Collision cleanup (#1085)

This commit is contained in:
TheMode 2022-05-17 17:09:16 +02:00 committed by GitHub
parent bfa2dbd3f7
commit 83ff0daff7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 98 additions and 161 deletions

View File

@ -14,54 +14,54 @@ import org.jetbrains.annotations.NotNull;
import org.jetbrains.annotations.Nullable;
final class BlockCollision {
// Minimum move amount, minimum final velocity
private static final double MIN_DELTA = 0.001;
private static Vec[] calculateFaces(Vec queryVec, BoundingBox boundingBox) {
// Add 1 because we start at point 0
int ceilX = (int) Math.ceil(boundingBox.width()) + 1;
int ceilY = (int) Math.ceil(boundingBox.height()) + 1;
int ceilZ = (int) Math.ceil(boundingBox.depth()) + 1;
final int queryX = (int) Math.signum(queryVec.x());
final int queryY = (int) Math.signum(queryVec.y());
final int queryZ = (int) Math.signum(queryVec.z());
final int ceilWidth = (int) Math.ceil(boundingBox.width());
final int ceilHeight = (int) Math.ceil(boundingBox.height());
final int ceilDepth = (int) Math.ceil(boundingBox.depth());
Vec[] facePoints;
// Compute array length
{
final int ceilX = ceilWidth + 1;
final int ceilY = ceilHeight + 1;
final int ceilZ = ceilDepth + 1;
int pointCount = 0;
if (queryVec.x() != 0) pointCount += ceilY * ceilZ;
if (queryVec.y() != 0) pointCount += ceilX * ceilZ;
if (queryVec.z() != 0) pointCount += ceilX * ceilY;
if (queryX != 0) pointCount += ceilY * ceilZ;
if (queryY != 0) pointCount += ceilX * ceilZ;
if (queryZ != 0) pointCount += ceilX * ceilY;
// Three edge reduction
if (queryVec.x() != 0 && queryVec.y() != 0 && queryVec.z() != 0) {
if (queryX != 0 && queryY != 0 && queryZ != 0) {
pointCount -= ceilX + ceilY + ceilZ;
// inclusion exclusion principle
pointCount++;
} else if (queryVec.x() != 0 && queryVec.y() != 0) { // Two edge reduction
} else if (queryX != 0 && queryY != 0) { // Two edge reduction
pointCount -= ceilZ;
} else if (queryVec.y() != 0 && queryVec.z() != 0) { // Two edge reduction
} else if (queryY != 0 && queryZ != 0) { // Two edge reduction
pointCount -= ceilX;
} else if (queryVec.x() != 0 && queryVec.z() != 0) { // Two edge reduction
} else if (queryX != 0 && queryZ != 0) { // Two edge reduction
pointCount -= ceilY;
}
Vec[] facePoints = new Vec[pointCount];
facePoints = new Vec[pointCount];
}
int insertIndex = 0;
// X -> Y x Z
if (queryVec.x() != 0) {
if (queryX != 0) {
int startIOffset = 0, endIOffset = 0, startJOffset = 0, endJOffset = 0;
// Y handles XY edge
if (queryVec.y() < 0) startJOffset = 1;
if (queryVec.y() > 0) endJOffset = 1;
if (queryY < 0) startJOffset = 1;
if (queryY > 0) endJOffset = 1;
// Z handles XZ edge
if (queryVec.z() < 0) startIOffset = 1;
if (queryVec.z() > 0) endIOffset = 1;
if (queryZ < 0) startIOffset = 1;
if (queryZ > 0) endIOffset = 1;
for (int i = startIOffset; i <= Math.ceil(boundingBox.depth()) - endIOffset; ++i)
for (int j = startJOffset; j <= Math.ceil(boundingBox.height()) - endJOffset; ++j) {
for (int i = startIOffset; i <= ceilDepth - endIOffset; ++i) {
for (int j = startJOffset; j <= ceilHeight - endJOffset; ++j) {
double cellI = i;
double cellJ = j;
double cellK = queryVec.x() < 0 ? 0 : boundingBox.width();
double cellK = queryX < 0 ? 0 : boundingBox.width();
if (i >= boundingBox.depth()) cellI = boundingBox.depth();
if (j >= boundingBox.height()) cellJ = boundingBox.height();
@ -70,24 +70,22 @@ final class BlockCollision {
cellJ += boundingBox.minY();
cellK += boundingBox.minX();
Vec p = new Vec(cellK, cellJ, cellI);
facePoints[insertIndex++] = p;
