mirror of
https://github.com/CloverHackyColor/CloverBootloader.git
synced 2024-12-18 15:27:48 +01:00
95be95c531
Clean warnings reactivated. Clean build flags in the 4 configurations to make RELEASE_XCODE8 works in QEMU.
1389 lines
30 KiB
C
1389 lines
30 KiB
C
/** @file
|
|
Main file for compression routine.
|
|
|
|
Compression routine. The compression algorithm is a mixture of
|
|
LZ77 and Huffman coding. LZ77 transforms the source data into a
|
|
sequence of Original Characters and Pointers to repeated strings.
|
|
This sequence is further divided into Blocks and Huffman codings
|
|
are applied to each Block.
|
|
|
|
Copyright (c) 2007 - 2016, Intel Corporation. All rights reserved.<BR>
|
|
This program and the accompanying materials
|
|
are licensed and made available under the terms and conditions of the BSD License
|
|
which accompanies this distribution. The full text of the license may be found at
|
|
http://opensource.org/licenses/bsd-license.php
|
|
|
|
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
|
|
|
|
**/
|
|
#include <Uefi.h>
|
|
#include <Library/MemoryAllocationLib.h>
|
|
#include <Library/BaseMemoryLib.h>
|
|
#include <Library/DebugLib.h>
|
|
#include <Library/ShellLib.h>
|
|
|
|
#include "Compress.h"
|
|
|
|
//
|
|
// Macro Definitions
|
|
//
|
|
typedef UINT16 NODE;
|
|
#define UINT8_MAX 0xff
|
|
#define UINT8_BIT 8
|
|
#define THRESHOLD 3
|
|
#define INIT_CRC 0
|
|
#define WNDBIT 13
|
|
#define WNDSIZ (1U << WNDBIT)
|
|
#define MAXMATCH 256
|
|
#define BLKSIZ (1U << 14) // 16 * 1024U
|
|
#define PERC_FLAG 0x8000U
|
|
#define CODE_BIT 16
|
|
#define NIL 0
|
|
#define MAX_HASH_VAL (3 * WNDSIZ + (WNDSIZ / 512 + 1) * UINT8_MAX)
|
|
#define HASH(LoopVar7, LoopVar5) ((LoopVar7) + ((LoopVar5) << (WNDBIT - 9)) + WNDSIZ * 2)
|
|
#define CRCPOLY 0xA001
|
|
#define UPDATE_CRC(LoopVar5) mCrc = mCrcTable[(mCrc ^ (LoopVar5)) & 0xFF] ^ (mCrc >> UINT8_BIT)
|
|
|
|
//
|
|
// C: the Char&Len Set; P: the Position Set; T: the exTra Set
|
|
//
|
|
#define NC (UINT8_MAX + MAXMATCH + 2 - THRESHOLD)
|
|
#define CBIT 9
|
|
#define NP (WNDBIT + 1)
|
|
#define PBIT 4
|
|
#define NT (CODE_BIT + 3)
|
|
#define TBIT 5
|
|
#if NT > NP
|
|
#define NPT NT
|
|
#else
|
|
#define NPT NP
|
|
#endif
|
|
//
|
|
// Function Prototypes
|
|
//
|
|
|
|
/**
|
|
Put a dword to output stream
|
|
|
|
@param[in] Data The dword to put.
|
|
**/
|
|
VOID
|
|
PutDword(
|
|
IN UINT32 Data
|
|
);
|
|
|
|
//
|
|
// Global Variables
|
|
//
|
|
STATIC UINT8 *mSrc;
|
|
STATIC UINT8 *mDst;
|
|
STATIC UINT8 *mSrcUpperLimit;
|
|
STATIC UINT8 *mDstUpperLimit;
|
|
|
|
STATIC UINT8 *mLevel;
|
|
STATIC UINT8 *mText;
|
|
STATIC UINT8 *mChildCount;
|
|
STATIC UINT8 *mBuf;
|
|
STATIC UINT8 mCLen[NC];
|
|
STATIC UINT8 mPTLen[NPT];
|
|
STATIC UINT8 *mLen;
|
|
STATIC INT16 mHeap[NC + 1];
|
|
STATIC INT32 mRemainder;
|
|
STATIC INT32 mMatchLen;
|
|
STATIC INT32 mBitCount;
|
|
STATIC INT32 mHeapSize;
|
|
STATIC INT32 mTempInt32;
|
|
STATIC UINT32 mBufSiz = 0;
|
|
STATIC UINT32 mOutputPos;
|
|
STATIC UINT32 mOutputMask;
|
|
STATIC UINT32 mSubBitBuf;
|
|
STATIC UINT32 mCrc;
|
|
STATIC UINT32 mCompSize;
|
|
STATIC UINT32 mOrigSize;
|
|
|
|
STATIC UINT16 *mFreq;
|
|
STATIC UINT16 *mSortPtr;
|
|
STATIC UINT16 mLenCnt[17];
|
|
STATIC UINT16 mLeft[2 * NC - 1];
|
|
STATIC UINT16 mRight[2 * NC - 1];
|
|
STATIC UINT16 mCrcTable[UINT8_MAX + 1];
|
|
STATIC UINT16 mCFreq[2 * NC - 1];
|
|
STATIC UINT16 mCCode[NC];
|
|
STATIC UINT16 mPFreq[2 * NP - 1];
|
|
STATIC UINT16 mPTCode[NPT];
|
|
STATIC UINT16 mTFreq[2 * NT - 1];
|
|
|
|
STATIC NODE mPos;
|
|
STATIC NODE mMatchPos;
|
|
STATIC NODE mAvail;
|
|
STATIC NODE *mPosition;
|
|
STATIC NODE *mParent;
|
|
STATIC NODE *mPrev;
|
|
STATIC NODE *mNext = NULL;
|
|
INT32 mHuffmanDepth = 0;
|
|
|
|
/**
|
|
Make a CRC table.
