On the ESP32 the voltage measured with the ADC caps out at ~1.1V by default as the sensing range (attenuation of the ADC) is set to ``0db`` by default.
Measuring higher voltages requires setting ``attenuation`` to one of the following values: ``0db``, ``2.5db``, ``6db``, ``11db``.
There's more information `at the manufacturer's website <https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/adc.html#_CPPv425adc1_config_channel_atten14adc1_channel_t11adc_atten_t>`__.
To simplify this, we provide the setting ``attenuation: auto`` for an automatic/seamless transition among scales. `Our implementation
<https://github.com/esphome/esphome/blob/dev/esphome/components/adc/adc_sensor.cpp>`__ combines all available ranges to allow the best resolution without having to compromise on a specific attenuation.
In our tests, the usable ADC range was from ~0.075V to ~3.12V (with the ``attenuation: auto`` setting), and anything outside that range capped out at either end.
Even though the measurements are calibrated, the range *limits* are variable among chips due to differences in the internal voltage reference.
You can only use as many ADC sensors as your device can support. The ESP8266 only has one ADC and can only handle one sensor at a time. For example, on the ESP8266, you can measure the value of an analog pin (A0 on ESP8266) or VCC (see above) but NOT both simultaneously. Using both at the same time will result in incorrect sensor values.