facePoints[insertIndex++] = new Vec(cellK, cellJ, cellI);
}
}
}
// Y -> X x Z
if (queryVec.y() != 0) {
if (queryY != 0) {
int startJOffset = 0, endJOffset = 0;
// Z handles YZ edge
if (queryVec.z() < 0) startJOffset = 1;
if (queryVec.z() > 0) endJOffset = 1;
if (queryZ < 0) startJOffset = 1;
if (queryZ > 0) endJOffset = 1;
for (int i = startJOffset; i <= Math.ceil(boundingBox.depth()) - endJOffset; ++i)
for (int j = 0; j <= Math.ceil(boundingBox.width()); ++j) {
for (int i = startJOffset; i <= ceilDepth - endJOffset; ++i) {
for (int j = 0; j <= ceilWidth; ++j) {
double cellI = i;
double cellJ = j;
double cellK = queryVec.y() < 0 ? 0 : boundingBox.height();
double cellK = queryY < 0 ? 0 : boundingBox.height();
if (i >= boundingBox.depth()) cellI = boundingBox.depth();
if (j >= boundingBox.width()) cellJ = boundingBox.width();
@ -96,18 +94,17 @@ final class BlockCollision {
cellJ += boundingBox.minX();
cellK += boundingBox.minY();
Vec p = new Vec(cellJ, cellK, cellI);
facePoints[insertIndex++] = p;
facePoints[insertIndex++] = new Vec(cellJ, cellK, cellI);
}
}
}
// Z -> X x Y
if (queryVec.z() != 0) {
for (int i = 0; i <= Math.ceil(boundingBox.height()); ++i)
for (int j = 0; j <= Math.ceil(boundingBox.width()); ++j) {
if (queryZ != 0) {
for (int i = 0; i <= ceilHeight; ++i) {
for (int j = 0; j <= ceilWidth; ++j) {
double cellI = i;
double cellJ = j;
double cellK = queryVec.z() < 0 ? 0 : boundingBox.depth();
double cellK = queryZ < 0 ? 0 : boundingBox.depth();
if (i >= boundingBox.height()) cellI = boundingBox.height();
if (j >= boundingBox.width()) cellJ = boundingBox.width();
@ -116,8 +113,8 @@ final class BlockCollision {
cellJ += boundingBox.minX();
cellK += boundingBox.minZ();
Vec p = new Vec(cellJ, cellI, cellK);
facePoints[insertIndex++] = p;
facePoints[insertIndex++] = new Vec(cellJ, cellI, cellK);
}
}
}
@ -131,16 +128,13 @@ final class BlockCollision {
* All bounding boxes inside the full blocks are checked for collisions with the entity.
*/
static PhysicsResult handlePhysics(@NotNull BoundingBox boundingBox,
@NotNull Vec entityVelocity, @NotNull Pos entityPosition,
@NotNull Vec velocity, @NotNull Pos entityPosition,
@NotNull Block.Getter getter,
@Nullable PhysicsResult lastPhysicsResult) {
Vec remainingMove = entityVelocity;
// Allocate once and update values
final SweepResult finalResult = new SweepResult(1, 0, 0, 0, null);
SweepResult finalResult = new SweepResult(1, 0, 0, 0, null);
boolean foundCollisionX = false, foundCollisionY = false, foundCollisionZ = false;
Point collisionYBlock = null;
Block blockYType = Block.AIR;
@ -148,40 +142,30 @@ final class BlockCollision {
// If the entity isn't moving and the block below hasn't changed, return
if (lastPhysicsResult != null) {
if (lastPhysicsResult.collisionY()
&& Math.signum(remainingMove.y()) == Math.signum(lastPhysicsResult.originalDelta().y())
&& Math.signum(velocity.y()) == Math.signum(lastPhysicsResult.originalDelta().y())
&& lastPhysicsResult.collidedBlockY() != null
&& getter.getBlock(lastPhysicsResult.collidedBlockY(), Block.Getter.Condition.TYPE) == lastPhysicsResult.blockTypeY()
&& remainingMove.x() == 0 && remainingMove.z() == 0
&& velocity.x() == 0 && velocity.z() == 0
&& entityPosition.samePoint(lastPhysicsResult.newPosition())
&& lastPhysicsResult.blockTypeY() != Block.AIR) {
remainingMove = remainingMove.withY(0);
velocity = velocity.withY(0);
foundCollisionY = true;
collisionYBlock = lastPhysicsResult.collidedBlockY();
blockYType = lastPhysicsResult.blockTypeY();
}
}
// If we're moving less than the MIN_DELTA value, set the velocity in that axis to 0.
