bitwarden-browser/libs/node/src/services/node-crypto-function.servic...

325 lines
11 KiB
TypeScript

import * as crypto from "crypto";
import * as argon2 from "argon2";
import * as forge from "node-forge";
import { CryptoFunctionService } from "@bitwarden/common/abstractions/cryptoFunction.service";
import { Utils } from "@bitwarden/common/misc/utils";
import { DecryptParameters } from "@bitwarden/common/models/domain/decrypt-parameters";
import { SymmetricCryptoKey } from "@bitwarden/common/models/domain/symmetric-crypto-key";
export class NodeCryptoFunctionService implements CryptoFunctionService {
pbkdf2(
password: string | ArrayBuffer,
salt: string | ArrayBuffer,
algorithm: "sha256" | "sha512",
iterations: number
): Promise<ArrayBuffer> {
const len = algorithm === "sha256" ? 32 : 64;
const nodePassword = this.toNodeValue(password);
const nodeSalt = this.toNodeValue(salt);
return new Promise<ArrayBuffer>((resolve, reject) => {
crypto.pbkdf2(nodePassword, nodeSalt, iterations, len, algorithm, (error, key) => {
if (error != null) {
reject(error);
} else {
resolve(this.toArrayBuffer(key));
}
});
});
}
async argon2(
password: string | ArrayBuffer,
salt: string | ArrayBuffer,
iterations: number,
memory: number,
parallelism: number
): Promise<ArrayBuffer> {
const nodePassword = this.toNodeValue(password);
const nodeSalt = this.toNodeBuffer(this.toArrayBuffer(salt));
const hash = await argon2.hash(nodePassword, {
salt: nodeSalt,
raw: true,
hashLength: 32,
timeCost: iterations,
memoryCost: memory,
parallelism: parallelism,
type: argon2.argon2id,
});
return this.toArrayBuffer(hash);
}
// ref: https://tools.ietf.org/html/rfc5869
async hkdf(
ikm: ArrayBuffer,
salt: string | ArrayBuffer,
info: string | ArrayBuffer,
outputByteSize: number,
algorithm: "sha256" | "sha512"
): Promise<ArrayBuffer> {
const saltBuf = this.toArrayBuffer(salt);
const prk = await this.hmac(ikm, saltBuf, algorithm);
return this.hkdfExpand(prk, info, outputByteSize, algorithm);
}
// ref: https://tools.ietf.org/html/rfc5869
async hkdfExpand(
prk: ArrayBuffer,
info: string | ArrayBuffer,
outputByteSize: number,
algorithm: "sha256" | "sha512"
): Promise<ArrayBuffer> {
const hashLen = algorithm === "sha256" ? 32 : 64;
if (outputByteSize > 255 * hashLen) {
throw new Error("outputByteSize is too large.");
}
const prkArr = new Uint8Array(prk);
if (prkArr.length < hashLen) {
throw new Error("prk is too small.");
}
const infoBuf = this.toArrayBuffer(info);
const infoArr = new Uint8Array(infoBuf);
let runningOkmLength = 0;
let previousT = new Uint8Array(0);
const n = Math.ceil(outputByteSize / hashLen);
const okm = new Uint8Array(n * hashLen);
for (let i = 0; i < n; i++) {
const t = new Uint8Array(previousT.length + infoArr.length + 1);
t.set(previousT);
t.set(infoArr, previousT.length);
t.set([i + 1], t.length - 1);
previousT = new Uint8Array(await this.hmac(t.buffer, prk, algorithm));
okm.set(previousT, runningOkmLength);
runningOkmLength += previousT.length;
if (runningOkmLength >= outputByteSize) {
break;
}
}
return okm.slice(0, outputByteSize).buffer;
}
hash(
value: string | ArrayBuffer,
algorithm: "sha1" | "sha256" | "sha512" | "md5"
): Promise<ArrayBuffer> {
const nodeValue = this.toNodeValue(value);
