BRIDGE_CONTROL_REGISTER (PciIoDevice, OldBridgeControl);
|
|
|
|
//
|
|
// Raise TPL to high level to disable timer interrupt while the BAR is probed
|
|
//
|
|
OldTpl = gBS->RaiseTPL (TPL_HIGH_LEVEL);
|
|
|
|
PCI_SET_BRIDGE_CONTROL_REGISTER (PciIoDevice, *BridgeControl);
|
|
PCI_READ_BRIDGE_CONTROL_REGISTER (PciIoDevice, BridgeControl);
|
|
|
|
//
|
|
// Write back the original value
|
|
//
|
|
PCI_SET_BRIDGE_CONTROL_REGISTER (PciIoDevice, *OldBridgeControl);
|
|
|
|
//
|
|
// Restore TPL to its original level
|
|
//
|
|
gBS->RestoreTPL (OldTpl);
|
|
|
|
} else {
|
|
*OldBridgeControl = 0;
|
|
*BridgeControl = 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
Set the supported or current attributes of a PCI device.
|
|
|
|
@param PciIoDevice Structure pointer for PCI device.
|
|
@param Command Command register value.
|
|
@param BridgeControl Bridge control value for PPB or P2C.
|
|
@param Option Make a choice of EFI_SET_SUPPORTS or EFI_SET_ATTRIBUTES.
|
|
|
|
**/
|
|
VOID
|
|
PciSetDeviceAttribute (
|
|
IN PCI_IO_DEVICE *PciIoDevice,
|
|
IN UINT16 Command,
|
|
IN UINT16 BridgeControl,
|
|
IN UINTN Option
|
|
)
|
|
{
|
|
UINT64 Attributes;
|
|
|
|
Attributes = 0;
|
|
|
|
if ((Command & EFI_PCI_COMMAND_IO_SPACE) != 0) {
|
|
Attributes |= EFI_PCI_IO_ATTRIBUTE_IO;
|
|
}
|
|
|
|
if ((Command & EFI_PCI_COMMAND_MEMORY_SPACE) != 0) {
|
|
Attributes |= EFI_PCI_IO_ATTRIBUTE_MEMORY;
|
|
}
|
|
|
|
if ((Command & EFI_PCI_COMMAND_BUS_MASTER) != 0) {
|
|
Attributes |= EFI_PCI_IO_ATTRIBUTE_BUS_MASTER;
|
|
}
|
|
|
|
if ((Command & EFI_PCI_COMMAND_VGA_PALETTE_SNOOP) != 0) {
|
|
Attributes |= EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO;
|
|
}
|
|
|
|
if ((BridgeControl & EFI_PCI_BRIDGE_CONTROL_ISA) != 0) {
|
|
Attributes |= EFI_PCI_IO_ATTRIBUTE_ISA_IO;
|
|
}
|
|
|
|
if ((BridgeControl & EFI_PCI_BRIDGE_CONTROL_VGA) != 0) {
|
|
Attributes |= EFI_PCI_IO_ATTRIBUTE_VGA_IO;
|
|
Attributes |= EFI_PCI_IO_ATTRIBUTE_VGA_MEMORY;
|
|
Attributes |= EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO;
|
|
}
|
|
|
|
if ((BridgeControl & EFI_PCI_BRIDGE_CONTROL_VGA_16) != 0) {
|
|
Attributes |= EFI_PCI_IO_ATTRIBUTE_VGA_IO_16;
|
|
Attributes |= EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO_16;
|
|
}
|
|
|
|
if (Option == EFI_SET_SUPPORTS) {
|
|
|
|
Attributes |= (UINT64) (EFI_PCI_IO_ATTRIBUTE_MEMORY_WRITE_COMBINE |
|
|
EFI_PCI_IO_ATTRIBUTE_MEMORY_CACHED |
|
|
EFI_PCI_IO_ATTRIBUTE_MEMORY_DISABLE |
|
|
EFI_PCI_IO_ATTRIBUTE_EMBEDDED_DEVICE |
|
|
EFI_PCI_IO_ATTRIBUTE_EMBEDDED_ROM |
|
|
EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE);
|
|
|
|
if (IS_PCI_LPC (&PciIoDevice->Pci)) {
|
|
Attributes |= EFI_PCI_IO_ATTRIBUTE_ISA_MOTHERBOARD_IO;
|
|
Attributes |= (mReserveIsaAliases ? (UINT64) EFI_PCI_IO_ATTRIBUTE_ISA_IO : \
|
|
(UINT64) EFI_PCI_IO_ATTRIBUTE_ISA_IO_16);
|
|
}
|
|
|
|
if (IS_PCI_BRIDGE (&PciIoDevice->Pci) || IS_CARDBUS_BRIDGE (&PciIoDevice->Pci)) {
|
|
//
|
|
// For bridge, it should support IDE attributes
|
|
//
|
|
Attributes |= EFI_PCI_IO_ATTRIBUTE_IDE_SECONDARY_IO;
|
|
Attributes |= EFI_PCI_IO_ATTRIBUTE_IDE_PRIMARY_IO;
|
|
|
|
if (mReserveVgaAliases) {
|
|
Attributes &= ~(UINT64)(EFI_PCI_IO_ATTRIBUTE_VGA_IO_16 | \
|
|
EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO_16);
|
|
} else {
|
|
Attributes &= ~(UINT64)(EFI_PCI_IO_ATTRIBUTE_VGA_IO | \
|
|
EFI_PCI_IO_ATTRIBUTE_VGA_PALETTE_IO);
|
|
}
|
|
} else {
|
|
|
|
if (IS_PCI_IDE (&PciIoDevice->Pci)) {
|
|
Attributes |= EFI_PCI_IO_ATTRIBUTE_IDE_SECONDARY_IO;
|
|
Attributes |= EFI_PCI_IO_ATTRIBUTE_IDE_PRIMARY_IO;
|
|
}
|
|
|
|
if (IS_PCI_VGA (&PciIoDevice->Pci)) {
|
|
Attributes |= EFI_PCI_IO_ATTRIBUTE_VGA_MEMORY;
|
|
Attributes |= (mReserveVgaAliases ? (UINT64) EFI_PCI_IO_ATTRIBUTE_VGA_IO : \
|
|
(UINT64) EFI_PCI_IO_ATTRIBUTE_VGA_IO_16);
|
|
}
|
|
}
|
|
|
|
PciIoDevice->Supports = Attributes;
|
|
PciIoDevice->Supports &= ( (PciIoDevice->Parent->Supports) | \
|
|
EFI_PCI_IO_ATTRIBUTE_IO | EFI_PCI_IO_ATTRIBUTE_MEMORY | \
|
|
EFI_PCI_IO_ATTRIBUTE_BUS_MASTER );
|
|
|
|
} else {
|
|
//
|
|
// When this attribute is clear, the RomImage and RomSize fields in the PCI IO were
|
|
// initialized based on the PCI option ROM found through the ROM BAR of the PCI controller.
|
|
// When this attribute is set, the PCI option ROM described by the RomImage and RomSize
|
|
// fields is not from the the ROM BAR of the PCI controller.
|
|
//
|
|
if (!PciIoDevice->EmbeddedRom) {
|
|
Attributes |= EFI_PCI_IO_ATTRIBUTE_EMBEDDED_ROM;
|
|
}
|
|
PciIoDevice->Attributes = Attributes;
|
|
}
|
|
}
|
|
|
|
/**
|
|
Determine if the device can support Fast Back to Back attribute.
|
|
|
|
@param PciIoDevice Pci device instance.
|
|
@param StatusIndex Status register value.
|
|
|
|
@retval EFI_SUCCESS This device support Fast Back to Back attribute.
|
|
@retval EFI_UNSUPPORTED This device doesn't support Fast Back to Back attribute.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
GetFastBackToBackSupport (
|
|
IN PCI_IO_DEVICE *PciIoDevice,
|
|
IN UINT8 StatusIndex
|
|
)
|
|
{
|
|
EFI_PCI_IO_PROTOCOL *PciIo;
|
|
EFI_STATUS Status;
|
|
UINT32 StatusRegister;
|
|
|
|
//
|
|
// Read the status register
|
|
//
|
|
PciIo = &PciIoDevice->PciIo;
|
|
Status = PciIo->Pci.Read (PciIo, EfiPciIoWidthUint16, StatusIndex, 1, &StatusRegister);
|
|
if (EFI_ERROR (Status)) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
//
|
|
// Check the Fast B2B bit
|
|
//
|
|
if ((StatusRegister & EFI_PCI_FAST_BACK_TO_BACK_CAPABLE) != 0) {
|
|
return EFI_SUCCESS;
|
|
} else {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
}
|
|
|
|
/**
|
|
Process the option ROM for all the children of the specified parent PCI device.
|
|
It can only be used after the first full Option ROM process.
|
|
|
|
@param PciIoDevice Pci device instance.