// This prevents tiny moves from wasting cpu time
final double deltaX = Math.abs(remainingMove.x()) < MIN_DELTA ? 0 : remainingMove.x();
final double deltaY = Math.abs(remainingMove.y()) < MIN_DELTA ? 0 : remainingMove.y();
final double deltaZ = Math.abs(remainingMove.z()) < MIN_DELTA ? 0 : remainingMove.z();
remainingMove = new Vec(deltaX, deltaY, deltaZ);
if (remainingMove.isZero())
if (lastPhysicsResult != null)
if (velocity.isZero()) {
if (lastPhysicsResult != null) {
return new PhysicsResult(entityPosition, Vec.ZERO, lastPhysicsResult.isOnGround(),
lastPhysicsResult.collisionX(), lastPhysicsResult.collisionY(), lastPhysicsResult.collisionZ(),
entityVelocity, lastPhysicsResult.collidedBlockY(), lastPhysicsResult.blockTypeY());
else
return new PhysicsResult(entityPosition, Vec.ZERO, false, false, false, false, entityVelocity, null, Block.AIR);
velocity, lastPhysicsResult.collidedBlockY(), lastPhysicsResult.blockTypeY());
} else {
return new PhysicsResult(entityPosition, Vec.ZERO, false, false, false, false, velocity, null, Block.AIR);
}
}
// Query faces to get the points needed for collision
Vec[] allFaces = calculateFaces(new Vec(Math.signum(remainingMove.x()), Math.signum(remainingMove.y()), Math.signum(remainingMove.z())), boundingBox);
PhysicsResult res = handlePhysics(boundingBox, remainingMove, entityPosition, getter, allFaces, finalResult);
final Vec[] allFaces = calculateFaces(velocity, boundingBox);
PhysicsResult res = handlePhysics(boundingBox, velocity, entityPosition, getter, allFaces, finalResult);
// Loop until no collisions are found.
// When collisions are found, the collision axis is set to 0
// Looping until there are no collisions will allow the entity to move in axis other than the collision axis after a collision.
@ -194,35 +178,29 @@ final class BlockCollision {
if (res.collisionX()) foundCollisionX = true;
if (res.collisionZ()) foundCollisionZ = true;
if (res.collisionY()) {
foundCollisionY = true;
// If we are only moving in the y-axis
if (!res.collisionX() && !res.collisionZ() && entityVelocity.x() == 0 && entityVelocity.z() == 0) {
if (!res.collisionX() && !res.collisionZ() && velocity.x() == 0 && velocity.z() == 0) {
collisionYBlock = res.collidedBlockY();
blockYType = res.blockTypeY();
}
}
// If all axis have had collisions, break
if (foundCollisionX && foundCollisionY && foundCollisionZ) break;
// If the entity isn't moving, break
if (res.newVelocity().isZero()) break;
allFaces = calculateFaces(new Vec(Math.signum(remainingMove.x()), Math.signum(remainingMove.y()), Math.signum(remainingMove.z())), boundingBox);
res = handlePhysics(boundingBox, res.newVelocity(), res.newPosition(), getter, allFaces, finalResult);
}
final double newDeltaX = foundCollisionX ? 0 : entityVelocity.x();
final double newDeltaY = foundCollisionY ? 0 : entityVelocity.y();
final double newDeltaZ = foundCollisionZ ? 0 : entityVelocity.z();
final double newDeltaX = foundCollisionX ? 0 : velocity.x();
final double newDeltaY = foundCollisionY ? 0 : velocity.y();
final double newDeltaZ = foundCollisionZ ? 0 : velocity.z();
return new PhysicsResult(res.newPosition(), new Vec(newDeltaX, newDeltaY, newDeltaZ),
newDeltaY == 0 && entityVelocity.y() < 0,
foundCollisionX, foundCollisionY, foundCollisionZ, entityVelocity, collisionYBlock, blockYType);
newDeltaY == 0 && velocity.y() < 0,
foundCollisionX, foundCollisionY, foundCollisionZ, velocity, collisionYBlock, blockYType);
}
private static PhysicsResult handlePhysics(@NotNull BoundingBox boundingBox,
@ -234,14 +212,12 @@ final class BlockCollision {
double remainingX = deltaPosition.x();
double remainingY = deltaPosition.y();
double remainingZ = deltaPosition.z();
// If the movement is small we don't need to run the expensive ray casting.
