bitwarden-browser/libs/common/src/services/webCryptoFunction.service.ts

403 lines
13 KiB
TypeScript

import * as argon2 from "argon2-browser";
import * as forge from "node-forge";
import { CryptoFunctionService } from "../abstractions/cryptoFunction.service";
import { Utils } from "../misc/utils";
import { DecryptParameters } from "../models/domain/decrypt-parameters";
import { SymmetricCryptoKey } from "../models/domain/symmetric-crypto-key";
export class WebCryptoFunctionService implements CryptoFunctionService {
private crypto: Crypto;
private subtle: SubtleCrypto;
private wasmSupported: boolean;
constructor(win: Window | typeof global) {
this.crypto = typeof win.crypto !== "undefined" ? win.crypto : null;
this.subtle =
!!this.crypto && typeof win.crypto.subtle !== "undefined" ? win.crypto.subtle : null;
this.wasmSupported = this.checkIfWasmSupported();
}
async pbkdf2(
password: string | ArrayBuffer,
salt: string | ArrayBuffer,
algorithm: "sha256" | "sha512",
iterations: number
): Promise<ArrayBuffer> {
const wcLen = algorithm === "sha256" ? 256 : 512;
const passwordBuf = this.toBuf(password);
const saltBuf = this.toBuf(salt);
const pbkdf2Params: Pbkdf2Params = {
name: "PBKDF2",
salt: saltBuf,
iterations: iterations,
hash: { name: this.toWebCryptoAlgorithm(algorithm) },
};
const impKey = await this.subtle.importKey(
"raw",
passwordBuf,
{ name: "PBKDF2" } as any,
false,
["deriveBits"]
);
return await this.subtle.deriveBits(pbkdf2Params, impKey, wcLen);
}
async argon2(
password: string | ArrayBuffer,
salt: string | ArrayBuffer,
iterations: number,
memory: number,
parallelism: number
): Promise<ArrayBuffer> {
if (!this.wasmSupported) {
throw "Webassembly support is required for the Argon2 KDF feature.";
}
const passwordArr = new Uint8Array(this.toBuf(password));
const saltArr = new Uint8Array(this.toBuf(salt));
const result = await argon2.hash({
pass: passwordArr,
salt: saltArr,
time: iterations,
mem: memory,
parallelism: parallelism,
hashLen: 32,
type: argon2.ArgonType.Argon2id,
});
return result.hash;
}
async hkdf(
ikm: ArrayBuffer,
salt: string | ArrayBuffer,
info: string | ArrayBuffer,
outputByteSize: number,
algorithm: "sha256" | "sha512"
): Promise<ArrayBuffer> {
const saltBuf = this.toBuf(salt);
const infoBuf = this.toBuf(info);
const hkdfParams: HkdfParams = {
name: "HKDF",
salt: saltBuf,
info: infoBuf,
hash: { name: this.toWebCryptoAlgorithm(algorithm) },
};
const impKey = await this.subtle.importKey("raw", ikm, { name: "HKDF" } as any, false, [
"deriveBits",
]);
return await this.subtle.deriveBits(hkdfParams as any, impKey, outputByteSize * 8);
}
// ref: https://tools.ietf.org/html/rfc5869
async hkdfExpand(
prk: ArrayBuffer,
info: string | ArrayBuffer,
outputByteSize: number,
algorithm: "sha256" | "sha512"
): Promise<ArrayBuffer> {
const hashLen = algorithm === "sha256" ? 32 : 64;
if (outputByteSize > 255 * hashLen) {
throw new Error("outputByteSize is too large.");
}
const prkArr = new Uint8Array(prk);
if (prkArr.length < hashLen) {
throw new Error("prk is too small.");
}
const infoBuf = this.toBuf(info);
const infoArr = new Uint8Array(infoBuf);
let runningOkmLength = 0;
let previousT = new Uint8Array(0);
const n = Math.ceil(outputByteSize / hashLen);
const okm = new Uint8Array(n * hashLen);
for (let i = 0; i < n; i++) {
const t = new Uint8Array(previousT.length + infoArr.length + 1);
t.set(previousT);
t.set(infoArr, previousT.length);
t.set([i + 1], t.length - 1);
previousT = new Uint8Array(await this.hmac(t.buffer, prk, algorithm));
okm.set(previousT, runningOkmLength);
runningOkmLength += previousT.length;
if (runningOkmLength >= outputByteSize) {
break;
}
}
return okm.slice(0, outputByteSize).buffer;
}
async hash(
value: string | ArrayBuffer,
algorithm: "sha1" | "sha256" | "sha512" | "md5"
): Promise<ArrayBuffer> {
if (algorithm === "md5") {
const md = algorithm === "md5" ? forge.md.md5.create() : forge.md.sha1.create();
const valueBytes = this.toByteString(value);
md.update(valueBytes, "raw");
return Utils.fromByteStringToArray(md.digest().data).buffer;
}
const valueBuf = this.toBuf(value);
return await this.subtle.digest({ name: this.toWebCryptoAlgorithm(algorithm) }, valueBuf);
}
async hmac(
value: ArrayBuffer,
key: ArrayBuffer,
algorithm: "sha1" | "sha256" | "sha512"
): Promise<ArrayBuffer> {
const signingAlgorithm = {
name: "HMAC",
hash: { name: this.toWebCryptoAlgorithm(algorithm) },
};
const impKey = await this.subtle.importKey("raw", key, signingAlgorithm, false, ["sign"]);
return await this.subtle.sign(signingAlgorithm, impKey, value);
}
// Safely compare two values in a way that protects against timing attacks (Double HMAC Verification).
