esphome-docs/components/climate/pid.rst

256 lines
9.0 KiB
ReStructuredText
Raw Normal View History

PID Climate
===========
.. seo::
:description: Instructions for setting up PID climate controllers with ESPHome.
:image: function.png
The ``pid`` climate platform allows you to regulate a value with a
`PID controller <https://en.wikipedia.org/wiki/PID_controller>`__.
PID controllers are good at modulating an output signal to get a sensor reading to a specified
setpoint. For example, it can be used to modulate the power of a heating unit to get the
temperature to a user-specified setpoint.
Explaining how PID controllers work in detail is out of scope of this documentation entry,
but there's a nice article explaining the function principle `here <https://blog.opticontrols.com/archives/344>`__.
.. code-block:: yaml
# Example configuration entry
climate:
- platform: pid
name: "PID Climate Controller"
sensor: temperature_sensor
default_target_temperature: 21°C
heat_output: heater
control_parameters:
kp: 0.49460
ki: 0.00487
kd: 12.56301
Configuration variables:
------------------------
- **sensor** (**Required**, :ref:`config-id`): The sensor that is used to measure the current
temperature.
- **default_target_temperature** (**Required**, float): The default target temperature (setpoint)
for the control algorithm. This can be dynamically set in the frontend later.
- **heat_output** (*Optional*, :ref:`config-id`): The ID of a :ref:`float output <config-output>`
that increases the current temperature. At least one of ``heat_output`` and ``cool_output`` must
be specified.
- **cool_output** (*Optional*, :ref:`config-id`): The ID of a :ref:`float output <config-output>`
that decreases the current temperature. At least one of ``heat_output`` and ``cool_output`` must
be specified.
- **control_parameters** (**Required**): Control parameters of the PID controller.
- **kp** (**Required**, float): The factor for the proportional term of the PID controller.
- **ki** (*Optional*, float): The factor for the integral term of the PID controller.
Defaults to ``0``.
- **kd** (*Optional*, float): The factor for the derivative term of the PID controller.
Defaults to ``0``.
- **min_integral** (*Optional*, float): The maximum value of the integral term multiplied by
``ki`` to prevent windup. Defaults to ``-1``.
- **max_integral** (*Optional*, float): The minimum value of the integral term multiplied by
``ki`` to prevent windup. Defaults to ``1``.
- All other options from :ref:`Climate <config-climate>`.
.. _pid-setup:
PID Controller Setup
--------------------
To set up a PID climate controller, you need a couple of components:
- A :ref:`Sensor <config-sensor>` to read the current temperature (``sensor``).
- At least one :ref:`float output <config-output>` to drive for heating or cooling (or both).
This could for example be a PWM output via ``slow_pwm`` (TODO) that drives a heating unit.
Please note the output *must* be controllable with continuous value (not only ON/OFF, but any state
in between for example 50% heating power).
.. note::
The sensor should have a short update interval. The PID update frequency is tied to the update
interval of the sensor. Set a short ``update_interval`` like ``1s`` on the sensor.
.. _pid-autotune:
Autotuning
----------
Finding suitable ``kp``, ``ki`` and ``kd`` control parameters for the PID controller manually
needs some experience with PID controllers. ESPHome has an auto-tuning algorithm that automatically
finds suitable PID parameters to start using an adaption of the Ziegler-Nichols method with
relay autotuning (Åström and Hägglund).
To autotune the control parameters:
1. Set up the PID controller with all control parameters set to zero:
.. code-block:: yaml
climate:
- platform: pid
id: pid_climate
name: "PID Climate Controller"
sensor: temperature_sensor
default_target_temperature: 21°C
heat_output: heater
control_parameters:
kp: 0.0
ki: 0.0
kd: 0.0
2. Create a :doc:`template switch </components/switch/template>` to start autotuning later:
.. code-block:: yaml
switch:
- platform: template
name: "PID Climate Autotune"
turn_on_action:
- climate.pid.autotune: pid_climate
3. Compile & Upload the new firmware.
Now you should have a climate entity called "PID Climate Controller" and a switch called
"PID Climate Autotune" visible in your frontend of choice.