|
|
|
|
**/
|
|
VOID
|
|
ProcessOptionRomLight (
|
|
IN PCI_IO_DEVICE *PciIoDevice
|
|
)
|
|
{
|
|
PCI_IO_DEVICE *Temp;
|
|
LIST_ENTRY *CurrentLink;
|
|
|
|
//
|
|
// For RootBridge, PPB , P2C, go recursively to traverse all its children
|
|
//
|
|
CurrentLink = PciIoDevice->ChildList.ForwardLink;
|
|
while (CurrentLink != NULL && CurrentLink != &PciIoDevice->ChildList) {
|
|
|
|
Temp = PCI_IO_DEVICE_FROM_LINK (CurrentLink);
|
|
|
|
if (!IsListEmpty (&Temp->ChildList)) {
|
|
ProcessOptionRomLight (Temp);
|
|
}
|
|
|
|
PciRomGetImageMapping (Temp);
|
|
|
|
//
|
|
// The OpRom has already been processed in the first round
|
|
//
|
|
Temp->AllOpRomProcessed = TRUE;
|
|
|
|
CurrentLink = CurrentLink->ForwardLink;
|
|
}
|
|
}
|
|
|
|
/**
|
|
Determine the related attributes of all devices under a Root Bridge.
|
|
|
|
@param PciIoDevice PCI device instance.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
DetermineDeviceAttribute (
|
|
IN PCI_IO_DEVICE *PciIoDevice
|
|
)
|
|
{
|
|
UINT16 Command;
|
|
UINT16 BridgeControl;
|
|
UINT16 OldCommand;
|
|
UINT16 OldBridgeControl;
|
|
BOOLEAN FastB2BSupport;
|
|
PCI_IO_DEVICE *Temp;
|
|
LIST_ENTRY *CurrentLink;
|
|
EFI_STATUS Status;
|
|
|
|
//
|
|
// For Root Bridge, just copy it by RootBridgeIo protocol
|
|
// so as to keep consistent with the actual attribute
|
|
//
|
|
if (PciIoDevice->Parent == NULL) {
|
|
Status = PciIoDevice->PciRootBridgeIo->GetAttributes (
|
|
PciIoDevice->PciRootBridgeIo,
|
|
&PciIoDevice->Supports,
|
|
&PciIoDevice->Attributes
|
|
);
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
//
|
|
// Assume the PCI Root Bridge supports DAC
|
|
//
|
|
PciIoDevice->Supports |= (UINT64)(EFI_PCI_IO_ATTRIBUTE_EMBEDDED_DEVICE |
|
|
EFI_PCI_IO_ATTRIBUTE_EMBEDDED_ROM |
|
|
EFI_PCI_IO_ATTRIBUTE_DUAL_ADDRESS_CYCLE);
|
|
|
|
} else {
|
|
|
|
//
|
|
// Set the attributes to be checked for common PCI devices and PPB or P2C
|
|
// Since some devices only support part of them, it is better to set the
|
|
// attribute according to its command or bridge control register
|
|
//
|
|
Command = EFI_PCI_COMMAND_IO_SPACE |
|
|
EFI_PCI_COMMAND_MEMORY_SPACE |
|
|
EFI_PCI_COMMAND_BUS_MASTER |
|
|
EFI_PCI_COMMAND_VGA_PALETTE_SNOOP;
|
|
|
|
BridgeControl = EFI_PCI_BRIDGE_CONTROL_ISA | EFI_PCI_BRIDGE_CONTROL_VGA | EFI_PCI_BRIDGE_CONTROL_VGA_16;
|
|
|
|
//
|
|
// Test whether the device can support attributes above
|
|
//
|
|
PciTestSupportedAttribute (PciIoDevice, &Command, &BridgeControl, &OldCommand, &OldBridgeControl);
|
|
|
|
//
|
|
// Set the supported attributes for specified PCI device
|
|
//
|
|
PciSetDeviceAttribute (PciIoDevice, Command, BridgeControl, EFI_SET_SUPPORTS);
|
|
|
|
//
|
|
// Set the current attributes for specified PCI device
|
|
//
|
|
PciSetDeviceAttribute (PciIoDevice, OldCommand, OldBridgeControl, EFI_SET_ATTRIBUTES);
|
|
|
|
//
|
|
// Enable other PCI supported attributes but not defined in PCI_IO_PROTOCOL
|
|
// For PCI Express devices, Memory Write and Invalidate is hardwired to 0b so only enable it for PCI devices.
|
|
if (!PciIoDevice->IsPciExp) {
|
|
PCI_ENABLE_COMMAND_REGISTER (PciIoDevice, EFI_PCI_COMMAND_MEMORY_WRITE_AND_INVALIDATE);
|
|
}
|
|
}
|
|
|
|
FastB2BSupport = TRUE;
|
|
|
|
//
|
|
// P2C can not support FB2B on the secondary side
|
|
//
|
|
if (IS_CARDBUS_BRIDGE (&PciIoDevice->Pci)) {
|
|
FastB2BSupport = FALSE;
|
|
}
|
|
|
|
//
|
|
// For RootBridge, PPB , P2C, go recursively to traverse all its children
|
|
//
|
|
CurrentLink = PciIoDevice->ChildList.ForwardLink;
|
|
while (CurrentLink != NULL && CurrentLink != &PciIoDevice->ChildList) {
|
|
|
|
Temp = PCI_IO_DEVICE_FROM_LINK (CurrentLink);
|
|
Status = DetermineDeviceAttribute (Temp);
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
//
|
|
// Detect Fast Back to Back support for the device under the bridge
|
|
//
|
|
Status = GetFastBackToBackSupport (Temp, PCI_PRIMARY_STATUS_OFFSET);
|
|
if (FastB2BSupport && EFI_ERROR (Status)) {
|
|
FastB2BSupport = FALSE;
|
|
}
|
|
|
|
CurrentLink = CurrentLink->ForwardLink;
|
|
}
|
|
//
|
|
// Set or clear Fast Back to Back bit for the whole bridge
|
|
//
|
|
if (!IsListEmpty (&PciIoDevice->ChildList)) {
|
|
|
|
if (IS_PCI_BRIDGE (&PciIoDevice->Pci)) {
|
|
|
|
Status = GetFastBackToBackSupport (PciIoDevice, PCI_BRIDGE_STATUS_REGISTER_OFFSET);
|
|
|
|
if (EFI_ERROR (Status) || (!FastB2BSupport)) {
|
|
FastB2BSupport = FALSE;
|
|
PCI_DISABLE_BRIDGE_CONTROL_REGISTER (PciIoDevice, EFI_PCI_BRIDGE_CONTROL_FAST_BACK_TO_BACK);
|
|
} else {
|
|
PCI_ENABLE_BRIDGE_CONTROL_REGISTER (PciIoDevice, EFI_PCI_BRIDGE_CONTROL_FAST_BACK_TO_BACK);
|
|
}
|
|
}
|
|
|
|
CurrentLink = PciIoDevice->ChildList.ForwardLink;
|
|
while (CurrentLink != NULL && CurrentLink != &PciIoDevice->ChildList) {
|
|
Temp = PCI_IO_DEVICE_FROM_LINK (CurrentLink);
|
|
if (FastB2BSupport) {
|
|
PCI_ENABLE_COMMAND_REGISTER (Temp, EFI_PCI_COMMAND_FAST_BACK_TO_BACK);
|
|
} else {
|
|
PCI_DISABLE_COMMAND_REGISTER (Temp, EFI_PCI_COMMAND_FAST_BACK_TO_BACK);
|
|
}
|
|
|
|
CurrentLink = CurrentLink->ForwardLink;
|
|
}
|
|
}
|
|
//
|
|
// End for IsListEmpty
|
|
//
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
This routine is used to update the bar information for those incompatible PCI device.
|
|
|
|
@param PciIoDevice Input Pci device instance. Output Pci device instance with updated
|
|
Bar information.
|
|
|
|
@retval EFI_SUCCESS Successfully updated bar information.