// ref: https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2011/february/double-hmac-verification/
// ref: https://paragonie.com/blog/2015/11/preventing-timing-attacks-on-string-comparison-with-double-hmac-strategy
async compare(a: ArrayBuffer, b: ArrayBuffer): Promise<boolean> {
const macKey = await this.randomBytes(32);
const signingAlgorithm = {
name: "HMAC",
hash: { name: "SHA-256" },
};
const impKey = await this.subtle.importKey("raw", macKey, signingAlgorithm, false, ["sign"]);
const mac1 = await this.subtle.sign(signingAlgorithm, impKey, a);
const mac2 = await this.subtle.sign(signingAlgorithm, impKey, b);
if (mac1.byteLength !== mac2.byteLength) {
return false;
}
const arr1 = new Uint8Array(mac1);
const arr2 = new Uint8Array(mac2);
for (let i = 0; i < arr2.length; i++) {
if (arr1[i] !== arr2[i]) {
return false;
}
}
return true;
}
hmacFast(value: string, key: string, algorithm: "sha1" | "sha256" | "sha512"): Promise<string> {
const hmac = forge.hmac.create();
hmac.start(algorithm, key);
hmac.update(value);
const bytes = hmac.digest().getBytes();
return Promise.resolve(bytes);
}
async compareFast(a: string, b: string): Promise<boolean> {
const rand = await this.randomBytes(32);
const bytes = new Uint32Array(rand);
const buffer = forge.util.createBuffer();
for (let i = 0; i < bytes.length; i++) {
buffer.putInt32(bytes[i]);
}
const macKey = buffer.getBytes();
const hmac = forge.hmac.create();
hmac.start("sha256", macKey);
hmac.update(a);
const mac1 = hmac.digest().getBytes();
hmac.start(null, null);
hmac.update(b);
const mac2 = hmac.digest().getBytes();
const equals = mac1 === mac2;
return equals;
}
async aesEncrypt(data: ArrayBuffer, iv: ArrayBuffer, key: ArrayBuffer): Promise<ArrayBuffer> {
const impKey = await this.subtle.importKey("raw", key, { name: "AES-CBC" } as any, false, [
"encrypt",
]);
return await this.subtle.encrypt({ name: "AES-CBC", iv: iv }, impKey, data);
}
aesDecryptFastParameters(
data: string,
iv: string,
mac: string,
key: SymmetricCryptoKey
): DecryptParameters<string> {
const p = new DecryptParameters<string>();
if (key.meta != null) {
p.encKey = key.meta.encKeyByteString;
p.macKey = key.meta.macKeyByteString;
}
if (p.encKey == null) {
p.encKey = forge.util.decode64(key.encKeyB64);
}
p.data = forge.util.decode64(data);
p.iv = forge.util.decode64(iv);
p.macData = p.iv + p.data;
if (p.macKey == null && key.macKeyB64 != null) {
p.macKey = forge.util.decode64(key.macKeyB64);
}
if (mac != null) {
p.mac = forge.util.decode64(mac);
}
// cache byte string keys for later
if (key.meta == null) {
key.meta = {};
}
if (key.meta.encKeyByteString == null) {
key.meta.encKeyByteString = p.encKey;
}
if (p.macKey != null && key.meta.macKeyByteString == null) {
key.meta.macKeyByteString = p.macKey;
}
return p;
}
aesDecryptFast(parameters: DecryptParameters<string>): Promise<string> {
const dataBuffer = forge.util.createBuffer(parameters.data);
const decipher = forge.cipher.createDecipher("AES-CBC", parameters.encKey);
decipher.start({ iv: parameters.iv });
decipher.update(dataBuffer);
decipher.finish();
const val = decipher.output.toString();
return Promise.resolve(val);
}
async aesDecrypt(data: ArrayBuffer, iv: ArrayBuffer, key: ArrayBuffer): Promise<ArrayBuffer> {
const impKey = await this.subtle.importKey("raw", key, { name: "AES-CBC" } as any, false, [
"decrypt",
]);
return await this.subtle.decrypt({ name: "AES-CBC", iv: iv }, impKey, data);
}
async rsaEncrypt(
data: ArrayBuffer,
publicKey: ArrayBuffer,
algorithm: "sha1" | "sha256"
): Promise<ArrayBuffer> {
// Note: Edge browser requires that we specify name and hash for both key import and decrypt.