|
|
|
|
**/
|
|
VOID
|
|
MakeCrcTable (
|
|
VOID
|
|
)
|
|
{
|
|
UINT32 LoopVar1;
|
|
|
|
UINT32 LoopVar2;
|
|
|
|
UINT32 LoopVar4;
|
|
|
|
for (LoopVar1 = 0; LoopVar1 <= UINT8_MAX; LoopVar1++) {
|
|
LoopVar4 = LoopVar1;
|
|
for (LoopVar2 = 0; LoopVar2 < UINT8_BIT; LoopVar2++) {
|
|
if ((LoopVar4 & 1) != 0) {
|
|
LoopVar4 = (LoopVar4 >> 1) ^ CRCPOLY;
|
|
} else {
|
|
LoopVar4 >>= 1;
|
|
}
|
|
}
|
|
|
|
mCrcTable[LoopVar1] = (UINT16) LoopVar4;
|
|
}
|
|
}
|
|
|
|
/**
|
|
Put a dword to output stream
|
|
|
|
@param[in] Data The dword to put.
|
|
**/
|
|
VOID
|
|
PutDword (
|
|
IN UINT32 Data
|
|
)
|
|
{
|
|
if (mDst < mDstUpperLimit) {
|
|
*mDst++ = (UINT8) (((UINT8) (Data)) & 0xff);
|
|
}
|
|
|
|
if (mDst < mDstUpperLimit) {
|
|
*mDst++ = (UINT8) (((UINT8) (Data >> 0x08)) & 0xff);
|
|
}
|
|
|
|
if (mDst < mDstUpperLimit) {
|
|
*mDst++ = (UINT8) (((UINT8) (Data >> 0x10)) & 0xff);
|
|
}
|
|
|
|
if (mDst < mDstUpperLimit) {
|
|
*mDst++ = (UINT8) (((UINT8) (Data >> 0x18)) & 0xff);
|
|
}
|
|
}
|
|
|
|
/**
|
|
Allocate memory spaces for data structures used in compression process.
|
|
|
|
@retval EFI_SUCCESS Memory was allocated successfully.
|
|
@retval EFI_OUT_OF_RESOURCES A memory allocation failed.
|
|
**/
|
|
EFI_STATUS
|
|
AllocateMemory (
|
|
VOID
|
|
)
|
|
{
|
|
mText = AllocateZeroPool (WNDSIZ * 2 + MAXMATCH);
|
|
mLevel = AllocateZeroPool ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mLevel));
|
|
mChildCount = AllocateZeroPool ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mChildCount));
|
|
mPosition = AllocateZeroPool ((WNDSIZ + UINT8_MAX + 1) * sizeof (*mPosition));
|
|
mParent = AllocateZeroPool (WNDSIZ * 2 * sizeof (*mParent));
|
|
mPrev = AllocateZeroPool (WNDSIZ * 2 * sizeof (*mPrev));
|
|
mNext = AllocateZeroPool ((MAX_HASH_VAL + 1) * sizeof (*mNext));
|
|
|
|
mBufSiz = BLKSIZ;
|
|
mBuf = AllocateZeroPool (mBufSiz);
|
|
while (mBuf == NULL) {
|
|
mBufSiz = (mBufSiz / 10U) * 9U;
|
|
if (mBufSiz < 4 * 1024U) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
|
|
mBuf = AllocateZeroPool (mBufSiz);
|
|
}
|
|
|
|
mBuf[0] = 0;
|
|
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
Called when compression is completed to free memory previously allocated.
|
|
|
|
**/
|
|
VOID
|
|
FreeMemory (
|
|
VOID
|
|
)
|
|
{
|
|
SHELL_FREE_NON_NULL (mText);
|
|
SHELL_FREE_NON_NULL (mLevel);
|
|
SHELL_FREE_NON_NULL (mChildCount);
|
|
SHELL_FREE_NON_NULL (mPosition);
|
|
SHELL_FREE_NON_NULL (mParent);
|
|
SHELL_FREE_NON_NULL (mPrev);
|
|
SHELL_FREE_NON_NULL (mNext);
|
|
SHELL_FREE_NON_NULL (mBuf);
|
|
}
|
|
|
|
/**
|
|
Initialize String Info Log data structures.
|
|
**/
|
|
VOID
|
|
InitSlide (
|
|
VOID
|
|
)
|
|
{
|
|
NODE LoopVar1;
|
|
|
|
SetMem (mLevel + WNDSIZ, (UINT8_MAX + 1) * sizeof (UINT8), 1);
|
|
SetMem (mPosition + WNDSIZ, (UINT8_MAX + 1) * sizeof (NODE), 0);
|
|
|
|
SetMem (mParent + WNDSIZ, WNDSIZ * sizeof (NODE), 0);
|
|
|
|
mAvail = 1;
|
|
for (LoopVar1 = 1; LoopVar1 < WNDSIZ - 1; LoopVar1++) {
|
|
mNext[LoopVar1] = (NODE) (LoopVar1 + 1);
|
|
}
|
|
|
|
mNext[WNDSIZ - 1] = NIL;
|
|
SetMem (mNext + WNDSIZ * 2, (MAX_HASH_VAL - WNDSIZ * 2 + 1) * sizeof (NODE), 0);
|
|
}
|
|
|
|
/**
|
|
Find child node given the parent node and the edge character
|
|
|
|
@param[in] LoopVar6 The parent node.
|
|
@param[in] LoopVar5 The edge character.
|
|
|
|
@return The child node.
|
|
@retval NIL(Zero) No child could be found.
|
|
|
|
**/
|
|
NODE
|
|
Child (
|
|
IN NODE LoopVar6,
|
|
IN UINT8 LoopVar5
|
|
)
|
|
{
|
|
NODE LoopVar4;
|
|
|
|
LoopVar4 = mNext[HASH (LoopVar6, LoopVar5)];
|
|
mParent[NIL] = LoopVar6; /* sentinel */
|
|
while (mParent[LoopVar4] != LoopVar6) {
|
|
LoopVar4 = mNext[LoopVar4];
|
|
}
|
|
|
|
return LoopVar4;
|
|
}
|
|
|
|
/**
|
|
Create a new child for a given parent node.
|
|
|
|
@param[in] LoopVar6 The parent node.
|
|
@param[in] LoopVar5 The edge character.
|
|
@param[in] LoopVar4 The child node.
|
|
**/
|
|
VOID
|
|
MakeChild (
|
|
IN NODE LoopVar6,
|
|
IN UINT8 LoopVar5,
|
|
IN NODE LoopVar4
|
|
)
|
|
{
|
|
NODE LoopVar12;
|
|
|
|
NODE LoopVar10;
|
|
|
|
LoopVar12 = (NODE) HASH (LoopVar6, LoopVar5);
|
|
LoopVar10 = mNext[LoopVar12];
|
|
mNext[LoopVar12] = LoopVar4;
|
|
mNext[LoopVar4] = LoopVar10;
|
|
mPrev[LoopVar10] = LoopVar4;
|
|
mPrev[LoopVar4] = LoopVar12;
|
|
mParent[LoopVar4] = LoopVar6;
|
|
mChildCount[LoopVar6]++;
|
|
}
|
|
|
|
/**
|
|
Split a node.