|
|
@retval EFI_UNSUPPORTED Given PCI device doesn't belong to incompatible PCI device list.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
UpdatePciInfo (
|
|
IN OUT PCI_IO_DEVICE *PciIoDevice
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
UINTN BarIndex;
|
|
BOOLEAN SetFlag;
|
|
VOID *Configuration;
|
|
EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Ptr;
|
|
|
|
Configuration = NULL;
|
|
Status = EFI_SUCCESS;
|
|
|
|
if (gIncompatiblePciDeviceSupport == NULL) {
|
|
//
|
|
// It can only be supported after the Incompatible PCI Device
|
|
// Support Protocol has been installed
|
|
//
|
|
Status = gBS->LocateProtocol (
|
|
&gEfiIncompatiblePciDeviceSupportProtocolGuid,
|
|
NULL,
|
|
(VOID **) &gIncompatiblePciDeviceSupport
|
|
);
|
|
}
|
|
if (Status == EFI_SUCCESS) {
|
|
//
|
|
// Check whether the device belongs to incompatible devices from protocol or not
|
|
// If it is , then get its special requirement in the ACPI table
|
|
//
|
|
Status = gIncompatiblePciDeviceSupport->CheckDevice (
|
|
gIncompatiblePciDeviceSupport,
|
|
PciIoDevice->Pci.Hdr.VendorId,
|
|
PciIoDevice->Pci.Hdr.DeviceId,
|
|
PciIoDevice->Pci.Hdr.RevisionID,
|
|
PciIoDevice->Pci.Device.SubsystemVendorID,
|
|
PciIoDevice->Pci.Device.SubsystemID,
|
|
&Configuration
|
|
);
|
|
|
|
}
|
|
|
|
if (EFI_ERROR (Status) || Configuration == NULL ) {
|
|
return EFI_UNSUPPORTED;
|
|
}
|
|
|
|
//
|
|
// Update PCI device information from the ACPI table
|
|
//
|
|
Ptr = (EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *) Configuration;
|
|
|
|
while (Ptr->Desc != ACPI_END_TAG_DESCRIPTOR) {
|
|
|
|
if (Ptr->Desc != ACPI_ADDRESS_SPACE_DESCRIPTOR) {
|
|
//
|
|
// The format is not support
|
|
//
|
|
break;
|
|
}
|
|
|
|
for (BarIndex = 0; BarIndex < PCI_MAX_BAR; BarIndex++) {
|
|
if ((Ptr->AddrTranslationOffset != MAX_UINT64) &&
|
|
(Ptr->AddrTranslationOffset != MAX_UINT8) &&
|
|
(Ptr->AddrTranslationOffset != BarIndex)
|
|
) {
|
|
//
|
|
// Skip updating when AddrTranslationOffset is not MAX_UINT64 or MAX_UINT8 (wide match).
|
|
// Skip updating when current BarIndex doesn't equal to AddrTranslationOffset.
|
|
// Comparing against MAX_UINT8 is to keep backward compatibility.
|
|
//
|
|
continue;
|
|
}
|
|
|
|
SetFlag = FALSE;
|
|
switch (Ptr->ResType) {
|
|
case ACPI_ADDRESS_SPACE_TYPE_MEM:
|
|
|
|
//
|
|
// Make sure the bar is memory type
|
|
//
|
|
if (CheckBarType (PciIoDevice, (UINT8) BarIndex, PciBarTypeMem)) {
|
|
SetFlag = TRUE;
|
|
|
|
//
|
|
// Ignored if granularity is 0.
|
|
// Ignored if PCI BAR is I/O or 32-bit memory.
|
|
// If PCI BAR is 64-bit memory and granularity is 32, then
|
|
// the PCI BAR resource is allocated below 4GB.
|
|
// If PCI BAR is 64-bit memory and granularity is 64, then
|
|
// the PCI BAR resource is allocated above 4GB.
|
|
//
|
|
if (PciIoDevice->PciBar[BarIndex].BarType == PciBarTypeMem64) {
|
|
switch (Ptr->AddrSpaceGranularity) {
|
|
case 32:
|
|
PciIoDevice->PciBar[BarIndex].BarType = PciBarTypeMem32;
|
|
case 64:
|
|
PciIoDevice->PciBar[BarIndex].BarTypeFixed = TRUE;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (PciIoDevice->PciBar[BarIndex].BarType == PciBarTypePMem64) {
|
|
switch (Ptr->AddrSpaceGranularity) {
|
|
case 32:
|
|
PciIoDevice->PciBar[BarIndex].BarType = PciBarTypePMem32;
|
|
case 64:
|
|
PciIoDevice->PciBar[BarIndex].BarTypeFixed = TRUE;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ACPI_ADDRESS_SPACE_TYPE_IO:
|
|
|
|
//
|
|
// Make sure the bar is IO type
|
|
//
|
|
if (CheckBarType (PciIoDevice, (UINT8) BarIndex, PciBarTypeIo)) {
|
|
SetFlag = TRUE;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (SetFlag) {
|
|
|
|
//
|
|
// Update the new alignment for the device
|
|
//
|
|
SetNewAlign (&(PciIoDevice->PciBar[BarIndex].Alignment), Ptr->AddrRangeMax);
|
|
|
|
//
|
|
// Update the new length for the device
|
|
//
|
|
if (Ptr->AddrLen != 0) {
|
|
PciIoDevice->PciBar[BarIndex].Length = Ptr->AddrLen;
|
|
}
|
|
}
|
|
}
|
|
|
|
Ptr++;
|
|
}
|
|
|
|
FreePool (Configuration);
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
This routine will update the alignment with the new alignment.
|
|
Compare with OLD_ALIGN/EVEN_ALIGN/SQUAD_ALIGN/DQUAD_ALIGN is to keep
|
|
backward compatibility.
|
|
|
|
@param Alignment Input Old alignment. Output updated alignment.
|
|
@param NewAlignment New alignment.
|
|
|
|
**/
|
|
VOID
|
|
SetNewAlign (
|
|
IN OUT UINT64 *Alignment,
|
|
IN UINT64 NewAlignment
|
|
)
|
|
{
|
|
UINT64 OldAlignment;
|
|
UINTN ShiftBit;
|
|
|
|
//
|
|
// The new alignment is the same as the original,
|
|
// so skip it
|
|
//
|
|
if ((NewAlignment == 0) || (NewAlignment == OLD_ALIGN)) {
|
|
return ;
|
|
}
|
|
//
|
|
// Check the validity of the parameter
|
|
//
|
|
if (NewAlignment != EVEN_ALIGN &&
|
|
NewAlignment != SQUAD_ALIGN &&
|
|
NewAlignment != DQUAD_ALIGN ) {
|
|
*Alignment = NewAlignment;
|
|
return ;
|
|
}
|
|
|
|
OldAlignment = (*Alignment) + 1;
|
|
ShiftBit = 0;
|
|
|
|
//
|
|
// Get the first non-zero hex value of the length
|
|
//
|
|
while ((OldAlignment & 0x0F) == 0x00) {
|
|
OldAlignment = RShiftU64 (OldAlignment, 4);
|
|
ShiftBit += 4;
|
|
}
|
|
|
|
//
|
|
// Adjust the alignment to even, quad or double quad boundary
|
|
//
|
|
if (NewAlignment == EVEN_ALIGN) {
|
|
if ((OldAlignment & 0x01) != 0) {
|
|
OldAlignment = OldAlignment + 2 - (OldAlignment & 0x01);
|
|
}
|
|
} else if (NewAlignment == SQUAD_ALIGN) {
|
|
if ((OldAlignment & 0x03) != 0) {
|
|
OldAlignment = OldAlignment + 4 - (OldAlignment & 0x03);
|
|
}
|
|
} else if (NewAlignment == DQUAD_ALIGN) {
|
|
if ((OldAlignment & 0x07) != 0) {
|
|
OldAlignment = OldAlignment + 8 - (OldAlignment & 0x07);
|
|
}
|
|
}
|
|
|
|
//
|
|
// Update the old value
|
|
//
|
|
NewAlignment = LShiftU64 (OldAlignment, ShiftBit) - 1;
|
|
*Alignment = NewAlignment;
|
|
|
|
return ;
|
|
}
|
|
|
|
/**
|
|
Parse PCI IOV VF bar information and fill them into PCI device instance.
|
|
|
|
@param PciIoDevice Pci device instance.
|
|
@param Offset Bar offset.
|
|
@param BarIndex Bar index.
|
|
|
|
@return Next bar offset.