// Positions of move less than one can have hardcoded blocks to check for every direction
if (deltaPosition.length() < 1) {
for (Vec point : allFaces) {
Vec pointBefore = point.add(entityPosition);
Vec pointAfter = point.add(entityPosition).add(deltaPosition);
// Entity can pass through up to 4 blocks. Starting block, Two intermediate blocks, and a final block.
// This means we must check every combination of block movements when an entity moves over an axis.
// 000, 001, 010, 011, etc.
@ -293,37 +269,15 @@ final class BlockCollision {
}
}
double finalX = entityPosition.x() + finalResult.res * remainingX;
double finalY = entityPosition.y() + finalResult.res * remainingY;
double finalZ = entityPosition.z() + finalResult.res * remainingZ;
boolean collisionX = false, collisionY = false, collisionZ = false;
final double finalX = entityPosition.x() + finalResult.res * remainingX;
final double finalY = entityPosition.y() + finalResult.res * remainingY;
final double finalZ = entityPosition.z() + finalResult.res * remainingZ;
final boolean collisionX = finalResult.normalX != 0, collisionY = finalResult.normalY != 0, collisionZ = finalResult.normalZ != 0;
// Remaining delta
remainingX -= finalResult.res * remainingX;
remainingY -= finalResult.res * remainingY;
remainingZ -= finalResult.res * remainingZ;
if (finalResult.normalX != 0) {
collisionX = true;
remainingX = 0;
}
if (finalResult.normalY != 0) {
collisionY = true;
remainingY = 0;
}
if (finalResult.normalZ != 0) {
collisionZ = true;
remainingZ = 0;
}
remainingX = Math.abs(remainingX) < MIN_DELTA ? 0 : remainingX;
remainingY = Math.abs(remainingY) < MIN_DELTA ? 0 : remainingY;
remainingZ = Math.abs(remainingZ) < MIN_DELTA ? 0 : remainingZ;
finalX = Math.abs(finalX - entityPosition.x()) < MIN_DELTA ? entityPosition.x() : finalX;
finalY = Math.abs(finalY - entityPosition.y()) < MIN_DELTA ? entityPosition.y() : finalY;
finalZ = Math.abs(finalZ - entityPosition.z()) < MIN_DELTA ? entityPosition.z() : finalZ;
remainingX = collisionX ? 0 : remainingX - finalResult.res * remainingX;
remainingY = collisionY ? 0 : remainingY - finalResult.res * remainingY;
remainingZ = collisionZ ? 0 : remainingZ - finalResult.res * remainingZ;
return new PhysicsResult(new Pos(finalX, finalY, finalZ),
new Vec(remainingX, remainingY, remainingZ), collisionY,
@ -389,17 +343,16 @@ final class BlockCollision {
final Shape belowShape = belowBlock.registry().collisionShape();
final Vec currentPos = new Vec(blockX, blockY, blockZ);
// don't fall out of if statement, we could end up redundantly grabbing a block, and we only need to
// collision check against the current shape since the below shape isn't tall
if(belowShape.relativeEnd().y() > 1)
if (belowShape.relativeEnd().y() > 1) {
// we should always check both shapes, so no short-circuit here, to handle cases where the bounding box
// hits the current solid but misses the tall solid
return belowShape.intersectBoxSwept(entityPosition, entityVelocity, belowPos, boundingBox, finalResult)
| (currentCollidable && currentShape.intersectBoxSwept(entityPosition, entityVelocity,
currentPos, boundingBox, finalResult));
else return currentCollidable && currentShape.intersectBoxSwept(entityPosition, entityVelocity, currentPos,
boundingBox, finalResult);
return belowShape.intersectBoxSwept(entityPosition, entityVelocity, belowPos, boundingBox, finalResult) |
(currentCollidable && currentShape.intersectBoxSwept(entityPosition, entityVelocity, currentPos, boundingBox, finalResult));
} else {