|
|
|
|
@param[in] Old The node to split.
|
|
**/
|
|
VOID
|
|
Split (
|
|
IN NODE Old
|
|
)
|
|
{
|
|
NODE New;
|
|
|
|
NODE LoopVar10;
|
|
|
|
New = mAvail;
|
|
mAvail = mNext[New];
|
|
mChildCount[New] = 0;
|
|
LoopVar10 = mPrev[Old];
|
|
mPrev[New] = LoopVar10;
|
|
mNext[LoopVar10] = New;
|
|
LoopVar10 = mNext[Old];
|
|
mNext[New] = LoopVar10;
|
|
mPrev[LoopVar10] = New;
|
|
mParent[New] = mParent[Old];
|
|
mLevel[New] = (UINT8) mMatchLen;
|
|
mPosition[New] = mPos;
|
|
MakeChild (New, mText[mMatchPos + mMatchLen], Old);
|
|
MakeChild (New, mText[mPos + mMatchLen], mPos);
|
|
}
|
|
|
|
/**
|
|
Insert string info for current position into the String Info Log.
|
|
|
|
**/
|
|
VOID
|
|
InsertNode (
|
|
VOID
|
|
)
|
|
{
|
|
NODE LoopVar6;
|
|
|
|
NODE LoopVar4;
|
|
|
|
NODE LoopVar2;
|
|
|
|
NODE LoopVar10;
|
|
UINT8 LoopVar5;
|
|
UINT8 *TempString3;
|
|
UINT8 *TempString2;
|
|
|
|
if (mMatchLen >= 4) {
|
|
//
|
|
// We have just got a long match, the target tree
|
|
// can be located by MatchPos + 1. Travese the tree
|
|
// from bottom up to get to a proper starting point.
|
|
// The usage of PERC_FLAG ensures proper node deletion
|
|
// in DeleteNode() later.
|
|
//
|
|
mMatchLen--;
|
|
LoopVar4 = (NODE) ((mMatchPos + 1) | WNDSIZ);
|
|
LoopVar6 = mParent[LoopVar4];
|
|
while (LoopVar6 == NIL) {
|
|
LoopVar4 = mNext[LoopVar4];
|
|
LoopVar6 = mParent[LoopVar4];
|
|
}
|
|
|
|
while (mLevel[LoopVar6] >= mMatchLen) {
|
|
LoopVar4 = LoopVar6;
|
|
LoopVar6 = mParent[LoopVar6];
|
|
}
|
|
|
|
LoopVar10 = LoopVar6;
|
|
while (mPosition[LoopVar10] < 0) {
|
|
mPosition[LoopVar10] = mPos;
|
|
LoopVar10 = mParent[LoopVar10];
|
|
}
|
|
|
|
if (LoopVar10 < WNDSIZ) {
|
|
mPosition[LoopVar10] = (NODE) (mPos | PERC_FLAG);
|
|
}
|
|
} else {
|
|
//
|
|
// Locate the target tree
|
|
//
|
|
LoopVar6 = (NODE) (mText[mPos] + WNDSIZ);
|
|
LoopVar5 = mText[mPos + 1];
|
|
LoopVar4 = Child (LoopVar6, LoopVar5);
|
|
if (LoopVar4 == NIL) {
|
|
MakeChild (LoopVar6, LoopVar5, mPos);
|
|
mMatchLen = 1;
|
|
return ;
|
|
}
|
|
|
|
mMatchLen = 2;
|
|
}
|
|
//
|
|
// Traverse down the tree to find a match.
|
|
// Update Position value along the route.
|
|
// Node split or creation is involved.
|
|
//
|
|
for (;;) {
|
|
if (LoopVar4 >= WNDSIZ) {
|
|
LoopVar2 = MAXMATCH;
|
|
mMatchPos = LoopVar4;
|
|
} else {
|
|
LoopVar2 = mLevel[LoopVar4];
|
|
mMatchPos = (NODE) (mPosition[LoopVar4] & ~PERC_FLAG);
|
|
}
|
|
|
|
if (mMatchPos >= mPos) {
|
|
mMatchPos -= WNDSIZ;
|
|
}
|
|
|
|
TempString3 = &mText[mPos + mMatchLen];
|
|
TempString2 = &mText[mMatchPos + mMatchLen];
|
|
while (mMatchLen < LoopVar2) {
|
|
if (*TempString3 != *TempString2) {
|
|
Split (LoopVar4);
|
|
return ;
|
|
}
|
|
|
|
mMatchLen++;
|
|
TempString3++;
|
|
TempString2++;
|
|
}
|
|
|
|
if (mMatchLen >= MAXMATCH) {
|
|
break;
|
|
}
|
|
|
|
mPosition[LoopVar4] = mPos;
|
|
LoopVar6 = LoopVar4;
|
|
LoopVar4 = Child (LoopVar6, *TempString3);
|
|
if (LoopVar4 == NIL) {
|
|
MakeChild (LoopVar6, *TempString3, mPos);
|
|
return ;
|
|
}
|
|
|
|
mMatchLen++;
|
|
}
|
|
|
|
LoopVar10 = mPrev[LoopVar4];
|
|
mPrev[mPos] = LoopVar10;
|
|
mNext[LoopVar10] = mPos;
|
|
LoopVar10 = mNext[LoopVar4];
|
|
mNext[mPos] = LoopVar10;
|
|
mPrev[LoopVar10] = mPos;
|
|
mParent[mPos] = LoopVar6;
|
|
mParent[LoopVar4] = NIL;
|
|
|
|
//
|
|
// Special usage of 'next'
|
|
//
|
|
mNext[LoopVar4] = mPos;
|
|
|
|
}
|
|
|
|
/**
|
|
Delete outdated string info. (The Usage of PERC_FLAG
|
|
ensures a clean deletion).