|
|
|
|
**/
|
|
UINTN
|
|
PciIovParseVfBar (
|
|
IN PCI_IO_DEVICE *PciIoDevice,
|
|
IN UINTN Offset,
|
|
IN UINTN BarIndex
|
|
)
|
|
{
|
|
UINT32 Value;
|
|
UINT32 OriginalValue;
|
|
UINT32 Mask;
|
|
EFI_STATUS Status;
|
|
|
|
//
|
|
// Ensure it is called properly
|
|
//
|
|
ASSERT (PciIoDevice->SrIovCapabilityOffset != 0);
|
|
if (PciIoDevice->SrIovCapabilityOffset == 0) {
|
|
return 0;
|
|
}
|
|
|
|
OriginalValue = 0;
|
|
Value = 0;
|
|
|
|
Status = VfBarExisted (
|
|
PciIoDevice,
|
|
Offset,
|
|
&Value,
|
|
&OriginalValue
|
|
);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
PciIoDevice->VfPciBar[BarIndex].BaseAddress = 0;
|
|
PciIoDevice->VfPciBar[BarIndex].Length = 0;
|
|
PciIoDevice->VfPciBar[BarIndex].Alignment = 0;
|
|
|
|
//
|
|
// Scan all the BARs anyway
|
|
//
|
|
PciIoDevice->VfPciBar[BarIndex].Offset = (UINT16) Offset;
|
|
return Offset + 4;
|
|
}
|
|
|
|
PciIoDevice->VfPciBar[BarIndex].Offset = (UINT16) Offset;
|
|
if ((Value & 0x01) != 0) {
|
|
//
|
|
// Device I/Os. Impossible
|
|
//
|
|
ASSERT (FALSE);
|
|
return Offset + 4;
|
|
|
|
} else {
|
|
|
|
Mask = 0xfffffff0;
|
|
|
|
PciIoDevice->VfPciBar[BarIndex].BaseAddress = OriginalValue & Mask;
|
|
|
|
switch (Value & 0x07) {
|
|
|
|
//
|
|
//memory space; anywhere in 32 bit address space
|
|
//
|
|
case 0x00:
|
|
if ((Value & 0x08) != 0) {
|
|
PciIoDevice->VfPciBar[BarIndex].BarType = PciBarTypePMem32;
|
|
} else {
|
|
PciIoDevice->VfPciBar[BarIndex].BarType = PciBarTypeMem32;
|
|
}
|
|
|
|
PciIoDevice->VfPciBar[BarIndex].Length = (~(Value & Mask)) + 1;
|
|
PciIoDevice->VfPciBar[BarIndex].Alignment = PciIoDevice->VfPciBar[BarIndex].Length - 1;
|
|
|
|
//
|
|
// Adjust Length
|
|
//
|
|
PciIoDevice->VfPciBar[BarIndex].Length = MultU64x32 (PciIoDevice->VfPciBar[BarIndex].Length, PciIoDevice->InitialVFs);
|
|
//
|
|
// Adjust Alignment
|
|
//
|
|
if (PciIoDevice->VfPciBar[BarIndex].Alignment < PciIoDevice->SystemPageSize - 1) {
|
|
PciIoDevice->VfPciBar[BarIndex].Alignment = PciIoDevice->SystemPageSize - 1;
|
|
}
|
|
|
|
break;
|
|
|
|
//
|
|
// memory space; anywhere in 64 bit address space
|
|
//
|
|
case 0x04:
|
|
if ((Value & 0x08) != 0) {
|
|
PciIoDevice->VfPciBar[BarIndex].BarType = PciBarTypePMem64;
|
|
} else {
|
|
PciIoDevice->VfPciBar[BarIndex].BarType = PciBarTypeMem64;
|
|
}
|
|
|
|
//
|
|
// According to PCI 2.2,if the bar indicates a memory 64 decoding, next bar
|
|
// is regarded as an extension for the first bar. As a result
|
|
// the sizing will be conducted on combined 64 bit value
|
|
// Here just store the masked first 32bit value for future size
|
|
// calculation
|
|
//
|
|
PciIoDevice->VfPciBar[BarIndex].Length = Value & Mask;
|
|
PciIoDevice->VfPciBar[BarIndex].Alignment = PciIoDevice->VfPciBar[BarIndex].Length - 1;
|
|
|
|
if (PciIoDevice->VfPciBar[BarIndex].Alignment < PciIoDevice->SystemPageSize - 1) {
|
|
PciIoDevice->VfPciBar[BarIndex].Alignment = PciIoDevice->SystemPageSize - 1;
|
|
}
|
|
|
|
//
|
|
// Increment the offset to point to next DWORD
|
|
//
|
|
Offset += 4;
|
|
|
|
Status = VfBarExisted (
|
|
PciIoDevice,
|
|
Offset,
|
|
&Value,
|
|
&OriginalValue
|
|
);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
return Offset + 4;
|
|
}
|
|
|
|
//
|
|
// Fix the length to support some special 64 bit BAR
|
|
//
|
|
Value |= ((UINT32) -1 << HighBitSet32 (Value));
|
|
|
|
//
|
|
// Calculate the size of 64bit bar
|
|
//
|
|
PciIoDevice->VfPciBar[BarIndex].BaseAddress |= LShiftU64 ((UINT64) OriginalValue, 32);
|
|
|
|
PciIoDevice->VfPciBar[BarIndex].Length = PciIoDevice->VfPciBar[BarIndex].Length | LShiftU64 ((UINT64) Value, 32);
|
|
PciIoDevice->VfPciBar[BarIndex].Length = (~(PciIoDevice->VfPciBar[BarIndex].Length)) + 1;
|
|
PciIoDevice->VfPciBar[BarIndex].Alignment = PciIoDevice->VfPciBar[BarIndex].Length - 1;
|
|
|
|
//
|
|
// Adjust Length
|
|
//
|
|
PciIoDevice->VfPciBar[BarIndex].Length = MultU64x32 (PciIoDevice->VfPciBar[BarIndex].Length, PciIoDevice->InitialVFs);
|
|
//
|
|
// Adjust Alignment
|
|
//
|
|
if (PciIoDevice->VfPciBar[BarIndex].Alignment < PciIoDevice->SystemPageSize - 1) {
|
|
PciIoDevice->VfPciBar[BarIndex].Alignment = PciIoDevice->SystemPageSize - 1;
|
|
}
|
|
|
|
break;
|
|
|
|
//
|
|
// reserved
|
|
//
|
|
default:
|
|
PciIoDevice->VfPciBar[BarIndex].BarType = PciBarTypeUnknown;
|
|
PciIoDevice->VfPciBar[BarIndex].Length = (~(Value & Mask)) + 1;
|
|
PciIoDevice->VfPciBar[BarIndex].Alignment = PciIoDevice->VfPciBar[BarIndex].Length - 1;
|
|
|
|
if (PciIoDevice->VfPciBar[BarIndex].Alignment < PciIoDevice->SystemPageSize - 1) {
|
|
PciIoDevice->VfPciBar[BarIndex].Alignment = PciIoDevice->SystemPageSize - 1;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Check the length again so as to keep compatible with some special bars
|
|
//
|
|
if (PciIoDevice->VfPciBar[BarIndex].Length == 0) {
|
|
PciIoDevice->VfPciBar[BarIndex].BarType = PciBarTypeUnknown;
|
|
PciIoDevice->VfPciBar[BarIndex].BaseAddress = 0;
|
|
PciIoDevice->VfPciBar[BarIndex].Alignment = 0;
|
|
}
|
|
|
|
//
|
|
// Increment number of bar
|
|
//
|
|
return Offset + 4;
|
|
}
|
|
|
|
/**
|
|
Parse PCI bar information and fill them into PCI device instance.
|
|
|
|
@param PciIoDevice Pci device instance.
|
|
@param Offset Bar offset.
|
|
@param BarIndex Bar index.
|
|
|
|
@return Next bar offset.