The autotune algorithm works by repeatedly switching the heat/cool output to full power and off.
This induced an oscillation of the observed temperature and the measured period and amplitude
is automatically calculated.
But this also means you **have to set the setpoint** of the climate controller to a value the
device can reach. For example if the temperature of a room is to be controlled, the setpoint needs
to be a bit of the ambient temperature. If the ambient temperature is 20°C, the setpoint of the
climate device should be set to at least ~24°C so that an oscillation can be induced.
4. Set an appropriate setpoint (see above).
5. Click on the "PID Climate Autotune" and view the logs of the device.
You should see output like
.. code-block:: text
PID Autotune:
Autotune is still running!
Status: Trying to reach 24.25 °C
Stats so far:
Phases: 4
Detected 5 zero-crossings
# ...
For example, in the output above, the autotuner is driving the heating output at 100%
and trying to reach 24.25 °C.
This will continue for some time until data for 6 phases (or a bit more, depending on the data
quality) have been acquired.
6. When the PID autotuner has succeeded, output like the one below can be seen:
.. code-block:: text
PID Autotune:
State: Succeeded!
All checks passed!
Calculated PID parameters ("Ziegler-Nichols PID" rule):
Calculated PID parameters ("Ziegler-Nichols PID" rule):
control_parameters:
kp: 0.49460
ki: 0.00487
kd: 12.56301
Please copy these values into your YAML configuration! They will reset on the next reboot.
# ...
Copy the values in ``control_parameters`` into your configuration.
.. code-block:: yaml
climate:
- platform: pid
# ...
control_parameters:
kp: 0.49460
ki: 0.00487
kd: 12.56301
7. Complete, compile & upload the updated firmware.
If the calculated PID parameters are not good, you can try some of the alternative parameters
printed below the main control parameters in the log output.
``climate.pid.autotune`` Action
-------------------------------
This action starts the autotune process of the PID controller.
.. code-block:: yaml
on_...:
# Basic
- climate.pid.autotune: pid_climate
# Advanced
- climate.pid.autotune:
id: pid_climate
noiseband: 0.25
positive_output: 25%
negative_output: -25%
Configuration variables:
- **id** (**Required**, :ref:`config-id`): ID of the PID Climate to start autotuning for.
- **noiseband** (*Optional*, float): The noiseband of the process (=sensor) variable. The value
of the PID controller must be able to reach this value. Defaults to ``0.25``.
- **positive_output** (*Optional*, float): The positive output power to drive the heat output at.
Defaults to ``1.0``.
- **negative_output** (*Optional*, float): The positive output power to drive the cool output at.
Defaults to ``-1.0``.
PID Climate Sensor
------------------
Additionally, the PID climate platform provides an optional sensor platform to monitor
the calculated PID parameters to help finding good PID values.
.. code-block:: yaml
sensor:
- platform: pid
name: "PID Climate Result"
type: RESULT
Configuration variables:
- **name** (**Required**, string): The name of the sensor
- **type** (**Required**, string): The value to monitor. One of
- ``RESULT`` - The resulting value (sum of P, I, and D terms).
- ``ERROR`` - The calculated error (setpoint - process_variable)
- ``PROPORTIONAL`` - The proportional term of the PID controller.
- ``INTEGRAL`` - The integral term of the PID controller.
- ``DERIVATIVE`` - The derivative term of the PID controller.
- ``HEAT`` - The resulting heating power to the supplied to the ``heat_output``.
- ``COOL`` - The resulting cooling power to the supplied to the ``cool_output``.
Advanced options:
- **climate_id** (*Optional*, :ref:`config-id`): The ID of the pid climate to get the values from.
See Also
--------
- Ziegler-Nichols Method: Nichols, N. B. and J. G. Ziegler (1942), 'Optimum settings for automatic
controllers', Transactions of the ASME, 64, 759-768
- Åström, K. J. and T. Hägglund (1984a), 'Automatic tuning of simple regulators',
Proceedings of IFAC 9th World Congress, Budapest, 1867-1872
- :doc:`/components/climate/index`
- :apiref:`pid/pid_climate.h`
- :apiref:`PID Autotuner <pid/pid_autotune.h>`
- :ghedit:`Edit`