|
|
|
|
**/
|
|
VOID
|
|
DeleteNode (
|
|
VOID
|
|
)
|
|
{
|
|
NODE LoopVar6;
|
|
|
|
NODE LoopVar4;
|
|
|
|
NODE LoopVar11;
|
|
|
|
NODE LoopVar10;
|
|
|
|
NODE LoopVar9;
|
|
|
|
if (mParent[mPos] == NIL) {
|
|
return ;
|
|
}
|
|
|
|
LoopVar4 = mPrev[mPos];
|
|
LoopVar11 = mNext[mPos];
|
|
mNext[LoopVar4] = LoopVar11;
|
|
mPrev[LoopVar11] = LoopVar4;
|
|
LoopVar4 = mParent[mPos];
|
|
mParent[mPos] = NIL;
|
|
if (LoopVar4 >= WNDSIZ) {
|
|
return ;
|
|
}
|
|
|
|
mChildCount[LoopVar4]--;
|
|
if (mChildCount[LoopVar4] > 1) {
|
|
return ;
|
|
}
|
|
|
|
LoopVar10 = (NODE) (mPosition[LoopVar4] & ~PERC_FLAG);
|
|
if (LoopVar10 >= mPos) {
|
|
LoopVar10 -= WNDSIZ;
|
|
}
|
|
|
|
LoopVar11 = LoopVar10;
|
|
LoopVar6 = mParent[LoopVar4];
|
|
LoopVar9 = mPosition[LoopVar6];
|
|
while ((LoopVar9 & PERC_FLAG) != 0){
|
|
LoopVar9 &= ~PERC_FLAG;
|
|
if (LoopVar9 >= mPos) {
|
|
LoopVar9 -= WNDSIZ;
|
|
}
|
|
|
|
if (LoopVar9 > LoopVar11) {
|
|
LoopVar11 = LoopVar9;
|
|
}
|
|
|
|
mPosition[LoopVar6] = (NODE) (LoopVar11 | WNDSIZ);
|
|
LoopVar6 = mParent[LoopVar6];
|
|
LoopVar9 = mPosition[LoopVar6];
|
|
}
|
|
|
|
if (LoopVar6 < WNDSIZ) {
|
|
if (LoopVar9 >= mPos) {
|
|
LoopVar9 -= WNDSIZ;
|
|
}
|
|
|
|
if (LoopVar9 > LoopVar11) {
|
|
LoopVar11 = LoopVar9;
|
|
}
|
|
|
|
mPosition[LoopVar6] = (NODE) (LoopVar11 | WNDSIZ | PERC_FLAG);
|
|
}
|
|
|
|
LoopVar11 = Child (LoopVar4, mText[LoopVar10 + mLevel[LoopVar4]]);
|
|
LoopVar10 = mPrev[LoopVar11];
|
|
LoopVar9 = mNext[LoopVar11];
|
|
mNext[LoopVar10] = LoopVar9;
|
|
mPrev[LoopVar9] = LoopVar10;
|
|
LoopVar10 = mPrev[LoopVar4];
|
|
mNext[LoopVar10] = LoopVar11;
|
|
mPrev[LoopVar11] = LoopVar10;
|
|
LoopVar10 = mNext[LoopVar4];
|
|
mPrev[LoopVar10] = LoopVar11;
|
|
mNext[LoopVar11] = LoopVar10;
|
|
mParent[LoopVar11] = mParent[LoopVar4];
|
|
mParent[LoopVar4] = NIL;
|
|
mNext[LoopVar4] = mAvail;
|
|
mAvail = LoopVar4;
|
|
}
|
|
|
|
/**
|
|
Read in source data
|
|
|
|
@param[out] LoopVar7 The buffer to hold the data.
|
|
@param[in] LoopVar8 The number of bytes to read.
|
|
|
|
@return The number of bytes actually read.
|
|
**/
|
|
INT32
|
|
FreadCrc (
|
|
OUT UINT8 *LoopVar7,
|
|
IN INT32 LoopVar8
|
|
)
|
|
{
|
|
INT32 LoopVar1;
|
|
|
|
for (LoopVar1 = 0; mSrc < mSrcUpperLimit && LoopVar1 < LoopVar8; LoopVar1++) {
|
|
*LoopVar7++ = *mSrc++;
|
|
}
|
|
|
|
LoopVar8 = LoopVar1;
|
|
|
|
LoopVar7 -= LoopVar8;
|
|
mOrigSize += LoopVar8;
|
|
LoopVar1--;
|
|
while (LoopVar1 >= 0) {
|
|
UPDATE_CRC (*LoopVar7++);
|
|
LoopVar1--;
|
|
}
|
|
|
|
return LoopVar8;
|
|
}
|
|
|
|
/**
|
|
Advance the current position (read in new data if needed).
|
|
Delete outdated string info. Find a match string for current position.
|
|
|
|
@retval TRUE The operation was successful.
|
|
@retval FALSE The operation failed due to insufficient memory.
|
|
**/
|
|
BOOLEAN
|
|
GetNextMatch (
|
|
VOID
|
|
)
|
|
{
|
|
INT32 LoopVar8;
|
|
VOID *Temp;
|
|
|
|
mRemainder--;
|
|
mPos++;
|
|
if (mPos == WNDSIZ * 2) {
|
|
Temp = AllocateZeroPool (WNDSIZ + MAXMATCH);
|
|
if (Temp == NULL) {
|
|
return (FALSE);
|
|
}
|
|
CopyMem (Temp, &mText[WNDSIZ], WNDSIZ + MAXMATCH);
|
|
CopyMem (&mText[0], Temp, WNDSIZ + MAXMATCH);
|
|
FreePool (Temp);
|
|
LoopVar8 = FreadCrc (&mText[WNDSIZ + MAXMATCH], WNDSIZ);
|
|
mRemainder += LoopVar8;
|
|
mPos = WNDSIZ;
|
|
}
|
|
|
|
DeleteNode ();
|
|
InsertNode ();
|
|
|
|
return (TRUE);
|
|
}
|
|
|
|
/**
|
|
Send entry LoopVar1 down the queue.
|
|
|
|
@param[in] LoopVar1 The index of the item to move.