|
|
|
|
**/
|
|
UINTN
|
|
PciParseBar (
|
|
IN PCI_IO_DEVICE *PciIoDevice,
|
|
IN UINTN Offset,
|
|
IN UINTN BarIndex
|
|
)
|
|
{
|
|
UINT32 Value;
|
|
UINT32 OriginalValue;
|
|
UINT32 Mask;
|
|
EFI_STATUS Status;
|
|
|
|
OriginalValue = 0;
|
|
Value = 0;
|
|
|
|
Status = BarExisted (
|
|
PciIoDevice,
|
|
Offset,
|
|
&Value,
|
|
&OriginalValue
|
|
);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
PciIoDevice->PciBar[BarIndex].BaseAddress = 0;
|
|
PciIoDevice->PciBar[BarIndex].Length = 0;
|
|
PciIoDevice->PciBar[BarIndex].Alignment = 0;
|
|
|
|
//
|
|
// Some devices don't fully comply to PCI spec 2.2. So be to scan all the BARs anyway
|
|
//
|
|
PciIoDevice->PciBar[BarIndex].Offset = (UINT8) Offset;
|
|
return Offset + 4;
|
|
}
|
|
|
|
PciIoDevice->PciBar[BarIndex].BarTypeFixed = FALSE;
|
|
PciIoDevice->PciBar[BarIndex].Offset = (UINT8) Offset;
|
|
if ((Value & 0x01) != 0) {
|
|
//
|
|
// Device I/Os
|
|
//
|
|
Mask = 0xfffffffc;
|
|
|
|
if ((Value & 0xFFFF0000) != 0) {
|
|
//
|
|
// It is a IO32 bar
|
|
//
|
|
PciIoDevice->PciBar[BarIndex].BarType = PciBarTypeIo32;
|
|
PciIoDevice->PciBar[BarIndex].Length = ((~(Value & Mask)) + 1);
|
|
PciIoDevice->PciBar[BarIndex].Alignment = PciIoDevice->PciBar[BarIndex].Length - 1;
|
|
|
|
} else {
|
|
//
|
|
// It is a IO16 bar
|
|
//
|
|
PciIoDevice->PciBar[BarIndex].BarType = PciBarTypeIo16;
|
|
PciIoDevice->PciBar[BarIndex].Length = 0x0000FFFF & ((~(Value & Mask)) + 1);
|
|
PciIoDevice->PciBar[BarIndex].Alignment = PciIoDevice->PciBar[BarIndex].Length - 1;
|
|
|
|
}
|
|
//
|
|
// Workaround. Some platforms implement IO bar with 0 length
|
|
// Need to treat it as no-bar
|
|
//
|
|
if (PciIoDevice->PciBar[BarIndex].Length == 0) {
|
|
PciIoDevice->PciBar[BarIndex].BarType = (PCI_BAR_TYPE) 0;
|
|
}
|
|
|
|
PciIoDevice->PciBar[BarIndex].BaseAddress = OriginalValue & Mask;
|
|
|
|
} else {
|
|
|
|
Mask = 0xfffffff0;
|
|
|
|
PciIoDevice->PciBar[BarIndex].BaseAddress = OriginalValue & Mask;
|
|
|
|
switch (Value & 0x07) {
|
|
|
|
//
|
|
//memory space; anywhere in 32 bit address space
|
|
//
|
|
case 0x00:
|
|
if ((Value & 0x08) != 0) {
|
|
PciIoDevice->PciBar[BarIndex].BarType = PciBarTypePMem32;
|
|
} else {
|
|
PciIoDevice->PciBar[BarIndex].BarType = PciBarTypeMem32;
|
|
}
|
|
|
|
PciIoDevice->PciBar[BarIndex].Length = (~(Value & Mask)) + 1;
|
|
if (PciIoDevice->PciBar[BarIndex].Length < (SIZE_4KB)) {
|
|
//
|
|
// Force minimum 4KByte alignment for Virtualization technology for Directed I/O
|
|
//
|
|
PciIoDevice->PciBar[BarIndex].Alignment = (SIZE_4KB - 1);
|
|
} else {
|
|
PciIoDevice->PciBar[BarIndex].Alignment = PciIoDevice->PciBar[BarIndex].Length - 1;
|
|
}
|
|
break;
|
|
|
|
//
|
|
// memory space; anywhere in 64 bit address space
|
|
//
|
|
case 0x04:
|
|
if ((Value & 0x08) != 0) {
|
|
PciIoDevice->PciBar[BarIndex].BarType = PciBarTypePMem64;
|
|
} else {
|
|
PciIoDevice->PciBar[BarIndex].BarType = PciBarTypeMem64;
|
|
}
|
|
|
|
//
|
|
// According to PCI 2.2,if the bar indicates a memory 64 decoding, next bar
|
|
// is regarded as an extension for the first bar. As a result
|
|
// the sizing will be conducted on combined 64 bit value
|
|
// Here just store the masked first 32bit value for future size
|
|
// calculation
|
|
//
|
|
PciIoDevice->PciBar[BarIndex].Length = Value & Mask;
|
|
PciIoDevice->PciBar[BarIndex].Alignment = PciIoDevice->PciBar[BarIndex].Length - 1;
|
|
|
|
//
|
|
// Increment the offset to point to next DWORD
|
|
//
|
|
Offset += 4;
|
|
|
|
Status = BarExisted (
|
|
PciIoDevice,
|
|
Offset,
|
|
&Value,
|
|
&OriginalValue
|
|
);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
//
|
|
// the high 32 bit does not claim any BAR, we need to re-check the low 32 bit BAR again
|
|
//
|
|
if (PciIoDevice->PciBar[BarIndex].Length == 0) {
|
|
//
|
|
// some device implement MMIO bar with 0 length, need to treat it as no-bar
|
|
//
|
|
PciIoDevice->PciBar[BarIndex].BarType = PciBarTypeUnknown;
|
|
return Offset + 4;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Fix the length to support some special 64 bit BAR
|
|
//
|
|
if (Value == 0) {
|
|
DEBUG ((EFI_D_INFO, "[PciBus]BAR probing for upper 32bit of MEM64 BAR returns 0, change to 0xFFFFFFFF.\n"));
|
|
Value = (UINT32) -1;
|
|
} else {
|
|
Value |= ((UINT32)(-1) << HighBitSet32 (Value));
|
|
}
|
|
|
|
//
|
|
// Calculate the size of 64bit bar
|
|
//
|
|
PciIoDevice->PciBar[BarIndex].BaseAddress |= LShiftU64 ((UINT64) OriginalValue, 32);
|
|
|
|
PciIoDevice->PciBar[BarIndex].Length = PciIoDevice->PciBar[BarIndex].Length | LShiftU64 ((UINT64) Value, 32);
|
|
PciIoDevice->PciBar[BarIndex].Length = (~(PciIoDevice->PciBar[BarIndex].Length)) + 1;
|
|
if (PciIoDevice->PciBar[BarIndex].Length < (SIZE_4KB)) {
|
|
//
|
|
// Force minimum 4KByte alignment for Virtualization technology for Directed I/O
|
|
//
|
|
PciIoDevice->PciBar[BarIndex].Alignment = (SIZE_4KB - 1);
|
|
} else {
|
|
PciIoDevice->PciBar[BarIndex].Alignment = PciIoDevice->PciBar[BarIndex].Length - 1;
|
|
}
|
|
|
|
break;
|
|
|
|
//
|
|
// reserved
|
|
//
|
|
default:
|
|
PciIoDevice->PciBar[BarIndex].BarType = PciBarTypeUnknown;
|
|
PciIoDevice->PciBar[BarIndex].Length = (~(Value & Mask)) + 1;
|
|
if (PciIoDevice->PciBar[BarIndex].Length < (SIZE_4KB)) {
|
|
//
|
|
// Force minimum 4KByte alignment for Virtualization technology for Directed I/O
|
|
//
|
|
PciIoDevice->PciBar[BarIndex].Alignment = (SIZE_4KB - 1);
|
|
} else {
|
|
PciIoDevice->PciBar[BarIndex].Alignment = PciIoDevice->PciBar[BarIndex].Length - 1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
//
|
|
// Check the length again so as to keep compatible with some special bars
|
|
//
|
|
if (PciIoDevice->PciBar[BarIndex].Length == 0) {
|
|
PciIoDevice->PciBar[BarIndex].BarType = PciBarTypeUnknown;
|
|
PciIoDevice->PciBar[BarIndex].BaseAddress = 0;
|
|
PciIoDevice->PciBar[BarIndex].Alignment = 0;
|
|
}
|
|
|
|
//
|
|
// Increment number of bar
|
|
//
|
|
return Offset + 4;
|
|
}
|
|
|
|
/**
|
|
This routine is used to initialize the bar of a PCI device.
|
|
|
|
@param PciIoDevice Pci device instance.
|
|
|
|
@note It can be called typically when a device is going to be rejected.
|
|
|
|
**/
|
|
VOID
|
|
InitializePciDevice (
|
|
IN PCI_IO_DEVICE *PciIoDevice
|
|
)
|
|
{
|
|
EFI_PCI_IO_PROTOCOL *PciIo;
|
|
UINT8 Offset;
|
|
|
|
PciIo = &(PciIoDevice->PciIo);
|
|
|
|
//
|
|
// Put all the resource apertures
|
|
// Resource base is set to all ones so as to indicate its resource
|
|
// has not been allocated
|
|
//
|
|
for (Offset = 0x10; Offset <= 0x24; Offset += sizeof (UINT32)) {
|
|
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint32, Offset, 1, &gAllOne);
|
|
}
|
|
}
|
|
|
|
/**
|
|
This routine is used to initialize the bar of a PCI-PCI Bridge device.
|
|
|
|
@param PciIoDevice PCI-PCI bridge device instance.
|
|
|
|
**/
|
|
VOID
|
|
InitializePpb (
|
|
IN PCI_IO_DEVICE *PciIoDevice
|
|
)
|
|
{
|
|
EFI_PCI_IO_PROTOCOL *PciIo;
|
|
|
|
PciIo = &(PciIoDevice->PciIo);
|
|
|
|
//
|
|
// Put all the resource apertures including IO16
|
|
// Io32, pMem32, pMem64 to quiescent state
|
|
// Resource base all ones, Resource limit all zeros
|
|
//
|
|
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint8, 0x1C, 1, &gAllOne);
|
|
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint8, 0x1D, 1, &gAllZero);
|
|
|
|
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint16, 0x20, 1, &gAllOne);
|
|
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint16, 0x22, 1, &gAllZero);
|
|
|
|
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint16, 0x24, 1, &gAllOne);
|
|
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint16, 0x26, 1, &gAllZero);
|
|
|
|
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint32, 0x28, 1, &gAllOne);
|
|
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint32, 0x2C, 1, &gAllZero);
|
|
|
|
//
|
|
// Don't support use io32 as for now
|
|
//
|
|
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint16, 0x30, 1, &gAllOne);
|
|
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint16, 0x32, 1, &gAllZero);
|
|
|
|
//
|
|
// Force Interrupt line to zero for cards that come up randomly
|
|
//
|
|
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint8, 0x3C, 1, &gAllZero);
|
|
}
|
|
|
|
/**
|
|
This routine is used to initialize the bar of a PCI Card Bridge device.
|
|
|
|
@param PciIoDevice PCI Card bridge device.