const hash = crypto.createHash(algorithm);
hash.update(nodeValue);
return Promise.resolve(this.toArrayBuffer(hash.digest()));
}
hmac(
value: ArrayBuffer,
key: ArrayBuffer,
algorithm: "sha1" | "sha256" | "sha512"
): Promise<ArrayBuffer> {
const nodeValue = this.toNodeBuffer(value);
const nodeKey = this.toNodeBuffer(key);
const hmac = crypto.createHmac(algorithm, nodeKey);
hmac.update(nodeValue);
return Promise.resolve(this.toArrayBuffer(hmac.digest()));
}
async compare(a: ArrayBuffer, b: ArrayBuffer): Promise<boolean> {
const key = await this.randomBytes(32);
const mac1 = await this.hmac(a, key, "sha256");
const mac2 = await this.hmac(b, key, "sha256");
if (mac1.byteLength !== mac2.byteLength) {
return false;
}
const arr1 = new Uint8Array(mac1);
const arr2 = new Uint8Array(mac2);
for (let i = 0; i < arr2.length; i++) {
if (arr1[i] !== arr2[i]) {
return false;
}
}
return true;
}
hmacFast(
value: ArrayBuffer,
key: ArrayBuffer,
algorithm: "sha1" | "sha256" | "sha512"
): Promise<ArrayBuffer> {
return this.hmac(value, key, algorithm);
}
compareFast(a: ArrayBuffer, b: ArrayBuffer): Promise<boolean> {
return this.compare(a, b);
}
aesEncrypt(data: ArrayBuffer, iv: ArrayBuffer, key: ArrayBuffer): Promise<ArrayBuffer> {
const nodeData = this.toNodeBuffer(data);
const nodeIv = this.toNodeBuffer(iv);
const nodeKey = this.toNodeBuffer(key);
const cipher = crypto.createCipheriv("aes-256-cbc", nodeKey, nodeIv);
const encBuf = Buffer.concat([cipher.update(nodeData), cipher.final()]);
return Promise.resolve(this.toArrayBuffer(encBuf));
}
aesDecryptFastParameters(
data: string,
iv: string,
mac: string,
key: SymmetricCryptoKey
): DecryptParameters<ArrayBuffer> {
const p = new DecryptParameters<ArrayBuffer>();
p.encKey = key.encKey;
p.data = Utils.fromB64ToArray(data).buffer;
p.iv = Utils.fromB64ToArray(iv).buffer;
const macData = new Uint8Array(p.iv.byteLength + p.data.byteLength);
macData.set(new Uint8Array(p.iv), 0);
macData.set(new Uint8Array(p.data), p.iv.byteLength);
p.macData = macData.buffer;
if (key.macKey != null) {
p.macKey = key.macKey;
}
if (mac != null) {
p.mac = Utils.fromB64ToArray(mac).buffer;
}
return p;
}
async aesDecryptFast(parameters: DecryptParameters<ArrayBuffer>): Promise<string> {
const decBuf = await this.aesDecrypt(parameters.data, parameters.iv, parameters.encKey);
return Utils.fromBufferToUtf8(decBuf);
}
aesDecrypt(data: ArrayBuffer, iv: ArrayBuffer, key: ArrayBuffer): Promise<ArrayBuffer> {
const nodeData = this.toNodeBuffer(data);
const nodeIv = this.toNodeBuffer(iv);
const nodeKey = this.toNodeBuffer(key);
const decipher = crypto.createDecipheriv("aes-256-cbc", nodeKey, nodeIv);
const decBuf = Buffer.concat([decipher.update(nodeData), decipher.final()]);
return Promise.resolve(this.toArrayBuffer(decBuf));
}
rsaEncrypt(
data: ArrayBuffer,
publicKey: ArrayBuffer,
algorithm: "sha1" | "sha256"
): Promise<ArrayBuffer> {
if (algorithm === "sha256") {
throw new Error("Node crypto does not support RSA-OAEP SHA-256");
}
const pem = this.toPemPublicKey(publicKey);
const decipher = crypto.publicEncrypt(pem, this.toNodeBuffer(data));
return Promise.resolve(this.toArrayBuffer(decipher));
}
rsaDecrypt(
data: ArrayBuffer,
privateKey: ArrayBuffer,
algorithm: "sha1" | "sha256"