|
|
**/
|
|
VOID
|
|
DownHeap (
|
|
IN INT32 i
|
|
)
|
|
{
|
|
INT32 LoopVar1;
|
|
|
|
INT32 LoopVar2;
|
|
|
|
//
|
|
// priority queue: send i-th entry down heap
|
|
//
|
|
LoopVar2 = mHeap[i];
|
|
LoopVar1 = 2 * i;
|
|
while (LoopVar1 <= mHeapSize) {
|
|
if (LoopVar1 < mHeapSize && mFreq[mHeap[LoopVar1]] > mFreq[mHeap[LoopVar1 + 1]]) {
|
|
LoopVar1++;
|
|
}
|
|
|
|
if (mFreq[LoopVar2] <= mFreq[mHeap[LoopVar1]]) {
|
|
break;
|
|
}
|
|
|
|
mHeap[i] = mHeap[LoopVar1];
|
|
i = LoopVar1;
|
|
LoopVar1 = 2 * i;
|
|
}
|
|
|
|
mHeap[i] = (INT16) LoopVar2;
|
|
}
|
|
|
|
/**
|
|
Count the number of each code length for a Huffman tree.
|
|
|
|
@param[in] LoopVar1 The top node.
|
|
**/
|
|
VOID
|
|
CountLen (
|
|
IN INT32 LoopVar1
|
|
)
|
|
{
|
|
if (LoopVar1 < mTempInt32) {
|
|
mLenCnt[(mHuffmanDepth < 16) ? mHuffmanDepth : 16]++;
|
|
} else {
|
|
mHuffmanDepth++;
|
|
CountLen (mLeft[LoopVar1]);
|
|
CountLen (mRight[LoopVar1]);
|
|
mHuffmanDepth--;
|
|
}
|
|
}
|
|
|
|
/**
|
|
Create code length array for a Huffman tree.
|
|
|
|
@param[in] Root The root of the tree.
|
|
**/
|
|
VOID
|
|
MakeLen (
|
|
IN INT32 Root
|
|
)
|
|
{
|
|
INT32 LoopVar1;
|
|
|
|
INT32 LoopVar2;
|
|
UINT32 Cum;
|
|
|
|
for (LoopVar1 = 0; LoopVar1 <= 16; LoopVar1++) {
|
|
mLenCnt[LoopVar1] = 0;
|
|
}
|
|
|
|
CountLen (Root);
|
|
|
|
//
|
|
// Adjust the length count array so that
|
|
// no code will be generated longer than its designated length
|
|
//
|
|
Cum = 0;
|
|
for (LoopVar1 = 16; LoopVar1 > 0; LoopVar1--) {
|
|
Cum += mLenCnt[LoopVar1] << (16 - LoopVar1);
|
|
}
|
|
|
|
while (Cum != (1U << 16)) {
|
|
mLenCnt[16]--;
|
|
for (LoopVar1 = 15; LoopVar1 > 0; LoopVar1--) {
|
|
if (mLenCnt[LoopVar1] != 0) {
|
|
mLenCnt[LoopVar1]--;
|
|
mLenCnt[LoopVar1 + 1] += 2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
Cum--;
|
|
}
|
|
|
|
for (LoopVar1 = 16; LoopVar1 > 0; LoopVar1--) {
|
|
LoopVar2 = mLenCnt[LoopVar1];
|
|
LoopVar2--;
|
|
while (LoopVar2 >= 0) {
|
|
mLen[*mSortPtr++] = (UINT8) LoopVar1;
|
|
LoopVar2--;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
Assign code to each symbol based on the code length array.
|
|
|
|
@param[in] LoopVar8 The number of symbols.
|
|
@param[in] Len The code length array.
|
|
@param[out] Code The stores codes for each symbol.
|
|
**/
|
|
VOID
|
|
MakeCode (
|
|
IN INT32 LoopVar8,
|
|
IN UINT8 Len[ ],
|
|
OUT UINT16 Code[ ]
|
|
)
|
|
{
|
|
INT32 LoopVar1;
|
|
UINT16 Start[18];
|
|
|
|
Start[1] = 0;
|
|
for (LoopVar1 = 1; LoopVar1 <= 16; LoopVar1++) {
|
|
Start[LoopVar1 + 1] = (UINT16) ((Start[LoopVar1] + mLenCnt[LoopVar1]) << 1);
|
|
}
|
|
|
|
for (LoopVar1 = 0; LoopVar1 < LoopVar8; LoopVar1++) {
|
|
Code[LoopVar1] = Start[Len[LoopVar1]]++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
Generates Huffman codes given a frequency distribution of symbols.
|
|
|
|
@param[in] NParm The number of symbols.
|
|
@param[in] FreqParm The frequency of each symbol.
|
|
@param[out] LenParm The code length for each symbol.
|
|
@param[out] CodeParm The code for each symbol.
|
|
|
|
@return The root of the Huffman tree.
|
|
**/
|
|
INT32
|
|
MakeTree (
|
|
IN INT32 NParm,
|
|
IN UINT16 FreqParm[ ],
|
|
OUT UINT8 LenParm[ ],
|
|
OUT UINT16 CodeParm[ ]
|
|
)
|
|
{
|
|
INT32 LoopVar1;
|
|
|
|
INT32 LoopVar2;
|
|
|
|
INT32 LoopVar3;
|
|
|
|
INT32 Avail;
|
|
|
|
//
|
|
// make tree, calculate len[], return root
|
|
//
|
|
mTempInt32 = NParm;
|
|
mFreq = FreqParm;
|
|
mLen = LenParm;
|
|
Avail = mTempInt32;
|
|
mHeapSize = 0;
|
|
mHeap[1] = 0;
|
|
for (LoopVar1 = 0; LoopVar1 < mTempInt32; LoopVar1++) {
|
|
mLen[LoopVar1] = 0;
|
|
if ((mFreq[LoopVar1]) != 0) {
|
|
mHeapSize++;
|
|
mHeap[mHeapSize] = (INT16) LoopVar1;
|
|
}
|
|
}
|
|
|
|
if (mHeapSize < 2) {
|
|
CodeParm[mHeap[1]] = 0;
|
|
return mHeap[1];
|
|
}
|
|
|
|
for (LoopVar1 = mHeapSize / 2; LoopVar1 >= 1; LoopVar1--) {
|
|
//
|
|
// make priority queue
|
|
//
|
|
DownHeap (LoopVar1);
|
|
}
|
|
|
|
mSortPtr = CodeParm;
|
|
do {
|
|
LoopVar1 = mHeap[1];
|
|
if (LoopVar1 < mTempInt32) {
|
|
*mSortPtr++ = (UINT16) LoopVar1;
|
|
}
|
|
|
|
mHeap[1] = mHeap[mHeapSize--];
|
|
DownHeap (1);
|
|
LoopVar2 = mHeap[1];
|
|
if (LoopVar2 < mTempInt32) {
|
|
*mSortPtr++ = (UINT16) LoopVar2;
|
|
}
|
|
|
|
LoopVar3 = Avail++;
|
|
mFreq[LoopVar3] = (UINT16) (mFreq[LoopVar1] + mFreq[LoopVar2]);
|
|
mHeap[1] = (INT16) LoopVar3;
|
|
DownHeap (1);
|
|
mLeft[LoopVar3] = (UINT16) LoopVar1;
|
|
mRight[LoopVar3] = (UINT16) LoopVar2;
|
|
} while (mHeapSize > 1);
|
|
|
|
mSortPtr = CodeParm;
|
|
MakeLen (LoopVar3);
|
|
MakeCode (NParm, LenParm, CodeParm);
|
|
|
|
//
|
|
// return root
|
|
//
|
|
return LoopVar3;
|
|
}
|
|
|
|
/**
|
|
Outputs rightmost LoopVar8 bits of x
|
|
|
|
@param[in] LoopVar8 The rightmost LoopVar8 bits of the data is used.