|
|
|
|
**/
|
|
VOID
|
|
InitializeP2C (
|
|
IN PCI_IO_DEVICE *PciIoDevice
|
|
)
|
|
{
|
|
EFI_PCI_IO_PROTOCOL *PciIo;
|
|
|
|
PciIo = &(PciIoDevice->PciIo);
|
|
|
|
//
|
|
// Put all the resource apertures including IO16
|
|
// Io32, pMem32, pMem64 to quiescent state(
|
|
// Resource base all ones, Resource limit all zeros
|
|
//
|
|
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint32, 0x1c, 1, &gAllOne);
|
|
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint32, 0x20, 1, &gAllZero);
|
|
|
|
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint32, 0x24, 1, &gAllOne);
|
|
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint32, 0x28, 1, &gAllZero);
|
|
|
|
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint32, 0x2c, 1, &gAllOne);
|
|
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint32, 0x30, 1, &gAllZero);
|
|
|
|
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint32, 0x34, 1, &gAllOne);
|
|
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint32, 0x38, 1, &gAllZero);
|
|
|
|
//
|
|
// Force Interrupt line to zero for cards that come up randomly
|
|
//
|
|
PciIo->Pci.Write (PciIo, EfiPciIoWidthUint8, 0x3C, 1, &gAllZero);
|
|
}
|
|
|
|
/**
|
|
Create and initialize general PCI I/O device instance for
|
|
PCI device/bridge device/hotplug bridge device.
|
|
|
|
@param Bridge Parent bridge instance.
|
|
@param Pci Input Pci information block.
|
|
@param Bus Device Bus NO.
|
|
@param Device Device device NO.
|
|
@param Func Device func NO.
|
|
|
|
@return Instance of PCI device. NULL means no instance created.
|
|
|
|
**/
|
|
PCI_IO_DEVICE *
|
|
CreatePciIoDevice (
|
|
IN PCI_IO_DEVICE *Bridge,
|
|
IN PCI_TYPE00 *Pci,
|
|
IN UINT8 Bus,
|
|
IN UINT8 Device,
|
|
IN UINT8 Func
|
|
)
|
|
{
|
|
PCI_IO_DEVICE *PciIoDevice;
|
|
EFI_PCI_IO_PROTOCOL *PciIo;
|
|
EFI_STATUS Status;
|
|
|
|
PciIoDevice = AllocateZeroPool (sizeof (PCI_IO_DEVICE));
|
|
if (PciIoDevice == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
PciIoDevice->Signature = PCI_IO_DEVICE_SIGNATURE;
|
|
PciIoDevice->Handle = NULL;
|
|
PciIoDevice->PciRootBridgeIo = Bridge->PciRootBridgeIo;
|
|
PciIoDevice->DevicePath = NULL;
|
|
PciIoDevice->BusNumber = Bus;
|
|
PciIoDevice->DeviceNumber = Device;
|
|
PciIoDevice->FunctionNumber = Func;
|
|
PciIoDevice->Decodes = 0;
|
|
|
|
if (gFullEnumeration) {
|
|
PciIoDevice->Allocated = FALSE;
|
|
} else {
|
|
PciIoDevice->Allocated = TRUE;
|
|
}
|
|
|
|
PciIoDevice->Registered = FALSE;
|
|
PciIoDevice->Attributes = 0;
|
|
PciIoDevice->Supports = 0;
|
|
PciIoDevice->BusOverride = FALSE;
|
|
PciIoDevice->AllOpRomProcessed = FALSE;
|
|
|
|
PciIoDevice->IsPciExp = FALSE;
|
|
|
|
CopyMem (&(PciIoDevice->Pci), Pci, sizeof (PCI_TYPE01));
|
|
|
|
//
|
|
// Initialize the PCI I/O instance structure
|
|
//
|
|
InitializePciIoInstance (PciIoDevice);
|
|
InitializePciDriverOverrideInstance (PciIoDevice);
|
|
InitializePciLoadFile2 (PciIoDevice);
|
|
PciIo = &PciIoDevice->PciIo;
|
|
|
|
//
|
|
// Create a device path for this PCI device and store it into its private data
|
|
//
|
|
CreatePciDevicePath (
|
|
Bridge->DevicePath,
|
|
PciIoDevice
|
|
);
|
|
|
|
//
|
|
// Detect if PCI Express Device
|
|
//
|
|
PciIoDevice->PciExpressCapabilityOffset = 0;
|
|
Status = LocateCapabilityRegBlock (
|
|
PciIoDevice,
|
|
EFI_PCI_CAPABILITY_ID_PCIEXP,
|
|
&PciIoDevice->PciExpressCapabilityOffset,
|
|
NULL
|
|
);
|
|
if (!EFI_ERROR (Status)) {
|
|
PciIoDevice->IsPciExp = TRUE;
|
|
}
|
|
|
|
if (PcdGetBool (PcdAriSupport)) {
|
|
//
|
|
// Check if the device is an ARI device.
|
|
//
|
|
Status = LocatePciExpressCapabilityRegBlock (
|
|
PciIoDevice,
|
|
EFI_PCIE_CAPABILITY_ID_ARI,
|
|
&PciIoDevice->AriCapabilityOffset,
|
|
NULL
|
|
);
|
|
if (!EFI_ERROR (Status)) {
|
|
//
|
|
// We need to enable ARI feature before calculate BusReservation,
|
|
// because FirstVFOffset and VFStride may change after that.
|
|
//
|
|
EFI_PCI_IO_PROTOCOL *ParentPciIo;
|
|
UINT32 Data32;
|
|
|
|
//
|
|
// Check if its parent supports ARI forwarding.
|
|
//
|
|
ParentPciIo = &Bridge->PciIo;
|
|
ParentPciIo->Pci.Read (
|
|
ParentPciIo,
|
|
EfiPciIoWidthUint32,
|
|
Bridge->PciExpressCapabilityOffset + EFI_PCIE_CAPABILITY_DEVICE_CAPABILITIES_2_OFFSET,
|
|
1,
|
|
&Data32
|
|
);
|
|
if ((Data32 & EFI_PCIE_CAPABILITY_DEVICE_CAPABILITIES_2_ARI_FORWARDING) != 0) {
|
|
//
|
|
// ARI forward support in bridge, so enable it.
|
|
//
|
|
ParentPciIo->Pci.Read (
|
|
ParentPciIo,
|
|
EfiPciIoWidthUint32,
|
|
Bridge->PciExpressCapabilityOffset + EFI_PCIE_CAPABILITY_DEVICE_CONTROL_2_OFFSET,
|
|
1,
|
|
&Data32
|
|
);
|
|
if ((Data32 & EFI_PCIE_CAPABILITY_DEVICE_CONTROL_2_ARI_FORWARDING) == 0) {
|
|
Data32 |= EFI_PCIE_CAPABILITY_DEVICE_CONTROL_2_ARI_FORWARDING;
|
|
ParentPciIo->Pci.Write (
|
|
ParentPciIo,
|
|
EfiPciIoWidthUint32,
|
|
Bridge->PciExpressCapabilityOffset + EFI_PCIE_CAPABILITY_DEVICE_CONTROL_2_OFFSET,
|
|
1,
|
|
&Data32
|
|
);
|
|
DEBUG ((
|
|
EFI_D_INFO,
|
|
" ARI: forwarding enabled for PPB[%02x:%02x:%02x]\n",
|
|
Bridge->BusNumber,
|
|
Bridge->DeviceNumber,
|
|
Bridge->FunctionNumber
|
|
));
|
|
}
|
|
}
|
|
|
|
DEBUG ((EFI_D_INFO, " ARI: CapOffset = 0x%x\n", PciIoDevice->AriCapabilityOffset));
|
|
}
|
|
}
|
|
|
|
//
|
|
// Initialization for SR-IOV
|
|
//
|
|
|
|
if (PcdGetBool (PcdSrIovSupport)) {
|
|
Status = LocatePciExpressCapabilityRegBlock (
|
|
PciIoDevice,
|
|
EFI_PCIE_CAPABILITY_ID_SRIOV,
|
|
&PciIoDevice->SrIovCapabilityOffset,
|
|
NULL
|
|
);
|
|
if (!EFI_ERROR (Status)) {
|
|
UINT32 SupportedPageSize;
|
|
UINT16 VFStride;
|
|
UINT16 FirstVFOffset;
|
|
UINT16 Data16;
|
|
UINT32 PFRid;
|
|
UINT32 LastVF;
|
|
|
|
//
|
|
// If the SR-IOV device is an ARI device, then Set ARI Capable Hierarchy for the device.