): Promise<ArrayBuffer> {
if (algorithm === "sha256") {
throw new Error("Node crypto does not support RSA-OAEP SHA-256");
}
const pem = this.toPemPrivateKey(privateKey);
const decipher = crypto.privateDecrypt(pem, this.toNodeBuffer(data));
return Promise.resolve(this.toArrayBuffer(decipher));
}
rsaExtractPublicKey(privateKey: ArrayBuffer): Promise<ArrayBuffer> {
const privateKeyByteString = Utils.fromBufferToByteString(privateKey);
const privateKeyAsn1 = forge.asn1.fromDer(privateKeyByteString);
const forgePrivateKey: any = forge.pki.privateKeyFromAsn1(privateKeyAsn1);
const forgePublicKey = (forge.pki as any).setRsaPublicKey(forgePrivateKey.n, forgePrivateKey.e);
const publicKeyAsn1 = forge.pki.publicKeyToAsn1(forgePublicKey);
const publicKeyByteString = forge.asn1.toDer(publicKeyAsn1).data;
const publicKeyArray = Utils.fromByteStringToArray(publicKeyByteString);
return Promise.resolve(publicKeyArray.buffer);
}
async rsaGenerateKeyPair(length: 1024 | 2048 | 4096): Promise<[ArrayBuffer, ArrayBuffer]> {
return new Promise<[ArrayBuffer, ArrayBuffer]>((resolve, reject) => {
forge.pki.rsa.generateKeyPair(
{
bits: length,
workers: -1,
e: 0x10001, // 65537
},
(error, keyPair) => {
if (error != null) {
reject(error);
return;
}
const publicKeyAsn1 = forge.pki.publicKeyToAsn1(keyPair.publicKey);
const publicKeyByteString = forge.asn1.toDer(publicKeyAsn1).getBytes();
const publicKey = Utils.fromByteStringToArray(publicKeyByteString);
const privateKeyAsn1 = forge.pki.privateKeyToAsn1(keyPair.privateKey);
const privateKeyPkcs8 = forge.pki.wrapRsaPrivateKey(privateKeyAsn1);
const privateKeyByteString = forge.asn1.toDer(privateKeyPkcs8).getBytes();
const privateKey = Utils.fromByteStringToArray(privateKeyByteString);
resolve([publicKey.buffer, privateKey.buffer]);
}
);
});
}
randomBytes(length: number): Promise<ArrayBuffer> {
return new Promise<ArrayBuffer>((resolve, reject) => {
crypto.randomBytes(length, (error, bytes) => {
if (error != null) {
reject(error);
} else {
resolve(this.toArrayBuffer(bytes));
}
});
});
}
private toNodeValue(value: string | ArrayBuffer): string | Buffer {
let nodeValue: string | Buffer;
if (typeof value === "string") {
nodeValue = value;
} else {
nodeValue = this.toNodeBuffer(value);
}
return nodeValue;
}
private toNodeBuffer(value: ArrayBuffer): Buffer {
return Buffer.from(new Uint8Array(value) as any);
}
private toArrayBuffer(value: Buffer | string | ArrayBuffer): ArrayBuffer {
let buf: ArrayBuffer;
if (typeof value === "string") {
buf = Utils.fromUtf8ToArray(value).buffer;
} else {
buf = new Uint8Array(value).buffer;
}
return buf;
}
private toPemPrivateKey(key: ArrayBuffer): string {
const byteString = Utils.fromBufferToByteString(key);
const asn1 = forge.asn1.fromDer(byteString);
const privateKey = forge.pki.privateKeyFromAsn1(asn1);
const rsaPrivateKey = forge.pki.privateKeyToAsn1(privateKey);
const privateKeyInfo = forge.pki.wrapRsaPrivateKey(rsaPrivateKey);
return forge.pki.privateKeyInfoToPem(privateKeyInfo);
}
private toPemPublicKey(key: ArrayBuffer): string {
const byteString = Utils.fromBufferToByteString(key);
const asn1 = forge.asn1.fromDer(byteString);
const publicKey = forge.pki.publicKeyFromAsn1(asn1);
return forge.pki.publicKeyToPem(publicKey);
}
}