|
|
@param[in] x The data.
|
|
**/
|
|
VOID
|
|
PutBits (
|
|
IN INT32 LoopVar8,
|
|
IN UINT32 x
|
|
)
|
|
{
|
|
UINT8 Temp;
|
|
|
|
if (LoopVar8 < mBitCount) {
|
|
mSubBitBuf |= x << (mBitCount -= LoopVar8);
|
|
} else {
|
|
|
|
Temp = (UINT8)(mSubBitBuf | (x >> (LoopVar8 -= mBitCount)));
|
|
if (mDst < mDstUpperLimit) {
|
|
*mDst++ = Temp;
|
|
}
|
|
mCompSize++;
|
|
|
|
if (LoopVar8 < UINT8_BIT) {
|
|
mSubBitBuf = x << (mBitCount = UINT8_BIT - LoopVar8);
|
|
} else {
|
|
|
|
Temp = (UINT8)(x >> (LoopVar8 - UINT8_BIT));
|
|
if (mDst < mDstUpperLimit) {
|
|
*mDst++ = Temp;
|
|
}
|
|
mCompSize++;
|
|
|
|
mSubBitBuf = x << (mBitCount = 2 * UINT8_BIT - LoopVar8);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
Encode a signed 32 bit number.
|
|
|
|
@param[in] LoopVar5 The number to encode.
|
|
**/
|
|
VOID
|
|
EncodeC (
|
|
IN INT32 LoopVar5
|
|
)
|
|
{
|
|
PutBits (mCLen[LoopVar5], mCCode[LoopVar5]);
|
|
}
|
|
|
|
/**
|
|
Encode a unsigned 32 bit number.
|
|
|
|
@param[in] LoopVar7 The number to encode.
|
|
**/
|
|
VOID
|
|
EncodeP (
|
|
IN UINT32 LoopVar7
|
|
)
|
|
{
|
|
UINT32 LoopVar5;
|
|
|
|
UINT32 LoopVar6;
|
|
|
|
LoopVar5 = 0;
|
|
LoopVar6 = LoopVar7;
|
|
while (LoopVar6 != 0) {
|
|
LoopVar6 >>= 1;
|
|
LoopVar5++;
|
|
}
|
|
|
|
PutBits (mPTLen[LoopVar5], mPTCode[LoopVar5]);
|
|
if (LoopVar5 > 1) {
|
|
PutBits(LoopVar5 - 1, LoopVar7 & (0xFFFFU >> (17 - LoopVar5)));
|
|
}
|
|
}
|
|
|
|
/**
|
|
Count the frequencies for the Extra Set.
|
|
|
|
**/
|
|
VOID
|
|
CountTFreq (
|
|
VOID
|
|
)
|
|
{
|
|
INT32 LoopVar1;
|
|
|
|
INT32 LoopVar3;
|
|
|
|
INT32 LoopVar8;
|
|
|
|
INT32 Count;
|
|
|
|
for (LoopVar1 = 0; LoopVar1 < NT; LoopVar1++) {
|
|
mTFreq[LoopVar1] = 0;
|
|
}
|
|
|
|
LoopVar8 = NC;
|
|
while (LoopVar8 > 0 && mCLen[LoopVar8 - 1] == 0) {
|
|
LoopVar8--;
|
|
}
|
|
|
|
LoopVar1 = 0;
|
|
while (LoopVar1 < LoopVar8) {
|
|
LoopVar3 = mCLen[LoopVar1++];
|
|
if (LoopVar3 == 0) {
|
|
Count = 1;
|
|
while (LoopVar1 < LoopVar8 && mCLen[LoopVar1] == 0) {
|
|
LoopVar1++;
|
|
Count++;
|
|
}
|
|
|
|
if (Count <= 2) {
|
|
mTFreq[0] = (UINT16) (mTFreq[0] + Count);
|
|
} else if (Count <= 18) {
|
|
mTFreq[1]++;
|
|
} else if (Count == 19) {
|
|
mTFreq[0]++;
|
|
mTFreq[1]++;
|
|
} else {
|
|
mTFreq[2]++;
|
|
}
|
|
} else {
|
|
ASSERT((LoopVar3+2)<(2 * NT - 1));
|
|
mTFreq[LoopVar3 + 2]++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
Outputs the code length array for the Extra Set or the Position Set.
|
|
|
|
@param[in] LoopVar8 The number of symbols.
|
|
@param[in] nbit The number of bits needed to represent 'LoopVar8'.
|
|
@param[in] Special The special symbol that needs to be take care of.
|
|
|
|
**/
|
|
VOID
|
|
WritePTLen (
|
|
IN INT32 LoopVar8,
|
|
IN INT32 nbit,
|
|
IN INT32 Special
|
|
)
|
|
{
|
|
INT32 LoopVar1;
|
|
|
|
INT32 LoopVar3;
|
|
|
|
while (LoopVar8 > 0 && mPTLen[LoopVar8 - 1] == 0) {
|
|
LoopVar8--;
|
|
}
|
|
|
|
PutBits (nbit, LoopVar8);
|
|
LoopVar1 = 0;
|
|
while (LoopVar1 < LoopVar8) {
|
|
LoopVar3 = mPTLen[LoopVar1++];
|
|
if (LoopVar3 <= 6) {
|
|
PutBits (3, LoopVar3);
|
|
} else {
|
|
PutBits (LoopVar3 - 3, (1U << (LoopVar3 - 3)) - 2);
|
|
}
|
|
|
|
if (LoopVar1 == Special) {
|
|
while (LoopVar1 < 6 && mPTLen[LoopVar1] == 0) {
|
|
LoopVar1++;
|
|
}
|
|
|
|
PutBits (2, (LoopVar1 - 3) & 3);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
Outputs the code length array for Char&Length Set.