|
|
//
|
|
if (PcdGetBool (PcdAriSupport) && PciIoDevice->AriCapabilityOffset != 0) {
|
|
PciIo->Pci.Read (
|
|
PciIo,
|
|
EfiPciIoWidthUint16,
|
|
PciIoDevice->SrIovCapabilityOffset + EFI_PCIE_CAPABILITY_ID_SRIOV_CONTROL,
|
|
1,
|
|
&Data16
|
|
);
|
|
Data16 |= EFI_PCIE_CAPABILITY_ID_SRIOV_CONTROL_ARI_HIERARCHY;
|
|
PciIo->Pci.Write (
|
|
PciIo,
|
|
EfiPciIoWidthUint16,
|
|
PciIoDevice->SrIovCapabilityOffset + EFI_PCIE_CAPABILITY_ID_SRIOV_CONTROL,
|
|
1,
|
|
&Data16
|
|
);
|
|
}
|
|
|
|
//
|
|
// Calculate SystemPageSize
|
|
//
|
|
|
|
PciIo->Pci.Read (
|
|
PciIo,
|
|
EfiPciIoWidthUint32,
|
|
PciIoDevice->SrIovCapabilityOffset + EFI_PCIE_CAPABILITY_ID_SRIOV_SUPPORTED_PAGE_SIZE,
|
|
1,
|
|
&SupportedPageSize
|
|
);
|
|
PciIoDevice->SystemPageSize = (PcdGet32 (PcdSrIovSystemPageSize) & SupportedPageSize);
|
|
ASSERT (PciIoDevice->SystemPageSize != 0);
|
|
|
|
PciIo->Pci.Write (
|
|
PciIo,
|
|
EfiPciIoWidthUint32,
|
|
PciIoDevice->SrIovCapabilityOffset + EFI_PCIE_CAPABILITY_ID_SRIOV_SYSTEM_PAGE_SIZE,
|
|
1,
|
|
&PciIoDevice->SystemPageSize
|
|
);
|
|
//
|
|
// Adjust SystemPageSize for Alignment usage later
|
|
//
|
|
PciIoDevice->SystemPageSize <<= 12;
|
|
|
|
//
|
|
// Calculate BusReservation for PCI IOV
|
|
//
|
|
|
|
//
|
|
// Read First FirstVFOffset, InitialVFs, and VFStride
|
|
//
|
|
PciIo->Pci.Read (
|
|
PciIo,
|
|
EfiPciIoWidthUint16,
|
|
PciIoDevice->SrIovCapabilityOffset + EFI_PCIE_CAPABILITY_ID_SRIOV_FIRSTVF,
|
|
1,
|
|
&FirstVFOffset
|
|
);
|
|
PciIo->Pci.Read (
|
|
PciIo,
|
|
EfiPciIoWidthUint16,
|
|
PciIoDevice->SrIovCapabilityOffset + EFI_PCIE_CAPABILITY_ID_SRIOV_INITIALVFS,
|
|
1,
|
|
&PciIoDevice->InitialVFs
|
|
);
|
|
PciIo->Pci.Read (
|
|
PciIo,
|
|
EfiPciIoWidthUint16,
|
|
PciIoDevice->SrIovCapabilityOffset + EFI_PCIE_CAPABILITY_ID_SRIOV_VFSTRIDE,
|
|
1,
|
|
&VFStride
|
|
);
|
|
//
|
|
// Calculate LastVF
|
|
//
|
|
PFRid = EFI_PCI_RID(Bus, Device, Func);
|
|
LastVF = PFRid + FirstVFOffset + (PciIoDevice->InitialVFs - 1) * VFStride;
|
|
|
|
//
|
|
// Calculate ReservedBusNum for this PF
|
|
//
|
|
PciIoDevice->ReservedBusNum = (UINT16)(EFI_PCI_BUS_OF_RID (LastVF) - Bus + 1);
|
|
|
|
DEBUG ((
|
|
EFI_D_INFO,
|
|
" SR-IOV: SupportedPageSize = 0x%x; SystemPageSize = 0x%x; FirstVFOffset = 0x%x;\n",
|
|
SupportedPageSize, PciIoDevice->SystemPageSize >> 12, FirstVFOffset
|
|
));
|
|
DEBUG ((
|
|
EFI_D_INFO,
|
|
" InitialVFs = 0x%x; ReservedBusNum = 0x%x; CapOffset = 0x%x\n",
|
|
PciIoDevice->InitialVFs, PciIoDevice->ReservedBusNum, PciIoDevice->SrIovCapabilityOffset
|
|
));
|
|
}
|
|
}
|
|
|
|
if (PcdGetBool (PcdMrIovSupport)) {
|
|
Status = LocatePciExpressCapabilityRegBlock (
|
|
PciIoDevice,
|
|
EFI_PCIE_CAPABILITY_ID_MRIOV,
|
|
&PciIoDevice->MrIovCapabilityOffset,
|
|
NULL
|
|
);
|
|
if (!EFI_ERROR (Status)) {
|
|
DEBUG ((EFI_D_INFO, " MR-IOV: CapOffset = 0x%x\n", PciIoDevice->MrIovCapabilityOffset));
|
|
}
|
|
}
|
|
|
|
//
|
|
// Initialize the reserved resource list
|
|
//
|
|
InitializeListHead (&PciIoDevice->ReservedResourceList);
|
|
|
|
//
|
|
// Initialize the driver list
|
|
//
|
|
InitializeListHead (&PciIoDevice->OptionRomDriverList);
|
|
|
|
//
|
|
// Initialize the child list
|
|
//
|
|
InitializeListHead (&PciIoDevice->ChildList);
|
|
|
|
return PciIoDevice;
|
|
}
|
|
|
|
/**
|
|
This routine is used to enumerate entire pci bus system
|
|
in a given platform.
|
|
|
|
It is only called on the second start on the same Root Bridge.
|
|
|
|
@param Controller Parent bridge handler.
|
|
|
|
@retval EFI_SUCCESS PCI enumeration finished successfully.
|
|
@retval other Some error occurred when enumerating the pci bus system.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
PciEnumeratorLight (
|
|
IN EFI_HANDLE Controller
|
|
)
|
|
{
|
|
|
|
EFI_STATUS Status;
|
|
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *PciRootBridgeIo;
|
|
PCI_IO_DEVICE *RootBridgeDev;
|
|
UINT16 MinBus;
|
|
UINT16 MaxBus;
|
|
EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR *Descriptors;
|
|
|
|
MinBus = 0;
|
|
MaxBus = PCI_MAX_BUS;
|
|
Descriptors = NULL;
|
|
|
|
//
|
|
// If this root bridge has been already enumerated, then return successfully
|
|
//
|
|
if (GetRootBridgeByHandle (Controller) != NULL) {
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
//
|
|
// Open pci root bridge io protocol
|
|
//
|
|
Status = gBS->OpenProtocol (
|
|
Controller,
|
|
&gEfiPciRootBridgeIoProtocolGuid,
|
|
(VOID **) &PciRootBridgeIo,
|
|
gPciBusDriverBinding.DriverBindingHandle,
|
|
Controller,
|
|
EFI_OPEN_PROTOCOL_BY_DRIVER
|
|
);
|
|
if (EFI_ERROR (Status) && Status != EFI_ALREADY_STARTED) {
|
|
return Status;
|
|
}
|
|
|
|
Status = PciRootBridgeIo->Configuration (PciRootBridgeIo, (VOID **) &Descriptors);
|
|
|
|
if (EFI_ERROR (Status)) {
|
|
return Status;
|
|
}
|
|
|
|
while (PciGetBusRange (&Descriptors, &MinBus, &MaxBus, NULL) == EFI_SUCCESS) {
|
|
|
|
//
|
|
// Create a device node for root bridge device with a NULL host bridge controller handle
|
|
//
|
|
RootBridgeDev = CreateRootBridge (Controller);
|
|
|
|
if (RootBridgeDev == NULL) {
|
|
Descriptors++;
|
|
continue;
|
|
}
|
|
|
|
//
|
|
// Record the root bridge-io protocol
|
|
//
|
|
RootBridgeDev->PciRootBridgeIo = PciRootBridgeIo;
|
|
|
|
Status = PciPciDeviceInfoCollector (
|
|
RootBridgeDev,
|
|
(UINT8) MinBus
|
|
);
|
|
|
|
if (!EFI_ERROR (Status)) {
|
|
|
|
//
|
|
// Remove those PCI devices which are rejected when full enumeration
|
|
//
|
|
RemoveRejectedPciDevices (RootBridgeDev->Handle, RootBridgeDev);
|
|
|
|
//
|
|
// Process option rom light
|
|
//
|
|
ProcessOptionRomLight (RootBridgeDev);
|
|
|
|
//
|
|
// Determine attributes for all devices under this root bridge
|
|
//
|
|
DetermineDeviceAttribute (RootBridgeDev);
|
|
|
|
//
|
|
// If successfully, insert the node into device pool
|
|
//
|
|
InsertRootBridge (RootBridgeDev);
|
|
} else {
|
|
|
|
//
|
|
// If unsuccessfully, destroy the entire node
|
|
//
|
|
DestroyRootBridge (RootBridgeDev);
|
|
}
|
|
|
|
Descriptors++;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Get bus range from PCI resource descriptor list.
|
|
|
|
@param Descriptors A pointer to the address space descriptor.
|
|
@param MinBus The min bus returned.
|
|
@param MaxBus The max bus returned.
|
|
@param BusRange The bus range returned.
|
|
|
|
@retval EFI_SUCCESS Successfully got bus range.