return currentCollidable && currentShape.intersectBoxSwept(entityPosition, entityVelocity, currentPos, boundingBox, finalResult);
}
}
if (currentCollidable && currentShape.intersectBoxSwept(entityPosition, entityVelocity,
@ -409,42 +362,28 @@ final class BlockCollision {
final Vec belowPos = new Vec(blockX, blockY - 1, blockZ);
final Block belowBlock = getter.getBlock(belowPos, Block.Getter.Condition.TYPE);
final Shape belowShape = belowBlock.registry().collisionShape();
// only do sweep if the below block is big enough to possibly hit
if (belowShape.relativeEnd().y() > 1)
belowShape.intersectBoxSwept(entityPosition, entityVelocity, belowPos, boundingBox, finalResult);
}
return true;
}
return false;
}
private static boolean shouldCheckLower(Vec entityVelocity, Pos entityPosition, int blockX, int blockY, int blockZ) {
final double yVelocity = entityVelocity.y();
// if moving horizontally, just check if the floor of the entity's position is the same as the blockY
if(yVelocity == 0)
return Math.floor(entityPosition.y()) == blockY;
if (yVelocity == 0) return Math.floor(entityPosition.y()) == blockY;
final double xVelocity = entityVelocity.x();
final double zVelocity = entityVelocity.z();
// if moving straight up, don't bother checking for tall solids beneath anything
// if moving straight down, only check for a tall solid underneath the last block
if (xVelocity == 0 && zVelocity == 0)
return yVelocity < 0 && blockY == Math.floor(entityPosition.y() + yVelocity);
// default to true: if no x velocity, only consider YZ line, and vice-versa
boolean underYX = true;
boolean underYZ = true;
if(xVelocity != 0)
underYX = computeHeight(yVelocity, xVelocity, entityPosition.y(), entityPosition.x(), blockX) >= blockY;
if(zVelocity != 0)
underYZ = computeHeight(yVelocity, zVelocity, entityPosition.y(), entityPosition.z(), blockZ) >= blockY;
final boolean underYX = xVelocity != 0 && computeHeight(yVelocity, xVelocity, entityPosition.y(), entityPosition.x(), blockX) >= blockY;
final boolean underYZ = zVelocity != 0 && computeHeight(yVelocity, zVelocity, entityPosition.y(), entityPosition.z(), blockZ) >= blockY;
// true if the block is at or below the same height as a line drawn from the entity's position to its final
// destination
return underYX && underYZ;
@ -457,7 +396,6 @@ final class BlockCollision {
*/
private static double computeHeight(double yVelocity, double velocity, double entityY, double pos, int blockPos) {
final double m = yVelocity / velocity;
/*
offsetting by 1 is necessary with a positive slope, because we can clip the bottom-right corner of blocks
without clipping the "bottom-left" (the smallest corner of the block on the YZ or YX plane). without the offset

View File

@ -162,9 +162,7 @@ public final class BoundingBox implements Shape {
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
BoundingBox that = (BoundingBox) o;
if (Double.compare(that.width, width) != 0) return false;
if (Double.compare(that.height, height) != 0) return false;
if (Double.compare(that.depth, depth) != 0) return false;

View File

@ -29,8 +29,9 @@ public final class CollisionUtils {
*/
public static PhysicsResult handlePhysics(@NotNull Entity entity, @NotNull Vec entityVelocity,
@Nullable PhysicsResult lastPhysicsResult) {
assert entity.getInstance() != null;
return handlePhysics(entity.getInstance(), entity.getChunk(),
final Instance instance = entity.getInstance();
assert instance != null;
return handlePhysics(instance, entity.getChunk(),
entity.getBoundingBox(),
entity.getPosition(), entityVelocity,
lastPhysicsResult);