|
|
**/
|
|
VOID
|
|
WriteCLen (
|
|
VOID
|
|
)
|
|
{
|
|
INT32 LoopVar1;
|
|
|
|
INT32 LoopVar3;
|
|
|
|
INT32 LoopVar8;
|
|
|
|
INT32 Count;
|
|
|
|
LoopVar8 = NC;
|
|
while (LoopVar8 > 0 && mCLen[LoopVar8 - 1] == 0) {
|
|
LoopVar8--;
|
|
}
|
|
|
|
PutBits (CBIT, LoopVar8);
|
|
LoopVar1 = 0;
|
|
while (LoopVar1 < LoopVar8) {
|
|
LoopVar3 = mCLen[LoopVar1++];
|
|
if (LoopVar3 == 0) {
|
|
Count = 1;
|
|
while (LoopVar1 < LoopVar8 && mCLen[LoopVar1] == 0) {
|
|
LoopVar1++;
|
|
Count++;
|
|
}
|
|
|
|
if (Count <= 2) {
|
|
for (LoopVar3 = 0; LoopVar3 < Count; LoopVar3++) {
|
|
PutBits (mPTLen[0], mPTCode[0]);
|
|
}
|
|
} else if (Count <= 18) {
|
|
PutBits (mPTLen[1], mPTCode[1]);
|
|
PutBits (4, Count - 3);
|
|
} else if (Count == 19) {
|
|
PutBits (mPTLen[0], mPTCode[0]);
|
|
PutBits (mPTLen[1], mPTCode[1]);
|
|
PutBits (4, 15);
|
|
} else {
|
|
PutBits (mPTLen[2], mPTCode[2]);
|
|
PutBits (CBIT, Count - 20);
|
|
}
|
|
} else {
|
|
ASSERT((LoopVar3+2)<NPT);
|
|
PutBits (mPTLen[LoopVar3 + 2], mPTCode[LoopVar3 + 2]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
Huffman code the block and output it.
|
|
|
|
**/
|
|
VOID
|
|
SendBlock (
|
|
VOID
|
|
)
|
|
{
|
|
UINT32 LoopVar1;
|
|
|
|
UINT32 LoopVar3;
|
|
|
|
UINT32 Flags;
|
|
|
|
UINT32 Root;
|
|
|
|
UINT32 Pos;
|
|
|
|
UINT32 Size;
|
|
Flags = 0;
|
|
|
|
Root = MakeTree (NC, mCFreq, mCLen, mCCode);
|
|
Size = mCFreq[Root];
|
|
PutBits (16, Size);
|
|
if (Root >= NC) {
|
|
CountTFreq ();
|
|
Root = MakeTree (NT, mTFreq, mPTLen, mPTCode);
|
|
if (Root >= NT) {
|
|
WritePTLen (NT, TBIT, 3);
|
|
} else {
|
|
PutBits (TBIT, 0);
|
|
PutBits (TBIT, Root);
|
|
}
|
|
|
|
WriteCLen ();
|
|
} else {
|
|
PutBits (TBIT, 0);
|
|
PutBits (TBIT, 0);
|
|
PutBits (CBIT, 0);
|
|
PutBits (CBIT, Root);
|
|
}
|
|
|
|
Root = MakeTree (NP, mPFreq, mPTLen, mPTCode);
|
|
if (Root >= NP) {
|
|
WritePTLen (NP, PBIT, -1);
|
|
} else {
|
|
PutBits (PBIT, 0);
|
|
PutBits (PBIT, Root);
|
|
}
|
|
|
|
Pos = 0;
|
|
for (LoopVar1 = 0; LoopVar1 < Size; LoopVar1++) {
|
|
if (LoopVar1 % UINT8_BIT == 0) {
|
|
Flags = mBuf[Pos++];
|
|
} else {
|
|
Flags <<= 1;
|
|
}
|
|
if ((Flags & (1U << (UINT8_BIT - 1))) != 0){
|
|
EncodeC(mBuf[Pos++] + (1U << UINT8_BIT));
|
|
LoopVar3 = mBuf[Pos++] << UINT8_BIT;
|
|
LoopVar3 += mBuf[Pos++];
|
|
|
|
EncodeP (LoopVar3);
|
|
} else {
|
|
EncodeC (mBuf[Pos++]);
|
|
}
|
|
}
|
|
|
|
SetMem (mCFreq, NC * sizeof (UINT16), 0);
|
|
SetMem (mPFreq, NP * sizeof (UINT16), 0);
|
|
}
|
|
|
|
/**
|
|
Start the huffman encoding.
|
|
|
|
**/
|
|
VOID
|
|
HufEncodeStart (
|
|
VOID
|
|
)
|
|
{
|
|
SetMem (mCFreq, NC * sizeof (UINT16), 0);
|
|
SetMem (mPFreq, NP * sizeof (UINT16), 0);
|
|
|
|
mOutputPos = mOutputMask = 0;
|
|
|
|
mBitCount = UINT8_BIT;
|
|
mSubBitBuf = 0;
|
|
}
|
|
|
|
/**
|
|
Outputs an Original Character or a Pointer.
|
|
|
|
@param[in] LoopVar5 The original character or the 'String Length' element of
|
|
a Pointer.
|
|
@param[in] LoopVar7 The 'Position' field of a Pointer.