|
|
@retval EFI_NOT_FOUND Can not find the specific bus.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
PciGetBusRange (
|
|
IN EFI_ACPI_ADDRESS_SPACE_DESCRIPTOR **Descriptors,
|
|
OUT UINT16 *MinBus,
|
|
OUT UINT16 *MaxBus,
|
|
OUT UINT16 *BusRange
|
|
)
|
|
{
|
|
while ((*Descriptors)->Desc != ACPI_END_TAG_DESCRIPTOR) {
|
|
if ((*Descriptors)->ResType == ACPI_ADDRESS_SPACE_TYPE_BUS) {
|
|
if (MinBus != NULL) {
|
|
*MinBus = (UINT16) (*Descriptors)->AddrRangeMin;
|
|
}
|
|
|
|
if (MaxBus != NULL) {
|
|
*MaxBus = (UINT16) (*Descriptors)->AddrRangeMax;
|
|
}
|
|
|
|
if (BusRange != NULL) {
|
|
*BusRange = (UINT16) (*Descriptors)->AddrLen;
|
|
}
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
(*Descriptors)++;
|
|
}
|
|
|
|
return EFI_NOT_FOUND;
|
|
}
|
|
|
|
/**
|
|
This routine can be used to start the root bridge.
|
|
|
|
@param RootBridgeDev Pci device instance.
|
|
|
|
@retval EFI_SUCCESS This device started.
|
|
@retval other Failed to get PCI Root Bridge I/O protocol.
|
|
|
|
**/
|
|
EFI_STATUS
|
|
StartManagingRootBridge (
|
|
IN PCI_IO_DEVICE *RootBridgeDev
|
|
)
|
|
{
|
|
EFI_HANDLE RootBridgeHandle;
|
|
EFI_STATUS Status;
|
|
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *PciRootBridgeIo;
|
|
|
|
//
|
|
// Get the root bridge handle
|
|
//
|
|
RootBridgeHandle = RootBridgeDev->Handle;
|
|
PciRootBridgeIo = NULL;
|
|
|
|
//
|
|
// Get the pci root bridge io protocol
|
|
//
|
|
Status = gBS->OpenProtocol (
|
|
RootBridgeHandle,
|
|
&gEfiPciRootBridgeIoProtocolGuid,
|
|
(VOID **) &PciRootBridgeIo,
|
|
gPciBusDriverBinding.DriverBindingHandle,
|
|
RootBridgeHandle,
|
|
EFI_OPEN_PROTOCOL_BY_DRIVER
|
|
);
|
|
|
|
if (EFI_ERROR (Status) && Status != EFI_ALREADY_STARTED) {
|
|
return Status;
|
|
}
|
|
|
|
//
|
|
// Store the PciRootBridgeIo protocol into root bridge private data
|
|
//
|
|
RootBridgeDev->PciRootBridgeIo = PciRootBridgeIo;
|
|
|
|
return EFI_SUCCESS;
|
|
|
|
}
|
|
|
|
/**
|
|
This routine can be used to check whether a PCI device should be rejected when light enumeration.
|
|
|
|
@param PciIoDevice Pci device instance.
|
|
|
|
@retval TRUE This device should be rejected.
|
|
@retval FALSE This device shouldn't be rejected.
|
|
|
|
**/
|
|
BOOLEAN
|
|
IsPciDeviceRejected (
|
|
IN PCI_IO_DEVICE *PciIoDevice
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
UINT32 TestValue;
|
|
UINT32 OldValue;
|
|
UINT32 Mask;
|
|
UINT8 BarOffset;
|
|
|
|
//
|
|
// PPB should be skip!
|
|
//
|
|
if (IS_PCI_BRIDGE (&PciIoDevice->Pci)) {
|
|
return FALSE;
|
|
}
|
|
|
|
if (IS_CARDBUS_BRIDGE (&PciIoDevice->Pci)) {
|
|
//
|
|
// Only test base registers for P2C
|
|
//
|
|
for (BarOffset = 0x1C; BarOffset <= 0x38; BarOffset += 2 * sizeof (UINT32)) {
|
|
|
|
Mask = (BarOffset < 0x2C) ? 0xFFFFF000 : 0xFFFFFFFC;
|
|
Status = BarExisted (PciIoDevice, BarOffset, &TestValue, &OldValue);
|
|
if (EFI_ERROR (Status)) {
|
|
continue;
|
|
}
|
|
|
|
TestValue = TestValue & Mask;
|
|
if ((TestValue != 0) && (TestValue == (OldValue & Mask))) {
|
|
//
|
|
// The bar isn't programed, so it should be rejected
|
|
//
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
for (BarOffset = 0x14; BarOffset <= 0x24; BarOffset += sizeof (UINT32)) {
|
|
//
|
|
// Test PCI devices
|
|
//
|
|
Status = BarExisted (PciIoDevice, BarOffset, &TestValue, &OldValue);
|
|
if (EFI_ERROR (Status)) {
|
|
continue;
|
|
}
|
|
|
|
if ((TestValue & 0x01) != 0) {
|
|
|
|
//
|
|
// IO Bar
|
|
//
|
|
Mask = 0xFFFFFFFC;
|
|
TestValue = TestValue & Mask;
|
|
if ((TestValue != 0) && (TestValue == (OldValue & Mask))) {
|
|
return TRUE;
|
|
}
|
|
|
|
} else {
|
|
|
|
//
|
|
// Mem Bar
|
|
//
|
|
Mask = 0xFFFFFFF0;
|
|
TestValue = TestValue & Mask;
|
|
|
|
if ((TestValue & 0x07) == 0x04) {
|
|
|
|
//
|
|
// Mem64 or PMem64
|
|
//
|
|
BarOffset += sizeof (UINT32);
|
|
if ((TestValue != 0) && (TestValue == (OldValue & Mask))) {
|
|
|
|
//
|
|
// Test its high 32-Bit BAR
|
|
//
|
|
Status = BarExisted (PciIoDevice, BarOffset, &TestValue, &OldValue);
|
|
if (TestValue == OldValue) {
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
} else {
|
|
|
|
//
|
|
// Mem32 or PMem32
|
|
//
|
|
if ((TestValue != 0) && (TestValue == (OldValue & Mask))) {
|
|
return TRUE;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
/**
|
|
Reset all bus number from specific bridge.
|
|
|
|
@param Bridge Parent specific bridge.
|
|
@param StartBusNumber Start bus number.
|
|
|
|
**/
|
|
VOID
|
|
ResetAllPpbBusNumber (
|
|
IN PCI_IO_DEVICE *Bridge,
|
|
IN UINT8 StartBusNumber
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
PCI_TYPE00 Pci;
|
|
UINT8 Device;
|
|
UINT32 Register;
|
|
UINT8 Func;
|
|
UINT64 Address;
|
|
UINT8 SecondaryBus;
|
|
EFI_PCI_ROOT_BRIDGE_IO_PROTOCOL *PciRootBridgeIo;
|
|
|
|
PciRootBridgeIo = Bridge->PciRootBridgeIo;
|
|
|
|
for (Device = 0; Device <= PCI_MAX_DEVICE; Device++) {
|
|
for (Func = 0; Func <= PCI_MAX_FUNC; Func++) {
|
|
|
|
//
|
|
// Check to see whether a pci device is present
|
|
//
|
|
Status = PciDevicePresent (
|
|
PciRootBridgeIo,
|
|
&Pci,
|
|
StartBusNumber,
|
|
Device,
|
|
Func
|
|
);
|
|
|
|
if (EFI_ERROR (Status) && Func == 0) {
|
|
//
|
|
// go to next device if there is no Function 0
|
|
//
|
|
break;
|
|
}
|
|
|
|
if (!EFI_ERROR (Status) && (IS_PCI_BRIDGE (&Pci))) {
|
|
|
|
Register = 0;
|
|
Address = EFI_PCI_ADDRESS (StartBusNumber, Device, Func, 0x18);
|
|
Status = PciRootBridgeIo->Pci.Read (
|
|
PciRootBridgeIo,
|
|
EfiPciWidthUint32,
|
|
Address,
|
|
1,
|
|
&Register
|
|
);
|
|
SecondaryBus = (UINT8)(Register >> 8);
|
|
|
|
if (SecondaryBus != 0) {
|
|
ResetAllPpbBusNumber (Bridge, SecondaryBus);
|
|
}
|
|
|
|
//
|
|
// Reset register 18h, 19h, 1Ah on PCI Bridge
|
|
//
|
|
Register &= 0xFF000000;
|
|
Status = PciRootBridgeIo->Pci.Write (
|
|
PciRootBridgeIo,
|
|
EfiPciWidthUint32,
|
|
Address,
|
|
1,
|
|
&Register
|
|
);
|
|
}
|
|
|
|
if (Func == 0 && !IS_PCI_MULTI_FUNC (&Pci)) {
|
|
//
|
|
// Skip sub functions, this is not a multi function device
|
|
//
|
|
Func = PCI_MAX_FUNC;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|