// We cannot use the proper types here.
const rsaParams = {
name: "RSA-OAEP",
hash: { name: this.toWebCryptoAlgorithm(algorithm) },
};
const impKey = await this.subtle.importKey("spki", publicKey, rsaParams, false, ["encrypt"]);
return await this.subtle.encrypt(rsaParams, impKey, data);
}
async rsaDecrypt(
data: ArrayBuffer,
privateKey: ArrayBuffer,
algorithm: "sha1" | "sha256"
): Promise<ArrayBuffer> {
// Note: Edge browser requires that we specify name and hash for both key import and decrypt.
// We cannot use the proper types here.
const rsaParams = {
name: "RSA-OAEP",
hash: { name: this.toWebCryptoAlgorithm(algorithm) },
};
const impKey = await this.subtle.importKey("pkcs8", privateKey, rsaParams, false, ["decrypt"]);
return await this.subtle.decrypt(rsaParams, impKey, data);
}
async rsaExtractPublicKey(privateKey: ArrayBuffer): Promise<ArrayBuffer> {
const rsaParams = {
name: "RSA-OAEP",
// Have to specify some algorithm
hash: { name: this.toWebCryptoAlgorithm("sha1") },
};
const impPrivateKey = await this.subtle.importKey("pkcs8", privateKey, rsaParams, true, [
"decrypt",
]);
const jwkPrivateKey = await this.subtle.exportKey("jwk", impPrivateKey);
const jwkPublicKeyParams = {
kty: "RSA",
e: jwkPrivateKey.e,
n: jwkPrivateKey.n,
alg: "RSA-OAEP",
ext: true,
};
const impPublicKey = await this.subtle.importKey("jwk", jwkPublicKeyParams, rsaParams, true, [
"encrypt",
]);
return await this.subtle.exportKey("spki", impPublicKey);
}
async rsaGenerateKeyPair(length: 1024 | 2048 | 4096): Promise<[ArrayBuffer, ArrayBuffer]> {
const rsaParams = {
name: "RSA-OAEP",
modulusLength: length,
publicExponent: new Uint8Array([0x01, 0x00, 0x01]), // 65537
// Have to specify some algorithm
hash: { name: this.toWebCryptoAlgorithm("sha1") },
};
const keyPair = (await this.subtle.generateKey(rsaParams, true, [
"encrypt",
"decrypt",
])) as CryptoKeyPair;
const publicKey = await this.subtle.exportKey("spki", keyPair.publicKey);
const privateKey = await this.subtle.exportKey("pkcs8", keyPair.privateKey);
return [publicKey, privateKey];
}
randomBytes(length: number): Promise<ArrayBuffer> {
const arr = new Uint8Array(length);
this.crypto.getRandomValues(arr);
return Promise.resolve(arr.buffer);
}
private toBuf(value: string | ArrayBuffer): ArrayBuffer {
let buf: ArrayBuffer;
if (typeof value === "string") {
buf = Utils.fromUtf8ToArray(value).buffer;
} else {
buf = value;
}
return buf;
}
private toByteString(value: string | ArrayBuffer): string {
let bytes: string;
if (typeof value === "string") {
bytes = forge.util.encodeUtf8(value);
} else {
bytes = Utils.fromBufferToByteString(value);
}
return bytes;
}
private toWebCryptoAlgorithm(algorithm: "sha1" | "sha256" | "sha512" | "md5"): string {
if (algorithm === "md5") {
throw new Error("MD5 is not supported in WebCrypto.");
}
return algorithm === "sha1" ? "SHA-1" : algorithm === "sha256" ? "SHA-256" : "SHA-512";
}
// ref: https://stackoverflow.com/a/47880734/1090359
private checkIfWasmSupported(): boolean {
try {
if (typeof WebAssembly === "object" && typeof WebAssembly.instantiate === "function") {
const module = new WebAssembly.Module(
Uint8Array.of(0x0, 0x61, 0x73, 0x6d, 0x01, 0x00, 0x00, 0x00)
);
if (module instanceof WebAssembly.Module) {
return new WebAssembly.Instance(module) instanceof WebAssembly.Instance;
}
}
} catch {
return false;
}
return false;
}
}