|
|
**/
|
|
VOID
|
|
CompressOutput (
|
|
IN UINT32 LoopVar5,
|
|
IN UINT32 LoopVar7
|
|
)
|
|
{
|
|
STATIC UINT32 CPos;
|
|
|
|
if ((mOutputMask >>= 1) == 0) {
|
|
mOutputMask = 1U << (UINT8_BIT - 1);
|
|
if (mOutputPos >= mBufSiz - 3 * UINT8_BIT) {
|
|
SendBlock ();
|
|
mOutputPos = 0;
|
|
}
|
|
|
|
CPos = mOutputPos++;
|
|
mBuf[CPos] = 0;
|
|
}
|
|
mBuf[mOutputPos++] = (UINT8) LoopVar5;
|
|
mCFreq[LoopVar5]++;
|
|
if (LoopVar5 >= (1U << UINT8_BIT)) {
|
|
mBuf[CPos] = (UINT8)(mBuf[CPos]|mOutputMask);
|
|
mBuf[mOutputPos++] = (UINT8)(LoopVar7 >> UINT8_BIT);
|
|
mBuf[mOutputPos++] = (UINT8) LoopVar7;
|
|
LoopVar5 = 0;
|
|
while (LoopVar7!=0) {
|
|
LoopVar7 >>= 1;
|
|
LoopVar5++;
|
|
}
|
|
mPFreq[LoopVar5]++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
End the huffman encoding.
|
|
|
|
**/
|
|
VOID
|
|
HufEncodeEnd (
|
|
VOID
|
|
)
|
|
{
|
|
SendBlock ();
|
|
|
|
//
|
|
// Flush remaining bits
|
|
//
|
|
PutBits (UINT8_BIT - 1, 0);
|
|
}
|
|
|
|
/**
|
|
The main controlling routine for compression process.
|
|
|
|
@retval EFI_SUCCESS The compression is successful.
|
|
@retval EFI_OUT_0F_RESOURCES Not enough memory for compression process.
|
|
**/
|
|
EFI_STATUS
|
|
Encode (
|
|
VOID
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
INT32 LastMatchLen;
|
|
NODE LastMatchPos;
|
|
|
|
Status = AllocateMemory ();
|
|
if (EFI_ERROR (Status)) {
|
|
FreeMemory ();
|
|
return Status;
|
|
}
|
|
|
|
InitSlide ();
|
|
|
|
HufEncodeStart ();
|
|
|
|
mRemainder = FreadCrc (&mText[WNDSIZ], WNDSIZ + MAXMATCH);
|
|
|
|
mMatchLen = 0;
|
|
mPos = WNDSIZ;
|
|
InsertNode ();
|
|
if (mMatchLen > mRemainder) {
|
|
mMatchLen = mRemainder;
|
|
}
|
|
|
|
while (mRemainder > 0) {
|
|
LastMatchLen = mMatchLen;
|
|
LastMatchPos = mMatchPos;
|
|
if (!GetNextMatch ()) {
|
|
Status = EFI_OUT_OF_RESOURCES;
|
|
}
|
|
if (mMatchLen > mRemainder) {
|
|
mMatchLen = mRemainder;
|
|
}
|
|
|
|
if (mMatchLen > LastMatchLen || LastMatchLen < THRESHOLD) {
|
|
//
|
|
// Not enough benefits are gained by outputting a pointer,
|
|
// so just output the original character
|
|
//
|
|
CompressOutput(mText[mPos - 1], 0);
|
|
} else {
|
|
//
|
|
// Outputting a pointer is beneficial enough, do it.
|
|
//
|
|
|
|
CompressOutput(LastMatchLen + (UINT8_MAX + 1 - THRESHOLD),
|
|
(mPos - LastMatchPos - 2) & (WNDSIZ - 1));
|
|
LastMatchLen--;
|
|
while (LastMatchLen > 0) {
|
|
if (!GetNextMatch ()) {
|
|
Status = EFI_OUT_OF_RESOURCES;
|
|
}
|
|
LastMatchLen--;
|
|
}
|
|
|
|
if (mMatchLen > mRemainder) {
|
|
mMatchLen = mRemainder;
|
|
}
|
|
}
|
|
}
|
|
|
|
HufEncodeEnd ();
|
|
FreeMemory ();
|
|
return (Status);
|
|
}
|
|
|
|
/**
|
|
The compression routine.
|
|
|
|
@param[in] SrcBuffer The buffer containing the source data.
|
|
@param[in] SrcSize Number of bytes in SrcBuffer.
|
|
@param[in] DstBuffer The buffer to put the compressed image in.
|
|
@param[in, out] DstSize On input the size (in bytes) of DstBuffer, on
|
|
return the number of bytes placed in DstBuffer.
|
|
|
|
@retval EFI_SUCCESS The compression was sucessful.
|
|
@retval EFI_BUFFER_TOO_SMALL The buffer was too small. DstSize is required.
|
|
**/
|
|
EFI_STATUS
|
|
Compress (
|
|
IN VOID *SrcBuffer,
|
|
IN UINT64 SrcSize,
|
|
IN VOID *DstBuffer,
|
|
IN OUT UINT64 *DstSize
|
|
)
|
|
{
|
|
EFI_STATUS Status;
|
|
|
|
//
|
|
// Initializations
|
|
//
|
|
mBufSiz = 0;
|
|
mBuf = NULL;
|
|
mText = NULL;
|
|
mLevel = NULL;
|
|
mChildCount = NULL;
|
|
mPosition = NULL;
|
|
mParent = NULL;
|
|
mPrev = NULL;
|
|
mNext = NULL;
|
|
|
|
mSrc = SrcBuffer;
|
|
mSrcUpperLimit = mSrc + SrcSize;
|
|
mDst = DstBuffer;
|
|
mDstUpperLimit = mDst +*DstSize;
|
|
|
|
PutDword (0L);
|
|
PutDword (0L);
|
|
|
|
MakeCrcTable ();
|
|
|
|
mOrigSize = mCompSize = 0;
|
|
mCrc = INIT_CRC;
|
|
|
|
//
|
|
// Compress it
|
|
//
|
|
Status = Encode ();
|
|
if (EFI_ERROR (Status)) {
|
|
return EFI_OUT_OF_RESOURCES;
|
|
}
|
|
//
|
|
// Null terminate the compressed data
|
|
//
|
|
if (mDst < mDstUpperLimit) {
|
|
*mDst++ = 0;
|
|
}
|
|
//
|
|
// Fill in compressed size and original size
|
|
//
|
|
mDst = DstBuffer;
|
|
PutDword (mCompSize + 1);
|
|
PutDword (mOrigSize);
|
|
|
|
//
|
|
// Return
|
|
//
|
|
if (mCompSize + 1 + 8 > *DstSize) {
|
|
*DstSize = mCompSize + 1 + 8;
|
|
return EFI_BUFFER_TOO_SMALL;
|
|
} else {
|
|
*DstSize = mCompSize + 1 + 8;
|
|
return EFI_SUCCESS;
|
|
}
|
|
|
|
}
|
|
|